Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
CodeZzz commited on
Commit
ea18b68
·
1 Parent(s): 5bd840b
.gitattributes CHANGED
@@ -30,6 +30,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.tar filter=lfs diff=lfs merge=lfs -text
31
  *.tflite filter=lfs diff=lfs merge=lfs -text
32
  *.tgz filter=lfs diff=lfs merge=lfs -text
 
33
  *.wasm filter=lfs diff=lfs merge=lfs -text
34
  *.xz filter=lfs diff=lfs merge=lfs -text
35
  *.zip filter=lfs diff=lfs merge=lfs -text
@@ -57,3 +58,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.tar filter=lfs diff=lfs merge=lfs -text
31
  *.tflite filter=lfs diff=lfs merge=lfs -text
32
  *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.gz filter=lfs diff=lfs merge=lfs -text
34
  *.wasm filter=lfs diff=lfs merge=lfs -text
35
  *.xz filter=lfs diff=lfs merge=lfs -text
36
  *.zip filter=lfs diff=lfs merge=lfs -text
 
58
  # Video files - compressed
59
  *.mp4 filter=lfs diff=lfs merge=lfs -text
60
  *.webm filter=lfs diff=lfs merge=lfs -text
61
+ /workspace/cogview_intern/hy/VRDB-Video/videos filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -101,7 +101,7 @@ dataset_info:
101
  - name: regression
102
  num_examples: 1795
103
 
104
- - config_name: monetbench
105
  features:
106
  - name: internal_id
107
  dtype: string
@@ -114,7 +114,7 @@ dataset_info:
114
  - name: video2_path
115
  dtype: string
116
  splits:
117
- - name: monetbench
118
  num_examples: 1000
119
 
120
  configs:
@@ -126,10 +126,10 @@ configs:
126
  data_files:
127
  - split: regression
128
  path: regression/*.parquet
129
- - config_name: monetbench
130
  data_files:
131
- - split: monetbench
132
- path: monetbench/*.parquet
133
 
134
  license: apache-2.0
135
  ---
@@ -142,7 +142,7 @@ This dataset is a comprehensive collection of video evaluation data designed for
142
  The dataset is structured to facilitate both model training and standardized evaluation:
143
  - `Train`: A primary training set with detailed multi-dimensional annotations
144
  - `Regression`: A regression set with paired preference data
145
- - `MonetBench`: A benchmark test set for standardized performance evaluation
146
 
147
  This holistic approach enables the development and validation of sophisticated video quality assessment models that can evaluate AI-generated videos across multiple critical dimensions, moving beyond simple aesthetic judgments to encompass technical accuracy, semantic consistency, and dynamic performance.
148
 
@@ -234,7 +234,7 @@ The `meta_mask` feature is used for balanced sampling during model training:
234
  cd videos
235
  tar -xvzf train.tar.gz
236
  tar -xvzf regression.tar.gz
237
- tar -xvzf monetbench.tar.gz
238
  ```
239
 
240
  We provide `extract.py` for processing the `train` dataset into JSONL format. The script can optionally extract the balanced positive/negative QA pairs used in VisionReward training by processing `meta_result` and `meta_mask` fields.
 
101
  - name: regression
102
  num_examples: 1795
103
 
104
+ - config_name: test
105
  features:
106
  - name: internal_id
107
  dtype: string
 
114
  - name: video2_path
115
  dtype: string
116
  splits:
117
+ - name: test
118
  num_examples: 1000
119
 
120
  configs:
 
126
  data_files:
127
  - split: regression
128
  path: regression/*.parquet
129
+ - config_name: test
130
  data_files:
131
+ - split: test
132
+ path: test/*.parquet
133
 
134
  license: apache-2.0
135
  ---
 
142
  The dataset is structured to facilitate both model training and standardized evaluation:
143
  - `Train`: A primary training set with detailed multi-dimensional annotations
144
  - `Regression`: A regression set with paired preference data
145
+ - `Test`: A video preference test set for standardized performance evaluation
146
 
147
  This holistic approach enables the development and validation of sophisticated video quality assessment models that can evaluate AI-generated videos across multiple critical dimensions, moving beyond simple aesthetic judgments to encompass technical accuracy, semantic consistency, and dynamic performance.
148
 
 
234
  cd videos
235
  tar -xvzf train.tar.gz
236
  tar -xvzf regression.tar.gz
237
+ tar -xvzf test.tar.gz
238
  ```
239
 
240
  We provide `extract.py` for processing the `train` dataset into JSONL format. The script can optionally extract the balanced positive/negative QA pairs used in VisionReward training by processing `meta_result` and `meta_mask` fields.
{monetbench → test}/test-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c22ed17de85575ba44863458692f2a34cf9e055732d4a2e0720c84b4b71f26cd
3
- size 96016
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f852e71c86e82346ff18a1a15cf24c448d6f93ddda17110434ba7e82897b699e
3
+ size 95923
videos/{monetbench.tar.gz → test.tar.gz} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be9b2061ef1b7519982ecb0c041b451fd6e2f6a665c9c9d2c4258caf244aa821
3
- size 2551183879
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:589531845cd550770e524740d577db92f51fe413ad564012039f0317b2139995
3
+ size 2551171968