Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
code
Size:
< 1K
License:
File size: 4,808 Bytes
2c29590 bb9db15 2c29590 bb9db15 2c29590 bb9db15 2c29590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HumanEval-X dataset."""
import json
import datasets
_DESCRIPTION = """
HumanEval-X is a benchmark for the evaluation of the multilingual ability of code generative models. \
It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks.
"""
_HOMEPAGE = "https://github.com/THUDM/CodeGeeX"
def get_url(name):
url = f"data/{name}/data/humaneval.jsonl"
return url
def split_generator(dl_manager, name):
downloaded_files = get_url(name)
downloaded_files = dl_manager.download(get_url(name))
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files,
},
)
]
class HumanEvalXConfig(datasets.BuilderConfig):
"""BuilderConfig """
def __init__(self, name, description, features, **kwargs):
super(HumanEvalXConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.name = name
self.description = description
self.features = features
class HumanEvalX(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
HumanEvalXConfig(
name="python",
description="Python HumanEval",
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
),
HumanEvalXConfig(
name="cpp",
description="C++ HumanEval",
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
),
HumanEvalXConfig(
name="go",
description="Go HumanEval",
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
),
HumanEvalXConfig(
name="java",
description="Java HumanEval",
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
),
HumanEvalXConfig(
name="js",
description="JavaScript HumanEval",
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
),
]
DEFAULT_CONFIG_NAME = "python"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"task_id": datasets.Value("string"),
"prompt": datasets.Value("string"),
"declaration": datasets.Value("string"),
"canonical_solution": datasets.Value("string"),
"test": datasets.Value("string"),
"example_test": datasets.Value("string"),
}),
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
if self.config.name == "python":
return split_generator(dl_manager, self.config.name)
elif self.config.name == "cpp":
return split_generator(dl_manager, self.config.name)
elif self.config.name == "go":
return split_generator(dl_manager, self.config.name)
elif self.config.name == "java":
return split_generator(dl_manager, self.config.name)
elif self.config.name == "js":
return split_generator(dl_manager, self.config.name)
def _generate_examples(self, filepath):
key = 0
with open(filepath) as f:
for line in f:
row = json.loads(line)
key += 1
yield key, {
"task_id": row["task_id"],
"prompt": row["prompt"],
"declaration": row["declaration"],
"canonical_solution": row["canonical_solution"],
"test": row["test"],
"example_test": row["example_test"],
}
key += 1 |