Datasets:
File size: 7,556 Bytes
d662d11 3fae085 d662d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
language:
- en
size_categories:
- 50K<n<100K
license: mit
task_categories:
- tabular-regression
tags:
- photonics
- silicon-nitride
- waveguide
- optical
- dataset
- synthetic
dataset_info:
features:
- name: waveguide_width
dtype: float
- name: waveguide_height
dtype: float
- name: cladding_material
dtype: string
- name: cladding_thickness
dtype: float
- name: deposition_method
dtype: string
- name: etch_method
dtype: string
- name: sidewall_roughness
dtype: float
- name: annealing_params
dtype: string
- name: wavelength
dtype: float
- name: polarization
dtype: string
- name: input_power
dtype: float
- name: temperature
dtype: float
- name: bend_radius
dtype: float
- name: device_length
dtype: float
- name: insertion_loss
dtype: float
- name: propagation_loss
dtype: float
- name: coupling_efficiency_input
dtype: float
- name: coupling_efficiency_output
dtype: float
- name: scattering_loss
dtype: float
- name: effective_index
dtype: float
- name: mode_confinement_factor
dtype: float
- name: batch_id
dtype: string
- name: data_source
dtype: string
- name: measurement_method
dtype: string
- name: uncertainty
dtype: float
dataset_size: 90000
dataset_version: "1.0.0"
---
# SiN Photonic Waveguide Loss & Efficiency Dataset
> **Description**
> This dataset provides **90,000 synthetic rows** of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on **waveguide loss** and **efficiency** metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance.
## Key Highlights ✨
- **Material Focus**: Silicon Nitride (Si₃N₄)
- **Columns**: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics
- **Size**: 90,000 rows (ideal for both training and validation splits)
- **Use Cases**:
- Waveguide loss prediction
- Process control and optimization
- Photonic design parameter studies
- Synthetic data augmentation for AI/ML tasks
## Dataset Structure 🏗️
Each row corresponds to a **single waveguide configuration** or measurement instance, including:
1. **Waveguide Geometry**
- `waveguide_width` (µm)
- `waveguide_height` (nm or µm)
- `bend_radius` (µm)
- `device_length` (mm)
2. **Material & Fabrication**
- `cladding_material`
- `cladding_thickness` (µm)
- `deposition_method`
- `etch_method`
- `sidewall_roughness` (nm)
- `annealing_params`
3. **Operational Parameters**
- `wavelength` (nm)
- `polarization` (TE/TM)
- `input_power` (dBm)
- `temperature` (°C)
4. **Performance Metrics**
- `insertion_loss` (dB)
- `propagation_loss` (dB/cm)
- `coupling_efficiency_input` (%)
- `coupling_efficiency_output` (%)
- `scattering_loss` (dB/cm)
- `effective_index`
- `mode_confinement_factor` (0–1)
5. **Metadata**
- `batch_id` (fabrication batch/wafer ID)
- `data_source` (Synthetic or Measurement)
- `measurement_method` (e.g., cut-back, ring_resonance)
- `uncertainty` (± dB or %)
## Example Row
waveguide_width = 1.212
waveguide_height = 400.00
cladding_material = SiO2
cladding_thickness = 2.50
deposition_method = LPCVD
etch_method = RIE
sidewall_roughness = 2.05
annealing_params = 900C_3hr
wavelength = 1552.23
polarization = TE
input_power = 0.00
temperature = 25.00
bend_radius = 50.00
device_length = 10.00
insertion_loss = 3.50
propagation_loss = 0.300
coupling_efficiency_input = 72.00
coupling_efficiency_output = 68.00
scattering_loss = 0.15
effective_index = 1.800
mode_confinement_factor = 0.80
batch_id = BATCH_12
data_source = Synthetic
measurement_method = ring_resonance
uncertainty = 0.05
## How to Use 💡
1. **Download/Clone**
- You can download the CSV file manually or use Hugging Face’s `datasets` library:
```python
from datasets import load_dataset
dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency")
```
2. **Loading & Exploration**
- Load into your favorite Python environment (`pandas`, `polars`, etc.) to quickly explore the data distribution:
```python
import pandas as pd
df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv")
print(df.head())
```
3. **Model Training**
- For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the `insertion_loss` or `propagation_loss` columns as the labels or targets.
- Example ML scenario:
```python
features = df[[
"waveguide_width", "waveguide_height", "sidewall_roughness",
"wavelength", "polarization", "temperature"
]]
target = df["propagation_loss"]
# Then train a regression model, e.g., scikit-learn, XGBoost, etc.
```
4. **Synthetic Data Augmentation**
- Use this synthetic dataset to **supplement** smaller real datasets, enabling data-hungry deep learning models to generalize better.
## Dataset Creation Process 🛠️
A Python script was used to randomly generate each column’s values within plausible ranges based on typical Si₃N₄ waveguide fabrication and performance data. The insertion loss is partially derived from the propagation loss and device length, and additional random offsets account for coupling losses and measurement variability.
## Caveats & Limitations ⚠️
- **Synthetic Nature**: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes.
- **Statistical Simplifications**: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured.
- **Measurement Noise**: The `uncertainty` column does not fully replicate complex measurement artifacts.
## License 📄
This dataset is available under the **MIT License**. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution.
## Citation & Acknowledgments 🙌
If you use this dataset in your research or applications, please cite it as follows (example citation):
> **Author**: _https://huggingface.co/Taylor658_
> **Title**: _SiN Photonic Waveguide Loss & Efficiency (Synthetic)_
> **Year**: 2025
```bibtex
@misc{sin_waveguide_loss_efficiency_2025,
title = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)},
author = {atayloraeropsace},
year = {2025},
howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}}
}
```
## Contributing 🧑💻
We welcome community contributions, ideas, and corrections:
- **Add additional columns** (e.g., doping profiles, stress levels, advanced measurement data).
---
|