import pyarrow as pa import pyarrow.parquet as pq import torch from transformers import AutoModel, AutoTokenizer query_prefix = "Represent this sentence for searching relevant passages: " topic_file_names = [ "topics.dl21.txt", "topics.dl22.txt", "topics.dl23.txt", "topics.msmarco-v2-doc.dev.txt", "topics.msmarco-v2-doc.dev2.txt", "topics.rag24.raggy-dev.txt", "topics.rag24.researchy-dev.txt", ] model_names = [ "Snowflake/snowflake-arctic-embed-l", "Snowflake/snowflake-arctic-embed-m-v1.5", ] for model_name in model_names: print(f"Running query embeddings using {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained( model_name, add_pooling_layer=False, ) model.eval() device = "cuda" model = model.to(device) for file_name in topic_file_names: short_file_name = ".".join(file_name.split(".")[:-1]) data = [] print(f"starting on {file_name}") with open(file_name, "r") as f: for line in f: line = line.strip().split("\t") qid = line[0] query_text = line[1] queries_with_prefix = [ "{}{}".format(query_prefix, i) for i in [query_text] ] query_tokens = tokenizer( queries_with_prefix, padding=True, truncation=True, return_tensors="pt", max_length=512, ) # Compute token embeddings with torch.autocast( "cuda", dtype=torch.bfloat16 ), torch.inference_mode(): query_embeddings = ( model(**query_tokens.to(device))[0][:, 0] .cpu() .to(torch.float32) .detach() .numpy()[0] ) item = {"id": qid, "text": query_text, "embedding": query_embeddings} data.append(item) table = pa.Table.from_pylist(data) pq.write_table( table, f"{model_name.split('/')[1]}-{short_file_name}.parquet" )