|
import json |
|
import os |
|
import logging |
|
import argparse |
|
from PIL import Image |
|
from datasets import Dataset |
|
import io |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
def load_questions_from_meta_qa(meta_qa_file): |
|
with open(meta_qa_file, "r") as f: |
|
questions = [line.strip() for line in f if line.strip()] |
|
return questions |
|
|
|
def process_parquet_files(data_dir, output_jsonl, meta_qa_file=None, output_imgs=None, process_qa=False): |
|
""" |
|
Process Parquet files to generate a JSONL file with optional image export and QA list creation. |
|
|
|
Args: |
|
data_dir (str): Directory containing Parquet files. |
|
output_jsonl (str): Output JSONL file path. |
|
meta_qa_file (str, optional): Path to the meta_qa_en.txt file for QA list creation. |
|
output_imgs (str, optional): Directory path to save images. If None, images are not saved. |
|
process_qa (bool): Whether to process and include QA pairs in the output. |
|
|
|
Returns: |
|
None |
|
""" |
|
|
|
if output_imgs and not os.path.exists(output_imgs): |
|
os.makedirs(output_imgs) |
|
|
|
|
|
questions = None |
|
if process_qa and meta_qa_file: |
|
questions = load_questions_from_meta_qa(meta_qa_file) |
|
|
|
jsonl_data = [] |
|
|
|
parquet_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".parquet")] |
|
|
|
for parquet_file in parquet_files: |
|
dataset = Dataset.from_parquet(parquet_file) |
|
|
|
for row in dataset: |
|
json_item = { |
|
"internal_id": row["internal_id"], |
|
"url": row["url"], |
|
"annotation": row["annotation"], |
|
"meta_result": row["meta_result"], |
|
"meta_mask": row["meta_mask"], |
|
} |
|
|
|
|
|
if output_imgs: |
|
img_data = row["image"] |
|
img_path = os.path.join(output_imgs, f"{row['internal_id']}.jpg") |
|
|
|
try: |
|
with open(img_path, "wb") as img_file: |
|
img_file.write(img_data) |
|
json_item["image_path"] = img_path |
|
except Exception as e: |
|
logger.error(f"Error saving image for internal_id {row['internal_id']}: {e}") |
|
|
|
|
|
if process_qa and questions: |
|
qa_list = [] |
|
meta_result = row["meta_result"] |
|
meta_mask = row["meta_mask"] |
|
for idx, mask in enumerate(meta_mask): |
|
if mask == 1: |
|
question = questions[idx] |
|
answer = 'yes' if meta_result[idx] == 1 else 'no' |
|
qa_list.append({"question": question, "answer": answer}) |
|
json_item["qa_list"] = qa_list |
|
|
|
jsonl_data.append(json_item) |
|
|
|
with open(output_jsonl, "w") as outfile: |
|
for json_item in jsonl_data: |
|
outfile.write(json.dumps(json_item) + "\n") |
|
logger.info(f"Finished writing JSONL file with {len(jsonl_data)} items.") |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Convert VisionReward Parquet dataset files to JSONL format with optional image extraction and QA list generation.") |
|
parser.add_argument("--data_dir", type=str, default='data', help="Directory containing Parquet files.") |
|
parser.add_argument("--output_jsonl", type=str, default='annotation.jsonl', help="Path to the output JSONL file.") |
|
parser.add_argument("--meta_qa_file", type=str, default="meta_qa_en.txt", help="Optional: Path to the meta_qa_en.txt file for QA list generation.") |
|
parser.add_argument("--save_imgs", action="store_true", help="Optional: Whether to save images.") |
|
parser.add_argument("--process_qa", action="store_true", help="Optional: Process and include QA pairs in the output.") |
|
args = parser.parse_args() |
|
|
|
output_imgs = 'imgs' if args.save_imgs else None |
|
|
|
process_parquet_files( |
|
data_dir=args.data_dir, |
|
output_jsonl=args.output_jsonl, |
|
meta_qa_file=args.meta_qa_file, |
|
output_imgs=output_imgs, |
|
process_qa=args.process_qa |
|
) |