import gradio as gr import git git.Git().clone("https://github.com/Jesse-zj/bobo-test.git") from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTVectorStoreIndex, LLMPredictor, PromptHelper,ServiceContext from llama_index import StorageContext, load_index_from_storage from langchain import OpenAI import sys import os from IPython.display import Markdown, display openai_api_key = os.environ['OPENAI_API_KEY'] def construct_index(directory_path): # set maximum input size max_input_size = 4096 # set number of output tokens num_outputs = 1000 # set maximum chunk overlap max_chunk_overlap = 30 # set chunk size limit chunk_size_limit = 600 # define LLM llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs)) prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) documents = SimpleDirectoryReader(directory_path).load_data() service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) index = GPTVectorStoreIndex.from_documents( documents, service_context=service_context ) index.storage_context.persist('index.json') return index def ask_ai(query): # set maximum input size max_input_size = 4096 # set number of output tokens num_outputs = 1000 # set maximum chunk overlap max_chunk_overlap = 30 # set chunk size limit chunk_size_limit = 600 # define LLM llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs)) prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="index.json") # load index index = load_index_from_storage(storage_context, service_context=service_context) query_engine = index.as_query_engine() response = query_engine.query(query) return str(response) construct_index('bobo-test') iface = gr.Interface(fn=ask_ai, inputs="textbox", outputs="text") iface.launch()