File size: 8,222 Bytes
e86b08c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f23a4
 
e86b08c
 
 
 
441df6b
 
e86b08c
 
 
 
 
 
441df6b
 
e86b08c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json
from pathlib import Path

import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {body-measurements-dataset},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of a compilation of people's photos along with their
corresponding body measurements. It is designed to provide information and
insights into the physical appearances and body characteristics of individuals.
The dataset includes a diverse range of subjects representing different age
groups, genders, and ethnicities. 

The photos are captured in a standardized manner, depicting individuals in a
front and side positions.
The images aim to capture the subjects' physical appearance using appropriate
lighting and angles that showcase their body proportions accurately.

The dataset serves various purposes, including:
- research projects
- body measurement analysis
- fashion or apparel industry applications
- fitness and wellness studies
- anthropometric studies for ergonomic design in various fields
"""
_NAME = 'body-measurements-dataset'

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = "cc-by-nc-nd-4.0"

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"


class BodyMeasurementsDataset(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                'front_img': datasets.Image(),
                'selfie_img': datasets.Image(),
                'side_img': datasets.Image(),
                "arm_circumference_cm": datasets.Value('string'),
                "arm_length_cm": datasets.Value('string'),
                "back_build_cm": datasets.Value('string'),
                "calf_circumference_cm": datasets.Value('string'),
                "chest_circumference_cm": datasets.Value('string'),
                "crotch_height_cm": datasets.Value('string'),
                "front_build_cm": datasets.Value('string'),
                "hips_circumference_cm": datasets.Value('string'),
                "leg_length_cm": datasets.Value('string'),
                "neck_circumference_cm": datasets.Value('string'),
                "neck_pelvis_length_front_cm": datasets.Value('string'),
                "neck_waist_length_back_cm": datasets.Value('string'),
                "neck_waist_length_front_cm": datasets.Value('string'),
                "pelvis_circumference_cm": datasets.Value('string'),
                "shoulder_length_cm": datasets.Value('string'),
                "shoulder_width_cm": datasets.Value('string'),
                "thigh_circumference_cm": datasets.Value('string'),
                "under_chest_circumference_cm": datasets.Value('string'),
                "upper_arm_length_cm": datasets.Value('string'),
                "waist_circumference_cm": datasets.Value('string'),
                "height": datasets.Value('string'),
                "weight": datasets.Value('string'),
                "age": datasets.Value('string'),
                "gender": datasets.Value('string'),
                "race": datasets.Value('string'),
                "profession": datasets.Value('string'),
                "arm_circumference": datasets.Image(),
                "arm_length": datasets.Image(),
                "back_build": datasets.Image(),
                "calf_circumference": datasets.Image(),
                "chest_circumference": datasets.Image(),
                "crotch_height": datasets.Image(),
                "front_build": datasets.Image(),
                "hips_circumference": datasets.Image(),
                "leg_length": datasets.Image(),
                "neck_circumference": datasets.Image(),
                "neck_pelvis_length_front": datasets.Image(),
                "neck_waist_length_back": datasets.Image(),
                "neck_waist_length_front": datasets.Image(),
                "pelvis_circumference": datasets.Image(),
                "shoulder_length": datasets.Image(),
                "shoulder_width": datasets.Image(),
                "thigh_circumference": datasets.Image(),
                "under_chest_circumference": datasets.Image(),
                "upper_arm_length": datasets.Image(),
                "waist_circumference": datasets.Image()
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE)

    def _split_generators(self, dl_manager):
        files = dl_manager.download_and_extract(f"{_DATA}files.zip")
        proofs = dl_manager.download_and_extract(f"{_DATA}proofs.zip")
        annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
        files = dl_manager.iter_files(files)
        proofs = dl_manager.iter_files(proofs)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={
                                        "files": files,
                                        'proofs': proofs,
                                        'annotations': annotations
                                    }),
        ]

    def _generate_examples(self, files, proofs, annotations):
        files = list(files)
        files = [files[i:i + 4] for i in range(0, len(files), 4)]
        proofs = list(proofs)
        proofs = [proofs[i:i + 20] for i in range(0, len(proofs), 20)]

        for idx, (files_dir, proofs_dir) in enumerate(zip(files, proofs)):
            data = {}
            for file in files_dir:
                if 'front_img' in file:
                    data['front_img'] = file
                elif 'selfie_img' in file:
                    data['selfie_img'] = file
                elif 'side_img' in file:
                    data['side_img'] = file
                elif 'measurements' in file:
                    with open(file) as f:
                        data.update(json.load(f))

            for proof in proofs_dir:
                if "arm_circumference" in proof:
                    data['arm_circumference'] = proof
                elif 'upper_arm_length' in proof:
                    data['upper_arm_length'] = proof
                elif 'arm_length' in proof:
                    data['arm_length'] = proof
                elif 'back_build' in proof:
                    data['back_build'] = proof
                elif 'calf_circumference' in proof:
                    data['calf_circumference'] = proof
                elif 'under_chest_circumference' in proof:
                    data['under_chest_circumference'] = proof
                elif 'chest_circumference' in proof:
                    data['chest_circumference'] = proof
                elif 'crotch_height' in proof:
                    data['crotch_height'] = proof
                elif 'front_build' in proof:
                    data['front_build'] = proof
                elif 'hips_circumference' in proof:
                    data['hips_circumference'] = proof
                elif 'leg_length' in proof:
                    data['leg_length'] = proof
                elif 'neck_circumference' in proof:
                    data['neck_circumference'] = proof
                elif 'neck_pelvis_length_front' in proof:
                    data['neck_pelvis_length_front'] = proof
                elif 'neck_waist_length_back' in proof:
                    data['neck_waist_length_back'] = proof
                elif 'neck_waist_length_front' in proof:
                    data['neck_waist_length_front'] = proof
                elif 'pelvis_circumference' in proof:
                    data['pelvis_circumference'] = proof
                elif 'shoulder_length' in proof:
                    data['shoulder_length'] = proof
                elif 'shoulder_width' in proof:
                    data['shoulder_width'] = proof
                elif 'thigh_circumference' in proof:
                    data['thigh_circumference'] = proof
                elif 'waist_circumference' in proof:
                    data['waist_circumference'] = proof

            yield idx, data