--- license: cc-by-nc-4.0 task_categories: - text-to-video - text-to-image language: - en pretty_name: VidProM size_categories: - 1M

# Summary This is the dataset proposed in our paper "[**VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models**](https://arxiv.org/abs/2403.06098)" VidProM is the first dataset featuring 1.67 million unique text-to-video prompts and 6.69 million videos generated from 4 different state-of-the-art diffusion models. It inspires many exciting new research areas, such as Text-to-Video Prompt Engineering, Efficient Video Generation, Fake Video Detection, and Video Copy Detection for Diffusion Models. # Directory ``` *DATA_PATH *VidProM_unique.csv *VidProM_semantic_unique.csv *VidProM_embed.hdf5 *original_files *generate_1_ori.html *generate_2_ori.html ... *pika_videos *pika_videos_1.tar *pika_videos_2.tar ... *vc2_videos *vc2_videos_1.tar *vc2_videos_2.tar ... *t2vz_videos *t2vz_videos_1.tar *t2vz_videos_2.tar ... *ms_videos *ms_videos_1.tar *ms_videos_2.tar ... *example ``` # Download ### Automatical Install the [datasets](https://huggingface.co/docs/datasets/v1.15.1/installation.html) library first, by: ``` pip install datasets ``` Then it can be downloaded automatically with ``` import numpy as np from datasets import load_dataset dataset = load_dataset('WenhaoWang/VidProM') ``` ### Manual You can also download each file by ```wget```, for instance: ``` wget https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/VidProM_unique.csv ``` ### Users from China For users from China, we cooperate with [Wisemodel](https://wisemodel.cn/home), and you can download them faster from [here](https://wisemodel.cn/datasets/WenhaoWang/VidProM). # Explanation ``VidProM_unique.csv`` contains the UUID, prompt, time, and 6 NSFW probabilities. It can easily be read by ``` import pandas df = pd.read_csv("VidProM_unique.csv") ``` Below are three rows from ``VidProM_unique.csv``: | uuid | prompt | time | toxicity | obscene | identity_attack | insult | threat | sexual_explicit | |--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|---------|-----------------|---------|---------|-----------------| | 6a83eb92-faa0-572b-9e1f-67dec99b711d | Flying among clouds and stars, kitten Max discovered a world full of winged friends. Returning home, he shared his stories and everyone smiled as they imagined flying together in their dreams. | Sun Sep 3 12:27:44 2023 | 0.00129 | 0.00016 | 7e-05 | 0.00064 | 2e-05 | 2e-05 | | 3ba1adf3-5254-59fb-a13e-57e6aa161626 | Use a clean and modern font for the text "Relate Reality 101." Add a small, stylized heart icon or a thought bubble above or beside the text to represent emotions and thoughts. Consider using a color scheme that includes warm, inviting colors like deep reds, soft blues, or soothing purples to evoke feelings of connection and intrigue. | Wed Sep 13 18:15:30 2023 | 0.00038 | 0.00013 | 8e-05 | 0.00018 | 3e-05 | 3e-05 | | 62e5a2a0-4994-5c75-9976-2416420526f7 | zoomed out, sideview of an Grey Alien sitting at a computer desk | Tue Oct 24 20:24:21 2023 | 0.01777 | 0.00029 | 0.00336 | 0.00256 | 0.00017 | 5e-05 | ``VidProM_semantic_unique.csv`` is a semantically unique version of ``VidProM_unique.csv``. ``VidProM_embed.hdf5`` is the 3072-dim embeddings of our prompts. They are embedded by text-embedding-3-large, which is the latest text embedding model of OpenAI. It can easily be read by ``` import numpy as np import h5py def read_descriptors(filename): hh = h5py.File(filename, "r") descs = np.array(hh["embeddings"]) names = np.array(hh["uuid"][:], dtype=object).astype(str).tolist() return names, descs uuid, features = read_descriptors('VidProM_embed.hdf5') ``` ``original_files`` are the HTML files from [official Pika Discord](https://discord.com/invite/pika) collected by [DiscordChatExporter](https://github.com/Tyrrrz/DiscordChatExporter). You can do whatever you want with it under [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). ``pika_videos``, ``vc2_videos``, ``t2vz_videos``, and ``ms_videos`` are the generated videos by 4 state-of-the-art text-to-video diffusion models. Each contains 30 tar files. ``example`` is a subfolder which contains 10,000 datapoints. # Datapoint

# Visualization

Click the [WizMap](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FVidProM%2Fresolve%2Fmain%2Fdata_gpu13.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FVidProM%2Fresolve%2Fmain%2Fgrid_gpu13.json) (and wait for 5 seconds) for an interactive visualization of our 1.67 million prompts. Above is a thumbnail. # Comparison with DiffusionDB

Please check our paper for a detailed comparison. # Curators VidProM is created by [Wenhao Wang](https://wangwenhao0716.github.io/) and Professor [Yi Yang](https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN) from [the ReLER Lab](https://reler.net/). # License The prompts and videos generated by [Pika](https://discord.com/invite/pika) in our VidProM are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). Additionally, similar to their original repositories, the videos from [VideoCraft2](https://github.com/AILab-CVC/VideoCrafter), [Text2Video-Zero](https://github.com/Picsart-AI-Research/Text2Video-Zero), and [ModelScope](https://huggingface.co/ali-vilab/modelscope-damo-text-to-video-synthesis) are released under the [Apache license](https://www.apache.org/licenses/LICENSE-2.0), the [CreativeML Open RAIL-M license](https://github.com/Picsart-AI-Research/Text2Video-Zero/blob/main/LICENSE), and the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en), respectively. Our code is released under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). # Citation ``` @article{wang2024vidprom, title={VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models}, author={Wang, Wenhao and Yang, Yi}, journal={arXiv preprint arXiv:2403.06098}, year={2024} } ``` # Contact If you have any questions, feel free to contact Wenhao Wang (wangwenhao0716@gmail.com).