Datasets:
Tasks:
Object Detection
Modalities:
Image
Languages:
English
Size:
10K<n<100K
ArXiv:
Libraries:
FiftyOne
File size: 3,442 Bytes
3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 3bf744d 6ec5288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: LVIS-35k
tags:
- fiftyone
- image
- object-detection
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = fouh.load_from_hub("Voxel51/LVIS")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for LVIS-35k
![image](LVIS.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
**NOTE:** This is only a 35k sample subset of the full dataset. The notebook recipe for creating this, and the full, dataset can be found [here](https://colab.research.google.com/drive/1SmdZPWtLhNis_cCRnO9WKKZQ9OaP_C_d)
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/LVIS")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
LVIS (pronounced 'el-vis') is a dataset for large vocabulary instance segmentation, introduced by researchers from Facebook AI.
- It contains annotations for over 1000 object categories across 164k images. The full dataset is planned to have ~2 million high-quality instance segmentation masks.
- The categories in LVIS follow a natural long-tail distribution, with a few common categories and many rare ones with few training examples. This long tail poses a challenge for current state-of-the-art object detection methods which struggle with low-sample categories.
- The vocabulary was constructed iteratively, starting from 8.8k concrete noun synsets in WordNet and filtering down to the final set[4].
- LVIS can be used for instance segmentation, semantic segmentation, and object detection tasks. The dataset aims to focus the research community on the open challenge of long-tail object recognition.
In summary, LVIS is a large-scale, high-quality dataset that targets the difficult problem of learning segmentation models for various object categories, including many rare ones. It is freely available for research use.
- **Curated by:** Agrim Gupta, Piotr Dollár, Ross Girshick
- **Funded by:** Facebook AI Research (FAIR)
- **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** [Custom License](https://github.com/lvis-dataset/lvis-api/blob/master/LICENSE)
### Dataset Sources [optional]
- **Website:** https://www.lvisdataset.org/
- **Repository:** https://github.com/lvis-dataset/lvis-api
- **Paper:** https://arxiv.org/abs/1908.03195
## Citation
**BibTeX:**
```bibtex
@inproceedings{gupta2019lvis,
title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
year={2019}
}
```
|