Stardrums commited on
Commit
ae98cf6
·
1 Parent(s): c445220

Update pico-breast-cancer.py

Browse files
Files changed (1) hide show
  1. pico-breast-cancer.py +78 -70
pico-breast-cancer.py CHANGED
@@ -2,6 +2,9 @@ import os
2
  import datasets
3
 
4
 
 
 
 
5
  _CITATION = """\
6
  @InProceedings{mutinda2022pico,
7
  title = {PICO Corpus: A Publicly Available Corpus to Support Automatic Data Extraction from Biomedical Literature},
@@ -22,63 +25,10 @@ converted to CoNLL-2003.
22
 
23
  _HOMEPAGE = "https://github.com/Martin-Masson/pico-corpus"
24
 
25
- _URL = "https://github.com/Martin-Masson/pico-breast-cancer/raw/main/pico-breast-cancer.zip"
26
-
27
- _TAGS = [
28
- "O",
29
- "B-total-participants",
30
- "I-total-participants",
31
- "B-intervention-participants",
32
- "I-intervention-participants",
33
- "B-control-participants",
34
- "I-control-participants",
35
- "B-age",
36
- "I-age",
37
- "B-eligibility",
38
- "I-eligibility",
39
- "B-ethinicity",
40
- "I-ethinicity",
41
- "B-condition",
42
- "I-condition",
43
- "B-location",
44
- "I-location",
45
- "B-intervention",
46
- "I-intervention",
47
- "B-control",
48
- "I-control",
49
- "B-outcome",
50
- "I-outcome",
51
- "B-outcome-measure",
52
- "I-outcome-measure",
53
- "B-iv-bin-abs",
54
- "I-iv-bin-abs",
55
- "B-cv-bin-abs",
56
- "I-cv-bin-abs",
57
- "B-iv-bin-percent",
58
- "I-iv-bin-percent",
59
- "B-cv-bin-percent",
60
- "I-cv-bin-percent",
61
- "B-iv-cont-mean",
62
- "I-iv-cont-mean",
63
- "B-cv-cont-mean",
64
- "I-cv-cont-mean",
65
- "B-iv-cont-median",
66
- "I-iv-cont-median",
67
- "B-cv-cont-median",
68
- "I-cv-cont-median",
69
- "B-iv-cont-sd",
70
- "I-iv-cont-sd",
71
- "B-cv-cont-sd",
72
- "I-cv-cont-sd",
73
- "B-iv-cont-q1",
74
- "I-iv-cont-q1",
75
- "B-cv-cont-q1",
76
- "I-cv-cont-q1",
77
- "B-iv-cont-q3",
78
- "I-iv-cont-q3",
79
- "B-cv-cont-q3",
80
- "I-cv-cont-q3",
81
- ]
82
 
83
 
84
  class PicoBreastCancer(datasets.GeneratorBasedBuilder):
@@ -93,7 +43,65 @@ class PicoBreastCancer(datasets.GeneratorBasedBuilder):
93
  {
94
  "id": datasets.Value("string"),
95
  "tokens": datasets.Sequence(datasets.Value("string")),
96
- "ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=_TAGS)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  }
98
  ),
99
  supervised_keys=None,
@@ -102,25 +110,25 @@ class PicoBreastCancer(datasets.GeneratorBasedBuilder):
102
  )
103
 
104
  def _split_generators(self, dl_manager):
105
- data_dir = dl_manager.download_and_extract(_URL)
106
- data_files = {
107
- "train": os.path.join(data_dir, "train.txt"),
108
- "dev": os.path.join(data_dir, "dev.txt"),
109
- "test": os.path.join(data_dir, "test.txt"),
110
  }
 
111
 
112
  return [
113
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
114
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
115
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
116
  ]
117
 
118
  def _generate_examples(self, filepath):
119
- idx = 0
120
- tokens = []
121
- ner_tags = []
122
-
123
  with open(filepath, encoding="utf-8") as f:
 
 
 
124
  for line in f:
125
  if line.startswith("-DOCSTART-") or line == "" or line == "\n":
126
  if tokens:
 
2
  import datasets
3
 
4
 
5
+ logger = datasets.logging.get_logger(__name__)
6
+
7
+
8
  _CITATION = """\
9
  @InProceedings{mutinda2022pico,
10
  title = {PICO Corpus: A Publicly Available Corpus to Support Automatic Data Extraction from Biomedical Literature},
 
25
 
26
  _HOMEPAGE = "https://github.com/Martin-Masson/pico-corpus"
27
 
28
+ _URL = "https://raw.githubusercontent.com/Martin-Masson/pico-breast-cancer/main/pico_conll/"
29
+ _TRAINING_FILE = "train.txt"
30
+ _DEV_FILE = "dev.txt"
31
+ _TEST_FILE = "test.txt"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
 
34
  class PicoBreastCancer(datasets.GeneratorBasedBuilder):
 
43
  {
44
  "id": datasets.Value("string"),
45
  "tokens": datasets.Sequence(datasets.Value("string")),
46
+ "ner_tags": datasets.Sequence(
47
+ datasets.features.ClassLabel(
48
+ names= [
49
+ "O",
50
+ "B-total-participants",
51
+ "I-total-participants",
52
+ "B-intervention-participants",
53
+ "I-intervention-participants",
54
+ "B-control-participants",
55
+ "I-control-participants",
56
+ "B-age",
57
+ "I-age",
58
+ "B-eligibility",
59
+ "I-eligibility",
60
+ "B-ethinicity",
61
+ "I-ethinicity",
62
+ "B-condition",
63
+ "I-condition",
64
+ "B-location",
65
+ "I-location",
66
+ "B-intervention",
67
+ "I-intervention",
68
+ "B-control",
69
+ "I-control",
70
+ "B-outcome",
71
+ "I-outcome",
72
+ "B-outcome-measure",
73
+ "I-outcome-measure",
74
+ "B-iv-bin-abs",
75
+ "I-iv-bin-abs",
76
+ "B-cv-bin-abs",
77
+ "I-cv-bin-abs",
78
+ "B-iv-bin-percent",
79
+ "I-iv-bin-percent",
80
+ "B-cv-bin-percent",
81
+ "I-cv-bin-percent",
82
+ "B-iv-cont-mean",
83
+ "I-iv-cont-mean",
84
+ "B-cv-cont-mean",
85
+ "I-cv-cont-mean",
86
+ "B-iv-cont-median",
87
+ "I-iv-cont-median",
88
+ "B-cv-cont-median",
89
+ "I-cv-cont-median",
90
+ "B-iv-cont-sd",
91
+ "I-iv-cont-sd",
92
+ "B-cv-cont-sd",
93
+ "I-cv-cont-sd",
94
+ "B-iv-cont-q1",
95
+ "I-iv-cont-q1",
96
+ "B-cv-cont-q1",
97
+ "I-cv-cont-q1",
98
+ "B-iv-cont-q3",
99
+ "I-iv-cont-q3",
100
+ "B-cv-cont-q3",
101
+ "I-cv-cont-q3",
102
+ ]
103
+ )
104
+ ),
105
  }
106
  ),
107
  supervised_keys=None,
 
110
  )
111
 
112
  def _split_generators(self, dl_manager):
113
+ urls_to_download = {
114
+ "train": f"{_URL}{_TRAINING_FILE}",
115
+ "dev": f"{_URL}{_DEV_FILE}",
116
+ "test": f"{_URL}{_TEST_FILE}",
 
117
  }
118
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
119
 
120
  return [
121
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
122
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
123
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
124
  ]
125
 
126
  def _generate_examples(self, filepath):
127
+ logger.info("⏳ Generating examples from = %s", filepath)
 
 
 
128
  with open(filepath, encoding="utf-8") as f:
129
+ idx = 0
130
+ tokens = []
131
+ ner_tags = []
132
  for line in f:
133
  if line.startswith("-DOCSTART-") or line == "" or line == "\n":
134
  if tokens: