|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{mutinda2022pico, |
|
title = {PICO Corpus: A Publicly Available Corpus to Support Automatic Data Extraction from Biomedical Literature}, |
|
author = {Mutinda, Faith and Liew, Kongmeng and Yada, Shuntaro and Wakamiya, Shoko and Aramaki, Eiji}, |
|
booktitle = {Proceedings of the first Workshop on Information Extraction from Scientific Publications}, |
|
pages = {26--31}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The corpus consists of about 1,011 PubMed abstracts which are RCTs related |
|
to breast cancer. For each abstract, text snippets that identify the |
|
Participants, Intervention, Control, and Outcome (PICO elements) are annotated. |
|
The abstracts were annotated using BRAT (https://brat.nlplab.org/) and later |
|
converted to CoNLL-2003. |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/Martin-Masson/pico-breast-cancer/main/pico_conll/" |
|
_TRAINING_FILE = "train.txt" |
|
_DEV_FILE = "dev.txt" |
|
_TEST_FILE = "test.txt" |
|
|
|
|
|
class PicoBreastCancerConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PicoBreastCancer""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for PicoBreastCancer. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PicoBreastCancerConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PicoBreastCancer(datasets.GeneratorBasedBuilder): |
|
"""A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PicoBreastCancerConfig(name="pico-breast-cancer", version=datasets.Version("1.0.0"), description="A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-total-participants", |
|
"I-total-participants", |
|
"B-intervention-participants", |
|
"I-intervention-participants", |
|
"B-control-participants", |
|
"I-control-participants", |
|
"B-age", |
|
"I-age", |
|
"B-eligibility", |
|
"I-eligibility", |
|
"B-ethinicity", |
|
"I-ethinicity", |
|
"B-condition", |
|
"I-condition", |
|
"B-location", |
|
"I-location", |
|
"B-intervention", |
|
"I-intervention", |
|
"B-control", |
|
"I-control", |
|
"B-outcome", |
|
"I-outcome", |
|
"B-outcome-measure", |
|
"I-outcome-measure", |
|
"B-iv-bin-abs", |
|
"I-iv-bin-abs", |
|
"B-cv-bin-abs", |
|
"I-cv-bin-abs", |
|
"B-iv-bin-percent", |
|
"I-iv-bin-percent", |
|
"B-cv-bin-percent", |
|
"I-cv-bin-percent", |
|
"B-iv-cont-mean", |
|
"I-iv-cont-mean", |
|
"B-cv-cont-mean", |
|
"I-cv-cont-mean", |
|
"B-iv-cont-median", |
|
"I-iv-cont-median", |
|
"B-cv-cont-median", |
|
"I-cv-cont-median", |
|
"B-iv-cont-sd", |
|
"I-iv-cont-sd", |
|
"B-cv-cont-sd", |
|
"I-cv-cont-sd", |
|
"B-iv-cont-q1", |
|
"I-iv-cont-q1", |
|
"B-cv-cont-q1", |
|
"I-cv-cont-q1", |
|
"B-iv-cont-q3", |
|
"I-iv-cont-q3", |
|
"B-cv-cont-q3", |
|
"I-cv-cont-q3", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/Martin-Masson/pico-corpus", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
idx = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield idx, { |
|
"id": str(idx), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
idx += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.rstrip().rsplit(" ", 1) |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1]) |
|
|
|
if tokens: |
|
yield idx, { |
|
"id": str(idx), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|