TrainingDataPro commited on
Commit
5f90416
·
verified ·
1 Parent(s): 8606b36

Delete body-measurements-dataset.py

Browse files
Files changed (1) hide show
  1. body-measurements-dataset.py +0 -183
body-measurements-dataset.py DELETED
@@ -1,183 +0,0 @@
1
- import json
2
- from pathlib import Path
3
-
4
- import datasets
5
- import numpy as np
6
- import pandas as pd
7
- import PIL.Image
8
- import PIL.ImageOps
9
-
10
- _CITATION = """\
11
- @InProceedings{huggingface:dataset,
12
- title = {body-measurements-dataset},
13
- author = {TrainingDataPro},
14
- year = {2023}
15
- }
16
- """
17
-
18
- _DESCRIPTION = """\
19
- The dataset consists of a compilation of people's photos along with their
20
- corresponding body measurements. It is designed to provide information and
21
- insights into the physical appearances and body characteristics of individuals.
22
- The dataset includes a diverse range of subjects representing different age
23
- groups, genders, and ethnicities.
24
-
25
- The photos are captured in a standardized manner, depicting individuals in a
26
- front and side positions.
27
- The images aim to capture the subjects' physical appearance using appropriate
28
- lighting and angles that showcase their body proportions accurately.
29
-
30
- The dataset serves various purposes, including:
31
- - research projects
32
- - body measurement analysis
33
- - fashion or apparel industry applications
34
- - fitness and wellness studies
35
- - anthropometric studies for ergonomic design in various fields
36
- """
37
- _NAME = 'body-measurements-dataset'
38
-
39
- _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
40
-
41
- _LICENSE = "cc-by-nc-nd-4.0"
42
-
43
- _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
44
-
45
-
46
- class BodyMeasurementsDataset(datasets.GeneratorBasedBuilder):
47
-
48
- def _info(self):
49
- return datasets.DatasetInfo(
50
- description=_DESCRIPTION,
51
- features=datasets.Features({
52
- 'front_img': datasets.Image(),
53
- 'selfie_img': datasets.Image(),
54
- 'side_img': datasets.Image(),
55
- "arm_circumference_cm": datasets.Value('string'),
56
- "arm_length_cm": datasets.Value('string'),
57
- "back_build_cm": datasets.Value('string'),
58
- "calf_circumference_cm": datasets.Value('string'),
59
- "chest_circumference_cm": datasets.Value('string'),
60
- "crotch_height_cm": datasets.Value('string'),
61
- "front_build_cm": datasets.Value('string'),
62
- "hips_circumference_cm": datasets.Value('string'),
63
- "leg_length_cm": datasets.Value('string'),
64
- "neck_circumference_cm": datasets.Value('string'),
65
- "neck_pelvis_length_front_cm": datasets.Value('string'),
66
- "neck_waist_length_back_cm": datasets.Value('string'),
67
- "neck_waist_length_front_cm": datasets.Value('string'),
68
- "pelvis_circumference_cm": datasets.Value('string'),
69
- "shoulder_length_cm": datasets.Value('string'),
70
- "shoulder_width_cm": datasets.Value('string'),
71
- "thigh_circumference_cm": datasets.Value('string'),
72
- "under_chest_circumference_cm": datasets.Value('string'),
73
- "upper_arm_length_cm": datasets.Value('string'),
74
- "waist_circumference_cm": datasets.Value('string'),
75
- "height": datasets.Value('string'),
76
- "weight": datasets.Value('string'),
77
- "age": datasets.Value('string'),
78
- "gender": datasets.Value('string'),
79
- "race": datasets.Value('string'),
80
- "profession": datasets.Value('string'),
81
- "arm_circumference": datasets.Image(),
82
- "arm_length": datasets.Image(),
83
- "back_build": datasets.Image(),
84
- "calf_circumference": datasets.Image(),
85
- "chest_circumference": datasets.Image(),
86
- "crotch_height": datasets.Image(),
87
- "front_build": datasets.Image(),
88
- "hips_circumference": datasets.Image(),
89
- "leg_length": datasets.Image(),
90
- "neck_circumference": datasets.Image(),
91
- "neck_pelvis_length_front": datasets.Image(),
92
- "neck_waist_length_back": datasets.Image(),
93
- "neck_waist_length_front": datasets.Image(),
94
- "pelvis_circumference": datasets.Image(),
95
- "shoulder_length": datasets.Image(),
96
- "shoulder_width": datasets.Image(),
97
- "thigh_circumference": datasets.Image(),
98
- "under_chest_circumference": datasets.Image(),
99
- "upper_arm_length": datasets.Image(),
100
- "waist_circumference": datasets.Image()
101
- }),
102
- supervised_keys=None,
103
- homepage=_HOMEPAGE,
104
- citation=_CITATION,
105
- license=_LICENSE)
106
-
107
- def _split_generators(self, dl_manager):
108
- files = dl_manager.download_and_extract(f"{_DATA}files.zip")
109
- proofs = dl_manager.download_and_extract(f"{_DATA}proofs.zip")
110
- annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
111
- files = dl_manager.iter_files(files)
112
- proofs = dl_manager.iter_files(proofs)
113
- return [
114
- datasets.SplitGenerator(name=datasets.Split.TRAIN,
115
- gen_kwargs={
116
- "files": files,
117
- 'proofs': proofs,
118
- 'annotations': annotations
119
- }),
120
- ]
121
-
122
- def _generate_examples(self, files, proofs, annotations):
123
- files = list(files)
124
- files = [files[i:i + 4] for i in range(0, len(files), 4)]
125
- proofs = list(proofs)
126
- proofs = [proofs[i:i + 20] for i in range(0, len(proofs), 20)]
127
-
128
- for idx, (files_dir, proofs_dir) in enumerate(zip(files, proofs)):
129
- data = {}
130
- for file in files_dir:
131
- if 'front_img' in file:
132
- data['front_img'] = file
133
- elif 'selfie_img' in file:
134
- data['selfie_img'] = file
135
- elif 'side_img' in file:
136
- data['side_img'] = file
137
- elif 'measurements' in file:
138
- with open(file) as f:
139
- data.update(json.load(f))
140
-
141
- for proof in proofs_dir:
142
- if "arm_circumference" in proof:
143
- data['arm_circumference'] = proof
144
- elif 'upper_arm_length' in proof:
145
- data['upper_arm_length'] = proof
146
- elif 'arm_length' in proof:
147
- data['arm_length'] = proof
148
- elif 'back_build' in proof:
149
- data['back_build'] = proof
150
- elif 'calf_circumference' in proof:
151
- data['calf_circumference'] = proof
152
- elif 'under_chest_circumference' in proof:
153
- data['under_chest_circumference'] = proof
154
- elif 'chest_circumference' in proof:
155
- data['chest_circumference'] = proof
156
- elif 'crotch_height' in proof:
157
- data['crotch_height'] = proof
158
- elif 'front_build' in proof:
159
- data['front_build'] = proof
160
- elif 'hips_circumference' in proof:
161
- data['hips_circumference'] = proof
162
- elif 'leg_length' in proof:
163
- data['leg_length'] = proof
164
- elif 'neck_circumference' in proof:
165
- data['neck_circumference'] = proof
166
- elif 'neck_pelvis_length_front' in proof:
167
- data['neck_pelvis_length_front'] = proof
168
- elif 'neck_waist_length_back' in proof:
169
- data['neck_waist_length_back'] = proof
170
- elif 'neck_waist_length_front' in proof:
171
- data['neck_waist_length_front'] = proof
172
- elif 'pelvis_circumference' in proof:
173
- data['pelvis_circumference'] = proof
174
- elif 'shoulder_length' in proof:
175
- data['shoulder_length'] = proof
176
- elif 'shoulder_width' in proof:
177
- data['shoulder_width'] = proof
178
- elif 'thigh_circumference' in proof:
179
- data['thigh_circumference'] = proof
180
- elif 'waist_circumference' in proof:
181
- data['waist_circumference'] = proof
182
-
183
- yield idx, data