update
Browse files
.gitattributes
CHANGED
@@ -30,6 +30,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
32 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
34 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
35 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
@@ -57,3 +58,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
32 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
34 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
35 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
36 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
|
|
58 |
# Video files - compressed
|
59 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
60 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
61 |
+
/workspace/cogview_intern/hy/VRDB-Video/videos filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -101,7 +101,7 @@ dataset_info:
|
|
101 |
- name: regression
|
102 |
num_examples: 1795
|
103 |
|
104 |
-
- config_name:
|
105 |
features:
|
106 |
- name: internal_id
|
107 |
dtype: string
|
@@ -114,7 +114,7 @@ dataset_info:
|
|
114 |
- name: video2_path
|
115 |
dtype: string
|
116 |
splits:
|
117 |
-
- name:
|
118 |
num_examples: 1000
|
119 |
|
120 |
configs:
|
@@ -126,10 +126,10 @@ configs:
|
|
126 |
data_files:
|
127 |
- split: regression
|
128 |
path: regression/*.parquet
|
129 |
-
- config_name:
|
130 |
data_files:
|
131 |
-
- split:
|
132 |
-
path:
|
133 |
|
134 |
license: apache-2.0
|
135 |
---
|
@@ -142,7 +142,7 @@ This dataset is a comprehensive collection of video evaluation data designed for
|
|
142 |
The dataset is structured to facilitate both model training and standardized evaluation:
|
143 |
- `Train`: A primary training set with detailed multi-dimensional annotations
|
144 |
- `Regression`: A regression set with paired preference data
|
145 |
-
- `
|
146 |
|
147 |
This holistic approach enables the development and validation of sophisticated video quality assessment models that can evaluate AI-generated videos across multiple critical dimensions, moving beyond simple aesthetic judgments to encompass technical accuracy, semantic consistency, and dynamic performance.
|
148 |
|
@@ -234,7 +234,7 @@ The `meta_mask` feature is used for balanced sampling during model training:
|
|
234 |
cd videos
|
235 |
tar -xvzf train.tar.gz
|
236 |
tar -xvzf regression.tar.gz
|
237 |
-
tar -xvzf
|
238 |
```
|
239 |
|
240 |
We provide `extract.py` for processing the `train` dataset into JSONL format. The script can optionally extract the balanced positive/negative QA pairs used in VisionReward training by processing `meta_result` and `meta_mask` fields.
|
|
|
101 |
- name: regression
|
102 |
num_examples: 1795
|
103 |
|
104 |
+
- config_name: test
|
105 |
features:
|
106 |
- name: internal_id
|
107 |
dtype: string
|
|
|
114 |
- name: video2_path
|
115 |
dtype: string
|
116 |
splits:
|
117 |
+
- name: test
|
118 |
num_examples: 1000
|
119 |
|
120 |
configs:
|
|
|
126 |
data_files:
|
127 |
- split: regression
|
128 |
path: regression/*.parquet
|
129 |
+
- config_name: test
|
130 |
data_files:
|
131 |
+
- split: test
|
132 |
+
path: test/*.parquet
|
133 |
|
134 |
license: apache-2.0
|
135 |
---
|
|
|
142 |
The dataset is structured to facilitate both model training and standardized evaluation:
|
143 |
- `Train`: A primary training set with detailed multi-dimensional annotations
|
144 |
- `Regression`: A regression set with paired preference data
|
145 |
+
- `Test`: A video preference test set for standardized performance evaluation
|
146 |
|
147 |
This holistic approach enables the development and validation of sophisticated video quality assessment models that can evaluate AI-generated videos across multiple critical dimensions, moving beyond simple aesthetic judgments to encompass technical accuracy, semantic consistency, and dynamic performance.
|
148 |
|
|
|
234 |
cd videos
|
235 |
tar -xvzf train.tar.gz
|
236 |
tar -xvzf regression.tar.gz
|
237 |
+
tar -xvzf test.tar.gz
|
238 |
```
|
239 |
|
240 |
We provide `extract.py` for processing the `train` dataset into JSONL format. The script can optionally extract the balanced positive/negative QA pairs used in VisionReward training by processing `meta_result` and `meta_mask` fields.
|
{monetbench → test}/test-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f852e71c86e82346ff18a1a15cf24c448d6f93ddda17110434ba7e82897b699e
|
3 |
+
size 95923
|
videos/{monetbench.tar.gz → test.tar.gz}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:589531845cd550770e524740d577db92f51fe413ad564012039f0317b2139995
|
3 |
+
size 2551171968
|