File size: 7,556 Bytes
d662d11
 
 
 
 
 
 
3fae085
d662d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
language: 
  - en
size_categories:
  - 50K<n<100K
license: mit
task_categories:
  - tabular-regression
tags:
  - photonics
  - silicon-nitride
  - waveguide
  - optical
  - dataset
  - synthetic
dataset_info:
  features:
    - name: waveguide_width
      dtype: float
    - name: waveguide_height
      dtype: float
    - name: cladding_material
      dtype: string
    - name: cladding_thickness
      dtype: float
    - name: deposition_method
      dtype: string
    - name: etch_method
      dtype: string
    - name: sidewall_roughness
      dtype: float
    - name: annealing_params
      dtype: string
    - name: wavelength
      dtype: float
    - name: polarization
      dtype: string
    - name: input_power
      dtype: float
    - name: temperature
      dtype: float
    - name: bend_radius
      dtype: float
    - name: device_length
      dtype: float
    - name: insertion_loss
      dtype: float
    - name: propagation_loss
      dtype: float
    - name: coupling_efficiency_input
      dtype: float
    - name: coupling_efficiency_output
      dtype: float
    - name: scattering_loss
      dtype: float
    - name: effective_index
      dtype: float
    - name: mode_confinement_factor
      dtype: float
    - name: batch_id
      dtype: string
    - name: data_source
      dtype: string
    - name: measurement_method
      dtype: string
    - name: uncertainty
      dtype: float
dataset_size: 90000
dataset_version: "1.0.0"
---
# SiN Photonic Waveguide Loss & Efficiency Dataset

> **Description**  
> This dataset provides **90,000 synthetic rows** of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on **waveguide loss** and **efficiency** metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance.

## Key Highlights ✨
- **Material Focus**: Silicon Nitride (Si₃N₄)  
- **Columns**: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics  
- **Size**: 90,000 rows (ideal for both training and validation splits)  
- **Use Cases**:  
  - Waveguide loss prediction  
  - Process control and optimization  
  - Photonic design parameter studies  
  - Synthetic data augmentation for AI/ML tasks  

## Dataset Structure 🏗️
Each row corresponds to a **single waveguide configuration** or measurement instance, including:

1. **Waveguide Geometry**  
   - `waveguide_width` (µm)  
   - `waveguide_height` (nm or µm)  
   - `bend_radius` (µm)  
   - `device_length` (mm)

2. **Material & Fabrication**  
   - `cladding_material`  
   - `cladding_thickness` (µm)  
   - `deposition_method`  
   - `etch_method`  
   - `sidewall_roughness` (nm)  
   - `annealing_params`

3. **Operational Parameters**  
   - `wavelength` (nm)  
   - `polarization` (TE/TM)  
   - `input_power` (dBm)  
   - `temperature` (°C)

4. **Performance Metrics**  
   - `insertion_loss` (dB)  
   - `propagation_loss` (dB/cm)  
   - `coupling_efficiency_input` (%)  
   - `coupling_efficiency_output` (%)  
   - `scattering_loss` (dB/cm)  
   - `effective_index`  
   - `mode_confinement_factor` (0–1)

5. **Metadata**  
   - `batch_id` (fabrication batch/wafer ID)  
   - `data_source` (Synthetic or Measurement)  
   - `measurement_method` (e.g., cut-back, ring_resonance)  
   - `uncertainty` (± dB or %)

## Example Row
waveguide_width                = 1.212  
waveguide_height               = 400.00  
cladding_material              = SiO2  
cladding_thickness             = 2.50  
deposition_method              = LPCVD  
etch_method                    = RIE  
sidewall_roughness             = 2.05  
annealing_params               = 900C_3hr  
wavelength                     = 1552.23  
polarization                   = TE  
input_power                    = 0.00  
temperature                    = 25.00  
bend_radius                    = 50.00  
device_length                  = 10.00  
insertion_loss                 = 3.50  
propagation_loss               = 0.300  
coupling_efficiency_input      = 72.00  
coupling_efficiency_output     = 68.00  
scattering_loss                = 0.15  
effective_index                = 1.800  
mode_confinement_factor        = 0.80  
batch_id                       = BATCH_12  
data_source                    = Synthetic  
measurement_method             = ring_resonance  
uncertainty                    = 0.05  

## How to Use 💡
1. **Download/Clone**  
   - You can download the CSV file manually or use Hugging Face’s `datasets` library:  
     ```python
     from datasets import load_dataset

     dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency")
     ```

2. **Loading & Exploration**  
   - Load into your favorite Python environment (`pandas`, `polars`, etc.) to quickly explore the data distribution:
     ```python
     import pandas as pd

     df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv")
     print(df.head())
     ```

3. **Model Training**  
   - For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the `insertion_loss` or `propagation_loss` columns as the labels or targets.  
   - Example ML scenario:  
     ```python
     features = df[[
         "waveguide_width", "waveguide_height", "sidewall_roughness", 
         "wavelength", "polarization", "temperature"
     ]]
     target = df["propagation_loss"]

     # Then train a regression model, e.g., scikit-learn, XGBoost, etc.
     ```

4. **Synthetic Data Augmentation**  
   - Use this synthetic dataset to **supplement** smaller real datasets, enabling data-hungry deep learning models to generalize better.

## Dataset Creation Process 🛠️
A Python script was used to randomly generate each column’s values within plausible ranges based on typical Si₃N₄ waveguide fabrication and performance data. The insertion loss is partially derived from the propagation loss and device length, and additional random offsets account for coupling losses and measurement variability.

## Caveats & Limitations ⚠️
- **Synthetic Nature**: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes.  
- **Statistical Simplifications**: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured.  
- **Measurement Noise**: The `uncertainty` column does not fully replicate complex measurement artifacts.  

## License 📄
This dataset is available under the **MIT License**. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution.

## Citation & Acknowledgments 🙌
If you use this dataset in your research or applications, please cite it as follows (example citation):

> **Author**: _https://huggingface.co/Taylor658_  
> **Title**: _SiN Photonic Waveguide Loss & Efficiency (Synthetic)_  
> **Year**: 2025

```bibtex
@misc{sin_waveguide_loss_efficiency_2025,
  title  = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)},
  author = {atayloraeropsace},
  year   = {2025},
  howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}}
}
```

## Contributing 🧑‍💻
We welcome community contributions, ideas, and corrections:
- **Add additional columns** (e.g., doping profiles, stress levels, advanced measurement data).  


---