Update Boat_dataset.py
Browse files- Boat_dataset.py +103 -103
Boat_dataset.py
CHANGED
@@ -1,103 +1,103 @@
|
|
1 |
-
# Source: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
|
2 |
-
|
3 |
-
import csv
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
import datasets
|
8 |
-
|
9 |
-
_CITATION = """\
|
10 |
-
@InProceedings{huggingface:dataset,
|
11 |
-
title = {Boat dataset},
|
12 |
-
author={XXX, Inc.},
|
13 |
-
year={2024}
|
14 |
-
}
|
15 |
-
"""
|
16 |
-
|
17 |
-
_DESCRIPTION = """\
|
18 |
-
This dataset is designed to solve an object detection task with images of boats.
|
19 |
-
"""
|
20 |
-
|
21 |
-
_HOMEPAGE = "https://huggingface.co/datasets/
|
22 |
-
|
23 |
-
_LICENSE = ""
|
24 |
-
|
25 |
-
_URLS = {
|
26 |
-
"classes": f"{_HOMEPAGE}/data/classes.txt",
|
27 |
-
"train": f"{_HOMEPAGE}/data/instances_train2023r.jsonl",
|
28 |
-
"val": f"{_HOMEPAGE}/data/instances_val2023r.jsonl",
|
29 |
-
}
|
30 |
-
|
31 |
-
class BoatDataset(datasets.GeneratorBasedBuilder):
|
32 |
-
|
33 |
-
VERSION = datasets.Version("1.1.0")
|
34 |
-
|
35 |
-
BUILDER_CONFIGS = [
|
36 |
-
datasets.BuilderConfig(name="Boat_dataset", version=VERSION, description="Dataset for detecting boats in aerial images."),
|
37 |
-
]
|
38 |
-
|
39 |
-
DEFAULT_CONFIG_NAME = "Boat_dataset" # Provide a default configuration
|
40 |
-
|
41 |
-
def _info(self):
|
42 |
-
return datasets.DatasetInfo(
|
43 |
-
description=_DESCRIPTION,
|
44 |
-
features=datasets.Features({
|
45 |
-
'image_id': datasets.Value('int32'),
|
46 |
-
'image_path': datasets.Value('string'),
|
47 |
-
'width': datasets.Value('int32'),
|
48 |
-
'height': datasets.Value('int32'),
|
49 |
-
'objects': datasets.Features({
|
50 |
-
'id': datasets.Sequence(datasets.Value('int32')),
|
51 |
-
'area': datasets.Sequence(datasets.Value('float32')),
|
52 |
-
'bbox': datasets.Sequence(datasets.Sequence(datasets.Value('float32'), length=4)), # [x, y, width, height]
|
53 |
-
'category': datasets.Sequence(datasets.Value('int32'))
|
54 |
-
}),
|
55 |
-
}),
|
56 |
-
homepage=_HOMEPAGE,
|
57 |
-
license=_LICENSE,
|
58 |
-
citation=_CITATION,
|
59 |
-
)
|
60 |
-
|
61 |
-
def _split_generators(self, dl_manager):
|
62 |
-
# Download all files and extract them
|
63 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
64 |
-
|
65 |
-
# Load class labels from the classes file
|
66 |
-
with open('classes.txt', 'r') as file:
|
67 |
-
classes = [line.strip() for line in file.readlines()]
|
68 |
-
|
69 |
-
return [
|
70 |
-
datasets.SplitGenerator(
|
71 |
-
name=datasets.Split.TRAIN,
|
72 |
-
gen_kwargs={
|
73 |
-
"annotations_file": downloaded_files["train"],
|
74 |
-
"classes": classes,
|
75 |
-
"split": "train",
|
76 |
-
}
|
77 |
-
),
|
78 |
-
datasets.SplitGenerator(
|
79 |
-
name=datasets.Split.VALIDATION,
|
80 |
-
gen_kwargs={
|
81 |
-
"annotations_file": downloaded_files["val"],
|
82 |
-
"classes": classes,
|
83 |
-
"split": "val",
|
84 |
-
}
|
85 |
-
),
|
86 |
-
]
|
87 |
-
|
88 |
-
def _generate_examples(self, annotations_file, classes, split):
|
89 |
-
# Process annotations
|
90 |
-
with open(annotations_file, encoding="utf-8") as f:
|
91 |
-
for key, row in enumerate(f):
|
92 |
-
try:
|
93 |
-
data = json.loads(row.strip())
|
94 |
-
yield key, {
|
95 |
-
"image_id": data["image_id"],
|
96 |
-
"image_path": data["image_path"],
|
97 |
-
"width": data["width"],
|
98 |
-
"height": data["height"],
|
99 |
-
"objects": data["objects"],
|
100 |
-
}
|
101 |
-
except json.JSONDecodeError:
|
102 |
-
print(f"Skipping invalid JSON at line {key + 1}: {row}")
|
103 |
-
continue
|
|
|
1 |
+
# Source: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
|
2 |
+
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@InProceedings{huggingface:dataset,
|
11 |
+
title = {Boat dataset},
|
12 |
+
author={XXX, Inc.},
|
13 |
+
year={2024}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
This dataset is designed to solve an object detection task with images of boats.
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = "https://huggingface.co/datasets/Tuteldove/Boat_dataset/resolve/main"
|
22 |
+
|
23 |
+
_LICENSE = ""
|
24 |
+
|
25 |
+
_URLS = {
|
26 |
+
"classes": f"{_HOMEPAGE}/data/classes.txt",
|
27 |
+
"train": f"{_HOMEPAGE}/data/instances_train2023r.jsonl",
|
28 |
+
"val": f"{_HOMEPAGE}/data/instances_val2023r.jsonl",
|
29 |
+
}
|
30 |
+
|
31 |
+
class BoatDataset(datasets.GeneratorBasedBuilder):
|
32 |
+
|
33 |
+
VERSION = datasets.Version("1.1.0")
|
34 |
+
|
35 |
+
BUILDER_CONFIGS = [
|
36 |
+
datasets.BuilderConfig(name="Boat_dataset", version=VERSION, description="Dataset for detecting boats in aerial images."),
|
37 |
+
]
|
38 |
+
|
39 |
+
DEFAULT_CONFIG_NAME = "Boat_dataset" # Provide a default configuration
|
40 |
+
|
41 |
+
def _info(self):
|
42 |
+
return datasets.DatasetInfo(
|
43 |
+
description=_DESCRIPTION,
|
44 |
+
features=datasets.Features({
|
45 |
+
'image_id': datasets.Value('int32'),
|
46 |
+
'image_path': datasets.Value('string'),
|
47 |
+
'width': datasets.Value('int32'),
|
48 |
+
'height': datasets.Value('int32'),
|
49 |
+
'objects': datasets.Features({
|
50 |
+
'id': datasets.Sequence(datasets.Value('int32')),
|
51 |
+
'area': datasets.Sequence(datasets.Value('float32')),
|
52 |
+
'bbox': datasets.Sequence(datasets.Sequence(datasets.Value('float32'), length=4)), # [x, y, width, height]
|
53 |
+
'category': datasets.Sequence(datasets.Value('int32'))
|
54 |
+
}),
|
55 |
+
}),
|
56 |
+
homepage=_HOMEPAGE,
|
57 |
+
license=_LICENSE,
|
58 |
+
citation=_CITATION,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
# Download all files and extract them
|
63 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
64 |
+
|
65 |
+
# Load class labels from the classes file
|
66 |
+
with open('classes.txt', 'r') as file:
|
67 |
+
classes = [line.strip() for line in file.readlines()]
|
68 |
+
|
69 |
+
return [
|
70 |
+
datasets.SplitGenerator(
|
71 |
+
name=datasets.Split.TRAIN,
|
72 |
+
gen_kwargs={
|
73 |
+
"annotations_file": downloaded_files["train"],
|
74 |
+
"classes": classes,
|
75 |
+
"split": "train",
|
76 |
+
}
|
77 |
+
),
|
78 |
+
datasets.SplitGenerator(
|
79 |
+
name=datasets.Split.VALIDATION,
|
80 |
+
gen_kwargs={
|
81 |
+
"annotations_file": downloaded_files["val"],
|
82 |
+
"classes": classes,
|
83 |
+
"split": "val",
|
84 |
+
}
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
def _generate_examples(self, annotations_file, classes, split):
|
89 |
+
# Process annotations
|
90 |
+
with open(annotations_file, encoding="utf-8") as f:
|
91 |
+
for key, row in enumerate(f):
|
92 |
+
try:
|
93 |
+
data = json.loads(row.strip())
|
94 |
+
yield key, {
|
95 |
+
"image_id": data["image_id"],
|
96 |
+
"image_path": data["image_path"],
|
97 |
+
"width": data["width"],
|
98 |
+
"height": data["height"],
|
99 |
+
"objects": data["objects"],
|
100 |
+
}
|
101 |
+
except json.JSONDecodeError:
|
102 |
+
print(f"Skipping invalid JSON at line {key + 1}: {row}")
|
103 |
+
continue
|