import json import os import logging import argparse from datasets import Dataset import io # Configure logging for detailed output logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def load_questions_from_meta_qa(meta_qa_file): with open(meta_qa_file, "r") as f: questions = [line.strip() for line in f if line.strip()] return questions def process_parquet_files(data_dir, output_jsonl, meta_qa_file=None): """ Process Parquet files to generate a JSONL file with QA list creation. Args: data_dir (str): Directory containing Parquet files. output_jsonl (str): Output JSONL file path. meta_qa_file (str, optional): Path to the meta_qa_en.txt file for QA list creation. Returns: None """ # Load questions if meta_qa_file is provided questions = None if meta_qa_file: questions = load_questions_from_meta_qa(meta_qa_file) jsonl_data = [] parquet_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".parquet")] for parquet_file in parquet_files: dataset = Dataset.from_parquet(parquet_file) for row in dataset: json_item = { "internal_id": row["internal_id"], "url": row["url"], "video_path": row["video_path"], "prompt": row["prompt"], "annotation": row["annotation"], "meta_result": row["meta_result"], "meta_mask": row["meta_mask"], } # Process QA pairs if questions are provided if questions: qa_list = [] meta_result = row["meta_result"] meta_mask = row["meta_mask"] for idx, mask in enumerate(meta_mask): if mask == 1: # Add questions only if the mask is 1 question = questions[idx] if "[[prompt]]" in question: question = question.replace("[[prompt]]", row["prompt"]) answer = 'yes' if meta_result[idx] == 1 else 'no' qa_list.append({"question": question, "answer": answer}) json_item["qa_list"] = qa_list jsonl_data.append(json_item) with open(output_jsonl, "w") as outfile: for json_item in jsonl_data: outfile.write(json.dumps(json_item) + "\n") logger.info(f"Finished writing JSONL file with {len(jsonl_data)} items.") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert Video dataset Parquet files to JSONL format with QA list generation.") parser.add_argument("--data_dir", type=str, default='train', help="Directory containing Parquet files.") parser.add_argument("--output_jsonl", type=str, default='annotation.jsonl', help="Path to the output JSONL file.") parser.add_argument("--meta_qa_file", type=str, default="meta_qa_en.txt", help="Optional: Path to the meta_qa_en.txt file for QA list generation.") args = parser.parse_args() process_parquet_files( data_dir=args.data_dir, output_jsonl=args.output_jsonl, meta_qa_file=args.meta_qa_file )