First version of the pico-breast-cancer dataset.
Browse files- pico-breast-cancer.py +110 -0
pico-breast-cancer.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
|
4 |
+
_CITATION = """\
|
5 |
+
@InProceedings{mutinda2022pico,
|
6 |
+
title = {PICO Corpus: A Publicly Available Corpus to Support Automatic Data Extraction from Biomedical Literature},
|
7 |
+
author = {Mutinda, Faith and Liew, Kongmeng and Yada, Shuntaro and Wakamiya, Shoko and Aramaki, Eiji},
|
8 |
+
booktitle = {Proceedings of the first Workshop on Information Extraction from Scientific Publications},
|
9 |
+
pages = {26--31},
|
10 |
+
year = {2022}
|
11 |
+
}
|
12 |
+
"""
|
13 |
+
|
14 |
+
_DESCRIPTION = """\
|
15 |
+
The corpus consists of about 1,011 PubMed abstracts which are RCTs related
|
16 |
+
to breast cancer. For each abstract, text snippets that identify the
|
17 |
+
Participants, Intervention, Control, and Outcome (PICO elements) are annotated.
|
18 |
+
The abstracts were annotated using BRAT (https://brat.nlplab.org/) and later
|
19 |
+
converted to CoNLL-2003.
|
20 |
+
"""
|
21 |
+
|
22 |
+
_HOMEPAGE = "https://github.com/Martin-Masson/pico-corpus"
|
23 |
+
|
24 |
+
_URL = "https://raw.githubusercontent.com/Martin-Masson/pico-breast-cancer/main/pico_conll.txt"
|
25 |
+
|
26 |
+
_TAGS = [
|
27 |
+
"O",
|
28 |
+
"total-participants",
|
29 |
+
"intervention-participants",
|
30 |
+
"control-participants",
|
31 |
+
"age",
|
32 |
+
"eligibility",
|
33 |
+
"ethinicity",
|
34 |
+
"condition",
|
35 |
+
"location",
|
36 |
+
"intervention",
|
37 |
+
"control",
|
38 |
+
"outcome",
|
39 |
+
"outcome-Measure",
|
40 |
+
"iv-bin-abs",
|
41 |
+
"cv-bin-abs",
|
42 |
+
"iv-bin-percent",
|
43 |
+
"cv-bin-percent",
|
44 |
+
"iv-cont-mean",
|
45 |
+
"cv-cont-mean",
|
46 |
+
"iv-cont-median",
|
47 |
+
"cv-cont-median",
|
48 |
+
"iv-cont-sd",
|
49 |
+
"cv-cont-sd",
|
50 |
+
"iv-cont-q1",
|
51 |
+
"cv-cont-q1",
|
52 |
+
"iv-cont-q3",
|
53 |
+
"cv-cont-q3",
|
54 |
+
]
|
55 |
+
|
56 |
+
|
57 |
+
class PicoBreastCancer(datasets.GeneratorBasedBuilder):
|
58 |
+
"""A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer."""
|
59 |
+
|
60 |
+
VERSION = datasets.Version("1.0.0")
|
61 |
+
|
62 |
+
def _info(self):
|
63 |
+
return datasets.DatasetInfo(
|
64 |
+
description=_DESCRIPTION,
|
65 |
+
features=datasets.Features(
|
66 |
+
{
|
67 |
+
"id": datasets.Value("string"),
|
68 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
69 |
+
"ner_tags": datasets.Sequence(datasets.ClassLabel(names=_TAGS)),
|
70 |
+
}
|
71 |
+
),
|
72 |
+
supervised_keys=None,
|
73 |
+
homepage=_HOMEPAGE,
|
74 |
+
citation=_CITATION,
|
75 |
+
)
|
76 |
+
|
77 |
+
def _split_generators(self, dl_manager):
|
78 |
+
data_file = dl_manager.download_and_extract(_URL)
|
79 |
+
|
80 |
+
return [
|
81 |
+
datasets.SplitGenerator(
|
82 |
+
name=datasets.Split.ALL,
|
83 |
+
gen_kwargs={
|
84 |
+
"filepath": data_file,
|
85 |
+
},
|
86 |
+
)
|
87 |
+
]
|
88 |
+
|
89 |
+
def _generate_examples(self, filepath):
|
90 |
+
idx = 0
|
91 |
+
tokens = []
|
92 |
+
ner_tags = []
|
93 |
+
labels = {tag: i for i, tag in enumerate(_TAGS)}
|
94 |
+
|
95 |
+
with open(filepath) as f:
|
96 |
+
lines = f.read().splitlines()
|
97 |
+
for line in lines:
|
98 |
+
if not line:
|
99 |
+
yield id, {
|
100 |
+
"id": str(idx),
|
101 |
+
"tokens": tokens,
|
102 |
+
"ner_tags": ner_tags
|
103 |
+
}
|
104 |
+
idx += 1
|
105 |
+
tokens.clear()
|
106 |
+
ner_tags.clear()
|
107 |
+
else:
|
108 |
+
token_tag = line.split()
|
109 |
+
tokens.append(token_tag[0])
|
110 |
+
ner_tags.append(labels[token_tag[1]])
|