Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Portuguese
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 10,057 Bytes
235c9cf
 
 
 
 
 
 
 
 
 
 
 
 
aab626b
3251af7
aab626b
 
235c9cf
 
 
 
 
3aa80a1
 
 
 
 
 
 
 
 
 
 
235c9cf
3aa80a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee4aedb
3aa80a1
 
 
 
ee4aedb
3aa80a1
 
 
 
 
 
 
ee4aedb
3aa80a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee4aedb
3aa80a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c84d093
3aa80a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee4aedb
 
 
 
 
 
 
 
3aa80a1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
dataset_info:
  features:
  - name: text
    dtype: string
  - name: score
    dtype: float64
  - name: embedding
    sequence: float64
  - name: dataset
    dtype: string
  splits:
  - name: train
    num_bytes: 1199742546
    num_examples: 110000
  download_size: 856443525
  dataset_size: 1199742546
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: apache-2.0
task_categories:
- text-classification
language:
- pt
tags:
- portuguese
- language-modeling
pretty_name: GigaVerbo Text-Filter
size_categories:
- 100K<n<1M
---

# GigaVerbo Text-Filter

<img src="./logo-gigaverbo.png" height="200">

## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Aknowlegments](#aknowlegments)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://huggingface.co/datasets/TucanoBR/GigaVerbo-Text-Filter
- **Repository:** https://huggingface.co/datasets/TucanoBR/GigaVerbo-Text-Filter
- **Paper:** [Tucano: Advancing Neural Text Generation for Portuguese](https://arxiv.org/abs/2411.07854)
- **Point of Contact:** [Nk-correa](mailto:[email protected])

### Dataset Summary

GigaVerbo Text-Filter is a dataset with 110,000 randomly selected samples from 9 subsets of [GigaVerbo](https://huggingface.co/datasets/TucanoBR/GigaVerbo) (i.e., specifically those that were not synthetic). This dataset was used to train the text-quality filters described in "_[Tucano: Advancing Neural Text Generation for Portuguese](https://arxiv.org/abs/2411.07854)_". To create the text embeddings, we used [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). All scores were generated by GPT-4o.

### Supported Tasks and Leaderboards

This dataset can be utilized for tasks involving text classification/regression in Portuguese.

### Languages

Portuguese

## Dataset Structure

### Data Instances

The dataset consists of the following features:

- **text:** a string of text in Portuguese.
- **score:** the score attributed by GPT-4o to that corresponding string of text.
- **embedding:** embedding vector generated by [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) to that corresponding string of text.
- **name:** the subset of GigaVerbo from which the corresponding text string originated.

### Data Fields

```python
{
  "text": "A inteligência artificial (de sigla: IA; do inglês: artificial intelligence, de sigla: AI) é um campo de estudo multidisciplinar que abrange varias áreas do conhecimento ...",
  "score": 0.85,
  "embedding": [0.313, 0.716, 0.897, 0.571, 0.061, 0.712, 0.265, 0.092, 0.816, 0.998, ...],
  "name" : "brwac"
}
```

### Data Splits

Available splits are `train`.

```python
from datasets import load_dataset

dataset = load_dataset("TucanoBR/GigaVerbo-Text-Filter", split='train')

# If you don't want to download the entire dataset, set streaming to `True`
dataset = load_dataset("TucanoBR/GigaVerbo-Text-Filter", split='train', streaming=True)

```

## Dataset Creation

### Curation Rationale

This dataset was developed as part of the study "[Tucano: Advancing Neural Text Generation for Portuguese](https://arxiv.org/abs/2411.07854)". In short, GigaVerbo Text-Filter is a dataset with 110,000 randomly selected samples from 9 subsets of [GigaVerbo](https://huggingface.co/datasets/TucanoBR/GigaVerbo).

### Source Data

#### Initial Data Collection and Normalization

GigaVerbo Text-Filter has been scored GPT-4o. Text embeddings were generated by [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE).

#### Who are the source language producers?

All text samples are native to Portuguese or translated from other languages to Portuguese (slight contamination of different languages should also be expected).

### Annotations

#### Annotation process

GigaVerbo Text-Filter is a dataset with 110,000 randomly selected samples from 9 subsets of [GigaVerbo](https://huggingface.co/datasets/TucanoBR/GigaVerbo). All text samples are native to Portuguese or translated from other languages to Portuguese (slight contamination of different languages should also be expected).

#### Who are the annotators?

[Nicholas Kluge Corrêa](mailto:[email protected]).

### Personal and Sensitive Information

This dataset can potentially contain personal and sensitive information, along with offensive, toxic, and disturbing language.

## Considerations for Using the Data

### Social Impact of Dataset

The presence of personal and sensitive information within the dataset raises concerns about privacy and data protection, potentially leading to breaches of individuals' confidentiality and security. Furthermore, the inclusion of offensive, toxic, and disturbing language in the dataset poses risks of perpetuating harmful behaviors and attitudes, contributing to the normalization of hate speech and online toxicity. Therefore, careful handling and ethical considerations are essential to mitigate these potential social impacts and promote responsible dataset use.

### Discussion of Biases

The inclusion of offensive, toxic, and disturbing language in the dataset poses risks of perpetuating harmful behaviors and attitudes, contributing to the normalization of hate speech and online toxicity.

### Other Known Limitations

A significant portion of the dataset's data has been translated using translation engines, potentially resulting in corrupted samples of both language and code. While useful for quickly converting text between languages, translation engines often struggle with accurately preserving the syntax, semantics, and context of programming languages. As a result, the translated code may contain errors, syntax inconsistencies, or even introduce vulnerabilities, rendering it unreliable or unusable for its intended purpose.

## Additional Information

### Dataset Curators

[Nicholas Kluge Corrêa](mailto:[email protected]).

### Licensing Information

The following datasets and respective licenses from GigaVerbo (only training splits are a part of the corpus):

- [HPLT-PT](https://huggingface.co/datasets/HPLT/hplt_monolingual_v1_2) (License: [cc0-1.0](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information))

- [CC-2023](https://huggingface.co/datasets/dominguesm/CC-MAIN-2023-23) (License: [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.en))

- [CCc100](https://huggingface.co/datasets/eduagarcia/CrawlPT_dedup) (License: [Common Crawl terms of use](https://commoncrawl.org/terms-of-use/))

- [MC4-PT](https://huggingface.co/datasets/thegoodfellas/mc4-pt-cleaned) (License: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html))

- [Blogset-BR](https://huggingface.co/datasets/thegoodfellas/blogset-br) (License: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html))

- [BrWaC](https://huggingface.co/datasets/UFRGS/brwac) (License: Unknown)

- [Wikipedia](https://huggingface.co/datasets/graelo/wikipedia) (License: [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/))

- [Corpus Carolina](https://huggingface.co/datasets/carolina-c4ai/corpus-carolina) (License: [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en))

- [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) (License: [ODC-By](https://opendatacommons.org/licenses/by/1-0/), [cc0-1.0](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information))

- [OSCAR](https://huggingface.co/datasets/eduagarcia/CrawlPT_dedup) (License: [cc0-1.0](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information))

- [Legal Portuguese](https://huggingface.co/datasets/eduagarcia/LegalPT_dedup) (License: [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.en))

- [Xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum) (License: [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en))

- [Roots Wikiquote](https://huggingface.co/datasets/bigscience-data/roots_pt_wikiquote) (License: [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/))

- [Roots Ted Talks](https://huggingface.co/datasets/bigscience-data/roots_pt_ted_talks_iwslt) (License: [CC BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en))

### Citation Information

```latex

@misc{correa2024tucanoadvancingneuraltext,
      title={{Tucano: Advancing Neural Text Generation for Portuguese}}, 
      author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza},
      year={2024},
      eprint={2411.07854},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.07854}, 
}

```

### Aknowlegments

We gratefully acknowledge the granted access to the [Marvin cluster](https://www.hpc.uni-bonn.de/en/systems/marvin) hosted by [University of Bonn](https://www.uni-bonn.de/en) along with the support provided by its High Performance Computing \& Analytics Lab.

### Contributions

If you want to contribute, contact me at [[email protected]](mailto:[email protected])!