Upload instruck500k_vi.py
Browse filesscrip load data instruct500k vi
- instruck500k_vi.py +152 -0
instruck500k_vi.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datasets
|
3 |
+
from huggingface_hub import HfFileSystem
|
4 |
+
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
fs = HfFileSystem()
|
8 |
+
|
9 |
+
|
10 |
+
_CITATION = """
|
11 |
+
|
12 |
+
"""
|
13 |
+
_DESCRIPTION = """
|
14 |
+
|
15 |
+
"""
|
16 |
+
_HOMEPAGE = "https://github.com/FPT-VVU/ViVidBot"
|
17 |
+
_REPO_URL = "https://huggingface.co/{}/resolve/main/datasets/Vividbot/instruct500k_vi"
|
18 |
+
_URLS = {
|
19 |
+
"meta": f"{_REPO_URL}/instruct500k_vi.json",
|
20 |
+
"image": f"{_REPO_URL}/images" + "{shard}.zip",
|
21 |
+
}
|
22 |
+
|
23 |
+
_CONFIGS = [
|
24 |
+
os.path.basename(file_name).split(".")[0]
|
25 |
+
for file_name in fs.listdir(_REPO_URL + "/images", detail=False)
|
26 |
+
if file_name.endswith(".zip")
|
27 |
+
]
|
28 |
+
|
29 |
+
class Instruct500k_ViConfig(datasets.BuilderConfig):
|
30 |
+
"""BuilderConfig for Vast2M_Vi."""
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
"""
|
34 |
+
:param kwargs: Arguments.
|
35 |
+
"""
|
36 |
+
super().__init__(
|
37 |
+
version=datasets.Version("1.0.0"),
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
**kwargs,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
class Instruck500k_Vi(datasets.GeneratorBasedBuilder):
|
44 |
+
"""Vast2M Vi dataset."""
|
45 |
+
|
46 |
+
BUILDER_CONFIGS = Instruct500k_ViConfig()
|
47 |
+
|
48 |
+
def _info(self) -> datasets.DatasetInfo:
|
49 |
+
features = datasets.Features(
|
50 |
+
{
|
51 |
+
"id": datasets.Value("string"),
|
52 |
+
"image": datasets.Value("binary"),
|
53 |
+
"conversations": datasets.Value(
|
54 |
+
"dict",
|
55 |
+
),
|
56 |
+
}
|
57 |
+
)
|
58 |
+
|
59 |
+
return datasets.DatasetInfo(
|
60 |
+
description=_DESCRIPTION,
|
61 |
+
features=features,
|
62 |
+
homepage=_HOMEPAGE,
|
63 |
+
citation=_CITATION,
|
64 |
+
)
|
65 |
+
|
66 |
+
def _split_generators(
|
67 |
+
self, dl_manager: datasets.DownloadManager
|
68 |
+
) -> list[datasets.SplitGenerator]:
|
69 |
+
"""
|
70 |
+
Get splits.
|
71 |
+
:param dl_manager: Download manager.
|
72 |
+
:return: Splits.
|
73 |
+
"""
|
74 |
+
|
75 |
+
metadata_paths = dl_manager.download(_URLS["meta"])
|
76 |
+
dataset = datasets.load_dataset(
|
77 |
+
"json",
|
78 |
+
data_files=metadata_paths,
|
79 |
+
split="train",
|
80 |
+
)
|
81 |
+
dataset = dataset.train_test_split(test_size=0.1, shuffle=True, seed=42)
|
82 |
+
train_set = dataset["train"]
|
83 |
+
val_test_set = dataset["test"].train_test_split(test_size=0.5)
|
84 |
+
val_set = val_test_set["train"]
|
85 |
+
test_set = val_test_set["test"]
|
86 |
+
|
87 |
+
split_dict = {
|
88 |
+
datasets.Split.TRAIN: train_set,
|
89 |
+
datasets.Split.VALIDATION: val_set,
|
90 |
+
datasets.Split.TEST: test_set,
|
91 |
+
}
|
92 |
+
|
93 |
+
image_dirs = dl_manager.download_and_extract(
|
94 |
+
[_URLS["image"].format(shard=shard) for shard in _CONFIGS]
|
95 |
+
)
|
96 |
+
image_dict = {
|
97 |
+
shard: visual_dir
|
98 |
+
for shard, visual_dir in zip(_CONFIGS, image_dirs)
|
99 |
+
}
|
100 |
+
|
101 |
+
return [
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
gen_kwargs={
|
104 |
+
"split": split,
|
105 |
+
"image_dict": image_dict,
|
106 |
+
},
|
107 |
+
)
|
108 |
+
for split in split_dict.items()
|
109 |
+
]
|
110 |
+
|
111 |
+
def _generate_examples(
|
112 |
+
self,
|
113 |
+
split: datasets.Dataset,
|
114 |
+
image_dict: dict,
|
115 |
+
) -> tuple[int, dict]:
|
116 |
+
"""
|
117 |
+
Generate examples.
|
118 |
+
:param split: Split.
|
119 |
+
:param visual_dict: Paths to directory containing visual files.
|
120 |
+
:param audio_dict: Paths to directory containing audio files.
|
121 |
+
:param transcript_dict: Paths to directory containing transcripts.
|
122 |
+
:return: Example.
|
123 |
+
"""
|
124 |
+
for i, sample in enumerate(split):
|
125 |
+
shard = sample["image"].split("/")[-1].split(".")[0]
|
126 |
+
image_path = os.path.join(
|
127 |
+
image_dict[shard], sample["image"]
|
128 |
+
)
|
129 |
+
|
130 |
+
yield i, {
|
131 |
+
"id": sample["id"],
|
132 |
+
"video": self.__get_binary_data(image_path),
|
133 |
+
"conversations": sample["conversations"],
|
134 |
+
}
|
135 |
+
|
136 |
+
def __get_binary_data(self, path: str) -> bytes:
|
137 |
+
"""
|
138 |
+
Get binary data from path.
|
139 |
+
:param path: Path to file.
|
140 |
+
:return: Binary data.
|
141 |
+
"""
|
142 |
+
with open(path, "rb") as f:
|
143 |
+
return f.read()
|
144 |
+
|
145 |
+
def __get_text_data(self, path: str) -> str:
|
146 |
+
"""
|
147 |
+
Get transcript from path.
|
148 |
+
:param path: Path to transcript.
|
149 |
+
:return: Transcript.
|
150 |
+
"""
|
151 |
+
with open(path, "r", encoding="utf-8") as f:
|
152 |
+
return f.read().strip()
|