Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
CodeZzz commited on
Commit
07d592f
ยท
verified ยท
1 Parent(s): 4404409

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -171
README.md CHANGED
@@ -1,172 +1,172 @@
1
- ---
2
- license: apache-2.0
3
-
4
- dataset_info:
5
- features:
6
- - name: image
7
- dtype: image
8
- - name: internal_id
9
- dtype: string
10
- - name: prompt
11
- dtype: string
12
- - name: url
13
- dtype: string
14
- - name: annotation
15
- struct:
16
- - name: symmetry
17
- dtype: int64
18
- range: [-1,1]
19
- - name: richness
20
- dtype: int64
21
- range: [-2,2]
22
- - name: color aesthetic
23
- dtype: int64
24
- range: [-1,1]
25
- - name: detail realism
26
- dtype: int64
27
- range: [-3,1]
28
- - name: safety
29
- dtype: int64
30
- range: [-3,1]
31
- - name: body
32
- dtype: int64
33
- range: [-4,1]
34
- - name: lighting aesthetic
35
- dtype: int64
36
- range: [-1,2]
37
- - name: lighting distinction
38
- dtype: int64
39
- range: [-1,2]
40
- - name: background
41
- dtype: int64
42
- range: [-1,2]
43
- - name: emotion
44
- dtype: int64
45
- range: [-2,2]
46
- - name: main object
47
- dtype: int64
48
- range: [-1,1]
49
- - name: color brightness
50
- dtype: int64
51
- range: [-1,1]
52
- - name: face
53
- dtype: int64
54
- range: [-3,2]
55
- - name: hands
56
- dtype: int64
57
- range: [-4,1]
58
- - name: clarity
59
- dtype: int64
60
- range: [-2,2]
61
- - name: detail refinement
62
- dtype: int64
63
- range: [-4,2]
64
- - name: unsafe type
65
- dtype: int64
66
- range: [0,3]
67
- - name: object pairing
68
- dtype: int64
69
- range: [-1,1]
70
- - name: meta_result
71
- sequence:
72
- dtype: int64
73
- - name: meta_mask
74
- sequence:
75
- dtype: int64
76
- config_name: default
77
- splits:
78
- - name: train
79
- num_examples: 40743
80
- ---
81
- # VisionRewardDB-Image
82
-
83
- ## Introduction
84
-
85
- VisionRewardDB-Image is a comprehensive dataset designed to train VisionReward-Image models, providing detailed aesthetic annotations across 18 aspects. The dataset aims to enhance the assessment and understanding of visual aesthetics and quality. ๐ŸŒŸโœจ
86
-
87
- For more details, please refer to the [**Github Repository**](https://github.com/THUDM/VisionReward). ๐Ÿ”๐Ÿ“š
88
-
89
-
90
- ## Annotation Details
91
-
92
- Each image in the dataset is annotated with the following attributes:
93
-
94
- <table border="1" style="border-collapse: collapse; width: 100%;">
95
- <tr>
96
- <th style="padding: 8px; width: 30%;">Dimension</th>
97
- <th style="padding: 8px; width: 70%;">Attributes</th>
98
- </tr>
99
- <tr>
100
- <td style="padding: 8px;">Composition</td>
101
- <td style="padding: 8px;">Symmetry; Object pairing; Main object; Richness; Background</td>
102
- </tr>
103
- <tr>
104
- <td style="padding: 8px;">Quality</td>
105
- <td style="padding: 8px;">Clarity; Color Brightness; Color Aesthetic; Lighting Distinction; Lighting Aesthetic</td>
106
- </tr>
107
- <tr>
108
- <td style="padding: 8px;">Fidelity</td>
109
- <td style="padding: 8px;">Detail realism; Detail refinement; Body; Face; Hands</td>
110
- </tr>
111
- <tr>
112
- <td style="padding: 8px;">Safety & Emotion</td>
113
- <td style="padding: 8px;">Emotion; Safety</td>
114
- </tr>
115
- </table>
116
-
117
- ### Example: Scene Richness (richness)
118
- - **2:** Very rich
119
- - **1:** Rich
120
- - **0:** Normal
121
- - **-1:** Monotonous
122
- - **-2:** Empty
123
-
124
- For more detailed annotation guidelines(such as the meanings of different scores and annotation rules), please refer to:
125
- - [annotation_deatils](https://flame-spaghetti-eb9.notion.site/VisionReward-Image-Annotation-Details-196a0162280e80ef8359c38e9e41247e)
126
- - [annotation_deatils_ch](https://flame-spaghetti-eb9.notion.site/VisionReward-Image-195a0162280e8044bcb4ec48d000409c)
127
-
128
-
129
- ## Additional Feature Details
130
- The dataset includes two special features: `annotation` and `meta_result`.
131
-
132
- ### Annotation
133
- The `annotation` feature contains scores across 18 different dimensions of image assessment, with each dimension having its own scoring criteria as detailed above.
134
-
135
- ### Meta Result
136
- The `meta_result` feature transforms multi-choice questions into a series of binary judgments. For example, for the `richness` dimension:
137
-
138
- | Score | Is the image very rich? | Is the image rich? | Is the image not monotonous? | Is the image not empty? |
139
- |-------|------------------------|-------------------|---------------------------|----------------------|
140
- | 2 | 1 | 1 | 1 | 1 |
141
- | 1 | 0 | 1 | 1 | 1 |
142
- | 0 | 0 | 0 | 1 | 1 |
143
- | -1 | 0 | 0 | 0 | 1 |
144
- | -2 | 0 | 0 | 0 | 0 |
145
-
146
- Each element in the binary array represents a yes/no answer to a specific aspect of the assessment. For detailed questions corresponding to these binary judgments, please refer to the `meta_qa_en.txt` file.
147
-
148
- ### Meta Mask
149
- The `meta_mask` feature is used for balanced sampling during model training:
150
- - Elements with value 1 indicate that the corresponding binary judgment was used in training
151
- - Elements with value 0 indicate that the corresponding binary judgment was ignored during training
152
-
153
- ## Data Processing
154
-
155
- We provide `extract.py` for processing the dataset into JSONL format. The script can optionally extract the balanced positive/negative QA pairs used in VisionReward training by processing `meta_result` and `meta_mask` fields.
156
-
157
- ```bash
158
- python extract.py [--save_imgs] [--process_qa]
159
- ```
160
-
161
- ## Citation Information
162
- ```
163
- @misc{xu2024visionrewardfinegrainedmultidimensionalhuman,
164
- title={VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation},
165
- author={Jiazheng Xu and Yu Huang and Jiale Cheng and Yuanming Yang and Jiajun Xu and Yuan Wang and Wenbo Duan and Shen Yang and Qunlin Jin and Shurun Li and Jiayan Teng and Zhuoyi Yang and Wendi Zheng and Xiao Liu and Ming Ding and Xiaohan Zhang and Xiaotao Gu and Shiyu Huang and Minlie Huang and Jie Tang and Yuxiao Dong},
166
- year={2024},
167
- eprint={2412.21059},
168
- archivePrefix={arXiv},
169
- primaryClass={cs.CV},
170
- url={https://arxiv.org/abs/2412.21059},
171
- }
172
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+
4
+ dataset_info:
5
+ features:
6
+ - name: image
7
+ dtype: image
8
+ - name: internal_id
9
+ dtype: string
10
+ - name: prompt
11
+ dtype: string
12
+ - name: url
13
+ dtype: string
14
+ - name: annotation
15
+ struct:
16
+ - name: symmetry
17
+ dtype: int64
18
+ range: [-1,1]
19
+ - name: richness
20
+ dtype: int64
21
+ range: [-2,2]
22
+ - name: color aesthetic
23
+ dtype: int64
24
+ range: [-1,1]
25
+ - name: detail realism
26
+ dtype: int64
27
+ range: [-3,1]
28
+ - name: safety
29
+ dtype: int64
30
+ range: [-3,1]
31
+ - name: body
32
+ dtype: int64
33
+ range: [-4,1]
34
+ - name: lighting aesthetic
35
+ dtype: int64
36
+ range: [-1,2]
37
+ - name: lighting distinction
38
+ dtype: int64
39
+ range: [-1,2]
40
+ - name: background
41
+ dtype: int64
42
+ range: [-1,2]
43
+ - name: emotion
44
+ dtype: int64
45
+ range: [-2,2]
46
+ - name: main object
47
+ dtype: int64
48
+ range: [-1,1]
49
+ - name: color brightness
50
+ dtype: int64
51
+ range: [-1,1]
52
+ - name: face
53
+ dtype: int64
54
+ range: [-3,2]
55
+ - name: hands
56
+ dtype: int64
57
+ range: [-4,1]
58
+ - name: clarity
59
+ dtype: int64
60
+ range: [-2,2]
61
+ - name: detail refinement
62
+ dtype: int64
63
+ range: [-4,2]
64
+ - name: unsafe type
65
+ dtype: int64
66
+ range: [0,3]
67
+ - name: object pairing
68
+ dtype: int64
69
+ range: [-1,1]
70
+ - name: meta_result
71
+ sequence:
72
+ dtype: int64
73
+ - name: meta_mask
74
+ sequence:
75
+ dtype: int64
76
+ config_name: default
77
+ splits:
78
+ - name: train
79
+ num_examples: 40743
80
+ ---
81
+ # VisionRewardDB-Image
82
+
83
+ ## Introduction
84
+
85
+ VisionRewardDB-Image is a comprehensive dataset designed to train VisionReward-Image models, providing detailed aesthetic annotations across 18 aspects. The dataset aims to enhance the assessment and understanding of visual aesthetics and quality. ๐ŸŒŸโœจ
86
+
87
+ For more detail, please refer to the [**Github Repository**](https://github.com/THUDM/VisionReward). ๐Ÿ”๐Ÿ“š
88
+
89
+
90
+ ## Annotation Detail
91
+
92
+ Each image in the dataset is annotated with the following attributes:
93
+
94
+ <table border="1" style="border-collapse: collapse; width: 100%;">
95
+ <tr>
96
+ <th style="padding: 8px; width: 30%;">Dimension</th>
97
+ <th style="padding: 8px; width: 70%;">Attributes</th>
98
+ </tr>
99
+ <tr>
100
+ <td style="padding: 8px;">Composition</td>
101
+ <td style="padding: 8px;">Symmetry; Object pairing; Main object; Richness; Background</td>
102
+ </tr>
103
+ <tr>
104
+ <td style="padding: 8px;">Quality</td>
105
+ <td style="padding: 8px;">Clarity; Color Brightness; Color Aesthetic; Lighting Distinction; Lighting Aesthetic</td>
106
+ </tr>
107
+ <tr>
108
+ <td style="padding: 8px;">Fidelity</td>
109
+ <td style="padding: 8px;">Detail realism; Detail refinement; Body; Face; Hands</td>
110
+ </tr>
111
+ <tr>
112
+ <td style="padding: 8px;">Safety & Emotion</td>
113
+ <td style="padding: 8px;">Emotion; Safety</td>
114
+ </tr>
115
+ </table>
116
+
117
+ ### Example: Scene Richness (richness)
118
+ - **2:** Very rich
119
+ - **1:** Rich
120
+ - **0:** Normal
121
+ - **-1:** Monotonous
122
+ - **-2:** Empty
123
+
124
+ For more detailed annotation guidelines(such as the meanings of different scores and annotation rules), please refer to:
125
+ - [annotation_deatil](https://flame-spaghetti-eb9.notion.site/VisionReward-Image-Annotation-Detail-196a0162280e80ef8359c38e9e41247e)
126
+ - [annotation_deatil_ch](https://flame-spaghetti-eb9.notion.site/VisionReward-Image-195a0162280e8044bcb4ec48d000409c)
127
+
128
+
129
+ ## Additional Feature Detail
130
+ The dataset includes two special features: `annotation` and `meta_result`.
131
+
132
+ ### Annotation
133
+ The `annotation` feature contains scores across 18 different dimensions of image assessment, with each dimension having its own scoring criteria as detailed above.
134
+
135
+ ### Meta Result
136
+ The `meta_result` feature transforms multi-choice questions into a series of binary judgments. For example, for the `richness` dimension:
137
+
138
+ | Score | Is the image very rich? | Is the image rich? | Is the image not monotonous? | Is the image not empty? |
139
+ |-------|------------------------|-------------------|---------------------------|----------------------|
140
+ | 2 | 1 | 1 | 1 | 1 |
141
+ | 1 | 0 | 1 | 1 | 1 |
142
+ | 0 | 0 | 0 | 1 | 1 |
143
+ | -1 | 0 | 0 | 0 | 1 |
144
+ | -2 | 0 | 0 | 0 | 0 |
145
+
146
+ Each element in the binary array represents a yes/no answer to a specific aspect of the assessment. For detailed questions corresponding to these binary judgments, please refer to the `meta_qa_en.txt` file.
147
+
148
+ ### Meta Mask
149
+ The `meta_mask` feature is used for balanced sampling during model training:
150
+ - Elements with value 1 indicate that the corresponding binary judgment was used in training
151
+ - Elements with value 0 indicate that the corresponding binary judgment was ignored during training
152
+
153
+ ## Data Processing
154
+
155
+ We provide `extract.py` for processing the dataset into JSONL format. The script can optionally extract the balanced positive/negative QA pairs used in VisionReward training by processing `meta_result` and `meta_mask` fields.
156
+
157
+ ```bash
158
+ python extract.py [--save_imgs] [--process_qa]
159
+ ```
160
+
161
+ ## Citation Information
162
+ ```
163
+ @misc{xu2024visionrewardfinegrainedmultidimensionalhuman,
164
+ title={VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation},
165
+ author={Jiazheng Xu and Yu Huang and Jiale Cheng and Yuanming Yang and Jiajun Xu and Yuan Wang and Wenbo Duan and Shen Yang and Qunlin Jin and Shurun Li and Jiayan Teng and Zhuoyi Yang and Wendi Zheng and Xiao Liu and Ming Ding and Xiaohan Zhang and Xiaotao Gu and Shiyu Huang and Minlie Huang and Jie Tang and Yuxiao Dong},
166
+ year={2024},
167
+ eprint={2412.21059},
168
+ archivePrefix={arXiv},
169
+ primaryClass={cs.CV},
170
+ url={https://arxiv.org/abs/2412.21059},
171
+ }
172
  ```