File size: 3,442 Bytes
3bf744d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec5288
3bf744d
 
 
 
 
 
 
 
 
 
 
 
6ec5288
3bf744d
 
 
 
6ec5288
 
3bf744d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec5288
3bf744d
 
 
 
 
 
 
 
 
 
6ec5288
3bf744d
6ec5288
3bf744d
6ec5288
3bf744d
6ec5288
3bf744d
6ec5288
3bf744d
6ec5288
3bf744d
6ec5288
 
 
 
 
3bf744d
6ec5288
3bf744d
6ec5288
 
 
3bf744d
6ec5288
3bf744d
 
 
 
6ec5288
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: LVIS-35k
tags:
- fiftyone
- image
- object-detection
dataset_summary: '




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include ''max_samples'', etc

  dataset = fouh.load_from_hub("Voxel51/LVIS")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for LVIS-35k
![image](LVIS.gif)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.

**NOTE:** This is only a 35k sample subset of the full dataset. The notebook recipe for creating this, and the full, dataset can be found [here](https://colab.research.google.com/drive/1SmdZPWtLhNis_cCRnO9WKKZQ9OaP_C_d)

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/LVIS")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

LVIS (pronounced 'el-vis') is a dataset for large vocabulary instance segmentation, introduced by researchers from Facebook AI.

- It contains annotations for over 1000 object categories across 164k images. The full dataset is planned to have ~2 million high-quality instance segmentation masks.

- The categories in LVIS follow a natural long-tail distribution, with a few common categories and many rare ones with few training examples. This long tail poses a challenge for current state-of-the-art object detection methods which struggle with low-sample categories.

- The vocabulary was constructed iteratively, starting from 8.8k concrete noun synsets in WordNet and filtering down to the final set[4]. 

- LVIS can be used for instance segmentation, semantic segmentation, and object detection tasks. The dataset aims to focus the research community on the open challenge of long-tail object recognition.

In summary, LVIS is a large-scale, high-quality dataset that targets the difficult problem of learning segmentation models for various object categories, including many rare ones. It is freely available for research use.

- **Curated by:** Agrim Gupta, Piotr Dollár, Ross Girshick
- **Funded by:** Facebook AI Research (FAIR)
- **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** [Custom License](https://github.com/lvis-dataset/lvis-api/blob/master/LICENSE)

### Dataset Sources [optional]

- **Website:** https://www.lvisdataset.org/
- **Repository:** https://github.com/lvis-dataset/lvis-api
- **Paper:** https://arxiv.org/abs/1908.03195

## Citation 


**BibTeX:**

```bibtex
@inproceedings{gupta2019lvis,
  title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
  author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
  booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
  year={2019}
}
```