--- pretty_name: LINDSEA Syntax license: - cc-by-4.0 task_categories: - text-generation - text-classification language: - id dataset_info: features: - name: id dtype: string - name: label dtype: string - name: prompts list: - name: sentence_pair dtype: string - name: prompt_templates sequence: string - name: metadata struct: - name: language dtype: string - name: linguistic_phenomenon dtype: string - name: category dtype: string - name: subcategory dtype: string - name: correct dtype: string - name: wrong dtype: string - name: shuffled dtype: bool splits: - name: id num_bytes: 206209 num_examples: 380 - name: id_fewshot num_bytes: 612 num_examples: 5 download_size: 42471 dataset_size: 206821 configs: - config_name: default data_files: - split: id path: data/id-* - split: id_fewshot path: data/id_fewshot-* size_categories: - n<1K --- # LINDSEA Syntax LINDSEA Syntax is a linguistic diagnostic from [BHASA](https://arxiv.org/abs/2309.06085) that evaluates a model's understanding of linguistic phenomena, syntax in particular, for Indonesian. ### Supported Tasks and Leaderboards LINDSEA Syntax is designed for evaluating chat or instruction-tuned large language models (LLMs). ### Languages - Indonesian (id) ### Dataset Details LINDSEA Syntax only has an Indonesian (id) split, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the `prompts` column. | Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens | |-|:-|:-|:-|:-| | id | 380 | 9493 | 9273 | 11293 | | id_fewshot | 5 | 112 | 116 | 130 | | **total** | 385 | 9605 | 9389 | 11423 | ### Data Sources | Data Source | License | Language/s | Split/s |-|:-|:-| :-| | [BHASA](https://arxiv.org/abs/2309.06085) | [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) | Indonesian | id, id_fewshot ### License For the license/s of the dataset/s, please refer to the data sources table above. We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data. ### References ```bibtex @misc{leong2023bhasaholisticsoutheastasian, title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models}, author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi}, year={2023}, eprint={2309.06085}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2309.06085}, } ```