|
import os |
|
import json |
|
import datasets |
|
|
|
from sklearn.model_selection import train_test_split |
|
|
|
_DATASET_LABELS = ['O', 'B-NORP', 'I-NORP', 'B-DATE', 'I-DATE', 'B-PRODUCT', 'I-PRODUCT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-LAW', 'I-LAW', 'B-TIME', 'I-TIME', 'B-CARDINAL', 'I-CARDINAL', 'B-LANGUAGE', 'I-LANGUAGE', 'B-ORDINAL', 'I-ORDINAL', 'B-LOC', 'I-LOC', 'B-GPE', 'I-GPE', 'B-PERSON', 'I-PERSON', 'B-ORG', 'I-ORG'] |
|
|
|
class Custom(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description='', |
|
features=datasets.Features( |
|
{ |
|
'id': datasets.Value('string'), |
|
'tokens': datasets.Sequence(datasets.Value('string')), |
|
'ner_tags': datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=_DATASET_LABELS |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage='', |
|
citation='', |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_path = dl_manager.download_and_extract("data.jsonl") |
|
|
|
with open(data_path, 'r') as file: |
|
lines = file.readlines() |
|
|
|
train_lines, valid_lines = train_test_split(lines, test_size=0.2, random_state=42) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'lines': train_lines}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'lines': valid_lines}), |
|
] |
|
|
|
def _generate_examples(self, lines): |
|
for guid, line in enumerate(lines): |
|
data = json.loads(line) |
|
yield guid, { |
|
'id': str(guid), |
|
'tokens': data['words'], |
|
'ner_tags': data['pos'], |
|
} |