repo_name
stringlengths
6
96
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
762
753k
license
stringclasses
15 values
ctoher/pymatgen
setup.py
2
4605
import glob import os import subprocess from io import open import sys from setuptools import setup, find_packages, Extension try: from numpy.distutils.misc_util import get_numpy_include_dirs except ImportError: print("numpy.distutils.misc_util cannot be imported. Attempting to " "install...") subprocess.call(["easy_install", "numpy"]) from numpy.distutils.misc_util import get_numpy_include_dirs SETUP_PTH = os.path.dirname(os.path.abspath(__file__)) def get_spglib_ext(): """ Set up spglib extension. """ spglibs = glob.glob(os.path.join(SETUP_PTH, "dependencies", "spglib*")) if len(spglibs) != 1: raise ValueError("Incorrect number of spglib found in dependencies. " "Expected 1, got %d" % len(spglibs)) spglibdir = spglibs[0] # set rest of spglib spgsrcdir = os.path.join(spglibdir, "src") include_dirs = [spgsrcdir] sources = glob.glob(os.path.join(spgsrcdir, "*.c")) c_opt = [] if sys.version_info.major < 3 else [ "-Wno-error=declaration-after-statement"] return Extension( "pymatgen._spglib", include_dirs=include_dirs + get_numpy_include_dirs(), sources=[os.path.join(spglibdir, "_spglib.c")] + sources, extra_compile_args=c_opt) with open("README.rst") as f: long_desc = f.read() ind = long_desc.find("\n") long_desc = long_desc[ind + 1:] setup( name="pymatgen", packages=find_packages(), version="3.0.13", install_requires=["numpy>=1.8", "pyhull>=1.5.3", "six", "prettytable", "atomicfile", "requests", "pybtex", "pyyaml", "monty>=0.6.4", "scipy>=0.10"], extras_require={"plotting": ["matplotlib>=1.1", "prettyplotlib"], "ase_adaptor": ["ase>=3.3"], "vis": ["vtk>=6.0.0"], "abinitio": ["pydispatcher>=2.0.3", "apscheduler==2.1.0"]}, package_data={"pymatgen.core": ["*.json"], "pymatgen.analysis": ["*.yaml", "*.csv"], "pymatgen.io": ["*.yaml"], "pymatgen.symmetry": ["*.yaml"], "pymatgen.io.gwwrapper":["*.json"], "pymatgen.entries": ["*.yaml"], "pymatgen.structure_prediction": ["data/*.json"], "pymatgen.vis": ["ElementColorSchemes.yaml"], "pymatgen.command_line": ["OxideTersoffPotentials"], "pymatgen.analysis.defects": ["*.json"], "pymatgen.analysis.diffraction": ["*.json"], "pymatgen.util": ["structures/*.json"]}, author="Shyue Ping Ong, Anubhav Jain, Michael Kocher, Geoffroy Hautier," "William Davidson Richards, Stephen Dacek, Dan Gunter, Shreyas Cholia, " "Matteo Giantomassi, Vincent L Chevrier, Rickard Armiento", author_email="[email protected], [email protected], [email protected], " "[email protected], [email protected], [email protected], " "[email protected], [email protected], [email protected], " "[email protected], [email protected]", maintainer="Shyue Ping Ong", url="https://github.com/materialsproject/pymatgen/", license="MIT", description="Python Materials Genomics is a robust materials " "analysis code that defines core object representations for " "structures and molecules with support for many electronic " "structure codes. It is currently the core analysis code " "powering the Materials Project " "(https://www.materialsproject.org).", long_description=long_desc, keywords=["VASP", "gaussian", "ABINIT", "nwchem", "materials", "project", "electronic", "structure", "analysis", "phase", "diagrams"], classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Chemistry", "Topic :: Software Development :: Libraries :: Python Modules" ], ext_modules=[get_spglib_ext()], scripts=glob.glob(os.path.join(SETUP_PTH, "scripts", "*")) )
mit
cwu2011/scikit-learn
benchmarks/bench_plot_fastkmeans.py
294
4676
from __future__ import print_function from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() data = nr.random_integers(-50, 50, (n_samples, n_features)) print('K-Means') tstart = time() kmeans = KMeans(init='k-means++', n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results['kmeans_speed'].append(delta) results['kmeans_quality'].append(kmeans.inertia_) print('Fast K-Means') # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=10, batch_size=chunk) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0]]) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() print('Fast K-Means') tstart = time() mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(50, 150, 5).astype(np.int) features_range = np.linspace(150, 50000, 5).astype(np.int) chunks = np.linspace(500, 10000, 15).astype(np.int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max([max(i) for i in [t for (label, t) in results.iteritems() if "speed" in label]]) max_inertia = max([max(i) for i in [ t for (label, t) in results.iteritems() if "speed" not in label]]) fig = plt.figure('scikit-learn K-Means benchmark results') for c, (label, timings) in zip('brcy', sorted(results.iteritems())): if 'speed' in label: ax = fig.add_subplot(2, 2, 1, projection='3d') ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection='3d') ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') i = 0 for c, (label, timings) in zip('br', sorted(results_2.iteritems())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel('Chunks') ax.set_ylabel(label) plt.show()
bsd-3-clause
cogmission/nupic.research
projects/sequence_classification/generate_synthetic_data.py
2
5520
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Generate synthetic sequences using a pool of sequence motifs """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from sklearn import decomposition import random plt.ion() plt.close('all') # Generate a set of sequence motifs def generateSequenceMotifs(numMotif, motifLength, seed=None): if seed is not None: np.random.seed(seed) sequenceMotifs = np.random.randn(motifLength, motifLength) pca = decomposition.PCA(n_components=numMotif) pca.fit(sequenceMotifs) sequenceMotifs = pca.components_ for i in range(numMotif): sequenceMotifs[i, :] = sequenceMotifs[i, :]-min(sequenceMotifs[i, :]) sequenceMotifs[i, :] = sequenceMotifs[i, :]/max(sequenceMotifs[i, :]) return sequenceMotifs def generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs): motifLength = sequenceMotifs.shape[1] sequence = np.zeros((sequenceLength + 20,)) motifState = np.zeros((sequenceLength + 20,)) randomLengthList = np.linspace(1, 10, 10).astype('int') # randomLengthList = [1] t = 0 while t < sequenceLength: randomLength = np.random.choice(randomLengthList) sequence[t:t + randomLength] = np.random.rand(randomLength) motifState[t:t + randomLength] = -1 t += randomLength motifIdx = np.random.choice(useMotif[currentClass]) print "motifIdx: ", motifIdx sequence[t:t + motifLength] = sequenceMotifs[motifIdx] motifState[t:t + motifLength] = motifIdx t += motifLength sequence = sequence[:sequenceLength] motifState = motifState[:sequenceLength] return sequence, motifState def generateSequences(numSeq, numClass, sequenceLength, useMotif, sequenceMotifs): trainData = np.zeros((numSeq, sequenceLength+1)) numSeqPerClass = numSeq/numClass classList = [] for classIdx in range(numClass): classList += [classIdx] * numSeqPerClass # classList = np.random.permutation(classList) for seq in range(numSeq): currentClass = classList[seq] # print "useMotif, {}".format(useMotif) sequence, motifState = generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs) trainData[seq, 0] = currentClass trainData[seq, 1:] = sequence return trainData numMotif = 5 motifLength = 5 sequenceMotifs = generateSequenceMotifs(numMotif, 5, seed=42) numTrain = 100 numTest = 100 numClass = 2 motifPerClass = 2 np.random.seed(2) useMotif = {} motifList = set(range(numMotif)) for classIdx in range(numClass): useMotifForClass = [] for _ in range(motifPerClass): useMotifForClass.append(np.random.choice(list(motifList))) motifList.remove(useMotifForClass[-1]) useMotif[classIdx] = useMotifForClass sequenceLength = 100 currentClass = 0 sequence, motifState = generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs) MotifColor = {} colorList = ['r','g','b','c','m','y'] i = 0 for c in useMotif.keys(): for v in useMotif[c]: MotifColor[v] = colorList[i] i += 1 fig, ax = plt.subplots(nrows=4, ncols=1) for plti in xrange(4): currentClass = [0 if plti < 2 else 1][0] sequence, motifState = generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs) ax[plti].plot(sequence, 'k-') startPatch = False for t in range(len(motifState)): if motifState[t] >= 0 and startPatch is False: startPatchAt = t startPatch = True currentMotif = motifState[t] if startPatch and (motifState[t] < 0): endPatchAt = t-1 ax[plti].add_patch( patches.Rectangle( (startPatchAt, 0), endPatchAt-startPatchAt, 1, alpha=0.5, color=MotifColor[currentMotif] ) ) startPatch = False ax[plti].set_xlim([0, 100]) ax[plti].set_ylabel('class {}'.format(currentClass)) # ax[1].plot(motifState) trainData = generateSequences(numTrain, numClass, sequenceLength, useMotif, sequenceMotifs) testData = generateSequences(numTest, numClass, sequenceLength, useMotif, sequenceMotifs) np.savetxt('SyntheticData/Test1/Test1_TRAIN', trainData, delimiter=',') np.savetxt('SyntheticData/Test1/Test1_TEST', testData, delimiter=',') # writeSequenceToFile('SyntheticData/Test1/Test1_TRAIN', 100, numClass, sequenceLength, useMotif, sequenceMotifs) # writeSequenceToFile('SyntheticData/Test1/Test1_TEST', 100, numClass, sequenceLength, useMotif, sequenceMotifs) # plt.figure() trainLabel = trainData[:, 0].astype('int') trainData = trainData[:, 1:] plt.imshow(trainData[np.where(trainLabel==0)[0],:]) # plt.plot(motifState)
agpl-3.0
jmetzen/scikit-learn
sklearn/neighbors/tests/test_approximate.py
26
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slighltly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consitent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
platinhom/ManualHom
Coding/Python/numpy-html-1.10.1/reference/generated/numpy-random-RandomState-gumbel-1.py
4
1082
# Draw samples from the distribution: mu, beta = 0, 0.1 # location and scale s = np.random.gumbel(mu, beta, 1000) # Display the histogram of the samples, along with # the probability density function: import matplotlib.pyplot as plt count, bins, ignored = plt.hist(s, 30, normed=True) plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) * np.exp( -np.exp( -(bins - mu) /beta) ), linewidth=2, color='r') plt.show() # Show how an extreme value distribution can arise from a Gaussian process # and compare to a Gaussian: means = [] maxima = [] for i in range(0,1000) : a = np.random.normal(mu, beta, 1000) means.append(a.mean()) maxima.append(a.max()) count, bins, ignored = plt.hist(maxima, 30, normed=True) beta = np.std(maxima)*np.pi/np.sqrt(6) mu = np.mean(maxima) - 0.57721*beta plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) * np.exp(-np.exp(-(bins - mu)/beta)), linewidth=2, color='r') plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) * np.exp(-(bins - mu)**2 / (2 * beta**2)), linewidth=2, color='g') plt.show()
gpl-2.0
meduz/scikit-learn
sklearn/linear_model/tests/test_huber.py
54
7619
# Authors: Manoj Kumar [email protected] # License: BSD 3 clause import numpy as np from scipy import optimize, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_false from sklearn.datasets import make_regression from sklearn.linear_model import ( HuberRegressor, LinearRegression, SGDRegressor, Ridge) from sklearn.linear_model.huber import _huber_loss_and_gradient def make_regression_with_outliers(n_samples=50, n_features=20): rng = np.random.RandomState(0) # Generate data with outliers by replacing 10% of the samples with noise. X, y = make_regression( n_samples=n_samples, n_features=n_features, random_state=0, noise=0.05) # Replace 10% of the sample with noise. num_noise = int(0.1 * n_samples) random_samples = rng.randint(0, n_samples, num_noise) X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1])) return X, y def test_huber_equals_lr_for_high_epsilon(): # Test that Ridge matches LinearRegression for large epsilon X, y = make_regression_with_outliers() lr = LinearRegression(fit_intercept=True) lr.fit(X, y) huber = HuberRegressor(fit_intercept=True, epsilon=1e3, alpha=0.0) huber.fit(X, y) assert_almost_equal(huber.coef_, lr.coef_, 3) assert_almost_equal(huber.intercept_, lr.intercept_, 2) def test_huber_gradient(): # Test that the gradient calculated by _huber_loss_and_gradient is correct rng = np.random.RandomState(1) X, y = make_regression_with_outliers() sample_weight = rng.randint(1, 3, (y.shape[0])) loss_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[0] grad_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[1] # Check using optimize.check_grad that the gradients are equal. for _ in range(5): # Check for both fit_intercept and otherwise. for n_features in [X.shape[1] + 1, X.shape[1] + 2]: w = rng.randn(n_features) w[-1] = np.abs(w[-1]) grad_same = optimize.check_grad( loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight) assert_almost_equal(grad_same, 1e-6, 4) def test_huber_sample_weights(): # Test sample_weights implementation in HuberRegressor""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True) huber.fit(X, y) huber_coef = huber.coef_ huber_intercept = huber.intercept_ # Rescale coefs before comparing with assert_array_almost_equal to make sure # that the number of decimal places used is somewhat insensitive to the # amplitude of the coefficients and therefore to the scale of the data # and the regularization parameter scale = max(np.mean(np.abs(huber.coef_)), np.mean(np.abs(huber.intercept_))) huber.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) X, y = make_regression_with_outliers(n_samples=5, n_features=20) X_new = np.vstack((X, np.vstack((X[1], X[1], X[3])))) y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]])) huber.fit(X_new, y_new) huber_coef = huber.coef_ huber_intercept = huber.intercept_ sample_weight = np.ones(X.shape[0]) sample_weight[1] = 3 sample_weight[3] = 2 huber.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) # Test sparse implementation with sample weights. X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True) huber_sparse.fit(X_csr, y, sample_weight=sample_weight) assert_array_almost_equal(huber_sparse.coef_ / scale, huber_coef / scale) def test_huber_sparse(): X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.1) huber.fit(X, y) X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1) huber_sparse.fit(X_csr, y) assert_array_almost_equal(huber_sparse.coef_, huber.coef_) assert_array_equal(huber.outliers_, huber_sparse.outliers_) def test_huber_scaling_invariant(): """Test that outliers filtering is scaling independent.""" rng = np.random.RandomState(0) X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100) huber.fit(X, y) n_outliers_mask_1 = huber.outliers_ assert_false(np.all(n_outliers_mask_1)) huber.fit(X, 2. * y) n_outliers_mask_2 = huber.outliers_ assert_array_equal(n_outliers_mask_2, n_outliers_mask_1) huber.fit(2. * X, 2. * y) n_outliers_mask_3 = huber.outliers_ assert_array_equal(n_outliers_mask_3, n_outliers_mask_1) def test_huber_and_sgd_same_results(): """Test they should converge to same coefficients for same parameters""" X, y = make_regression_with_outliers(n_samples=10, n_features=2) # Fit once to find out the scale parameter. Scale down X and y by scale # so that the scale parameter is optimized to 1.0 huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100, epsilon=1.35) huber.fit(X, y) X_scale = X / huber.scale_ y_scale = y / huber.scale_ huber.fit(X_scale, y_scale) assert_almost_equal(huber.scale_, 1.0, 3) sgdreg = SGDRegressor( alpha=0.0, loss="huber", shuffle=True, random_state=0, n_iter=10000, fit_intercept=False, epsilon=1.35) sgdreg.fit(X_scale, y_scale) assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1) def test_huber_warm_start(): X, y = make_regression_with_outliers() huber_warm = HuberRegressor( fit_intercept=True, alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1) huber_warm.fit(X, y) huber_warm_coef = huber_warm.coef_.copy() huber_warm.fit(X, y) # SciPy performs the tol check after doing the coef updates, so # these would be almost same but not equal. assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1) # No n_iter_ in old SciPy (<=0.9) if huber_warm.n_iter_ is not None: assert_equal(0, huber_warm.n_iter_) def test_huber_better_r2_score(): # Test that huber returns a better r2 score than non-outliers""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.01, max_iter=100) huber.fit(X, y) linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y mask = np.abs(linear_loss) < huber.epsilon * huber.scale_ huber_score = huber.score(X[mask], y[mask]) huber_outlier_score = huber.score(X[~mask], y[~mask]) # The Ridge regressor should be influenced by the outliers and hence # give a worse score on the non-outliers as compared to the huber regressor. ridge = Ridge(fit_intercept=True, alpha=0.01) ridge.fit(X, y) ridge_score = ridge.score(X[mask], y[mask]) ridge_outlier_score = ridge.score(X[~mask], y[~mask]) assert_greater(huber_score, ridge_score) # The huber model should also fit poorly on the outliers. assert_greater(ridge_outlier_score, huber_outlier_score)
bsd-3-clause
trhongbinwang/data_science_journey
deep_learning/keras/examples/neural_doodle.py
2
14079
'''Neural doodle with Keras Script Usage: # Arguments: ``` --nlabels: # of regions (colors) in mask images --style-image: image to learn style from --style-mask: semantic labels for style image --target-mask: semantic labels for target image (your doodle) --content-image: optional image to learn content from --target-image-prefix: path prefix for generated target images ``` # Example 1: doodle using a style image, style mask and target mask. ``` python neural_doodle.py --nlabels 4 --style-image Monet/style.png \ --style-mask Monet/style_mask.png --target-mask Monet/target_mask.png \ --target-image-prefix generated/monet ``` # Example 2: doodle using a style image, style mask, target mask and an optional content image. ``` python neural_doodle.py --nlabels 4 --style-image Renoir/style.png \ --style-mask Renoir/style_mask.png --target-mask Renoir/target_mask.png \ --content-image Renoir/creek.jpg \ --target-image-prefix generated/renoir ``` References: [Dmitry Ulyanov's blog on fast-neural-doodle](http://dmitryulyanov.github.io/feed-forward-neural-doodle/) [Torch code for fast-neural-doodle](https://github.com/DmitryUlyanov/fast-neural-doodle) [Torch code for online-neural-doodle](https://github.com/DmitryUlyanov/online-neural-doodle) [Paper Texture Networks: Feed-forward Synthesis of Textures and Stylized Images](http://arxiv.org/abs/1603.03417) [Discussion on parameter tuning](https://github.com/fchollet/keras/issues/3705) Resources: Example images can be downloaded from https://github.com/DmitryUlyanov/fast-neural-doodle/tree/master/data ''' from __future__ import print_function import time import argparse import numpy as np from scipy.optimize import fmin_l_bfgs_b from scipy.misc import imread, imsave from keras import backend as K from keras.layers import Input, AveragePooling2D from keras.models import Model from keras.preprocessing.image import load_img, img_to_array from keras.applications import vgg19 # Command line arguments parser = argparse.ArgumentParser(description='Keras neural doodle example') parser.add_argument('--nlabels', type=int, help='number of semantic labels' ' (regions in differnet colors)' ' in style_mask/target_mask') parser.add_argument('--style-image', type=str, help='path to image to learn style from') parser.add_argument('--style-mask', type=str, help='path to semantic mask of style image') parser.add_argument('--target-mask', type=str, help='path to semantic mask of target image') parser.add_argument('--content-image', type=str, default=None, help='path to optional content image') parser.add_argument('--target-image-prefix', type=str, help='path prefix for generated results') args = parser.parse_args() style_img_path = args.style_image style_mask_path = args.style_mask target_mask_path = args.target_mask content_img_path = args.content_image target_img_prefix = args.target_image_prefix use_content_img = content_img_path is not None num_labels = args.nlabels num_colors = 3 # RGB # determine image sizes based on target_mask ref_img = imread(target_mask_path) img_nrows, img_ncols = ref_img.shape[:2] total_variation_weight = 50. style_weight = 1. content_weight = 0.1 if use_content_img else 0 content_feature_layers = ['block5_conv2'] # To get better generation qualities, use more conv layers for style features style_feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] # helper functions for reading/processing images def preprocess_image(image_path): img = load_img(image_path, target_size=(img_nrows, img_ncols)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg19.preprocess_input(img) return img def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x def kmeans(xs, k): assert xs.ndim == 2 try: from sklearn.cluster import k_means _, labels, _ = k_means(xs.astype('float64'), k) except ImportError: from scipy.cluster.vq import kmeans2 _, labels = kmeans2(xs, k, missing='raise') return labels def load_mask_labels(): '''Load both target and style masks. A mask image (nr x nc) with m labels/colors will be loaded as a 4D boolean tensor: (1, m, nr, nc) for 'channels_first' or (1, nr, nc, m) for 'channels_last' ''' target_mask_img = load_img(target_mask_path, target_size=(img_nrows, img_ncols)) target_mask_img = img_to_array(target_mask_img) style_mask_img = load_img(style_mask_path, target_size=(img_nrows, img_ncols)) style_mask_img = img_to_array(style_mask_img) if K.image_data_format() == 'channels_first': mask_vecs = np.vstack([style_mask_img.reshape((3, -1)).T, target_mask_img.reshape((3, -1)).T]) else: mask_vecs = np.vstack([style_mask_img.reshape((-1, 3)), target_mask_img.reshape((-1, 3))]) labels = kmeans(mask_vecs, num_labels) style_mask_label = labels[:img_nrows * img_ncols].reshape((img_nrows, img_ncols)) target_mask_label = labels[img_nrows * img_ncols:].reshape((img_nrows, img_ncols)) stack_axis = 0 if K.image_data_format() == 'channels_first' else -1 style_mask = np.stack([style_mask_label == r for r in xrange(num_labels)], axis=stack_axis) target_mask = np.stack([target_mask_label == r for r in xrange(num_labels)], axis=stack_axis) return (np.expand_dims(style_mask, axis=0), np.expand_dims(target_mask, axis=0)) # Create tensor variables for images if K.image_data_format() == 'channels_first': shape = (1, num_colors, img_nrows, img_ncols) else: shape = (1, img_nrows, img_ncols, num_colors) style_image = K.variable(preprocess_image(style_img_path)) target_image = K.placeholder(shape=shape) if use_content_img: content_image = K.variable(preprocess_image(content_img_path)) else: content_image = K.zeros(shape=shape) images = K.concatenate([style_image, target_image, content_image], axis=0) # Create tensor variables for masks raw_style_mask, raw_target_mask = load_mask_labels() style_mask = K.variable(raw_style_mask.astype('float32')) target_mask = K.variable(raw_target_mask.astype('float32')) masks = K.concatenate([style_mask, target_mask], axis=0) # index constants for images and tasks variables STYLE, TARGET, CONTENT = 0, 1, 2 # Build image model, mask model and use layer outputs as features # image model as VGG19 image_model = vgg19.VGG19(include_top=False, input_tensor=images) # mask model as a series of pooling mask_input = Input(tensor=masks, shape=(None, None, None), name='mask_input') x = mask_input for layer in image_model.layers[1:]: name = 'mask_%s' % layer.name if 'conv' in layer.name: x = AveragePooling2D((3, 3), strides=( 1, 1), name=name, border_mode='same')(x) elif 'pool' in layer.name: x = AveragePooling2D((2, 2), name=name)(x) mask_model = Model(mask_input, x) # Collect features from image_model and task_model image_features = {} mask_features = {} for img_layer, mask_layer in zip(image_model.layers, mask_model.layers): if 'conv' in img_layer.name: assert 'mask_' + img_layer.name == mask_layer.name layer_name = img_layer.name img_feat, mask_feat = img_layer.output, mask_layer.output image_features[layer_name] = img_feat mask_features[layer_name] = mask_feat # Define loss functions def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram def region_style_loss(style_image, target_image, style_mask, target_mask): '''Calculate style loss between style_image and target_image, for one common region specified by their (boolean) masks ''' assert 3 == K.ndim(style_image) == K.ndim(target_image) assert 2 == K.ndim(style_mask) == K.ndim(target_mask) if K.image_data_format() == 'channels_first': masked_style = style_image * style_mask masked_target = target_image * target_mask num_channels = K.shape(style_image)[0] else: masked_style = K.permute_dimensions( style_image, (2, 0, 1)) * style_mask masked_target = K.permute_dimensions( target_image, (2, 0, 1)) * target_mask num_channels = K.shape(style_image)[-1] s = gram_matrix(masked_style) / K.mean(style_mask) / num_channels c = gram_matrix(masked_target) / K.mean(target_mask) / num_channels return K.mean(K.square(s - c)) def style_loss(style_image, target_image, style_masks, target_masks): '''Calculate style loss between style_image and target_image, in all regions. ''' assert 3 == K.ndim(style_image) == K.ndim(target_image) assert 3 == K.ndim(style_masks) == K.ndim(target_masks) loss = K.variable(0) for i in xrange(num_labels): if K.image_data_format() == 'channels_first': style_mask = style_masks[i, :, :] target_mask = target_masks[i, :, :] else: style_mask = style_masks[:, :, i] target_mask = target_masks[:, :, i] loss += region_style_loss(style_image, target_image, style_mask, target_mask) return loss def content_loss(content_image, target_image): return K.sum(K.square(target_image - content_image)) def total_variation_loss(x): assert 4 == K.ndim(x) if K.image_data_format() == 'channels_first': a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1]) b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:]) else: a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25)) # Overall loss is the weighted sum of content_loss, style_loss and tv_loss # Each individual loss uses features from image/mask models. loss = K.variable(0) for layer in content_feature_layers: content_feat = image_features[layer][CONTENT, :, :, :] target_feat = image_features[layer][TARGET, :, :, :] loss += content_weight * content_loss(content_feat, target_feat) for layer in style_feature_layers: style_feat = image_features[layer][STYLE, :, :, :] target_feat = image_features[layer][TARGET, :, :, :] style_masks = mask_features[layer][STYLE, :, :, :] target_masks = mask_features[layer][TARGET, :, :, :] sl = style_loss(style_feat, target_feat, style_masks, target_masks) loss += (style_weight / len(style_feature_layers)) * sl loss += total_variation_weight * total_variation_loss(target_image) loss_grads = K.gradients(loss, target_image) # Evaluator class for computing efficiency outputs = [loss] if isinstance(loss_grads, (list, tuple)): outputs += loss_grads else: outputs.append(loss_grads) f_outputs = K.function([target_image], outputs) def eval_loss_and_grads(x): if K.image_data_format() == 'channels_first': x = x.reshape((1, 3, img_nrows, img_ncols)) else: x = x.reshape((1, img_nrows, img_ncols, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values class Evaluator(object): def __init__(self): self.loss_value = None self.grads_values = None def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values evaluator = Evaluator() # Generate images by iterative optimization if K.image_data_format() == 'channels_first': x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128. else: x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128. for i in range(50): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) # save current generated image img = deprocess_image(x.copy()) fname = target_img_prefix + '_at_iteration_%d.png' % i imsave(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time))
apache-2.0
twhyntie/image-heatmap
make_image_heatmap.py
1
3834
#!/usr/bin/env python # -*- coding: utf-8 -*- #...for the plotting. import matplotlib.pyplot as plt #...for the image manipulation. import matplotlib.image as mpimg #...for the MATH. import numpy as np # For scaling images. import scipy.ndimage.interpolation as inter #...for the colours. from matplotlib import colorbar, colors # For playing with the tick marks on the colour map axis. from matplotlib import ticker # Load the LaTeX text plot libraries. from matplotlib import rc # Uncomment to use LaTeX for the plot text. rc('font',**{'family':'serif','serif':['Computer Modern']}) rc('text', usetex=True) # Load in the image. ## The scan image as a NumPy array. scan_img = mpimg.imread("scan.png") print(" *") print(" * Image dimensions: %s" % (str(scan_img.shape))) ## The figure upon which to display the scan image. plot = plt.figure(101, figsize=(5.0, 5.0), dpi=150, facecolor='w', edgecolor='w') # Adjust the position of the axes. #plot.subplots_adjust(bottom=0.17, left=0.15) plot.subplots_adjust(bottom=0.05, left=0.15, right=0.99, top=0.95) ## The plot axes. plotax = plot.add_subplot(111) # Set the x axis label. plt.xlabel("$x$") # Set the y axis label. plt.ylabel("$y$") # Add the original scan image to the plot. plt.imshow(scan_img) ## The blob centre x values [pixels]. blob_xs = [] ## The blob centre x values [pixels]. blob_ys = [] ## The blob radii [pixels]. blob_rs = [] # Open the blob data file and retrieve the x, y, and r values. with open("blobs.csv", "r") as f: for l in f.readlines(): blob_xs.append(float(l.split(",")[0])) blob_ys.append(float(l.split(",")[1])) blob_rs.append(float(l.split(",")[2])) ## The image scale factor. scale = 6.0 ## The width of the image scaled up by the scale factor [pixels]. w = scan_img.shape[0] ## The original width of the image [pixels]. w_o = w / scale ## The height of the image scaled up by the scale factor [pixels]. h = scan_img.shape[1] ## The original height of the image [pixels]. h_o = h / scale print(" * Image dimensions (w,h) = (%d,%d) -> (w_o,h_o) = (%d,%d)" % (w,h,w_o,h_o)) ## The number of bins in each dimension of the heatmap. # # We are using the original image dimensions so that our heat map # maps to the pixels in the original image. This is mainly for # aesthetic reasons - there would be nothing to stop us using more # (or fewer) bins. bins = [w_o, h_o] ## The dimensions of the heat map, taken from the scaled-up image. map_range = [[0, w], [0, h]] # Create the heat map using NumPy's 2D histogram functionality. centre_heatmap, x_edges, y_edges = np.histogram2d(blob_ys, blob_xs, bins=bins, range=map_range) ## The scaled heat map image. # # We need to scale the heat map array because although the bin widths # are > 1, the resultant histogram (when made into an image) creates # an image with one pixel per bin. zoom_img = inter.zoom(centre_heatmap, (scale, scale), order=0, prefilter=False) ## The colo(u)r map for the heat map. cmap = plt.cm.gnuplot ## The maximum number of blob centres in the heat map. bc_max = np.amax(centre_heatmap) # print(" * Maximum value in the heat map is %d." % (bc_max)) ## The maximum value to use in the colo(u)r map axis. color_map_max = bc_max # Add the (scaled) heat map (2D histogram) to the plot. zoomed_heat_map = plt.imshow(zoom_img, alpha=0.8, cmap=cmap,norm=colors.Normalize(vmin=0,vmax=color_map_max)) ## The heat map colo(u)r bar. cb = plt.colorbar(alpha=1.0, mappable=zoomed_heat_map) ## An object to neaten up the colour map axis tick marks. tick_locator = ticker.MaxNLocator(nbins=7) # cb.locator = tick_locator # cb.update_ticks() # Add a grid. plt.grid(1) # Crop the plot limits to the limits of the scan iteself. plotax.set_xlim([0, h]) plotax.set_ylim([w, 0]) # Save the figure. plot.savefig("heatmap.png") print(" *")
mit
kristianeschenburg/parcellearning
docs/source/conf.py
1
6437
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # parcellearning documentation build configuration file, created by # sphinx-quickstart on Thu Jun 28 12:35:56 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.githubpages', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'IPython.sphinxext.ipython_directive', 'IPython.sphinxext.ipython_console_highlighting', 'matplotlib.sphinxext.plot_directive', 'numpydoc', 'sphinx_copybutton', ] # Configuration options for plot_directive. See: # https://github.com/matplotlib/matplotlib/blob/f3ed922d935751e08494e5fb5311d3050a3b637b/lib/matplotlib/sphinxext/plot_directive.py#L81 plot_html_show_source_link = False plot_html_show_formats = False # Generate the API documentation when building autosummary_generate = True numpydoc_show_class_members = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'parcellearning' copyright = '2020, Kristian Eschenburg' author = 'Kristian Eschenburg' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # import parcellearning # The short X.Y version. version = parcellearning.__version__ # The full version, including alpha/beta/rc tags. release = parcellearning.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'parcellearning' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'parcellearning.tex', 'parcellearning Documentation', 'Contributors', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'parcellearning', 'parcellearning Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'parcellearning', 'parcellearning Documentation', author, 'parcellearning', 'Python project for learning cortical maps using graph neural networks', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable', None), 'matplotlib': ('https://matplotlib.org', None), }
mit
WarrenWeckesser/numpngw
numpngw.py
1
60394
""" The numpngw module defines two functions and a class: * write_png(...) writes a numpy array to a PNG file. * write_apng(...) writes a sequence of arrays to an animated PNG file. * AnimatedPNGWriter is a class that can be used with Matplotlib animations. ----- Copyright (c) 2015, Warren Weckesser All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import (division as _division, print_function as _print_function) import sys as _sys import contextlib as _contextlib from io import BytesIO as _BytesIO import time as _time import struct as _struct import zlib as _zlib from fractions import Fraction as _Fraction import operator import numpy as _np __all__ = ['write_png', 'write_apng', 'AnimatedPNGWriter'] __version__ = "0.0.9.dev1" _PY3 = _sys.version_info > (3,) if _PY3: def _bord(c): return c else: _bord = ord def _software_text(): software = ("numpngw (version %s), " "https://github.com/WarrenWeckesser/numpngw" % __version__) return software def _filter0(row, prev_row): return row def _filter0inv(frow, prev_row): return frow def _filter1(row, prev_row): d = _np.zeros_like(row) d[1:] = _np.diff(row, axis=0) d[0] = row[0] return d def _filter1inv(frow, prev_row): return frow.cumsum(axis=0, dtype=_np.uint64).astype(_np.uint8) def _filter2(row, prev_row): d = row - prev_row return d def _filter2inv(frow, prev_row): return frow + prev_row def _filter3(row, prev_row): a = _np.zeros_like(row, dtype=_np.int64) a[1:] = row[:-1] c = ((a + prev_row) // 2).astype(row.dtype) d = row - c return d def _filter3inv(frow, prev_row): # Slow python loop, but currently this is only used for testing. row = _np.empty_like(frow) for k in range(len(frow)): if k == 0: row[k] = frow[k] + (prev_row[k] // 2) else: row[k] = frow[k] + (row[k-1].astype(int) + prev_row[k].astype(int)) // 2 return row def _filter4(row, prev_row): """Paeth filter.""" # Create a, b and c. a = _np.zeros_like(row, dtype=_np.int64) a[1:] = row[:-1] b = prev_row.astype(_np.int64) c = _np.zeros_like(b) c[1:] = b[:-1] p = a + b - c pa = _np.abs(p - a) pb = _np.abs(p - b) pc = _np.abs(p - c) y = _np.where((pa <= pb) & (pa <= pc), a, _np.where(pb <= pc, b, c)) pr = y.astype(_np.uint8) d = row - pr return d def _filter4inv(frow, prev_row): # Slow python loop, but currently this is only used for testing. row = _np.empty_like(frow) for k in range(len(frow)): if k == 0: ra = _np.zeros_like(frow[k]) rc = _np.zeros_like(frow[k]) else: ra = row[k-1].astype(int) rc = prev_row[k-1].astype(int) rb = prev_row[k].astype(int) p = ra + rb - rc pa = _np.abs(p - ra) pb = _np.abs(p - rb) pc = _np.abs(p - rc) y = _np.where((pa <= pb) & (pa <= pc), ra, _np.where(pb <= pc, rb, rc)) row[k] = frow[k] + y return row def _interlace_passes(img): """ Return the subimages of img that make up the seven Adam7 interlace passes. """ pass1 = img[::8, ::8] pass2 = img[::8, 4::8] pass3 = img[4::8, ::4] pass4 = img[::4, 2::4] pass5 = img[2::4, ::2] pass6 = img[::2, 1::2] pass7 = img[1::2, :] return (pass1, pass2, pass3, pass4, pass5, pass6, pass7) def _create_stream(a, filter_type=None): """ Convert the data in `a` into a python string. `a` is must to be a 2D or 3D array of unsigned 8- or 16-bit integers. The string is formatted as the "scan lines" of the array. """ filters = [_filter0, _filter1, _filter2, _filter3, _filter4] if filter_type is None: filter_type = "heuristic" allowed_filter_types = [0, 1, 2, 3, 4, "heuristic"] if filter_type not in allowed_filter_types: raise ValueError('filter_type must be one of %r' % (allowed_filter_types,)) if a.ndim == 2: # Gray scale. Add a trivial third dimension. a = a[:, :, _np.newaxis] lines = [] prev_row = _np.zeros_like(a[0]).view(_np.uint8) for row in a: # Convert the row to big-endian (i.e. network byte order). row_be = row.astype('>' + row.dtype.str[1:]).view(_np.uint8) if filter_type == "heuristic": filtered_rows = [filt(row_be, prev_row) for filt in filters] lst = [_np.abs(fr.view(_np.int8).astype(_np.int_)).sum() for fr in filtered_rows] values = _np.array(lst) ftype = values.argmin() # Create the string, with the filter type prepended. lines.append(chr(ftype).encode('ascii') + filtered_rows[ftype].tobytes()) else: filtered_row = filters[filter_type](row_be, prev_row) lines.append(chr(filter_type).encode('ascii') + filtered_row.tobytes()) prev_row = row_be stream = b''.join(lines) return stream def _write_chunk(f, chunk_type, chunk_data): """ Write a chunk to the file `f`. This function wraps the chunk_type and chunk_data with the length and CRC field, and writes the result to `f`. """ content = chunk_type + chunk_data length = _struct.pack("!I", len(chunk_data)) crc = _struct.pack("!I", _zlib.crc32(content) & 0xFFFFFFFF) f.write(length + content + crc) def _write_ihdr(f, width, height, nbits, color_type, interlace): """Write an IHDR chunk to `f`.""" fmt = "!IIBBBBB" chunk_data = _struct.pack(fmt, width, height, nbits, color_type, 0, 0, interlace) _write_chunk(f, b"IHDR", chunk_data) def _write_text(f, keyword, text_string): """Write a tEXt chunk to `f`. keyword and test_string are expected to be bytes (not unicode). They must already be validated. """ data = keyword + b'\0' + text_string _write_chunk(f, b'tEXt', data) def _write_time(f, timestamp): """Write a tIME chunk to `f`.""" chunk_data = _struct.pack('!HBBBBB', *timestamp) _write_chunk(f, b'tIME', chunk_data) def _write_sbit(f, sbit): """Write an sBIT chunk to `f`.""" chunk_data = _struct.pack('BBBB'[:len(sbit)], *sbit) _write_chunk(f, b'sBIT', chunk_data) def _write_gama(f, gamma): """Write a gAMA chunk to `f`.""" gama = int(gamma*100000 + 0.5) chunk_data = _struct.pack('!I', gama) _write_chunk(f, b'gAMA', chunk_data) def _write_plte(f, palette): _write_chunk(f, b"PLTE", palette.tobytes()) def _write_trns(f, trans): trans_be = trans.astype('>' + trans.dtype.str[1:]) _write_chunk(f, b"tRNS", trans_be.tobytes()) def _write_bkgd(f, color, color_type): """ Write bKGD chunk to `f`. * If `color_type` is 0 or 4, `color` must be an integer. * If `color_type` is 2 or 6, `color` must be a sequence of three integers (RGB values). * If `color_type` is 3, `color` must be an integer that is less than the number of colors in the palette. """ if color_type == 0 or color_type == 4: chunk_data = _struct.pack("!H", color) elif color_type == 2 or color_type == 6: chunk_data = _struct.pack("!HHH", *color) elif color_type == 3: chunk_data = _struct.pack("B", color) else: raise ValueError("invalid chunk_type %r" % (color_type,)) _write_chunk(f, b"bKGD", chunk_data) def _write_phys(f, phys): """Write a pHYs chunk to `f`.""" chunk_data = _struct.pack("!IIB", *phys) _write_chunk(f, b"pHYs", chunk_data) def _write_iccp(f, iccp): """Write a iCCP chunk to `f`.""" _validate_iccp(iccp) profile_name = _encode_latin1(iccp[0]) compressed_profile = _zlib.compress(iccp[1]) chunk_data = profile_name + b'\0\0' + compressed_profile _write_chunk(f, b"iCCP", chunk_data) def _write_chrm(f, chromaticity): """Write a cHRM chunk to `f`.""" data = (100000 * _np.array(chromaticity) + 0.5).astype(_np.uint32) chunk_data = _struct.pack('!IIIIIIII', *data.ravel()) _write_chunk(f, b'cHRM', chunk_data) def _write_idat(f, data): """Write an IDAT chunk to `f`.""" _write_chunk(f, b"IDAT", data) def _write_iend(f): """Write an IEND chunk to `f`.""" _write_chunk(f, b"IEND", b"") def _write_actl(f, num_frames, num_plays): """Write an acTL chunk to `f`.""" if num_frames < 1: raise ValueError("Attempt to create acTL chunk with num_frames (%i) " "less than 1." % (num_frames,)) chunk_data = _struct.pack("!II", num_frames, num_plays) _write_chunk(f, b"acTL", chunk_data) def _write_fctl(f, sequence_number, width, height, x_offset, y_offset, delay_num, delay_den, dispose_op=0, blend_op=0): """Write an fcTL chunk to `f`.""" if width < 1: raise ValueError("width must be greater than 0") if height < 1: raise ValueError("heigt must be greater than 0") if x_offset < 0: raise ValueError("x_offset must be nonnegative") if y_offset < 0: raise ValueError("y_offset must be nonnegative") fmt = "!IIIIIHHBB" chunk_data = _struct.pack(fmt, sequence_number, width, height, x_offset, y_offset, delay_num, delay_den, dispose_op, blend_op) _write_chunk(f, b"fcTL", chunk_data) def _write_fdat(f, sequence_number, data): """Write an fdAT chunk to `f`.""" seq = _struct.pack("!I", sequence_number) _write_chunk(f, b"fdAT", seq + data) def _write_data(f, a, bitdepth, max_chunk_len=None, sequence_number=None, filter_type=None, interlace=0): """ Write the image data in the array `a` to the file, using IDAT chunks if sequence_number is None and fdAT chunks otherwise. `f` must be a writable file object. `a` must be a numpy array to be written to the file `f`. If `sequence_number` is None, 'IDAT' chunks are written. If `sequence_number` is not None, `fdAT` chunks are written. `interlace` must be 0 or 1. It determines the interlace method. 0 mean no interlacing; 1 means Adam7 interlacing. Returns the number of chunks written to the file. `filter_type` is passed on to _create_stream(). """ if interlace == 1: passes = _interlace_passes(a) else: passes = [a] if bitdepth is not None and bitdepth < 8: passes = [_pack(aa, bitdepth) for aa in passes] if filter_type == "auto": filter_types = [0, 1, 2, 3, 4, "heuristic"] else: filter_types = [filter_type] zstream = None for filter_type in filter_types: stream = b'' for a in passes: if a.size > 0: stream += _create_stream(a, filter_type=filter_type) z = _zlib.compress(stream) if zstream is None or len(z) < len(zstream): zstream = z # zstream is a string containing the packed, compressed version of the # data from the array `a`. This will be written to the file in one or # more IDAT or fdAT chunks. if max_chunk_len is None: # Put the whole thing in one chunk. max_chunk_len = len(zstream) elif max_chunk_len < 1: raise ValueError("max_chunk_len must be at least 1.") num_data_chunks = (len(zstream) + max_chunk_len - 1) // max_chunk_len for k in range(num_data_chunks): start = k * max_chunk_len end = min(start + max_chunk_len, len(zstream)) data = zstream[start:end] if sequence_number is None: _write_idat(f, data) else: _write_fdat(f, sequence_number, data) sequence_number += 1 return num_data_chunks def _encode_latin1(s): if _PY3: unicode_type = str else: unicode_type = eval('unicode') if isinstance(s, unicode_type): s = s.encode('latin-1') return s def _validate_keyword(keyword, keyname='keyword'): """ From http://www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html: The keyword must be at least one character and less than 80 characters long. Keywords are always interpreted according to the ISO/IEC 8859-1 (Latin-1) character set [ISO/IEC-8859-1]. They must contain only printable Latin-1 characters and spaces; that is, only character codes 32-126 and 161-255 decimal are allowed. To reduce the chances for human misreading of a keyword, leading and trailing spaces are forbidden, as are consecutive spaces. Note also that the non-breaking space (code 160) is not permitted in keywords, since it is visually indistinguishable from an ordinary space. """ if not (0 < len(keyword) < 80): raise ValueError("length of %s must greater than 0 and less " "than 80." % (keyname,)) kw_check = all([(31 < _bord(c) < 127) or (160 < _bord(c) < 256) for c in keyword]) if not kw_check: raise ValueError("%s %r contains non-printable characters or " "a non-breaking space (code 160)." % (keyname, keyword,)) if keyword.startswith(b' '): raise ValueError("%s %r begins with a space." % (keyname, keyword,)) if keyword.endswith(b' '): raise ValueError("%s %r ends with a space." % (keyname, keyword,)) if b' ' in keyword: raise ValueError("%s %r contains consecutive spaces." % (keyname, keyword,)) def _validate_text(text_list): if text_list is None: text_list = [] creation_time = _encode_latin1(_time.strftime("%Y-%m-%dT%H:%M:%SZ", _time.gmtime())) software = _encode_latin1(_software_text()) text_list = [(_encode_latin1(keyword), _encode_latin1(text)) for keyword, text in text_list] keywords = [keyword for keyword, text in text_list] if b"Creation Time" not in keywords: text_list.append((b"Creation Time", creation_time)) if b"Software" not in keywords: text_list.append((b"Software", software)) validated_text_list = [] for keyword, text_string in text_list: if text_string is None: # Drop elements where the text string is None. continue _validate_keyword(keyword) # Validate the text string. if b'\0' in text_string: raise ValueError("text_string contains a null character.") validated_text_list.append((keyword, text_string)) return validated_text_list def _palettize(a): # `a` must be a numpy array with dtype `np.uint8` and shape (m, n, 3) or # (m, n, 4). a = _np.ascontiguousarray(a) depth = a.shape[-1] dt = ','.join(['u1'] * depth) b = a.view(dt).reshape(a.shape[:-1]) colors, inv = _np.unique(b, return_inverse=True) index = inv.astype(_np.uint8).reshape(a.shape[:-1]) # palette is the RGB values of the unique RGBA colors. palette = colors.view(_np.uint8).reshape(-1, depth)[:, :3] if depth == 3: trans = None else: # trans is the 1-d array of alpha values of the unique RGBA colors. # trans is the same length as `palette`. trans = colors['f3'] return index, palette, trans def _palettize_seq(seq): """" seq must be a sequence of 3-d numpy arrays with dtype np.uint8, all with the same depth (i.e. the same length of the third dimension). """ # Call np.unique for each array in seq. Each array is viewed as a # 2-d structured array of colors. depth = seq[0].shape[-1] dt = ','.join(['u1'] * depth) result = [_np.unique(a.view(dt).reshape(a.shape[:-1]), return_inverse=True) for a in seq] # `sizes` is the number of unique colors found in each array. sizes = [len(r[0]) for r in result] # Combine all the colors found in each array to get the overall # set of unique colors. combined = _np.concatenate([r[0] for r in result]) colors, inv = _np.unique(combined, return_inverse=True) offsets = _np.cumsum(_np.r_[0, sizes[:-1]]) invs = [r[1].reshape(a.shape[:2]) for r, a in zip(result, seq)] # The sequence index_seq holds the converted arrays. The values # in these arrays are indices into `palette`. Note that if # len(palette) > 256, the conversion to np.uint8 will cause # some values in the arrays in `index_seq` to wrap around. # The caller must check the len(palette) to determine if this # has happened. index_seq = [inv[o:o+s][i].astype(_np.uint8) for i, o, s in zip(invs, offsets, sizes)] palette = colors.view(_np.uint8).reshape(-1, depth)[:, :3] if depth == 3: trans = None else: # trans is the 1-d array of alpha values of the unique RGBA colors. # trans is the same length as `palette`. trans = colors['f3'] return index_seq, palette, trans def _pack(a, bitdepth): """ Pack the values in `a` into bitfields of a smaller array. `a` must be a 2-d numpy array with dtype `np.uint8` bitdepth must be either 1, 2, 4 or 8. (bitdepth=8 is a trivial case, for which the return value is simply `a`.) """ if a.dtype != _np.uint8: raise ValueError('Input array must have dtype uint8') if a.ndim != 2: raise ValueError('Input array must be two dimensional') if bitdepth == 8: return a ncols, rembits = divmod(a.shape[1]*bitdepth, 8) if rembits > 0: ncols += 1 b = _np.zeros((a.shape[0], ncols), dtype=_np.uint8) for row in range(a.shape[0]): bcol = 0 pos = 8 for col in range(a.shape[1]): val = (2**bitdepth - 1) & a[row, col] pos -= bitdepth if pos < 0: bcol += 1 pos = 8 - bitdepth b[row, bcol] |= (val << pos) return b def _unpack(p, bitdepth, width): powers = _np.arange(bitdepth-1, -1, -1) up = _np.unpackbits(p).reshape(p.shape[0], -1, bitdepth).dot(2**powers) a = up[:, :width] return a def _validate_array(a): if a.ndim != 2: if a.ndim != 3 or a.shape[2] > 4 or a.shape[2] == 0: raise ValueError("array must be 2D, or 3D with shape " "(m, n, d) with 1 <= d <= 4.") itemsize = a.dtype.itemsize if not _np.issubdtype(a.dtype, _np.unsignedinteger) or itemsize > 2: raise ValueError("array must be an array of 8- or 16-bit " "unsigned integers") # Notes on color_type: # # color_type meaning tRNS chunk contents (optional) # ---------- ------------------------ -------------------------------- # 0 grayscale Single gray level value, 2 bytes # 2 RGB Single RGB, 2 bytes per channel # 3 8 bit indexed RGB or RGBA Series of 1 byte alpha values # 4 Grayscale and alpha # 6 RGBA # # # from http://www.w3.org/TR/PNG/: # Table 11.1 - Allowed combinations of colour type and bit depth # # Color Allowed # PNG image type type bit depths Interpretation # Greyscale 0 1, 2, 4, 8, 16 Each pixel is a greyscale # sample # Truecolour 2 8, 16 Each pixel is an RGB triple # Indexed-colour 3 1, 2, 4, 8 Each pixel is a palette index; # a PLTE chunk shall appear. # Greyscale with alpha 4 8, 16 Each pixel is a greyscale # sample followed by an alpha # sample. # Truecolour with alpha 6 8, 16 Each pixel is an RGB triple # followed by an alpha sample. def _get_color_type(a, use_palette): if a.ndim == 2: color_type = 0 else: depth = a.shape[2] if depth == 1: # Grayscale color_type = 0 elif depth == 2: # Grayscale and alpha color_type = 4 elif depth == 3: # RGB if a.dtype == _np.uint8 and use_palette: # Indexed color (create a palette) color_type = 3 else: # RGB colors color_type = 2 elif depth == 4: # RGB and alpha if a.dtype == _np.uint8 and use_palette: color_type = 3 else: color_type = 6 return color_type def _validate_bitdepth(bitdepth, a, color_type): if bitdepth not in [None, 1, 2, 4, 8, 16]: raise ValueError('bitdepth %i is not valid. Valid values are ' '1, 2, 4, 8 or 16' % (bitdepth,)) if bitdepth is not None: if color_type in [2, 4, 6]: if 8*a.dtype.itemsize != bitdepth: raise ValueError("For the given input, the bit depth must " "match the data type of the array.") elif color_type == 3: if bitdepth == 16: raise ValueError("Bit depth 16 not allowed when use_palette " "is True.") else: # Given bitdepth is None if color_type == 3: bitdepth = 8 else: bitdepth = 8*a.dtype.itemsize return bitdepth def _validate_timestamp(timestamp): if timestamp is None: return None if len(timestamp) != 6: raise ValueError("timestamp must have length 6") return timestamp def _validate_phys(phys): if phys is not None: if len(phys) == 2: phys = tuple(phys) + (0,) elif phys[2] not in [0, 1]: raise ValueError('Third element of `phys` must be 0 or 1.') phys = [int(x) for x in phys] if phys[0] <= 0 or phys[1] <= 0: raise ValueError('The pixels per unit in `phys` must be positive.') return phys def _validate_iccp(iccp): if iccp is not None: if len(iccp) != 2: raise ValueError('`iccp` must have two elements.') if type(iccp[0]) != str: raise ValueError('First element of `iccp` must be str.') try: profile_name = _encode_latin1(iccp[0]) except UnicodeEncodeError: raise ValueError('The profile name (the first element of `iccp`) ' 'must be encodable as Latin-1.') _validate_keyword(profile_name, 'profile name') if type(iccp[1]) != bytes: raise ValueError('Second element of `iccp` must be bytes.') return iccp def _validate_chromaticity(chromaticity): if chromaticity is not None: if len(chromaticity) != 4: raise ValueError('chromaticity must be a sequence with length 4.') for pair in chromaticity: if len(pair) != 2: raise ValueError('each item in chromaticity must be a ' 'sequence of length 2.') if not ((0 <= pair[0] <= 1) and (0 <= pair[1] <= 1)): raise ValueError('each value in chromaticity must be between ' '0 and 1.') return chromaticity def _validate_sbit(sbit, color_type, bitdepth): try: len_sbit = len(sbit) except TypeError: sbit = (sbit,) len_sbit = 1 try: [operator.index(n) for n in sbit] except Exception: raise ValueError('Each value in sbit must be an integer.') # Mapping from color_type to required length of sbit: required_length = {0: 1, 2: 3, 3: 3, 4: 2, 6: 4} if len_sbit != required_length[color_type]: raise ValueError('For color type %d, len(sbit) must be %d' % (color_type, required_length[color_type])) for n in sbit: if n < 1 or n > bitdepth: raise ValueError('Each value in sbit must be greater than 0 ' 'and less than or equal to the bit depth %s' % bitdepth) return sbit def _common_validation(interlace, filter_type, phys, text_list, timestamp, chromaticity): if interlace not in [0, 1]: raise ValueError('interlace must be 0 or 1.') if filter_type is None: filter_type = "auto" phys = _validate_phys(phys) text_list = _validate_text(text_list) timestamp = _validate_timestamp(timestamp) chromaticity = _validate_chromaticity(chromaticity) return filter_type, phys, text_list, timestamp, chromaticity def _add_background_color(background, palette, trans, bitdepth): if len(background) != 3: raise ValueError("background must have length 3 when " "use_palette is True.") index = _np.where((palette == background).all(axis=-1))[0] if index.size > 0: # The given background color is in the palette. background = index[0] else: # The given background color is *not* in the palette. Is there # room for one more color? if bitdepth is None: bitdepth = 8 if len(palette) == 2**bitdepth: msg = ("The array already has the maximum of %i colors, and a " "background color that is not in the array has been given. " "With a bitdepth of %i, no more than %i colors are allowed " "when using a palette." % (2**bitdepth, bitdepth, 2**bitdepth)) raise ValueError(msg) else: index = len(palette) palette = _np.append(palette, _np.array([background], dtype=_np.uint8), axis=0) if trans is not None: trans = _np.append(trans, [_np.uint8(255)]) background = index return background, palette, trans def _write_header_and_meta(f, dtype, shape, color_type, bitdepth, palette, interlace, text_list, timestamp, sbit, gamma, iccp, chromaticity, trans, background, phys): # Write the PNG header. f.write(b"\x89PNG\x0D\x0A\x1A\x0A") # Write the chunks... # IHDR chunk if bitdepth is not None: nbits = bitdepth else: nbits = dtype.itemsize*8 _write_ihdr(f, shape[1], shape[0], nbits, color_type, interlace) # tEXt chunks, if any. if text_list is not None: for keyword, text_string in text_list: _write_text(f, keyword, text_string) if timestamp is not None: _write_time(f, timestamp) # sBIT must preceed PLTE (if present) and first IDAT chunk. if sbit is not None: _write_sbit(f, sbit) if gamma is not None: _write_gama(f, gamma) # iCCP chunk, if `iccp` was given. if iccp is not None: _write_iccp(f, iccp) # cHRM chunk, if `chromaticity` was given. if chromaticity is not None: _write_chrm(f, chromaticity) # PLTE chunk, if requested. if color_type == 3: _write_plte(f, palette) # tRNS chunk, if there is one. if trans is not None: _write_trns(f, trans) # bKGD chunk, if there is one. if background is not None: _write_bkgd(f, background, color_type) # pHYs chunk, if `phys` was given. if phys is not None: _write_phys(f, phys) def write_png(fileobj, a, text_list=None, use_palette=False, transparent=None, bitdepth=None, max_chunk_len=None, timestamp=None, gamma=None, background=None, filter_type=None, interlace=0, phys=None, iccp=None, chromaticity=None, sbit=None): """ Write a numpy array to a PNG file. Parameters ---------- fileobj : string or file object If fileobj is a string, it is the name of the PNG file to be created. Otherwise fileobj must be a file opened for writing. a : numpy array Must be an array of 8- or 16-bit unsigned integers. The shape of `a` must be (m, n) or (m, n, d) with 1 <= d <= 4. text_list : list of (keyword, text) tuples, optional Each tuple is written to the file as a 'tEXt' chunk. See the Notes for more information about text in PNG files. use_palette : bool, optional If True, *and* the data type of `a` is `numpy.uint8`, *and* the size of `a` is (m, n, 3), then a PLTE chunk is created and an indexed color image is created. (If the conditions on `a` are not true, this argument is ignored and a palette is not created.) There must not be more than 2**bitdepth distinct colors in `a`. If the conditions on `a` are true but the array has more than 256 colors, a ValueError exception is raised. transparent : integer or 3-tuple of integers (r, g, b), optional If the colors in `a` do not include an alpha channel (i.e. the shape of `a` is (m, n), (m, n, 1) or (m, n, 3)), the `transparent` argument can be used to specify a single color that is to be considered the transparent color. This argument is ignored if `a` includes an alpha channel, or if `use_palette` is True and the `transparent` color is not in `a`. Otherwise, a 'tRNS' chunk is included in the PNG file. bitdepth : integer, optional Bit depth of the output image. Valid values are 1, 2, 4 and 8. Only valid for grayscale images with no alpha channel with an input array having dtype numpy.uint8. If not given, the bit depth is inferred from the data type of the input array `a`. max_chunk_len : integer, optional The data in a PNG file is stored in records called IDAT chunks. `max_chunk_len` sets the maximum number of data bytes to stored in each IDAT chunk. The default is None, which means that all the data is written to a single IDAT chunk. timestamp : tuple with length 6, optional If this argument is not None, a 'tIME' chunk is included in the PNG file. The value must be a tuple of six integers: (year, month, day, hour, minute, second). gamma : float, optional If this argument is not None, a 'gAMA' chunk is included in the PNG file. The argument is expected to be a floating point value. The value written in the 'gAMA' chunk is int(gamma*100000 + 0.5). background : int (for grayscale) or sequence of three ints (for RGB) Set the default background color. When this option is used, a 'bKGD' chunk is included in the PNG file. When `use_palette` is True, and `background` is not one of the colors in `a`, the `background` color is included in the palette, and so it counts towards the maximum number of 256 colors allowed in a palette. filter_type : one of 0, 1, 2, 3, 4, "heuristic" or "auto", optional Controls the filter type that is used per scanline in the IDAT chunks. The default is "auto", which means the output data is generated six time, once for each of the other possible filter types, and the filter that generates the smallest output is used. interlace : either 0 or 1 Interlace method to use. 0 means no interlace; 1 means Adam7. phys : tuple with length 2 or 3, optional If given, a `pHYs` chunk is written to the PNG file. If `phys` is given, it must be a tuple of integers with length 2 or 3. The first two integers are the pixels per unit of the X and Y axes, respectively. The third value, if given, must be 0 or 1. If the value is 1, the units of the first two values are pixels per *meter*. If the third value is 0 (or not given), the units of the first two values are undefined. In that case, the values define the pixel aspect ratio only. iccp : tuple with length 2, optional ICCP color profile. If given, the argument must be a tuple of length 2. The first element must be a string containing the profile name. The profile name is subject to the same restrictions as the keywords in the text_list argument; see the Notes for more information about these restrictions. The second element is the profile data, and it must be a bytes object. This data is not validated. It is written "as is" to the PNG file. chromaticity : array-like, optional The four chromaticity values: white point, red, green and blue. If given, the value must be a sequence of length four containing pairs (x, y) of chromaticity values. The values must be floating point in the interval [0, 1]. sbit : sequence of 1, 2, 3, or 4 integers, optional If given, the value(s) are written in an `sBIT` chunk in the PNG file. The values indicate the original number of significant bits in each color (and alpha, if applicable) channel. The values must be compatible with the color type and bit depth of the image data. Notes ----- If `a` is three dimensional (i.e. `a.ndim == 3`), the size of the last dimension determines how the values in the last dimension are interpreted, as follows: a.shape[2] Interpretation ---------- -------------------- 1 grayscale 2 grayscale and alpha 3 RGB 4 RGB and alpha The `text_list` argument accepts a list of tuples of two strings argument. The first item in each tuple is the *keyword*, and the second is the text string. This argument allows `'tEXt'` chunks to be created. The following is from the PNG specification:: The keyword indicates the type of information represented by the text string. The following keywords are predefined and should be used where appropriate: Title Short (one line) title or caption for image Author Name of image's creator Description Description of image (possibly long) Copyright Copyright notice Creation Time Time of original image creation Software Software used to create the image Disclaimer Legal disclaimer Warning Warning of nature of content Source Device used to create the image Comment Miscellaneous comment; conversion from GIF comment Both keyword and text are interpreted according to the ISO 8859-1 (Latin-1) character set [ISO-8859]. The text string can contain any Latin-1 character. Newlines in the text string should be represented by a single linefeed character (decimal 10); use of other control characters in the text is discouraged. Keywords must contain only printable Latin-1 characters and spaces; that is, only character codes 32-126 and 161-255 decimal are allowed. To reduce the chances for human misreading of a keyword, leading and trailing spaces are forbidden, as are consecutive spaces. Note also that the non-breaking space (code 160) is not permitted in keywords, since it is visually indistinguishable from an ordinary space. """ filter_type, phys, text_list, timestamp, chromaticity = _common_validation( interlace, filter_type, phys, text_list, timestamp, chromaticity ) a = _np.ascontiguousarray(a) _validate_array(a) color_type = _get_color_type(a, use_palette) palette = None trans = None if color_type == 3: # The array is 8 bit RGB or RGBA, and a palette is to be created. # Note that this replaces `a` with the index array. a, palette, trans = _palettize(a) # `a` has the same shape as before, but now it is an array of indices # into the array `palette`, which contains the colors. `trans` is # either None (if there was no alpha channel), or an array the same # length as `palette` containing the alpha values of the colors. bd = bitdepth if bitdepth is not None else 8 max_num_colors = 2**bd if len(palette) > max_num_colors: raise ValueError("The array has %i colors. With bit depth %i, " "no more than %i colors are allowed when using " "a palette." % (len(palette), bd, max_num_colors)) if background is not None: # A default background color has been given, and we're creating # an indexed palette (use_palette is True). Convert the given # background color to an index. If the color is not in the # palette, extend the palette with the new color (or raise an # error if there are already 2**bitdepth colors). background, palette, trans = _add_background_color(background, palette, trans, bitdepth) if trans is None and transparent is not None: # The array does not have an alpha channel. The caller has given # a color value that should be considered to be transparent. # We construct an array `trans` of alpha values, and set the # alpha of the color that is to be transparent to 0. All other # alpha values are set to 255 (fully opaque). # `trans` only has entries for colors in the palette up to the # given `transparent` color, so `trans` is not the same length as # `palette` (unless the transparent color happens to be the last # color in the palette). pal_index = _np.nonzero((palette == transparent).all(axis=1))[0] if pal_index.size > 0: if pal_index.size > 1: raise ValueError("Only one transparent color may " "be given.") trans = _np.zeros(pal_index[0]+1, dtype=_np.uint8) trans[:-1] = 255 elif (color_type == 0 or color_type == 2) and transparent is not None: # XXX Should do some validation of `transparent`... trans = _np.asarray(transparent, dtype=_np.uint16) bitdepth = _validate_bitdepth(bitdepth, a, color_type) # Now that we have the color_type and bit-depth, we can validate the # sbit argument, if one was given. if sbit is not None: sbit = _validate_sbit(sbit, color_type, bitdepth) if hasattr(fileobj, 'write'): # Assume it is a file-like object with a write method. f = fileobj else: # Assume it is a filename. f = open(fileobj, "wb") _write_header_and_meta(f, a.dtype, a.shape, color_type, bitdepth, palette, interlace, text_list, timestamp, sbit, gamma, iccp, chromaticity, trans, background, phys) # _write_data(...) writes the IDAT chunk(s). _write_data(f, a, bitdepth, max_chunk_len=max_chunk_len, filter_type=filter_type, interlace=interlace) # IEND chunk _write_iend(f) if f != fileobj: f.close() def _msec_to_numden(delay): """ delay is the time delay in milliseconds. Return value is the tuple (delay_num, delay_den) representing the delay in seconds as the fraction delay_num/delay_den. Each value in the tuple is an integer less than 65536. """ if delay == 0: return (0, 1) # Convert delay to seconds. delay_sec = delay/1000.0 if delay_sec > 1: f = _Fraction.from_float(1.0/delay_sec).limit_denominator(65535) num = f.denominator den = f.numerator else: f = _Fraction.from_float(delay_sec).limit_denominator(65535) num = f.numerator den = f.denominator if (num, den) == (1, 0): raise ValueError("delay=%r is too large to convert to " "delay_num/delay_den" % (delay,)) if (num, den) == (0, 1): raise ValueError("delay=%r is too small to convert to " "delay_num/delay_den" % (delay,)) return num, den def write_apng(fileobj, seq, delay=None, num_plays=0, default_image=None, offset=None, text_list=None, use_palette=False, transparent=None, bitdepth=None, max_chunk_len=None, timestamp=None, gamma=None, background=None, filter_type=None, interlace=0, phys=None, iccp=None, chromaticity=None, sbit=None): """ Write an APNG file from a sequence of numpy arrays. Warning: * This API is experimental, and will likely change. * The function has not been thoroughly tested. Parameters ---------- seq : sequence of numpy arrays All the arrays must have the same shape and dtype. delay : scalar or sequence of scalars, optional The time duration that each frame is displayed, in milliseconds. If `delay` is None (the default) or 0, the frames are played as fast as possible. If delay is an integer, each frame is displayed for the same duration. If `delay` is a sequence, it must have the same length as `seq`. num_plays : int The number of times to repeat the animation. If 0, the animation is repeated indefinitely. default_image : numpy array If this image is given, it is the image that is displayed by renderers that do not support animated PNG files. If the renderer does support animation, this image is not shown. If this argument is not given, the image shown by renderers that do not support animation will be `seq[0]`. offset : sequence of tuples each with length 2, optional If given, this must be a sequence of the form [(row_offset0, col_offset0), (row_offset1, col_offset1), ...] The length of the sequence must be the same as `seq`. It defines the location of the image within the PNG output buffer. text_list : list of (keyword, text) tuples, optional Each tuple is written to the file as a 'tEXt' chunk. use_palette : bool, optional If True, *and* the data type of the arrays in `seq` is `numpy.uint8`, *and* the size of each array is (m, n, 3), then a PLTE chunk is created and an indexed color image is created. (If the conditions on the arrays are not true, this argument is ignored and a palette is not created.) There must not be more than 256 distinct colors in the arrays. If the above conditions are true but the arrays have more than 256 colors, a ValueError exception is raised. transparent : integer or 3-tuple of integers (r, g, b), optional If the colors in the input arrays do not include an alpha channel (i.e. the shape of each array is (m, n), (m, n, 1) or (m, n, 3)), the `transparent` argument can be used to specify a single color that is to be considered the transparent color. This argument is ignored if the arrays have an alpha channel. bitdepth : integer, optional Bit depth of the output image. Valid values are 1, 2, 4 and 8. Only valid for grayscale images with no alpha channel with an input array having dtype numpy.uint8. If not given, the bit depth is inferred from the data type of the input arrays. max_chunk_len : integer, optional The data in a APNG file is stored in records called IDAT and fdAT chunks. `max_chunk_len` sets the maximum number of data bytes to stored in each chunk. The default is None, which means that all the data from a frame is written to a single IDAT or fdAT chunk. timestamp : tuple with length 6, optional If this argument is not None, a 'tIME' chunk is included in the PNG file. The value must be a tuple of six integers: (year, month, day, hour, minute, second). gamma : float, optional If this argument is not None, a 'gAMA' chunk is included in the PNG file. The argument is expected to be a floating point value. The value written in the 'gAMA' chunk is int(gamma*100000 + 0.5). background : int (for grayscale) or sequence of three ints (for RGB) Set the default background color. When this option is used, a 'bKGD' chunk is included in the PNG file. When `use_palette` is True, and `background` is not one of the colors in `a`, the `background` color is included in the palette, and so it counts towards the maximum number of 256 colors allowed in a palette. filter_type : one of 0, 1, 2, 3, 4, "heuristic" or "auto", optional Controls the filter type that is used per scanline in the IDAT chunks. The default is "auto", which means the output data for each frame is generated six time, once for each of the other possible filter types, and the filter that generates the smallest output is used. interlace : either 0 or 1 Interlace method to use. 0 means no interlace; 1 means Adam7. phys : tuple with length 2 or 3, optional If given, a `pHYs` chunk is written to the PNG file. If `phys` is given, it must be a tuple of integers with length 2 or 3. The first two integers are the pixels per unit of the X and Y axes, respectively. The third value, if given, must be 0 or 1. If the value is 1, the units of the first two values are pixels per *meter*. If the third value is 0 (or not given), the units of the first two values are undefined. In that case, the values define the pixel aspect ratio only. iccp : tuple with length 2, optional ICCP color profile. If given, the argument must be a tuple of length 2. The first element must be a string containing the profile name. The profile name is subject to the same restrictions as the keywords in the text_list argument; see the Notes for more information about these restrictions. The second element is the profile data, and it must be a bytes object. This data is not validated. It is written "as is" to the PNG file. chromaticity : array-like, optional The four chromaticity values: white point, red, green and blue. If given, the value must be a sequence of length four containing pairs (x, y) of chromaticity values. The values must be floating point in the interval [0, 1]. sbit : sequence of 1, 2, 3, or 4 integers, optional If given, the value(s) are written in an `sBIT` chunk in the PNG file. The values indicate the original number of significant bits in each color (and alpha, if applicable) channel. The values must be compatible with the color type and bit depth of the image data. Notes ----- See the `write_png` docstring for additional details about some of the arguments. """ filter_type, phys, text_list, timestamp, chromaticity = _common_validation( interlace, filter_type, phys, text_list, timestamp, chromaticity ) num_frames = len(seq) if num_frames == 0: raise ValueError("no frames given in `seq`") if delay is None: delay = [0] * num_frames else: try: len(delay) except TypeError: delay = [delay] * num_frames if len(delay) != num_frames: raise ValueError('len(delay) must be the same as len(seq)') # Validate seq if type(seq) == _np.ndarray: # seq is a single numpy array containing the frames. seq = _np.ascontiguousarray(seq) _validate_array(seq[0]) else: # seq is not a numpy array, so it must be a sequence of numpy arrays, # all with the same dtype. for a in seq: _validate_array(a) if any(a.dtype != seq[0].dtype for a in seq[1:]): raise ValueError("all arrays in `seq` must have the same dtype.") seq = [_np.ascontiguousarray(a) for a in seq] if offset is not None: if len(offset) != len(seq): raise ValueError('length of offset sequence must equal len(seq)') else: offset = [(0, 0)] * num_frames # Overall width and height. width = max(a.shape[1] + offset[k][1] for k, a in enumerate(seq)) height = max(a.shape[0] + offset[k][0] for k, a in enumerate(seq)) # Validate default_image if default_image is not None: _validate_array(default_image) if default_image.dtype != seq[0].dtype: raise ValueError('default_image must have the same data type as ' 'the arrays in seq') if default_image.shape[0] > height or default_image.shape[1] > width: raise ValueError("The default image has shape (%i, %i), which " "exceeds the overall image size implied by `seq` " "and `offset`, which is (%i, %i)" % (default_image.shape[:2] + (height, width))) color_type = _get_color_type(seq[0], use_palette) palette = None trans = None if color_type == 3: # The arrays are 8 bit RGB or RGBA, and a palette is to be created. if default_image is None: seq, palette, trans = _palettize_seq(seq) else: tmp = [default_image] + [a for a in seq] index_tmp, palette, trans = _palettize_seq(tmp) default_image = index_tmp[0] seq = index_tmp[1:] # seq and default_image have the same shapes as before, but now the # the arrays hold indices into the array `palette`, which contains # the colors. `trans` is either None (if there was no alpha channel), # or an array containing the alpha values of the colors. bd = bitdepth if bitdepth is not None else 8 max_num_colors = 2**bd if len(palette) > max_num_colors: raise ValueError("The arrays have a total of %i colors. " "With bit depth %i, no more than %i colors are " "allowed when using a palette." % (len(palette), bd, max_num_colors)) if background is not None: # A default background color has been given, and we're creating # an indexed palette (use_palette is True). Convert the given # background color to an index. If the color is not in the # palette, extend the palette with the new color (or raise an # error if there are already 256 colors). background, palette, trans = _add_background_color(background, palette, trans, bitdepth) if trans is None and transparent is not None: # The array does not have an alpha channel. The caller has given # a color value that should be considered to be transparent. pal_index = _np.nonzero((palette == transparent).all(axis=1))[0] if pal_index.size > 0: if pal_index.size > 1: raise ValueError("Only one transparent color may " "be given.") trans = _np.zeros(pal_index[0]+1, dtype=_np.uint8) trans[:-1] = 255 elif (color_type == 0 or color_type == 2) and transparent is not None: # XXX Should do some validation of `transparent`... trans = _np.asarray(transparent, dtype=_np.uint16) if bitdepth == 8 and seq[0].dtype == _np.uint8: bitdepth = None bitdepth = _validate_bitdepth(bitdepth, seq[0], color_type) # Now that we have the color_type and bit-depth, we can validate the # sbit argument, if one was given. if sbit is not None: sbit = _validate_sbit(sbit, color_type, bitdepth) # --- Open and write the file --------- if hasattr(fileobj, 'write'): # Assume it is a file-like object with a write method. f = fileobj else: # Assume it is a filename. f = open(fileobj, "wb") _write_header_and_meta(f, seq[0].dtype, (height, width), color_type, bitdepth, palette, interlace, text_list, timestamp, sbit, gamma, iccp, chromaticity, trans, background, phys) # acTL chunk _write_actl(f, num_frames, num_plays) # Convert delays (which are in milliseconds) to the number of # seconds expressed as the fraction delay_num/delay_den. delay_num, delay_den = zip(*[_msec_to_numden(d) for d in delay]) sequence_number = 0 frame_number = 0 if default_image is None: # fcTL chunk for the first frame _write_fctl(f, sequence_number=sequence_number, width=seq[0].shape[1], height=seq[0].shape[0], x_offset=0, y_offset=0, delay_num=delay_num[frame_number], delay_den=delay_den[frame_number], dispose_op=0, blend_op=0) sequence_number += 1 frame_number += 1 # IDAT chunk(s) for the first frame (no sequence_number) _write_data(f, seq[0], bitdepth, max_chunk_len=max_chunk_len, filter_type=filter_type, interlace=interlace) seq = seq[1:] else: # IDAT chunk(s) for the default image _write_data(f, default_image, bitdepth, max_chunk_len=max_chunk_len, filter_type=filter_type, interlace=interlace) for frame in seq: # fcTL chunk for the next frame _write_fctl(f, sequence_number=sequence_number, width=frame.shape[1], height=frame.shape[0], x_offset=offset[frame_number][1], y_offset=offset[frame_number][0], delay_num=delay_num[frame_number], delay_den=delay_den[frame_number], dispose_op=0, blend_op=0) sequence_number += 1 frame_number += 1 # fdAT chunk(s) for the next frame num_chunks = _write_data(f, frame, bitdepth, max_chunk_len=max_chunk_len, sequence_number=sequence_number, filter_type=filter_type, interlace=interlace) sequence_number += num_chunks # IEND chunk _write_iend(f) if f != fileobj: f.close() def _finddiff(img1, img2): """ Finds the bounds of the region where img1 and img2 differ. img1 and img2 must be 2D or 3D numpy arrays with the same shape. """ if img1.shape != img2.shape: raise ValueError('img1 and img2 must have the same shape') if img1.ndim == 2: mask = img1 != img2 else: mask = _np.any(img1 != img2, axis=-1) if _np.any(mask): rows, cols = _np.where(mask) row_range = rows.min(), rows.max() + 1 col_range = cols.min(), cols.max() + 1 else: row_range = None col_range = None return row_range, col_range class AnimatedPNGWriter(object): """ This class implements the interface required by the matplotlib class `matplotlib.animation.MovieWriter`. An instance of this class may be used as the `writer` argument of `matplotlib.animation.Animation.save()`. This class is experimental. It may change without warning in the next release. """ # I haven't tried to determine all the additional arguments that # should be given in __init__, and I haven't checked what should # be pulled from rcParams if a corresponding argument is not given. def __init__(self, fps, filter_type=None): self.fps = fps # Convert frames-per-second to delay between frames in milliseconds. self._delay = 1000/fps self._filter_type = filter_type def setup(self, fig, outfile, dpi, *args): self.fig = fig self.outfile = outfile self.dpi = dpi self._frames = [] self._prev_frame = None def grab_frame(self, **savefig_kwargs): img_io = _BytesIO() self.fig.savefig(img_io, format='rgba', dpi=self.dpi, **savefig_kwargs) raw = img_io.getvalue() # A bit of experimentation suggested that taking the integer part of # the following products is the correct conversion, but I haven't # verified it in the matplotlib code. If this is not the correct # conversion, the call of the reshape method after calling frombuffer # will likely raise an exception. height = int(self.fig.get_figheight() * self.dpi) width = int(self.fig.get_figwidth() * self.dpi) a = _np.frombuffer(raw, dtype=_np.uint8).reshape(height, width, 4) if self._prev_frame is None: self._frames.append((a, (0, 0), self._delay)) else: rows, cols = _finddiff(a, self._prev_frame) if rows is None: # No difference, so just increment the delay of the previous # frame. img, offset, delay = self._frames[-1] self._frames[-1] = (img, offset, delay + self._delay) else: # b is the rectangular region that contains the part # of the image that changed. b = a[rows[0]:rows[1], cols[0]:cols[1]] offset = (rows[0], cols[0]) self._frames.append((b, offset, self._delay)) self._prev_frame = a def finish(self): for img, offset, delay in self._frames: if not _np.all(img[:, :, 3] == 255): break else: # All the alpha values are 255, so drop the alpha channel. self._frames = [(img[:, :, :3], offset, delay) for img, offset, delay in self._frames] imgs, offsets, delays = zip(*self._frames) write_apng(self.outfile, imgs, offset=offsets, delay=delays, filter_type=self._filter_type) @_contextlib.contextmanager def saving(self, fig, outfile, dpi, *args): """ Context manager to facilitate writing the movie file. All arguments are passed to `setup()`. """ self.setup(fig, outfile, dpi, *args) yield self.finish()
bsd-2-clause
beiko-lab/gengis
bin/Lib/site-packages/matplotlib/tri/trirefine.py
4
14296
""" Mesh refinement for triangular grids. """ from __future__ import print_function import numpy as np from matplotlib.tri.triangulation import Triangulation import matplotlib.tri.triinterpolate class TriRefiner(object): """ Abstract base class for classes implementing mesh refinement. A TriRefiner encapsulates a Triangulation object and provides tools for mesh refinement and interpolation. Derived classes must implements: - ``refine_triangulation(return_tri_index=False, **kwargs)`` , where the optional keyword arguments *kwargs* are defined in each TriRefiner concrete implementation, and which returns : - a refined triangulation - optionally (depending on *return_tri_index*), for each point of the refined triangulation: the index of the initial triangulation triangle to which it belongs. - ``refine_field(z, triinterpolator=None, **kwargs)`` , where: - *z* array of field values (to refine) defined at the base triangulation nodes - *triinterpolator* is a :class:`~matplotlib.tri.TriInterpolator` (optional) - the other optional keyword arguments *kwargs* are defined in each TriRefiner concrete implementation and which returns (as a tuple) a refined triangular mesh and the interpolated values of the field at the refined triangulation nodes. """ def __init__(self, triangulation): if not isinstance(triangulation, Triangulation): raise ValueError("Expected a Triangulation object") self._triangulation = triangulation class UniformTriRefiner(TriRefiner): """ Uniform mesh refinement by recursive subdivisions. Parameters ---------- triangulation : :class:`~matplotlib.tri.Triangulation` The encapsulated triangulation (to be refined) """ # See Also # -------- # :class:`~matplotlib.tri.CubicTriInterpolator` and # :class:`~matplotlib.tri.TriAnalyzer`. # """ def __init__(self, triangulation): TriRefiner.__init__(self, triangulation) def refine_triangulation(self, return_tri_index=False, subdiv=3): """ Computes an uniformly refined triangulation *refi_triangulation* of the encapsulated :attr:`triangulation`. This function refines the encapsulated triangulation by splitting each father triangle into 4 child sub-triangles built on the edges midside nodes, recursively (level of recursion *subdiv*). In the end, each triangle is hence divided into ``4**subdiv`` child triangles. The default value for *subdiv* is 3 resulting in 64 refined subtriangles for each triangle of the initial triangulation. Parameters ---------- return_tri_index : boolean, optional Boolean indicating whether an index table indicating the father triangle index of each point will be returned. Default value False. subdiv : integer, optional Recursion level for the subdivision. Defaults value 3. Each triangle will be divided into ``4**subdiv`` child triangles. Returns ------- refi_triangulation : :class:`~matplotlib.tri.Triangulation` The returned refined triangulation found_index : array-like of integers Index of the initial triangulation containing triangle, for each point of *refi_triangulation*. Returned only if *return_tri_index* is set to True. """ refi_triangulation = self._triangulation ntri = refi_triangulation.triangles.shape[0] # Computes the triangulation ancestors numbers in the reference # triangulation. ancestors = np.arange(ntri, dtype=np.int32) for _ in range(subdiv): refi_triangulation, ancestors = self._refine_triangulation_once( refi_triangulation, ancestors) refi_npts = refi_triangulation.x.shape[0] refi_triangles = refi_triangulation.triangles # Now we compute found_index table if needed if return_tri_index: # We have to initialize found_index with -1 because some nodes # may very well belong to no triangle at all, e.g., in case of # Delaunay Triangulation with DuplicatePointWarning. found_index = - np.ones(refi_npts, dtype=np.int32) tri_mask = self._triangulation.mask if tri_mask is None: found_index[refi_triangles] = np.repeat(ancestors, 3) else: # There is a subtlety here: we want to avoid whenever possible # that refined points container is a masked triangle (which # would result in artifacts in plots). # So we impose the numbering from masked ancestors first, # then overwrite it with unmasked ancestor numbers. ancestor_mask = tri_mask[ancestors] found_index[refi_triangles[ancestor_mask, :] ] = np.repeat(ancestors[ancestor_mask], 3) found_index[refi_triangles[~ancestor_mask, :] ] = np.repeat(ancestors[~ancestor_mask], 3) return refi_triangulation, found_index else: return refi_triangulation def refine_field(self, z, triinterpolator=None, subdiv=3): """ Refines a field defined on the encapsulated triangulation. Returns *refi_tri* (refined triangulation), *refi_z* (interpolated values of the field at the node of the refined triangulation). Parameters ---------- z : 1d-array-like of length ``n_points`` Values of the field to refine, defined at the nodes of the encapsulated triangulation. (``n_points`` is the number of points in the initial triangulation) triinterpolator : :class:`~matplotlib.tri.TriInterpolator`, optional Interpolator used for field interpolation. If not specified, a :class:`~matplotlib.tri.CubicTriInterpolator` will be used. subdiv : integer, optional Recursion level for the subdivision. Defaults to 3. Each triangle will be divided into ``4**subdiv`` child triangles. Returns ------- refi_tri : :class:`~matplotlib.tri.Triangulation` object The returned refined triangulation refi_z : 1d array of length: *refi_tri* node count. The returned interpolated field (at *refi_tri* nodes) Examples -------- The main application of this method is to plot high-quality iso-contours on a coarse triangular grid (e.g., triangulation built from relatively sparse test data): .. plot:: mpl_examples/pylab_examples/tricontour_smooth_user.py """ if triinterpolator is None: interp = matplotlib.tri.CubicTriInterpolator( self._triangulation, z) else: if not isinstance(triinterpolator, matplotlib.tri.TriInterpolator): raise ValueError("Expected a TriInterpolator object") interp = triinterpolator refi_tri, found_index = self.refine_triangulation( subdiv=subdiv, return_tri_index=True) refi_z = interp._interpolate_multikeys( refi_tri.x, refi_tri.y, tri_index=found_index)[0] return refi_tri, refi_z @staticmethod def _refine_triangulation_once(triangulation, ancestors=None): """ This function refines a matplotlib.tri *triangulation* by splitting each triangle into 4 child-masked_triangles built on the edges midside nodes. The masked triangles, if present, are also splitted but their children returned masked. If *ancestors* is not provided, returns only a new triangulation: child_triangulation. If the array-like key table *ancestor* is given, it shall be of shape (ntri,) where ntri is the number of *triangulation* masked_triangles. In this case, the function returns (child_triangulation, child_ancestors) child_ancestors is defined so that the 4 child masked_triangles share the same index as their father: child_ancestors.shape = (4 * ntri,). """ x = triangulation.x y = triangulation.y # According to tri.triangulation doc: # neighbors[i,j] is the triangle that is the neighbor # to the edge from point index masked_triangles[i,j] to point # index masked_triangles[i,(j+1)%3]. neighbors = triangulation.neighbors triangles = triangulation.triangles npts = np.shape(x)[0] ntri = np.shape(triangles)[0] if ancestors is not None: ancestors = np.asarray(ancestors) if np.shape(ancestors) != (ntri,): raise ValueError( "Incompatible shapes provide for triangulation" ".masked_triangles and ancestors: {0} and {1}".format( np.shape(triangles), np.shape(ancestors))) # Initiating tables refi_x and refi_y of the refined triangulation # points # hint: each apex is shared by 2 masked_triangles except the borders. borders = np.sum(neighbors == -1) added_pts = (3*ntri + borders) / 2 refi_npts = npts + added_pts refi_x = np.zeros(refi_npts) refi_y = np.zeros(refi_npts) # First part of refi_x, refi_y is just the initial points refi_x[:npts] = x refi_y[:npts] = y # Second part contains the edge midside nodes. # Each edge belongs to 1 triangle (if border edge) or is shared by 2 # masked_triangles (interior edge). # We first build 2 * ntri arrays of edge starting nodes (edge_elems, # edge_apexes) ; we then extract only the masters to avoid overlaps. # The so-called 'master' is the triangle with biggest index # The 'slave' is the triangle with lower index # (can be -1 if border edge) # For slave and master we will identify the apex pointing to the edge # start edge_elems = np.ravel(np.vstack([np.arange(ntri, dtype=np.int32), np.arange(ntri, dtype=np.int32), np.arange(ntri, dtype=np.int32)])) edge_apexes = np.ravel(np.vstack([np.zeros(ntri, dtype=np.int32), np.ones(ntri, dtype=np.int32), np.ones(ntri, dtype=np.int32)*2])) edge_neighbors = neighbors[edge_elems, edge_apexes] mask_masters = (edge_elems > edge_neighbors) # Identifying the "masters" and adding to refi_x, refi_y vec masters = edge_elems[mask_masters] apex_masters = edge_apexes[mask_masters] x_add = (x[triangles[masters, apex_masters]] + x[triangles[masters, (apex_masters+1) % 3]]) * 0.5 y_add = (y[triangles[masters, apex_masters]] + y[triangles[masters, (apex_masters+1) % 3]]) * 0.5 refi_x[npts:] = x_add refi_y[npts:] = y_add # Building the new masked_triangles ; each old masked_triangles hosts # 4 new masked_triangles # there are 6 pts to identify per 'old' triangle, 3 new_pt_corner and # 3 new_pt_midside new_pt_corner = triangles # What is the index in refi_x, refi_y of point at middle of apex iapex # of elem ielem ? # If ielem is the apex master: simple count, given the way refi_x was # built. # If ielem is the apex slave: yet we do not know ; but we will soon # using the neighbors table. new_pt_midside = np.empty([ntri, 3], dtype=np.int32) cum_sum = npts for imid in range(3): mask_st_loc = (imid == apex_masters) n_masters_loc = np.sum(mask_st_loc) elem_masters_loc = masters[mask_st_loc] new_pt_midside[:, imid][elem_masters_loc] = np.arange( n_masters_loc, dtype=np.int32) + cum_sum cum_sum += n_masters_loc # Now dealing with slave elems. # for each slave element we identify the master and then the inode # onces slave_masters is indentified, slave_masters_apex is such that: # neighbors[slaves_masters, slave_masters_apex] == slaves mask_slaves = np.logical_not(mask_masters) slaves = edge_elems[mask_slaves] slaves_masters = edge_neighbors[mask_slaves] diff_table = np.abs(neighbors[slaves_masters, :] - np.outer(slaves, np.ones(3, dtype=np.int32))) slave_masters_apex = np.argmin(diff_table, axis=1) slaves_apex = edge_apexes[mask_slaves] new_pt_midside[slaves, slaves_apex] = new_pt_midside[ slaves_masters, slave_masters_apex] # Builds the 4 child masked_triangles child_triangles = np.empty([ntri*4, 3], dtype=np.int32) child_triangles[0::4, :] = np.vstack([ new_pt_corner[:, 0], new_pt_midside[:, 0], new_pt_midside[:, 2]]).T child_triangles[1::4, :] = np.vstack([ new_pt_corner[:, 1], new_pt_midside[:, 1], new_pt_midside[:, 0]]).T child_triangles[2::4, :] = np.vstack([ new_pt_corner[:, 2], new_pt_midside[:, 2], new_pt_midside[:, 1]]).T child_triangles[3::4, :] = np.vstack([ new_pt_midside[:, 0], new_pt_midside[:, 1], new_pt_midside[:, 2]]).T child_triangulation = Triangulation(refi_x, refi_y, child_triangles) # Builds the child mask if triangulation.mask is not None: child_triangulation.set_mask(np.repeat(triangulation.mask, 4)) if ancestors is None: return child_triangulation else: return child_triangulation, np.repeat(ancestors, 4)
gpl-3.0
strawlab/pyopy
pyopy/hctsa/hctsa_benchmark.py
1
10860
# coding=utf-8 """Benchmarks and checks the HCTSA python bindings.""" from itertools import product, izip import os.path as op import random import time from glob import glob from datetime import datetime from socket import gethostname from lockfile import LockFile import pandas as pd import numpy as np from pyopy.base import PyopyEngines, EngineException from pyopy.config import PYOPY_EXTERNAL_TOOLBOXES_DIR from pyopy.hctsa.hctsa_bindings import HCTSAOperations from pyopy.hctsa.hctsa_catalog import HCTSACatalog from pyopy.hctsa.hctsa_data import hctsa_sine, hctsa_noise, hctsa_noisysinusoid from pyopy.hctsa.hctsa_install import hctsa_prepare_engine from pyopy.hctsa.hctsa_transformers import hctsa_prepare_input from pyopy.misc import ensure_dir # Where benchmark and check results will live HCTSA_BENCHMARKS_DIR = op.join(PYOPY_EXTERNAL_TOOLBOXES_DIR, 'hctsa_benchmarks') # Operations that can potentially hang the system - which BTW should be properlly fixed HCTSA_FORBIDDEN_OPERATIONS = { 'Oct2PyEngine': (('HCTSA_MF_ARMA_orders', 'Enters Oct2Py interact mode'), ('HCTSA_SY_DriftingMean', 'Has a bug (l is not defined) and enters Oct2Py interact mode'), ('HCTSA_TSTL_predict', 'Takes too long?',)), } # Time series TS_FACTORIES = { 'sine': hctsa_sine, 'noise': hctsa_noise, 'noisysinusoid': hctsa_noisysinusoid } def check_benchmark_bindings(x, xname, engine='matlab', n_jobs=None, transferinfo='ramdisk', extra=None, operations=None, forbidden=None, dest_file=None, random_order=True): # Setup the engine engine = PyopyEngines.engine_or_matlab_or_octave(engine) hctsa_prepare_engine(engine) # Setup the input for hctsa size = len(x) y = engine.put('y', hctsa_prepare_input(x, z_scored=True)) x = engine.put('x', hctsa_prepare_input(x, z_scored=False)) # Operations if operations is None: operations = HCTSAOperations.all() # Some operations that make the entire experiment fail if forbidden is None: forbidden = dict(HCTSA_FORBIDDEN_OPERATIONS.get(engine.__class__.__name__, ())) # The host hostname = gethostname() # Number of threads used in the engine max_comp_threads = engine.max_comp_threads() # tidy results results = { 'host': [], 'engine': [], 'transplanter': [], 'transferinfo': [], 'date': [], 'extra': [], 'n_jobs': [], 'n_threads_matlab': [], 'xname': [], 'size': [], 'taken_s': [], 'operator': [], 'operation': [], 'output': [], 'value': [], 'error': [] } # # We want to check what is deterministic and what is not # Newer versions of matlab are "deterministic" (always init the rng equally) # So we will always get the same result if we use them in the same order... # Let's just randomise the order of operations, useing clock-based seeded rng... # if random_order: random.Random().shuffle(operations) for opname, operation in operations: print opname start = time.time() try: if opname in forbidden: raise EngineException(None, 'Forbidden operation') result = operation.transform(y if HCTSACatalog.catalog().must_standardize(opname) else x, engine) taken = time.time() - start if not isinstance(result, dict): result = {None: result} for outname, fval in sorted(result.items()): results['host'].append(hostname) results['engine'].append(engine.__class__.__name__) # use whatami results['transplanter'].append(engine.transplanter.__class__.__name__) results['transferinfo'].append(transferinfo) results['date'].append(datetime.now()) results['extra'].append(extra) results['n_jobs'].append(n_jobs) results['n_threads_matlab'].append(max_comp_threads) results['xname'].append(xname) results['size'].append(size) results['taken_s'].append(taken) results['operator'].append(operation.__class__.__name__) results['operation'].append(opname) results['output'].append(outname) results['value'].append(fval) results['error'].append(None) except EngineException as engex: taken = time.time() - start results['host'].append(hostname) results['engine'].append(engine.__class__.__name__) # use whatami results['transplanter'].append(engine.transplanter.__class__.__name__) results['transferinfo'].append(transferinfo) results['date'].append(datetime.now()) results['extra'].append(extra) results['n_jobs'].append(n_jobs) results['n_threads_matlab'].append(max_comp_threads) results['xname'].append(xname) results['size'].append(size) results['taken_s'].append(taken) results['operator'].append(operation.__class__.__name__) results['operation'].append(opname) results['output'].append(np.nan) results['value'].append(None) results['error'].append(str(engex)) # Save the dataframe df = pd.DataFrame(data=results) if dest_file is None: dest_file = op.join(HCTSA_BENCHMARKS_DIR, 'hctsa_checks_%s.pickle' % hostname) ensure_dir(op.dirname(dest_file)) with LockFile(dest_file): # lame inefficient incrementality if op.isfile(dest_file): df = pd.concat((pd.read_pickle(dest_file), df)) df.to_pickle(dest_file) def analyse(): # Load all the results df = pd.concat(map(pd.read_pickle, glob(op.join(HCTSA_BENCHMARKS_DIR, '*.pickle')))) # Reorder columns columns = [u'host', u'date', u'engine', u'transplanter', u'transferinfo', u'n_jobs', u'n_threads_matlab', u'extra', u'xname', u'operation', u'operator', u'output', u'value', u'size', u'taken_s', u'error'] df = df[columns] # Make some stuff categorical categoricals = ('host', 'engine', 'transplanter', 'transferinfo', 'extra', 'xname', 'operator', 'operation') for categorical in categoricals: df[categorical] = df[categorical].astype('category') # there must be something in pandas to do this at once # One value was an empty list on one run, tisean routine, check (maybe concurrency?) def is_float(val): try: float(val) return True except: return False float_values = df['value'].apply(is_float) print '%d values were non-floats' % (~float_values).sum() print df[~float_values]['operation'] df = df[float_values] df = df.convert_objects(convert_numeric=True) # After removing these, value can be again converted to float nodup = df.dropna(subset=['error'], axis=0).drop_duplicates(['operator', 'error']).sort('operation') nodup.to_html(op.expanduser('~/dupes.html')) print '\n'.join(nodup['operator'].unique()) operations_failing = map(lambda o: 'HCTSAOperations.%s[2],' % o, sorted(nodup['operation'].unique())) print '\n'.join(operations_failing) for opname, error in izip(nodup['operation'], nodup['error']): print '-' * 80 print opname print error # Round to the 6th decimal df['value'] = np.around(df['value'], decimals=6) # Impact of running from pycharm # Infinities, but not explicit errors (N.B. pandas isnull does not take into account infinities) infinite = ~np.isfinite(df['value']) & ~np.isnan(df['value']) # Errors (but not infinities) nans = np.isnan(df['value']) # Failed failed = infinite | nans # Features that are stochastic catalog = HCTSACatalog.catalog() def stochastic_failing(df, verbose=False, tooverbose=False): for (xname, operation, output), oodf in df.groupby(['xname', 'operation', 'output']): operator = oodf['operator'].iloc[0] tagged_as_stochastic = catalog.operation(operation).has_tag('stochastic') failing = 'OK' if (~np.isfinite(oodf['value'])).sum() == 0 else 'FAILING' if oodf['value'].nunique() == 0: print xname, operator, operation, output, failing, failing, failing, tagged_as_stochastic elif oodf['value'].nunique() == 1: if failing != 'OK' or verbose: print xname, operator, operation, output, 'DETERMINISTIC', failing, tagged_as_stochastic else: print xname, operator, operation, output, 'RANDOMISED', failing, tagged_as_stochastic if tooverbose: for value, voodf in oodf.groupby('value'): print '\t', value, map(str, voodf['host'].unique()) stochastic_failing(df) FAILING_AFTER_CELL_NASTINESS = { 'Fails with sine': [HCTSAOperations.MF_GP_hyperparameters_covSEiso_covNoise_1_200_first[2]], 'Fails with noisysinusoid': [ HCTSAOperations.NL_TISEAN_d2_1_10_0[2], HCTSAOperations.NL_TISEAN_d2_ac_10_001[2], ] } def test_one(operation, engine='matlab'): engine = PyopyEngines.engine_or_matlab_or_octave(engine) hctsa_prepare_engine(engine) print operation.what().id() for name, x in (('noise', hctsa_noise()), ('sine', hctsa_sine()), ('noisysinusoid', hctsa_noisysinusoid()), ('randn10000', np.random.RandomState(0).randn(10000))): print '-' * 80 print name x = engine.put('x', hctsa_prepare_input(x, z_scored=True)) try: operation.transform(x, eng=engine) except Exception as ex: print ex if __name__ == '__main__': from joblib import Parallel, delayed n_jobs = 4 Parallel(n_jobs=n_jobs)(delayed(check_benchmark_bindings)(x=xfact(), xname=xname, extra='pycharm', n_jobs=n_jobs) for (xname, xfact), _ in product(TS_FACTORIES.items(), range(4)))
bsd-3-clause
rknLA/sms-tools
lectures/09-Sound-description/plots-code/mfcc.py
25
1103
import numpy as np import matplotlib.pyplot as plt import essentia.standard as ess M = 1024 N = 1024 H = 512 fs = 44100 spectrum = ess.Spectrum(size=N) window = ess.Windowing(size=M, type='hann') mfcc = ess.MFCC(numberCoefficients = 12) x = ess.MonoLoader(filename = '../../../sounds/speech-male.wav', sampleRate = fs)() mfccs = [] for frame in ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True): mX = spectrum(window(frame)) mfcc_bands, mfcc_coeffs = mfcc(mX) mfccs.append(mfcc_coeffs) mfccs = np.array(mfccs) plt.figure(1, figsize=(9.5, 7)) plt.subplot(2,1,1) plt.plot(np.arange(x.size)/float(fs), x, 'b') plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.title('x (speech-male.wav)') plt.subplot(2,1,2) numFrames = int(mfccs[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.pcolormesh(frmTime, 1+np.arange(12), np.transpose(mfccs[:,1:])) plt.ylabel('coefficients') plt.title('MFCCs') plt.autoscale(tight=True) plt.tight_layout() plt.savefig('mfcc.png') plt.show()
agpl-3.0
kubeflow/kfserving
docs/samples/explanation/alibi/imagenet/test_imagenet.py
1
2521
import argparse import matplotlib.pyplot as plt from tensorflow.keras.applications.inception_v3 import preprocess_input, decode_predictions import numpy as np import requests import json import os from PIL import Image import ssl ssl._create_default_https_context = ssl._create_unverified_context PREDICT_TEMPLATE = 'http://{0}/v1/models/imagenet:predict' EXPLAIN_TEMPLATE = 'http://{0}/v1/models/imagenet:explain' def get_image_data(): data = [] image_shape = (299, 299, 3) target_size = image_shape[:2] image = Image.open("./cat-prediction.png").convert('RGB') image = np.expand_dims(image.resize(target_size), axis=0) data.append(image) data = np.concatenate(data, axis=0) return data def predict(cluster_ip): data = get_image_data() images = preprocess_input(data) payload = { "instances": [images[0].tolist()] } # sending post request to TensorFlow Serving server headers = {'Host': 'imagenet.default.example.com'} url = PREDICT_TEMPLATE.format(cluster_ip) print("Calling ", url) r = requests.post(url, json=payload, headers=headers) resp_json = json.loads(r.content.decode('utf-8')) preds = np.array(resp_json["predictions"]) label = decode_predictions(preds, top=1) plt.imshow(data[0]) plt.title(label[0]) plt.show() def explain(cluster_ip): data = get_image_data() images = preprocess_input(data) payload = { "instances": [images[0].tolist()] } # sending post request to TensorFlow Serving server headers = {'Host': 'imagenet.default.example.com'} url = EXPLAIN_TEMPLATE.format(cluster_ip) print("Calling ", url) r = requests.post(url, json=payload, headers=headers) if r.status_code == 200: explanation = json.loads(r.content.decode('utf-8')) f, axarr = plt.subplots(1, 2) axarr[0].imshow(data[0]) axarr[1].imshow(explanation['data']['anchor']) plt.show() else: print("Received response code and content", r.status_code, r.content) parser = argparse.ArgumentParser() parser.add_argument('--cluster_ip', default=os.environ.get("CLUSTER_IP"), help='Cluster IP of Istio Ingress Gateway') parser.add_argument('--op', choices=["predict", "explain"], default="predict", help='Operation to run') args, _ = parser.parse_known_args() if __name__ == "__main__": if args.op == "predict": predict(args.cluster_ip) elif args.op == "explain": explain(args.cluster_ip)
apache-2.0
pianomania/scikit-learn
sklearn/ensemble/tests/test_iforest.py
13
7616
""" Testing for Isolation Forest algorithm (sklearn.ensemble.iforest). """ # Authors: Nicolas Goix <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.model_selection import ParameterGrid from sklearn.ensemble import IsolationForest from sklearn.model_selection import train_test_split from sklearn.datasets import load_boston, load_iris from sklearn.utils import check_random_state from sklearn.metrics import roc_auc_score from scipy.sparse import csc_matrix, csr_matrix rng = check_random_state(0) # load the iris dataset # and randomly permute it iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_iforest(): """Check Isolation Forest for various parameter settings.""" X_train = np.array([[0, 1], [1, 2]]) X_test = np.array([[2, 1], [1, 1]]) grid = ParameterGrid({"n_estimators": [3], "max_samples": [0.5, 1.0, 3], "bootstrap": [True, False]}) with ignore_warnings(): for params in grid: IsolationForest(random_state=rng, **params).fit(X_train).predict(X_test) def test_iforest_sparse(): """Check IForest for various parameter settings on sparse input.""" rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "bootstrap": [True, False]}) for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in grid: # Trained on sparse format sparse_classifier = IsolationForest( n_estimators=10, random_state=1, **params).fit(X_train_sparse) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_classifier = IsolationForest( n_estimators=10, random_state=1, **params).fit(X_train) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) assert_array_equal(sparse_results, dense_results) def test_iforest_error(): """Test that it gives proper exception on deficient input.""" X = iris.data # Test max_samples assert_raises(ValueError, IsolationForest(max_samples=-1).fit, X) assert_raises(ValueError, IsolationForest(max_samples=0.0).fit, X) assert_raises(ValueError, IsolationForest(max_samples=2.0).fit, X) # The dataset has less than 256 samples, explicitly setting # max_samples > n_samples should result in a warning. If not set # explicitly there should be no warning assert_warns_message(UserWarning, "max_samples will be set to n_samples for estimation", IsolationForest(max_samples=1000).fit, X) assert_no_warnings(IsolationForest(max_samples='auto').fit, X) assert_no_warnings(IsolationForest(max_samples=np.int64(2)).fit, X) assert_raises(ValueError, IsolationForest(max_samples='foobar').fit, X) assert_raises(ValueError, IsolationForest(max_samples=1.5).fit, X) def test_recalculate_max_depth(): """Check max_depth recalculation when max_samples is reset to n_samples""" X = iris.data clf = IsolationForest().fit(X) for est in clf.estimators_: assert_equal(est.max_depth, int(np.ceil(np.log2(X.shape[0])))) def test_max_samples_attribute(): X = iris.data clf = IsolationForest().fit(X) assert_equal(clf.max_samples_, X.shape[0]) clf = IsolationForest(max_samples=500) assert_warns_message(UserWarning, "max_samples will be set to n_samples for estimation", clf.fit, X) assert_equal(clf.max_samples_, X.shape[0]) clf = IsolationForest(max_samples=0.4).fit(X) assert_equal(clf.max_samples_, 0.4*X.shape[0]) def test_iforest_parallel_regression(): """Check parallel regression.""" rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = IsolationForest(n_jobs=3, random_state=0).fit(X_train) ensemble.set_params(n_jobs=1) y1 = ensemble.predict(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict(X_test) assert_array_almost_equal(y1, y2) ensemble = IsolationForest(n_jobs=1, random_state=0).fit(X_train) y3 = ensemble.predict(X_test) assert_array_almost_equal(y1, y3) def test_iforest_performance(): """Test Isolation Forest performs well""" # Generate train/test data rng = check_random_state(2) X = 0.3 * rng.randn(120, 2) X_train = np.r_[X + 2, X - 2] X_train = X[:100] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) X_test = np.r_[X[100:], X_outliers] y_test = np.array([0] * 20 + [1] * 20) # fit the model clf = IsolationForest(max_samples=100, random_state=rng).fit(X_train) # predict scores (the lower, the more normal) y_pred = - clf.decision_function(X_test) # check that there is at most 6 errors (false positive or false negative) assert_greater(roc_auc_score(y_test, y_pred), 0.98) def test_iforest_works(): # toy sample (the last two samples are outliers) X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]] # Test LOF clf = IsolationForest(random_state=rng, contamination=0.25) clf.fit(X) decision_func = - clf.decision_function(X) pred = clf.predict(X) # assert detect outliers: assert_greater(np.min(decision_func[-2:]), np.max(decision_func[:-2])) assert_array_equal(pred, 6 * [1] + 2 * [-1]) def test_max_samples_consistency(): # Make sure validated max_samples in iforest and BaseBagging are identical X = iris.data clf = IsolationForest().fit(X) assert_equal(clf.max_samples_, clf._max_samples) def test_iforest_subsampled_features(): # It tests non-regression for #5732 which failed at predict. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) clf = IsolationForest(max_features=0.8) clf.fit(X_train, y_train) clf.predict(X_test)
bsd-3-clause
wonderui/Hoop_Fantasy
nba_seer-0.1/nba_seer.py
1
13329
# import modules ---------------------- import nba_py import nba_py.game import nba_py.player import nba_py.team import pandas as pd import numpy as np import datetime import pytz old_settings = np.seterr(all='print') np.geterr() print('modules imported') # define functions ---------------------- def get_games(date): """ :param date: datetime.date, the match day :return: df, all the games on the given day """ return nba_py.Scoreboard(month=date.month, day=date.day, year=date.year, league_id='00', offset=0).game_header()[['GAME_ID', 'HOME_TEAM_ID', 'VISITOR_TEAM_ID']] def get_players(games, all_players): """ :param games: df, some games :param all_players: df, all players list of this season :return: df, all players of the given games """ home_team_player = all_players[all_players['TEAM_ID'].isin(games['HOME_TEAM_ID'])][['PERSON_ID', 'TEAM_ID']] home_team_player['Location'] = 'HOME' away_team_player = all_players[all_players['TEAM_ID'].isin(games['VISITOR_TEAM_ID'])][['PERSON_ID', 'TEAM_ID']] away_team_player['Location'] = 'AWAY' players = pd.concat([home_team_player, away_team_player]) game_team = pd.concat([games[['HOME_TEAM_ID', 'GAME_ID']].rename(columns={'HOME_TEAM_ID': 'TEAM_ID'}), games[['VISITOR_TEAM_ID', 'GAME_ID']].rename(columns={'VISITOR_TEAM_ID': 'TEAM_ID'})]) players = pd.merge(players, game_team, on='TEAM_ID') team_team = pd.concat( [games[['HOME_TEAM_ID', 'VISITOR_TEAM_ID']].rename(columns={'HOME_TEAM_ID': 'TEAM_ID', 'VISITOR_TEAM_ID': 'Against_Team_ID'}), games[['VISITOR_TEAM_ID', 'HOME_TEAM_ID']].rename(columns={'VISITOR_TEAM_ID': 'TEAM_ID', 'HOME_TEAM_ID': 'Against_Team_ID'})]) players = pd.merge(players, team_team, on='TEAM_ID') players = pd.merge(players, all_players[['PERSON_ID', 'DISPLAY_FIRST_LAST', 'TEAM_ABBREVIATION']], on='PERSON_ID') return players def get_players_p(games, game_stats_logs): """ :param games: df, some games :param game_stats_logs: df, all previous game stats logs imported from sql :return: df, all players of the given games at the match date """ players = pd.DataFrame() for i in games.index: players = players.append(game_stats_logs[(game_stats_logs['GAME_ID'] == games.iloc[i]['GAME_ID']) & (game_stats_logs['TEAM_ID'] == games.iloc[i]['HOME_TEAM_ID'])]) players = players.append(game_stats_logs[(game_stats_logs['GAME_ID'] == games.iloc[i]['GAME_ID']) & (game_stats_logs['TEAM_ID'] == games.iloc[i]['VISITOR_TEAM_ID'])]) players['Location'] = players.apply(lambda x: 'HOME' if x['TEAM_ID'] == int(games[games['GAME_ID'] == x['GAME_ID']]['HOME_TEAM_ID']) else 'AWAY', axis=1) team_team = pd.concat( [games[['HOME_TEAM_ID', 'VISITOR_TEAM_ID']].rename(columns={'HOME_TEAM_ID': 'TEAM_ID', 'VISITOR_TEAM_ID': 'Against_Team_ID'}), games[['VISITOR_TEAM_ID', 'HOME_TEAM_ID']].rename(columns={'VISITOR_TEAM_ID': 'TEAM_ID', 'HOME_TEAM_ID': 'Against_Team_ID'})]) return pd.merge(players, team_team, on='TEAM_ID')[['PLAYER_ID', 'TEAM_ID', 'Location', 'GAME_ID', 'Against_Team_ID']].rename(columns={'PLAYER_ID': 'PERSON_ID'}) def get_last_n_game_logs(game_stats_logs, player_id, game_id, n): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param player_id: int, player id :param game_id: str, game id :param n: int, size of games :return: df, the n game log of the player before the given game """ player_game_logs = game_stats_logs[game_stats_logs['PLAYER_ID'] == player_id] last_n_game = player_game_logs[player_game_logs['GAME_ID_O'] < game_id].sort_values('GAME_ID_O').tail(n) return last_n_game[['MINS', 'PTS', 'AST', 'OREB', 'DREB', 'STL', 'BLK', 'TO', 'FGM', 'FGA', 'FG3M']] def get_score_36(game_logs): """ :param game_logs: df, game logs :return: list, [0]the average fantasy score(int, 36mins) of the given game log, [1]the score cov(float) of the given game log """ convert_to_36 = lambda x: x[['PTS', 'AST', 'OREB', 'DREB', 'STL', 'BLK', 'TO', 'FGM', 'FGA', 'FG3M']] * 36 / x['MINS'] stats = game_logs.apply(convert_to_36, axis=1) stats['SCO'] = stats['PTS'] * 1 + stats['AST'] * 1.5 + stats['OREB'] * 1.2 + stats['DREB'] * 1.2 + \ stats['STL'] * 2 + stats['BLK'] * 2 + stats['TO'] * -1 stats['EFF'] = stats['SCO'] / 36 stats = stats[abs(stats['EFF']) <= 2.5] return stats['SCO'].mean(), stats['SCO'].std() / stats['SCO'].mean() def get_ma(game_stats_logs, row, n): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :param n: int, size of ma :return: float, average fantasy score of the player in n games before the given game """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] ma_n = get_score_36(get_last_n_game_logs(game_stats_logs, player_id, game_id_o, n))[0] return round(float(ma_n), 2) def get_min(game_stats_logs, row, n): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :param n: int, size of ma :return: float, average mins the player played in n games before the given game """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] min_n = get_last_n_game_logs(game_stats_logs, player_id, game_id_o, n)['MINS'].mean() return round(float(min_n), 2) def get_min_cov(game_stats_logs, row, n): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :param n: int, size of ma :return: float, cov of mins the player played in n games before the given game """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] min_cov_n = get_last_n_game_logs(game_stats_logs, player_id, game_id_o, n)['MINS'].std() / get_last_n_game_logs(game_stats_logs, player_id, game_id_o, n)['MINS'].mean() return round(float(min_cov_n), 3) def get_sco_cov(game_stats_logs, row, n): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :param n: int, size of ma :return: float, cov of scores the player get in n games before the given game """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] sco_cov_n = get_score_36(get_last_n_game_logs(game_stats_logs, player_id, game_id_o, n))[1] return round(float(sco_cov_n), 3) def last_n_games_days(game_stats_logs, row, n): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :param n: int, size of the spread of games :return: int, the days last for last n games """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] player_stats_logs = game_stats_logs[game_stats_logs['PLAYER_ID'] == player_id] ordered_logs = player_stats_logs.sort_values('GAME_ID_O') player_5g = ordered_logs[(ordered_logs['GAME_ID_O'] < game_id_o) & (ordered_logs['MINS'].notnull())].tail(n) if len(player_5g) != 0: min_d = datetime.datetime.strptime(player_5g['GAME_DATE_EST'].min()[:10], '%Y-%m-%d').date() max_d = datetime.datetime.strptime(player_5g['GAME_DATE_EST'].max()[:10], '%Y-%m-%d').date() return (max_d - min_d).days + 1 else: return None def days_rest(game_stats_logs, row): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :return: int, the days player have rest till this game """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] player_stats_logs = game_stats_logs[game_stats_logs['PLAYER_ID'] == player_id] ordered_logs = player_stats_logs.sort_values('GAME_ID_O') last_game = ordered_logs[(ordered_logs['GAME_ID_O'] < game_id_o) & (ordered_logs['MINS'].notnull())].tail(1) if len(last_game) != 0: last_g_d = datetime.datetime.strptime(last_game['GAME_DATE_EST'].max()[:10], '%Y-%m-%d').date() ustz = pytz.timezone('America/New_York') us_time = datetime.datetime.now(ustz) today = us_time.date() return (today - last_g_d).days - 1 else: return None def location_aff(game_stats_logs, row): """ :param game_stats_logs: df, all previous game stats logs imported from sql :param row: pd.series, player id and game id :return: list, [0]home game affection, [1] away game affection """ player_id = row['PERSON_ID'] game_id_o = row['GAME_ID'][3:5] + row['GAME_ID'][:3] + row['GAME_ID'][-5:] player_stats_logs = game_stats_logs[game_stats_logs['PLAYER_ID'] == player_id].sort_values('GAME_ID_O') player_stats_home = player_stats_logs[(player_stats_logs['LOCATION'] == 'HOME') & (player_stats_logs['MINS'].notnull()) & (player_stats_logs['GAME_ID_O'] < game_id_o)].tail(20) home_score_20 = get_score_36(player_stats_home)[0] player_stats_away = player_stats_logs[(player_stats_logs['LOCATION'] == 'AWAY') & (player_stats_logs['MINS'].notnull()) & (player_stats_logs['GAME_ID_O'] < game_id_o)].tail(20) away_score_20 = get_score_36(player_stats_away)[0] player_stats_all = player_stats_logs[(player_stats_logs['MINS'].notnull()) & (player_stats_logs['GAME_ID_O'] < game_id_o)].tail(40) recent_score_40 = get_score_36(player_stats_all)[0] return home_score_20 / recent_score_40, away_score_20 / recent_score_40 def get_exp_sco(players, game_stats_logs): """ :param players: df, players list :param game_stats_logs: df, all previous game stats logs imported from sql :return: df, all players with their expect fantasy score """ players['5_g_d'] = players.apply(lambda x: last_n_games_days(game_stats_logs, x, 5), axis=1) print('5games days complete!') players['d_rest'] = players.apply(lambda x: days_rest(game_stats_logs, x), axis=1) print('days rest complete!') players['MA_20'] = players.apply(lambda x: get_ma(game_stats_logs, x, 20), axis=1) print('ma20 complete!') players['MA_10'] = players.apply(lambda x: get_ma(game_stats_logs, x, 10), axis=1) print('ma10 complete!') players['MA_5'] = players.apply(lambda x: get_ma(game_stats_logs, x, 5), axis=1) print('ma5 complete!') players['MIN_20'] = players.apply(lambda x: get_min(game_stats_logs, x, 20), axis=1) print('min20 complete!') players['MIN_10'] = players.apply(lambda x: get_min(game_stats_logs, x, 10), axis=1) print('min10 complete!') players['MIN_5'] = players.apply(lambda x: get_min(game_stats_logs, x, 5), axis=1) print('min5 complete!') players['MIN_COV_20'] = players.apply(lambda x: get_min_cov(game_stats_logs, x, 20), axis=1) print('min_cov_20 complete!') players['SCO_COV_20'] = players.apply(lambda x: get_sco_cov(game_stats_logs, x, 20), axis=1) print('sco_cov_20 complete!') players = players[players['SCO_COV_20'] > 0].copy() print('sco cov less than 0 droped!') players['home_aff'] = players.apply(lambda x: location_aff(game_stats_logs, x)[0], axis=1) players['away_aff'] = players.apply(lambda x: location_aff(game_stats_logs, x)[1], axis=1) print('location affect complete!') players['EXP_SCO'] = round(players[['MA_20', 'MA_10', 'MA_5']].mean(axis=1) * players[['MIN_20', 'MIN_10', 'MIN_5']].mean(axis=1) / 36, 2) players['EXP_SCO_L'] = players.apply(lambda x: x['EXP_SCO'] * x['home_aff'] if x['Location'] == 'HOME' else x['EXP_SCO'] * x['away_aff'], axis=1) print('all done!') return players print('functions defined')
mit
gallantlab/pycortex
cortex/dataset/views.py
1
15278
import json import h5py import numpy as np from six import string_types from .. import options from .braindata import BrainData, VolumeData, VertexData default_cmap = options.config.get("basic", "default_cmap") def normalize(data): if isinstance(data, tuple): if len(data) == 3: if data[0].dtype == np.uint8: return VolumeRGB(data[0][...,0], data[0][...,1], data[0][...,2], *data[1:]) return Volume(*data) elif len(data) == 2: return Vertex(*data) else: raise TypeError("Invalid input for Dataview") elif isinstance(data, Dataview): return data else: raise TypeError("Invalid input for Dataview") def _from_hdf_data(h5, name, xfmname=None, **kwargs): """Decodes a __hash named node from an HDF file into the constituent Vertex or Volume object""" dnode = h5.get("/data/%s"%name) if dnode is None: dnode = h5.get(name) attrs = {k: u(v) for (k, v) in dnode.attrs.items()} subj = attrs['subject'] #support old style xfmname saving as attribute if xfmname is None and 'xfmname' in attrs: xfmname = attrs['xfmname'] mask = None if 'mask' in attrs: if attrs['mask'].startswith("__"): mask = h5['/subjects/%s/transforms/%s/masks/%s'%(attrs['subject'], xfmname, attrs['mask'])].value else: mask = attrs['mask'] #support old style RGB volumes if dnode.dtype == np.uint8 and dnode.shape[-1] in (3, 4): alpha = None if dnode.shape[-1] == 4: alpha = dnode[..., 3] if xfmname is None: return VertexRGB(dnode[...,0], dnode[...,1], dnode[...,2], subj, alpha=alpha, **kwargs) return VolumeRGB(dnode[...,0], dnode[...,1], dnode[...,2], subj, xfmname, alpha=alpha, mask=mask, **kwargs) if xfmname is None: return Vertex(dnode, subj, **kwargs) return Volume(dnode, subj, xfmname, mask=mask, **kwargs) def _from_hdf_view(h5, data, xfmname=None, vmin=None, vmax=None, **kwargs): if isinstance(data, string_types): return _from_hdf_data(h5, data, xfmname=xfmname, vmin=vmin, vmax=vmax, **kwargs) if len(data) == 2: dim1 = _from_hdf_data(h5, data[0], xfmname=xfmname[0]) dim2 = _from_hdf_data(h5, data[1], xfmname=xfmname[1]) cls = Vertex2D if isinstance(dim1, Vertex) else Volume2D return cls(dim1, dim2, vmin=vmin[0], vmin2=vmin[1], vmax=vmax[0], vmax2=vmax[1], **kwargs) elif len(data) == 4: red, green, blue = [_from_hdf_data(h5, d, xfmname=xfmname) for d in data[:3]] alpha = None if data[3] is not None: alpha = _from_hdf_data(h5, data[3], xfmname=xfmname) cls = VertexRGB if isinstance(red, Vertex) else VolumeRGB return cls(red, green, blue, alpha=alpha, **kwargs) else: raise ValueError("Invalid Dataview specification") class Dataview(object): def __init__(self, cmap=None, vmin=None, vmax=None, description="", state=None, **kwargs): if self.__class__ == Dataview: raise TypeError('Cannot directly instantiate Dataview objects') self.cmap = cmap if cmap is not None else default_cmap self.vmin = vmin self.vmax = vmax self.state = state self.attrs = kwargs if 'priority' not in self.attrs: self.attrs['priority'] = 1 self.description = description def copy(self, *args, **kwargs): kwargs.update(self.attrs) return self.__class__(*args, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax, description=self.description, state=self.state, **kwargs) @property def priority(self): return self.attrs['priority'] @priority.setter def priority(self, value): self.attrs['priority'] = value def to_json(self, simple=False): if simple: return dict() desc = self.description if hasattr(desc, 'decode'): desc = desc.decode() sdict = dict( state=self.state, attrs=self.attrs.copy(), desc=desc) try: sdict.update(dict( cmap=[self.cmap], vmin=[self.vmin if self.vmin is not None else np.percentile(np.nan_to_num(self.data), 1)], vmax=[self.vmax if self.vmax is not None else np.percentile(np.nan_to_num(self.data), 99)] )) except AttributeError: pass return sdict @staticmethod def from_hdf(node): data = json.loads(u(node[0])) desc = node[1] try: cmap = json.loads(u(node[2])) except: cmap = u(node[2]) vmin = json.loads(u(node[3])) vmax = json.loads(u(node[4])) state = json.loads(u(node[5])) attrs = json.loads(u(node[6])) try: xfmname = json.loads(u(node[7])) except ValueError: xfmname = None if not isinstance(vmin, list): vmin = [vmin] if not isinstance(vmax, list): vmax = [vmax] if not isinstance(cmap, list): cmap = [cmap] if len(data) == 1: xfm = None if xfmname is None else xfmname[0] return _from_hdf_view(node.file, data[0], xfmname=xfm, cmap=cmap[0], description=desc, vmin=vmin[0], vmax=vmax[0], state=state, **attrs) else: views = [_from_hdf_view(node.file, d, xfmname=x) for d, x in zip(data, xfname)] raise NotImplementedError def _write_hdf(self, h5, name="data", data=None, xfmname=None): views = h5.require_group("/views") view = views.require_dataset(name, (8,), h5py.special_dtype(vlen=str)) view[0] = json.dumps(data) view[1] = self.description try: view[2] = json.dumps([self.cmap]) view[3] = json.dumps([self.vmin]) view[4] = json.dumps([self.vmax]) except AttributeError: #For VolumeRGB/Vertex, there is no cmap/vmin/vmax view[2] = "null" view[3:5] = "null" view[5] = json.dumps(self.state) view[6] = json.dumps(self.attrs) view[7] = json.dumps(xfmname) return view @property def raw(self): from matplotlib import colors, cm, pyplot as plt import glob, os # Get colormap from matplotlib or pycortex colormaps ## -- redundant code, here and in cortex/quicklflat.py -- ## if isinstance(self.cmap, string_types): if not self.cmap in cm.__dict__: # unknown colormap, test whether it's in pycortex colormaps cmapdir = options.config.get('webgl', 'colormaps') colormaps = glob.glob(os.path.join(cmapdir, "*.png")) colormaps = dict(((os.path.split(c)[1][:-4],c) for c in colormaps)) if not self.cmap in colormaps: raise Exception('Unkown color map!') I = plt.imread(colormaps[self.cmap]) cmap = colors.ListedColormap(np.squeeze(I)) # Register colormap while we're at it cm.register_cmap(self.cmap,cmap) else: cmap = cm.get_cmap(self.cmap) elif isinstance(self.cmap, colors.Colormap): cmap = self.cmap # Normalize colors according to vmin, vmax norm = colors.Normalize(self.vmin, self.vmax) cmapper = cm.ScalarMappable(norm=norm, cmap=cmap) color_data = cmapper.to_rgba(self.data.flatten()).reshape(self.data.shape+(4,)) # rollaxis puts the last color dimension first, to allow output of separate channels: r,g,b,a = dataset.raw color_data = (np.clip(color_data, 0, 1) * 255).astype(np.uint8) return np.rollaxis(color_data, -1) class Multiview(Dataview): def __init__(self, views, description=""): for view in views: if not isinstance(view, Dataview): raise TypeError("Must be a View object!") raise NotImplementedError self.views = views def uniques(self, collapse=False): for view in self.views: for sv in view.uniques(collapse=collapse): yield sv class Volume(VolumeData, Dataview): """ Encapsulates a 3D volume or 4D volumetric movie. Includes information on how the volume should be colormapped for display purposes. Parameters ---------- data : ndarray The data. Can be 3D with shape (z,y,x), 1D with shape (v,) for masked data, 4D with shape (t,z,y,x), or 2D with shape (t,v). For masked data, if the size of the given array matches any of the existing masks in the database, that mask will automatically be loaded. If it does not, an error will be raised. subject : str Subject identifier. Must exist in the pycortex database. xfmname : str Transform name. Must exist in the pycortex database. mask : ndarray, optional Binary 3D array with shape (z,y,x) showing which voxels are selected. If masked data is given, the mask will automatically be loaded if it exists in the pycortex database. cmap : str or matplotlib colormap, optional Colormap (or colormap name) to use. If not given defaults to matplotlib default colormap. vmin : float, optional Minimum value in colormap. If not given, defaults to the 1st percentile of the data. vmax : float, optional Maximum value in colormap. If not given defaults to the 99th percentile of the data. description : str, optional String describing this dataset. Displayed in webgl viewer. **kwargs All additional arguments in kwargs are passed to the VolumeData and Dataview """ def __init__(self, data, subject, xfmname, mask=None, cmap=None, vmin=None, vmax=None, description="", **kwargs): super(Volume, self).__init__(data, subject, xfmname, mask=mask, cmap=cmap, vmin=vmin, vmax=vmax, description=description, **kwargs) # set vmin and vmax self.vmin = self.vmin if self.vmin is not None else \ np.percentile(np.nan_to_num(self.data), 1) self.vmax = self.vmax if self.vmax is not None else \ np.percentile(np.nan_to_num(self.data), 99) def _write_hdf(self, h5, name="data"): datanode = VolumeData._write_hdf(self, h5) viewnode = Dataview._write_hdf(self, h5, name=name, data=[self.name], xfmname=[self.xfmname]) return viewnode @property def raw(self): r, g, b, a = super(Volume, self).raw return VolumeRGB(r, g, b, self.subject, self.xfmname, a, description=self.description, state=self.state, **self.attrs) class Vertex(VertexData, Dataview): """ Encapsulates a 1D vertex map or 2D vertex movie. Includes information on how the data should be colormapped for display purposes. Parameters ---------- data : ndarray The data. Can be 1D with shape (v,), or 2D with shape (t,v). Here, v can be the number of vertices in both hemispheres, or the number of vertices in either one of the hemispheres. In that case, the data for the other hemisphere will be filled with zeros. subject : str Subject identifier. Must exist in the pycortex database. cmap : str or matplotlib colormap, optional Colormap (or colormap name) to use. If not given defaults to matplotlib default colormap. vmin : float, optional Minimum value in colormap. If not given, defaults to the 1st percentile of the data. vmax : float, optional Maximum value in colormap. If not given defaults to the 99th percentile of the data. description : str, optional String describing this dataset. Displayed in webgl viewer. **kwargs All additional arguments in kwargs are passed to the VolumeData and Dataview """ def __init__(self, data, subject, cmap=None, vmin=None, vmax=None, description="", **kwargs): super(Vertex, self).__init__(data, subject, cmap=cmap, vmin=vmin, vmax=vmax, description=description, **kwargs) # set vmin and vmax self.vmin = self.vmin if self.vmin is not None else \ np.percentile(np.nan_to_num(self.data), 1) self.vmax = self.vmax if self.vmax is not None else \ np.percentile(np.nan_to_num(self.data), 99) def _write_hdf(self, h5, name="data"): datanode = VertexData._write_hdf(self, h5) viewnode = Dataview._write_hdf(self, h5, name=name, data=[self.name]) return viewnode @property def raw(self): r, g, b, a = super(Vertex, self).raw return VertexRGB(r, g, b, self.subject, a, description=self.description, state=self.state, **self.attrs) def map(self, target_subj, surface_type='fiducial', hemi='both', fs_subj=None, **kwargs): """Map this data from this surface to another surface Calls `cortex.freesurfer.vertex_to_vertex()` with this vertex object as the first argument. NOTE: Requires either previous computation of mapping matrices (with `cortex.db.get_mri_surf2surf_matrix`) or active freesurfer environment. Parameters ---------- target_subj : str freesurfer subject to which to map Other Parameters ---------------- kwargs map to `cortex.freesurfer.vertex_to_vertex()` """ # Input check if hemi not in ['lh', 'rh', 'both']: raise ValueError("`hemi` kwarg must be 'lh', 'rh', or 'both'") # lazy load from ..database import db mats = db.get_mri_surf2surf_matrix(self.subject, surface_type, hemi='both', target_subj=target_subj, fs_subj=fs_subj, **kwargs) new_data = [mats[0].dot(self.left), mats[1].dot(self.right)] if hemi == 'both': new_data = np.hstack(new_data) elif hemi == 'lh': new_data = np.hstack([new_data[0], np.nan * np.zeros(new_data[1].shape)]) elif hemi == 'rh': new_data = np.hstack([np.nan * np.zeros(new_data[0].shape), new_data[1]]) vx = Vertex(new_data, target_subj, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap) return vx def u(s, encoding='utf8'): try: return s.decode(encoding) except AttributeError: return s from .viewRGB import VolumeRGB, VertexRGB, Colors from .view2D import Volume2D, Vertex2D
bsd-2-clause
RRShieldsCutler/clusterpluck
clusterpluck/scripts/mpi_collapse.py
1
4106
#!/usr/bin/env Python import argparse import sys import numpy as np import pandas as pd import warnings from clusterpluck.scripts.cluster_dictionary import build_cluster_map from clusterpluck.scripts.orfs_in_common import generate_index_list from clusterpluck.scripts.orfs_in_common import pick_a_cluster from functools import partial from scoop import futures # usage = python -m scoop -vv -n 480 mpi_collapse -i [input.csv] -m [.mpfa key] -o [output.csv] # The arg parser def make_arg_parser(): parser = argparse.ArgumentParser(description='Collapse ORF matrix into a scored cluster matrix. Run with "python -m scoop -vv -n 480 mpi_parallel_collapse [args]"') parser.add_argument('-i', '--input', help='Input is the ORF matrix CSV file.', default='-') parser.add_argument('-m', '--mpfa', help='The multi-protein fasta file (.mpfa) from which to build the dictionary') parser.add_argument('-b', '--bread', help='Where to find the cluster information in the header for the sequence (default="ref|,|")', default='ref|,|') parser.add_argument('-o', '--output', help='Where to save the output csv; default to screen', required=False, default='-') return parser def generate_chunk_list(in_csv2): header = pd.read_csv(in_csv2, header=0, engine='c', index_col=0, nrows=0) header = list(header.columns) print('Extracted headers from input file...\n') return header def parallel_clustermean(mx, c_list): i = len(c_list) mat = np.zeros((i, 1)) c_i = 0 for cluster2 in c_list: mx_dubsub = mx.filter(like=cluster2, axis=0) # subsets the smaller matrix by rows belonging to one cluster # finds the mean of the cells in the cluster x cluster2 matrix with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) # np doesn't like taking mean of empty slices cc_mean = np.nanmean(mx_dubsub.values, dtype='float64') mat[c_i, 0] = cc_mean # saves this mean into the pre-existing array at the right location c_i += 1 del mx dfmeans = pd.DataFrame(mat) dfmeans = dfmeans.round(decimals=2) dfmeans.index = c_list return dfmeans def main(): parser = make_arg_parser() args = parser.parse_args() # Parse command line with open(args.mpfa, 'r') as inf: # Generates dictionary with each unique 'refseq_cluster' as keys, ORFs as values cluster_map = build_cluster_map(inf, bread=args.bread) with open(args.input, 'r') as in_csv: print('\nOk, processing input file in pieces...\n') inkey = generate_index_list(in_csv) # print(len(inkey)) with open(args.input, 'r') as in_csv2: headers = generate_chunk_list(in_csv2) # print(len(headers)) c_list = list(cluster_map.keys()) # ct = len(c_list) # print('Found %d clusters...' % ct) data_to_pool = [] grabbed_clusters = [] for cluster in c_list: grab = pick_a_cluster(headers, cluster) # uses the name of the cluster to get a list of all orfs for a particular unique cluster if not grab: pass else: # print(grab) grabbed_clusters.extend([cluster]) with open(args.input, 'r') as inf3: mx = pd.read_csv(inf3, sep=',', header=0, usecols=grab, engine='c') # loads in only the columns from the grab list, i.e. all cols for a unique cluster mx.index = inkey # reindexes the df with the orf labels after importing specific columns with usecols data_to_pool.append(mx) # create the list of dfs to map over for multiprocessing if __name__ == '__main__': print('\nSending data to Workers... work, Workers, work!') results = list(futures.map(partial(parallel_clustermean, c_list=c_list), data_to_pool)) print('\nFile processing complete; writing output file...\n') del data_to_pool with open(args.output, 'w') if args.output != '-' else sys.stdout as outf: outdf = pd.concat(results, axis=1) outdf.columns = grabbed_clusters # names the columns (and index, next line) according to clusters in the order they were processed # outdf.index = c_list outdf.sort_index(axis=0, inplace=True) # ensure that the clusters are in order on cols and rows outdf.sort_index(axis=1, inplace=True) outdf.to_csv(outf) if __name__ == '__main__': main()
mit
alexeyum/scikit-learn
sklearn/metrics/tests/test_pairwise.py
4
26200
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize from sklearn.exceptions import DataConversionWarning def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unknown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") # ignore conversion to boolean in pairwise_distances @ignore_warnings(category=DataConversionWarning) def test_pairwise_boolean_distance(): # test that we convert to boolean arrays for boolean distances rng = np.random.RandomState(0) X = rng.randn(5, 4) Y = X.copy() Y[0, 0] = 1 - Y[0, 0] for metric in PAIRWISE_BOOLEAN_FUNCTIONS: for Z in [Y, None]: res = pairwise_distances(X, Z, metric=metric) res[np.isnan(res)] = 0 assert_true(np.sum(res != 0) == 0) def test_pairwise_precomputed(): for func in [pairwise_distances, pairwise_kernels]: # Test correct shape assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), metric='precomputed') # with two args assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert_true(S is S2) # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert_true(S is S2) # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert_equal('f', S.dtype.kind) # Test converts list to array-like S = func([[1.]], metric='precomputed') assert_true(isinstance(S, np.ndarray)) def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) Y = rng.random_sample((20, 4)) X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1) # check that we still get the right answers with {X,Y}_norm_squared D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_array_almost_equal(D2, D1) assert_array_almost_equal(D3, D1) assert_array_almost_equal(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared X_norm_sq *= 0.5 Y_norm_sq *= 0.5 wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) assert_greater(np.max(np.abs(wrong_D - D1)), .01) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
wazeerzulfikar/scikit-learn
sklearn/mixture/tests/test_gmm.py
44
20880
# Important note for the deprecation cleaning of 0.20 : # All the functions and classes of this file have been deprecated in 0.18. # When you remove this file please remove the related files # - 'sklearn/mixture/dpgmm.py' # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_dpgmm.py' import unittest import copy import sys import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import (assert_true, assert_greater, assert_raise_message, assert_warns_message, ignore_warnings) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.gmm._sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.gmm._sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.gmm._sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. x = mixture.gmm._sample_gaussian( [0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = assert_warns_message(DeprecationWarning, "The function" " log_multivariate_normal_density is " "deprecated in 0.18 and will be removed in 0.20.", mixture.log_multivariate_normal_density, X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = assert_warns_message(DeprecationWarning, "The function" " log_multivariate_normal_density is " "deprecated in 0.18 and will be removed in 0.20.", mixture.log_multivariate_normal_density, X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = assert_warns_message(DeprecationWarning, "The function" " log_multivariate_normal_density is " "deprecated in 0.18 and will be removed in 0.20.", mixture.log_multivariate_normal_density, X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] with ignore_warnings(category=DeprecationWarning): ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights with ignore_warnings(category=DeprecationWarning): samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) with ignore_warnings(category=DeprecationWarning): g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. with ignore_warnings(category=DeprecationWarning): X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] with ignore_warnings(category=DeprecationWarning): for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. with ignore_warnings(category=DeprecationWarning): delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined # distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) with ignore_warnings(category=DeprecationWarning): g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined # distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) with ignore_warnings(category=DeprecationWarning): g.fit(X) trainll = g.score(X) if isinstance(g, mixture.dpgmm._DPGMMBase): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def score(self, g, X): with ignore_warnings(category=DeprecationWarning): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) with ignore_warnings(category=DeprecationWarning): train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_n_parameters(): n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: with ignore_warnings(category=DeprecationWarning): g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) with ignore_warnings(category=DeprecationWarning): g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
Kamp9/scipy
scipy/stats/_discrete_distns.py
34
21220
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy import special from scipy.special import entr, gammaln as gamln from scipy.misc import logsumexp from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh import numpy as np from ._distn_infrastructure import ( rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf, get_distribution_names) class binom_gen(rv_discrete): """A binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `binom` is:: binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k) for ``k`` in ``{0, 1,..., n}``. `binom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.binomial(n, p, self._size) def _argcheck(self, n, p): self.b = n return (n >= 0) & (p >= 0) & (p <= 1) def _logpmf(self, x, n, p): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _cdf(self, x, n, p): k = floor(x) vals = special.bdtr(k, n, p) return vals def _sf(self, x, n, p): k = floor(x) return special.bdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.bdtrik(q, n, p)) vals1 = np.maximum(vals - 1, 0) temp = special.bdtr(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p, moments='mv'): q = 1.0 - p mu = n * p var = n * p * q g1, g2 = None, None if 's' in moments: g1 = (q - p) / sqrt(var) if 'k' in moments: g2 = (1.0 - 6*p*q) / var return mu, var, g1, g2 def _entropy(self, n, p): k = np.r_[0:n + 1] vals = self._pmf(k, n, p) return np.sum(entr(vals), axis=0) binom = binom_gen(name='binom') class bernoulli_gen(binom_gen): """A Bernoulli discrete random variable. %(before_notes)s Notes ----- The probability mass function for `bernoulli` is:: bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1 for ``k`` in ``{0, 1}``. `bernoulli` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return binom_gen._rvs(self, 1, p) def _argcheck(self, p): return (p >= 0) & (p <= 1) def _logpmf(self, x, p): return binom._logpmf(x, 1, p) def _pmf(self, x, p): return binom._pmf(x, 1, p) def _cdf(self, x, p): return binom._cdf(x, 1, p) def _sf(self, x, p): return binom._sf(x, 1, p) def _ppf(self, q, p): return binom._ppf(q, 1, p) def _stats(self, p): return binom._stats(1, p) def _entropy(self, p): return entr(p) + entr(1-p) bernoulli = bernoulli_gen(b=1, name='bernoulli') class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `nbinom` is:: nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k for ``k >= 0``. `nbinom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.negative_binomial(n, p, self._size) def _argcheck(self, n, p): return (n > 0) & (p >= 0) & (p <= 1) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _logpmf(self, x, n, p): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(p) + special.xlog1py(x, -p) def _cdf(self, x, n, p): k = floor(x) return special.betainc(n, k+1, p) def _sf_skip(self, x, n, p): # skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.nbdtrik(q, n, p)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p): Q = 1.0 / p P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom') class geom_gen(rv_discrete): """A geometric discrete random variable. %(before_notes)s Notes ----- The probability mass function for `geom` is:: geom.pmf(k) = (1-p)**(k-1)*p for ``k >= 1``. `geom` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return self._random_state.geometric(p, size=self._size) def _argcheck(self, p): return (p <= 1) & (p >= 0) def _pmf(self, k, p): return np.power(1-p, k-1) * p def _logpmf(self, k, p): return special.xlog1py(k - 1, -p) + log(p) def _cdf(self, x, p): k = floor(x) return -expm1(log1p(-p)*k) def _sf(self, x, p): return np.exp(self._logsf(x, p)) def _logsf(self, x, p): k = floor(x) return k*log1p(-p) def _ppf(self, q, p): vals = ceil(log(1.0-q)/log(1-p)) temp = self._cdf(vals-1, p) return np.where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, p): mu = 1.0/p qr = 1.0-p var = qr / p / p g1 = (2.0-p) / sqrt(qr) g2 = np.polyval([1, -6, 6], p)/(1.0-p) return mu, var, g1, g2 geom = geom_gen(a=1, name='geom', longname="A geometric") class hypergeom_gen(rv_discrete): """A hypergeometric discrete random variable. The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total number of Type I objects. The random variate represents the number of Type I objects in N drawn without replacement from the total population. %(before_notes)s Notes ----- The probability mass function is defined as:: pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N), for max(0, N - (M-n)) <= k <= min(n, N) %(after_notes)s Examples -------- >>> from scipy.stats import hypergeom >>> import matplotlib.pyplot as plt Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function: >>> [M, n, N] = [20, 7, 12] >>> rv = hypergeom(M, n, N) >>> x = np.arange(0, n+1) >>> pmf_dogs = rv.pmf(x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, pmf_dogs, 'bo') >>> ax.vlines(x, 0, pmf_dogs, lw=2) >>> ax.set_xlabel('# of dogs in our group of chosen animals') >>> ax.set_ylabel('hypergeom PMF') >>> plt.show() Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use: >>> prb = hypergeom.cdf(x, M, n, N) And to generate random numbers: >>> R = hypergeom.rvs(M, n, N, size=10) """ def _rvs(self, M, n, N): return self._random_state.hypergeometric(n, M-n, N, size=self._size) def _argcheck(self, M, n, N): cond = (M > 0) & (n >= 0) & (N >= 0) cond &= (n <= M) & (N <= M) self.a = max(N-(M-n), 0) self.b = min(n, N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \ - gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \ + gamln(N+1) def _pmf(self, k, M, n, N): # same as the following but numerically more precise # return comb(good, k) * comb(bad, N-k) / comb(tot, N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): # tot, good, sample_size = M, n, N # "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n') M, n, N = 1.*M, 1.*n, 1.*N m = M - n p = n/M mu = N*p var = m*n*N*(M - N)*1.0/(M*M*(M-1)) g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N))) g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m g2 *= (M-1)*M*M g2 += 6.*n*N*(M-N)*m*(5.*M-6) g2 /= n * N * (M-N) * m * (M-2.) * (M-3.) return mu, var, g1, g2 def _entropy(self, M, n, N): k = np.r_[N - (M - n):min(n, N) + 1] vals = self.pmf(k, M, n, N) return np.sum(entr(vals), axis=0) def _sf(self, k, M, n, N): """More precise calculation, 1 - cdf doesn't cut it.""" # This for loop is needed because `k` can be an array. If that's the # case, the sf() method makes M, n and N arrays of the same shape. We # therefore unpack all inputs args, so we can do the manual # integration. res = [] for quant, tot, good, draw in zip(k, M, n, N): # Manual integration over probability mass function. More accurate # than integrate.quad. k2 = np.arange(quant + 1, draw + 1) res.append(np.sum(self._pmf(k2, tot, good, draw))) return np.asarray(res) def _logsf(self, k, M, n, N): """ More precise calculation than log(sf) """ res = [] for quant, tot, good, draw in zip(k, M, n, N): # Integration over probability mass function using logsumexp k2 = np.arange(quant + 1, draw + 1) res.append(logsumexp(self._logpmf(k2, tot, good, draw))) return np.asarray(res) hypergeom = hypergeom_gen(name='hypergeom') # FIXME: Fails _cdfvec class logser_gen(rv_discrete): """A Logarithmic (Log-Series, Series) discrete random variable. %(before_notes)s Notes ----- The probability mass function for `logser` is:: logser.pmf(k) = - p**k / (k*log(1-p)) for ``k >= 1``. `logser` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): # looks wrong for p>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return self._random_state.logseries(p, size=self._size) def _argcheck(self, p): return (p > 0) & (p < 1) def _pmf(self, k, p): return -np.power(p, k) * 1.0 / k / log(1 - p) def _stats(self, p): r = log(1 - p) mu = p / (p - 1.0) / r mu2p = -p / r / (p - 1.0)**2 var = mu2p - mu*mu mu3p = -p / r * (1.0+p) / (1.0 - p)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / np.power(var, 1.5) mu4p = -p / r * ( 1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1, name='logser', longname='A logarithmic') class poisson_gen(rv_discrete): """A Poisson discrete random variable. %(before_notes)s Notes ----- The probability mass function for `poisson` is:: poisson.pmf(k) = exp(-mu) * mu**k / k! for ``k >= 0``. `poisson` takes ``mu`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, mu): return self._random_state.poisson(mu, self._size) def _logpmf(self, k, mu): Pk = k*log(mu)-gamln(k+1) - mu return Pk def _pmf(self, k, mu): return exp(self._logpmf(k, mu)) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k, mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k, mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q, mu)) vals1 = np.maximum(vals - 1, 0) temp = special.pdtr(vals1, mu) return np.where(temp >= q, vals1, vals) def _stats(self, mu): var = mu tmp = np.asarray(mu) g1 = sqrt(1.0 / tmp) g2 = 1.0 / tmp return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson') class planck_gen(rv_discrete): """A Planck discrete exponential random variable. %(before_notes)s Notes ----- The probability mass function for `planck` is:: planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k) for ``k*lambda_ >= 0``. `planck` takes ``lambda_`` as shape parameter. %(after_notes)s %(example)s """ def _argcheck(self, lambda_): if (lambda_ > 0): self.a = 0 self.b = np.inf return 1 elif (lambda_ < 0): self.a = -np.inf self.b = 0 return 1 else: return 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck', longname='A discrete exponential ') class boltzmann_gen(rv_discrete): """A Boltzmann (Truncated Discrete Exponential) random variable. %(before_notes)s Notes ----- The probability mass function for `boltzmann` is:: boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N)) for ``k = 0,..., N-1``. `boltzmann` takes ``lambda_`` and ``N`` as shape parameters. %(after_notes)s %(example)s """ def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann', longname='A truncated discrete exponential ') class randint_gen(rv_discrete): """A uniform discrete random variable. %(before_notes)s Notes ----- The probability mass function for `randint` is:: randint.pmf(k) = 1./(high - low) for ``k = low, ..., high - 1``. `randint` takes ``low`` and ``high`` as shape parameters. Note the difference to the numpy ``random_integers`` which returns integers on a *closed* interval ``[low, high]``. %(after_notes)s %(example)s """ def _argcheck(self, low, high): self.a = low self.b = high - 1 return (high > low) def _pmf(self, k, low, high): p = np.ones_like(k) / (high - low) return np.where((k >= low) & (k < high), p, 0.) def _cdf(self, x, low, high): k = floor(x) return (k - low + 1.) / (high - low) def _ppf(self, q, low, high): vals = ceil(q * (high - low) + low) - 1 vals1 = (vals - 1).clip(low, high) temp = self._cdf(vals1, low, high) return np.where(temp >= q, vals1, vals) def _stats(self, low, high): m2, m1 = np.asarray(high), np.asarray(low) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d*d - 1) / 12.0 g1 = 0.0 g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0) return mu, var, g1, g2 def _rvs(self, low, high=None): """An array of *size* random integers >= ``low`` and < ``high``. If ``high`` is ``None``, then range is >=0 and < low """ return self._random_state.randint(low, high, self._size) def _entropy(self, low, high): return log(high - low) randint = randint_gen(name='randint', longname='A discrete uniform ' '(random integer)') # FIXME: problems sampling. class zipf_gen(rv_discrete): """A Zipf discrete random variable. %(before_notes)s Notes ----- The probability mass function for `zipf` is:: zipf.pmf(k, a) = 1/(zeta(a) * k**a) for ``k >= 1``. `zipf` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, a): return self._random_state.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / special.zeta(a, 1) / k**a return Pk def _munp(self, n, a): return _lazywhere( a > n + 1, (a, n), lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1), np.inf) zipf = zipf_gen(a=1, name='zipf', longname='A Zipf') class dlaplace_gen(rv_discrete): """A Laplacian discrete random variable. %(before_notes)s Notes ----- The probability mass function for `dlaplace` is:: dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k)) for ``a > 0``. `dlaplace` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _pmf(self, k, a): return tanh(a/2.0) * exp(-a * abs(k)) def _cdf(self, x, a): k = floor(x) f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1) f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1) return _lazywhere(k >= 0, (k, a), f=f, f2=f2) def _ppf(self, q, a): const = 1 + exp(a) vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1, -log((1-q) * const) / a)) vals1 = vals - 1 return np.where(self._cdf(vals1, a) >= q, vals1, vals) def _stats(self, a): ea = exp(a) mu2 = 2.*ea/(ea-1.)**2 mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4 return 0., mu2, 0., mu4/mu2**2 - 3. def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-np.inf, name='dlaplace', longname='A discrete Laplacian') class skellam_gen(rv_discrete): """A Skellam discrete random variable. %(before_notes)s Notes ----- Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and ``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then ``rho = 0``. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution `skellam` takes ``mu1`` and ``mu2`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, mu1, mu2): n = self._size return (self._random_state.poisson(mu1, n) - self._random_state.poisson(mu2, n)) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2, _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2) # ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = floor(x) px = np.where(x < 0, _ncx2_cdf(2*mu2, -2*x, 2*mu1), 1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2)) return px def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam') # Collect names of classes and objects in this module. pairs = list(globals().items()) _distn_names, _distn_gen_names = get_distribution_names(pairs, rv_discrete) __all__ = _distn_names + _distn_gen_names
bsd-3-clause
andreashorn/lead_dbs
ext_libs/OSS-DBS/OSS_platform/Electrode_files/PINS_L303_floating_profile.py
1
30501
# -*- coding: utf-8 -*- ### ### This file is generated automatically by SALOME v8.3.0 with dump python functionality ###### Run with DPS_lead_position_V9.py import sys import salome salome.salome_init() theStudy = salome.myStudy import salome_notebook notebook = salome_notebook.NoteBook(theStudy) ### ### GEOM component ### ########################################### extra code 1 V10 15/12/18############################################# ###### This file runs with DBS_lead_position_V10.py import os sys.path.insert( 0, r'{}'.format(os.getcwd())) sys.path.append('/usr/local/lib/python2.7/dist-packages') #from pandas import read_csv ##### DEFAULT LIST ##### #Lead2nd_Enable = True #Xt = 0 #Yt = 5 #Zt = 0 #X_2nd = 0 #Y_2nd = 5 #Z_2nd = 0 #OZ_angle = 0 #Xm = 0 #Ym = 0 #Zm = 0 #encap_thickness = 0.1 #ROI_radial = 13 #Vertice_enable = False #Brain_map = '/home/trieu/electrode_dir/brain_elipse.brep' #if(Lead2nd_Enable): # Xt2 = 0 # Yt2 = -5 # Zt2 = 0 # OX_angle2 = 0 # OY_angle2 = 0 # OZ_angle2 = 0 ##### VARIABLE LIST ##### ########## End of variable list############# if Z_2nd == Zt: Z_2nd_artif = Zt+1.0 # just to ensure the rotation is possible else: Z_2nd_artif=Z_2nd #for Lead-DBS, the tip point should be shifted down (they use the middle of the lowest contact as the reference point) Zt_tip=Zt-3.0 # as for Medtronic3391 Vert_array =[0]; number_vertex = len(Vert_array) Vert = [] VolumeObject1 = [] ContactObject1 = [] VolumeObject2 = [] ContactObject2 = [] print " DBS_lead's Geometry buid\n" ######################################### end of extra code 1 ######################################## ###################################################################################################### from salome.geom import geomBuilder import math import SALOMEDS geompy = geomBuilder.New(theStudy) O = geompy.MakeVertex(0, 0, 0) OX = geompy.MakeVectorDXDYDZ(1, 0, 0) OY = geompy.MakeVectorDXDYDZ(0, 1, 0) OZ = geompy.MakeVectorDXDYDZ(0, 0, 1) Circle_1 = geompy.MakeCircle(O, OZ, 0.65) Contact_1 = geompy.MakePrismVecH(Circle_1, OZ, 1.5*stretch+1.5) geompy.TranslateDXDYDZ(Contact_1, 0, 0, 0.85) Contact_1_full = geompy.MakePrismVecH(Circle_1, OZ, 3.0*stretch) geompy.TranslateDXDYDZ(Contact_1_full, 0, 0, 0.85) Contact_2 = geompy.MakeTranslation(Contact_1_full, 0, 0, 1.5+4.5*stretch) Contact_3 = geompy.MakeTranslation(Contact_1_full, 0, 0, 1.5+10.5*stretch) Contact_4 = geompy.MakeTranslation(Contact_1, 0, 0, 1.5+16.5*stretch) Cylinder_1 = geompy.MakeCylinderRH(0.65, 149.365) Sphere_1 = geompy.MakeSphereR(0.65) Fuse_1 = geompy.MakeFuseList([Cylinder_1, Sphere_1], True, True) Cylinder_2 = geompy.MakeCylinderRH(encap_thickness+0.65, 149.365) Sphere_2 = geompy.MakeSphereR(encap_thickness+0.65) Fuse_2 = geompy.MakeFuseList([Cylinder_2, Sphere_2], True, True) encap_layer = geompy.MakeCutList(Fuse_2, [Fuse_1], True) geompy.TranslateDXDYDZ(Circle_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_3, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_4, 0, 0, 0.65) geompy.TranslateDXDYDZ(Cylinder_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Sphere_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Fuse_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Cylinder_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(Sphere_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(Fuse_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(encap_layer, 0, 0, 0.65) Sphere_ROI = geompy.MakeSphereR(ROI_radial) encap_outer_ROI = geompy.MakeCutList(encap_layer, [Sphere_ROI], True) encap_inner_ROI = geompy.MakeCutList(encap_layer, [encap_outer_ROI], True) Fuse_all_lead_encap_ROI = geompy.MakeFuseList([Sphere_ROI, Fuse_2], True, True) ROI = geompy.MakeCutList(Sphere_ROI, [Fuse_2], True) CV1 = geompy.MakeCylinderRH(0.65, 1.5+1.5*stretch) geompy.TranslateDXDYDZ(CV1, 0, 0, 1.5) CV1_full = geompy.MakeCylinderRH(0.65, 3.0*stretch) geompy.TranslateDXDYDZ(CV1_full, 0, 0, 1.5) CV2 = geompy.MakeTranslation(CV1_full, 0, 0, 1.5+4.5*stretch) CV3 = geompy.MakeTranslation(CV1_full, 0, 0, 1.5+10.5*stretch) CV4 = geompy.MakeTranslation(CV1, 0, 0, 1.5+16.5*stretch) ################################################################################################################## ########################################### extra code 2 V10 15/12/18############################################# print " Load brain image \n" if (Brain_map[-4:] == 'brep'): brain_solid = geompy.ImportBREP( Brain_map ) elif (Brain_map[-4:] == 'step'): brain_solid = geompy.ImportSTEP( Brain_map ) elif (Brain_map[-4:] == 'iges'): brain_solid = geompy.ImportIGES( Brain_map ) elif (Brain_map[-4:] == '.stl'): brain_solid = geompy.ImportSTL( Brain_map ) else: print " unknow imported file format" Fuse_all_lead_encap_ROI_no_internal_face = geompy.RemoveInternalFaces(Fuse_all_lead_encap_ROI) #################################################### Geometry and extra code interface ############################################################## VolumeObject1 = [ encap_outer_ROI,ROI,encap_inner_ROI,CV1,CV2,CV3,CV4] # Declare objects included to partition, encap_outer_ROI always @1st position Volume_name1 = ['encap_outer_ROI1','ROI1','encap_inner_ROI1','CV1_1','CV1_2','CV1_3','CV1_4'] # Declare name of the group in the partition for volume ContactObject1 = [Contact_1,Contact_2,Contact_3,Contact_4] Contact_name1 = ['Contact1_1','Contact1_2','Contact1_3','Contact1_4'] if(Lead2nd_Enable): ################## 2nd LEAD ############################################### VolumeObject2 = [ROI]*len(VolumeObject1) ContactObject2 = [Contact_1]*len(ContactObject1) Volume_name2 = [ 'encap_outer_ROI2','ROI2','encap_inner_ROI2','CV2_1','CV2_2','CV2_3','CV2_4'] Contact_name2 = ['Contact2_1','Contact2_2','Contact2_3','Contact2_4'] ############################################################################################################################################## print "Position 2nd Fuse all object at [{},{},{}], [{}',{}',{}']\n".format(Xt2,Yt2,Zt2,OX_angle2,OY_angle2,OZ_angle2) Fuse_all_lead_encap_ROI_no_internal_face2 = geompy.MakeTranslation(Fuse_all_lead_encap_ROI_no_internal_face,Xt2,Yt2,Zt2) OX2 = geompy.MakeTranslation(OX,Xt2,Yt2,Zt2) OY2 = geompy.MakeTranslation(OY,Xt2,Yt2,Zt2) OZ2 = geompy.MakeTranslation(OZ,Xt2,Yt2,Zt2) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face2, OX2,OX_angle2*math.pi/180.0) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face2, OY2,OY_angle2*math.pi/180.0) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face2, OZ2,OZ_angle2*math.pi/180.0) print "Position 2nd Lead at [{},{},{}], [{}',{}',{}']\n".format(Xt2,Yt2,Zt2,OX_angle2,OY_angle2,OZ_angle2) for i in range(0,len(VolumeObject1)): VolumeObject2[i] = geompy.MakeTranslation(VolumeObject1[i],Xt2,Yt2,Zt2) geompy.Rotate(VolumeObject2[i], OX2,OX_angle2*math.pi/180.0) geompy.Rotate(VolumeObject2[i], OY2,OY_angle2*math.pi/180.0) geompy.Rotate(VolumeObject2[i], OZ2,OZ_angle2*math.pi/180.0) for i in range(0,len(ContactObject1)): ContactObject2[i] = geompy.MakeTranslation(ContactObject1[i],Xt2,Yt2,Zt2) geompy.Rotate(ContactObject2[i], OX2,OX_angle2*math.pi/180.0) geompy.Rotate(ContactObject2[i], OY2,OY_angle2*math.pi/180.0) geompy.Rotate(ContactObject2[i], OZ2,OZ_angle2*math.pi/180.0) print "Cut outer ROI2 with brain\n" cut_outer_ROI = geompy.MakeCutList(VolumeObject2[0], [brain_solid], True) VolumeObject2[0] = geompy.MakeCutList(VolumeObject2[0], [cut_outer_ROI], True) print "Cut ROI2 with brain\n" VolumeObject2[1] = geompy.MakeCommonList([VolumeObject2[1], brain_solid], True) print "Group 2nd:volume and area extraction for group ID identification process\n" Volume2_Pro = [geompy.BasicProperties( VolumeObject2[0])]*len(VolumeObject2) Contact2_Pro = [geompy.BasicProperties( ContactObject2[0])]*len(ContactObject2) for i in range(0,len(VolumeObject2)): Volume2_Pro[i] = geompy.BasicProperties( VolumeObject2[i]) for i in range(0,len(ContactObject2)): Contact2_Pro[i] = geompy.BasicProperties( ContactObject2[i]) ################## LEAD 1st ############################################################# #print "Position 1st Fuse all object at [{},{},{}], [{}',{}',{}']\n".format(Xt,Yt,Zt,OX_angle,OY_angle,OZ_angle) geompy.TranslateDXDYDZ(Fuse_all_lead_encap_ROI_no_internal_face,Xt,Yt,Zt_tip) OX1 = geompy.MakeTranslation(OX,Xt,Yt,Zt_tip) OY1 = geompy.MakeTranslation(OY,Xt,Yt,Zt_tip) OZ1 = geompy.MakeTranslation(OZ,Xt,Yt,Zt_tip) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face, OZ1,OZ_angle*math.pi/180.0) Vertex_1 = geompy.MakeVertex(X_2nd,Y_2nd,Z_2nd) Vertex_O = geompy.MakeVertex(Xt,Yt,Zt) Vertex_3 = geompy.MakeVertex(Xt,Yt,Z_2nd_artif) if X_2nd!=Xt or Y_2nd!=Yt: Fuse_all_lead_encap_ROI_no_internal_face=geompy.MakeRotationThreePoints(Fuse_all_lead_encap_ROI_no_internal_face, Vertex_O, Vertex_3, Vertex_1) #print "Position 1st Lead at [{},{},{}], [{}',{}',{}']\n".format(Xt,Yt,Zt,OX_angle,OY_angle,OZ_angle) for i in range(0,len(VolumeObject1)): geompy.TranslateDXDYDZ(VolumeObject1[i],Xt,Yt,Zt_tip) geompy.Rotate(VolumeObject1[i], OZ1,OZ_angle*math.pi/180.0) if X_2nd!=Xt or Y_2nd!=Yt: VolumeObject1[i]=geompy.MakeRotationThreePoints(VolumeObject1[i], Vertex_O, Vertex_3, Vertex_1) for i in range(0,len(ContactObject1)): geompy.TranslateDXDYDZ(ContactObject1[i],Xt,Yt,Zt_tip) geompy.Rotate(ContactObject1[i], OZ1,OZ_angle*math.pi/180.0) if X_2nd!=Xt or Y_2nd!=Yt: ContactObject1[i]=geompy.MakeRotationThreePoints(ContactObject1[i], Vertex_O, Vertex_3, Vertex_1) print "Cut outer ROI1 with brain\n" cut_outer_ROI = geompy.MakeCutList(VolumeObject1[0], [brain_solid], True) VolumeObject1[0] = geompy.MakeCutList(VolumeObject1[0], [cut_outer_ROI], True) print "Cut ROI1 with brain\n" VolumeObject1[1] = geompy.MakeCommonList([VolumeObject1[1], brain_solid], True) print "Group 1st:volume and area extraction for group ID identification process\n" Volume1_Pro = [geompy.BasicProperties( VolumeObject1[0])]*len(VolumeObject1) Contact1_Pro = [geompy.BasicProperties( ContactObject1[0])]*len(ContactObject1) for i in range(0,len(VolumeObject1)): Volume1_Pro[i] = geompy.BasicProperties( VolumeObject1[i]) for i in range(0,len(ContactObject1)): Contact1_Pro[i] = geompy.BasicProperties( ContactObject1[i]) print "Create reference groups for ID identification process\n" if(Lead2nd_Enable): Rest = geompy.MakeCutList(brain_solid, [Fuse_all_lead_encap_ROI_no_internal_face,Fuse_all_lead_encap_ROI_no_internal_face2], True) Partition_profile = geompy.MakePartition(VolumeObject1+VolumeObject2+ContactObject1+ContactObject2, [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) ###reference_volume reference_volume = VolumeObject1 + VolumeObject2 reference_volume_Pro = Volume1_Pro + Volume2_Pro Volume_name = Volume_name1+Volume_name2 ### reference_area reference_surface = ContactObject1 + ContactObject2 reference_surface_Pro = Contact1_Pro + Contact2_Pro Contact_name = Contact_name1+Contact_name2 Group_volume = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"])] * (len(VolumeObject1)+len(VolumeObject2)+1) # +1 is Rest Group Group_surface = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["FACE"])] * (len(ContactObject1)+len(ContactObject2)) else: Rest = geompy.MakeCutList(brain_solid, [Fuse_all_lead_encap_ROI_no_internal_face], True) Partition_profile = geompy.MakePartition(VolumeObject1+ContactObject1, [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) ###reference_volume reference_volume = VolumeObject1 reference_volume_Pro = Volume1_Pro Volume_name = Volume_name1 ### reference_area reference_surface = ContactObject1 reference_surface_Pro = Contact1_Pro Contact_name = Contact_name1 Group_volume = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"])] * (len(VolumeObject1)+1) # +1 is Rest Group Group_surface = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["FACE"])] * len(ContactObject1) ### find out subshape and subshape ID Group_surface_ListIDs =[] Group_volume_ListIDs =[] Group_partition_volume = [] Group_partition_surface = [] ### find group volume ID ###################################################################### Partition_volume_IDsList = geompy.SubShapeAllIDs(Partition_profile, geompy.ShapeType["SOLID"]) # list all sub shape volume in Partition print "Partition_volume_IDsList",Partition_volume_IDsList, '\n' for ref_ind in range (0, len(reference_volume)): temp_volume = [] for sub_ind in range (0, len (Partition_volume_IDsList)): subshape = geompy.GetSubShape(Partition_profile, [Partition_volume_IDsList[sub_ind]]) # get subshape subshape_Pro = geompy.BasicProperties(subshape) # extract volume of subshape Common_volume = geompy.MakeCommonList([subshape, reference_volume[ref_ind]], True) # check common intersection Common_volume_Pro = geompy.BasicProperties(Common_volume) print "volume difference",abs(Common_volume_Pro[2]-subshape_Pro[2]),"/",abs(Common_volume_Pro[2]-reference_volume_Pro[ref_ind][2]) # if ( common volume = subshape) and (common volume = ref volume) => ref volume = sub shape if (abs(Common_volume_Pro[2]-subshape_Pro[2])< 0.0003) and (abs(Common_volume_Pro[2]-reference_volume_Pro[ref_ind][2])<0.0003): Group_partition_volume.append([Volume_name[ref_ind],Partition_volume_IDsList[sub_ind]]) # if ( common volume = subshape) and (common volume < ref volume) => sub shape belong to ref volume elif (abs(Common_volume_Pro[2]-subshape_Pro[2])< 0.0003) and ((Common_volume_Pro[2] - reference_volume_Pro[ref_ind][2])<-0.0003): temp_volume.append( Partition_volume_IDsList[sub_ind] ) if len(temp_volume) >1 : # the volume is devided Group_partition_volume.append([Volume_name[ref_ind],temp_volume ]) print Volume_name[ref_ind]," is devided and has sub IDs:{}\n".format(temp_volume) if len(reference_volume) != len(Group_partition_volume): print "Geometry-volume error please check ROI diameter and DBS lead Position ",len(reference_volume),len(Group_partition_volume) print 'Group_partition_volume',Group_partition_volume,'\n' ### find group surface ID ###################################################################### Partition_surface_IDsList = geompy.SubShapeAllIDs(Partition_profile, geompy.ShapeType["FACE"]) # list all sub shape face in Partition print 'Partition_surface_IDsList',Partition_surface_IDsList,'\n' sub_face = [] ## store devided faces for reff_ind in range (0, len (reference_surface)): temp_surface = [] for subf_ind in range (0, len(Partition_surface_IDsList)): subshapef = geompy.GetSubShape(Partition_profile, [Partition_surface_IDsList[subf_ind]]) # get subshape Common_face = geompy.MakeCommonList([subshapef, reference_surface[reff_ind]], True) # check common intersection Common_face_Pro = geompy.BasicProperties(Common_face) subshapef_Pro = geompy.BasicProperties(subshapef) # extract volume of subshape print "area difference",abs(Common_face_Pro[1]-subshapef_Pro[1]),"/",abs(Common_face_Pro[1]-reference_surface_Pro[reff_ind][1]) # if ( common face = subface) and (common face = ref face) => ref face = sub face if (abs(Common_face_Pro[1]-subshapef_Pro[1])<0.000001 )and (abs(Common_face_Pro[1]-reference_surface_Pro[reff_ind][1])<0.000001): Group_partition_surface.append([ Contact_name[reff_ind],Partition_surface_IDsList[subf_ind] ]) # if ( common face = subface) and (common face < ref face) => sub face belong to ref face elif (abs(Common_face_Pro[1]-subshapef_Pro[1])<0.000001 ) and ((Common_face_Pro[1] - reference_surface_Pro[reff_ind][1])<-0.000001): temp_surface.append(Partition_surface_IDsList[subf_ind]) if len(temp_surface) >1 : # the face is devided Group_partition_surface.append( [Contact_name[reff_ind],temp_surface ]) print Contact_name[reff_ind]," is devided and has sub IDs:{}\n".format(temp_surface) if len(reference_surface) != len(Group_partition_surface): #+len(Group_partition_Multi_surface): print "Geometry-Surface error please check ROI diameter and DBS lead Position ",len(reference_surface),len(Group_partition_surface),'\n' print 'Group_partition_surface',Group_partition_surface,'\n' if(Lead2nd_Enable): Partition_profile = geompy.MakePartition(VolumeObject1+VolumeObject2+ContactObject1+ContactObject2+[Rest], [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) else: Partition_profile = geompy.MakePartition(VolumeObject1+ContactObject1+[Rest], [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) new_volume_ID= geompy.SubShapeAllIDs(Partition_profile, geompy.ShapeType["SOLID"]) ID= list(set(Partition_volume_IDsList) ^ set (new_volume_ID)) Group_partition_volume.append(['Rest_1',ID[0]]) print "REST ID:",ID print 'Group_partition_volume',Group_partition_volume,'\n' print"Create volume and surface group under partition_profile\n" for i_solid in range (0,len (Group_partition_volume)): Group_volume[i_solid] = geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"]) if (isinstance (Group_partition_volume[i_solid][1],list) == False): geompy.UnionIDs(Group_volume[i_solid], [Group_partition_volume[i_solid][1]]) if (isinstance (Group_partition_volume[i_solid][1],list) == True): geompy.UnionIDs(Group_volume[i_solid], Group_partition_volume[i_solid][1]) ############################################# for i_surface in range (0,len (Group_partition_surface)): Group_surface[i_surface] = geompy.CreateGroup(Partition_profile, geompy.ShapeType["FACE"]) if (isinstance (Group_partition_surface[i_surface][1],list) == False): # not a list geompy.UnionIDs(Group_surface[i_surface], [Group_partition_surface[i_surface][1]]) if (isinstance (Group_partition_surface[i_surface][1],list) == True): # it is a list geompy.UnionIDs(Group_surface[i_surface], Group_partition_surface[i_surface][1]) print "Translate whole partition to Xm,Ym,Zm\n" geompy.TranslateDXDYDZ(Partition_profile, Xm, Ym, Zm) ### add Vertices to geometry if(Vertice_enable): for ver_ind in range (0,number_vertex): print"Add vertices to model\n" Vert.append(geompy.MakeVertex(Vert_array[ver_ind][0],Vert_array[ver_ind][1],Vert_array[ver_ind][2])) geompy.TranslateDXDYDZ(Vert[ver_ind], Xm, Ym, Zm) ###Translate vertices to Xm,Ym,Zm geompy.addToStudy( Vert[ver_ind], 'Vert_{}'.format(ver_ind)) print"add to study\n" ############################################ end of extra code 2 ############################################ ############################################################################################################# geompy.addToStudy( O, 'O' ) geompy.addToStudy( OX, 'OX' ) geompy.addToStudy( OY, 'OY' ) geompy.addToStudy( OZ, 'OZ' ) #geompy.addToStudy( Circle_1, 'Circle_1' ) geompy.addToStudy( Contact_1, 'Contact_1' ) geompy.addToStudy( Contact_2, 'Contact_2' ) geompy.addToStudy( Contact_3, 'Contact_3' ) geompy.addToStudy( Contact_4, 'Contact_4' ) geompy.addToStudy( CV1, 'CV1' ) geompy.addToStudy( CV2, 'CV2' ) geompy.addToStudy( CV3, 'CV3' ) geompy.addToStudy( CV4, 'CV4' ) #geompy.addToStudy( Cylinder_1, 'Cylinder_1' ) #geompy.addToStudy( Sphere_1, 'Sphere_1' ) #geompy.addToStudy( Fuse_1, 'Fuse_1' ) #geompy.addToStudy( Cylinder_2, 'Cylinder_2' ) #geompy.addToStudy( Sphere_2, 'Sphere_2' ) #geompy.addToStudy( Fuse_2, 'Fuse_2' ) #geompy.addToStudy( encap_layer, 'encap_layer' ) #geompy.addToStudy( Sphere_ROI, 'Sphere_ROI' ) geompy.addToStudy( ROI, 'ROI' ) geompy.addToStudy( encap_outer_ROI, 'encap_outer_ROI' ) geompy.addToStudy( encap_inner_ROI, 'encap_inner_ROI' ) geompy.addToStudy( Fuse_all_lead_encap_ROI, 'Fuse_all_lead_encap_ROI' ) ################################################################################################################ ####################################### extra code 3 V10 15/12/18##############################################/ #for i in range(0,len(VolumeObject2)):/ # geompy.addToStudy( VolumeObject2[i], 'VolumeObject2_{}'.format(i) ) #for i in range(0,len(ContactObject2)): # geompy.addToStudy( ContactObject2[i], 'ContactObject2_{}'.format(i) ) #for i in range(0,len(VolumeObject1)): # geompy.addToStudy( VolumeObject1[i], 'VolumeObject1_{}'.format(i) ) #for i in range(0,len(ContactObject1)): # geompy.addToStudy( ContactObject1[i], 'ContactObject1_{}'.format(i) ) geompy.addToStudy( Partition_profile, 'Partition_profile' ) for i_solid1 in range (0,len (Group_partition_volume)): geompy.addToStudyInFather( Partition_profile, Group_volume [i_solid1], Group_partition_volume[i_solid1][0]) for i_surface1 in range (0,len (Group_partition_surface)): geompy.addToStudyInFather( Partition_profile, Group_surface [i_surface1], Group_partition_surface[i_surface1][0]) ##################################### end of extra code 3########################################## ################################################################################################### Contact1_1=Group_surface[0] Contact1_2=Group_surface[1] Contact1_3=Group_surface[2] Contact1_4=Group_surface[3] encap_inner_ROI1=Group_volume[2] encap_outer_ROI1=Group_volume[0] ROI1=Group_volume[1] Rest_1=Group_volume[7] Floating_contacts=[] float_indices=[] for i in xrange(len(Phi_vector)): Floating_contacts.append(Group_volume[i+3]) #because the first contact is Group_volume[3] float_indices.append(i+3) Auto_group_for_floating = geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"]) geompy.UnionList(Auto_group_for_floating, Floating_contacts[:]) geompy.addToStudyInFather( Partition_profile, Auto_group_for_floating, 'Auto_group_for_floating' ) ### ### SMESH component ### import SMESH, SALOMEDS from salome.smesh import smeshBuilder smesh = smeshBuilder.New(theStudy) Mesh_1 = smesh.Mesh(Partition_profile) NETGEN_1D_2D_3D = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D) NETGEN_3D_Parameters_1 = NETGEN_1D_2D_3D.Parameters() NETGEN_3D_Parameters_1.SetMaxSize( 25.4615 ) NETGEN_3D_Parameters_1.SetSecondOrder( 0 ) NETGEN_3D_Parameters_1.SetOptimize( 1 ) NETGEN_3D_Parameters_1.SetFineness( 0 ) NETGEN_3D_Parameters_1.SetMinSize( 0.000374134 ) NETGEN_3D_Parameters_1.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_1.SetFuseEdges( 1 ) NETGEN_3D_Parameters_1.SetQuadAllowed( 0 ) NETGEN_1D_2D = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_1) Sub_mesh_1 = NETGEN_1D_2D.GetSubMesh() NETGEN_2D_Parameters_1 = NETGEN_1D_2D.Parameters() NETGEN_2D_Parameters_1.SetMaxSize( 0.05 ) NETGEN_2D_Parameters_1.SetSecondOrder( 0 ) NETGEN_2D_Parameters_1.SetOptimize( 1 ) NETGEN_2D_Parameters_1.SetFineness( 4 ) NETGEN_2D_Parameters_1.SetMinSize( 0.0001 ) NETGEN_2D_Parameters_1.SetUseSurfaceCurvature( 1 ) NETGEN_2D_Parameters_1.SetFuseEdges( 1 ) NETGEN_2D_Parameters_1.SetQuadAllowed( 0 ) NETGEN_1D_2D_1 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_2) Sub_mesh_2 = NETGEN_1D_2D_1.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_2) NETGEN_1D_2D_2 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_3) Sub_mesh_3 = NETGEN_1D_2D_2.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_3) NETGEN_1D_2D_3 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_4) Sub_mesh_4 = NETGEN_1D_2D_3.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_4) NETGEN_1D_2D_3D_1 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=encap_inner_ROI1) Sub_mesh_5 = NETGEN_1D_2D_3D_1.GetSubMesh() NETGEN_3D_Parameters_2 = NETGEN_1D_2D_3D_1.Parameters() NETGEN_3D_Parameters_2.SetMaxSize( encap_thickness ) NETGEN_3D_Parameters_2.SetSecondOrder( 0 ) NETGEN_3D_Parameters_2.SetOptimize( 1 ) NETGEN_3D_Parameters_2.SetFineness( 2 ) NETGEN_3D_Parameters_2.SetMinSize( 0.00283583 ) NETGEN_3D_Parameters_2.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_2.SetFuseEdges( 1 ) NETGEN_3D_Parameters_2.SetQuadAllowed( 0 ) isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5 ] ]) NETGEN_1D_2D_3D_2 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=encap_outer_ROI1) Sub_mesh_6 = NETGEN_1D_2D_3D_2.GetSubMesh() NETGEN_3D_Parameters_3 = NETGEN_1D_2D_3D_2.Parameters() NETGEN_3D_Parameters_3.SetMaxSize( encap_thickness ) NETGEN_3D_Parameters_3.SetSecondOrder( 0 ) NETGEN_3D_Parameters_3.SetOptimize( 1 ) NETGEN_3D_Parameters_3.SetFineness( 2 ) NETGEN_3D_Parameters_3.SetMinSize( 0.0333798 ) NETGEN_3D_Parameters_3.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_3.SetFuseEdges( 1 ) NETGEN_3D_Parameters_3.SetQuadAllowed( 0 ) isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5, Sub_mesh_6 ] ]) NETGEN_1D_2D_3D_3 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=ROI1) Sub_mesh_7 = NETGEN_1D_2D_3D_3.GetSubMesh() NETGEN_3D_Parameters_4 = NETGEN_1D_2D_3D_3.Parameters() NETGEN_3D_Parameters_4.SetMaxSize( 25.4615 ) NETGEN_3D_Parameters_4.SetSecondOrder( 0 ) NETGEN_3D_Parameters_4.SetOptimize( 1 ) NETGEN_3D_Parameters_4.SetFineness( 2 ) NETGEN_3D_Parameters_4.SetMinSize( 0.00328242 ) NETGEN_3D_Parameters_4.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_4.SetFuseEdges( 1 ) NETGEN_3D_Parameters_4.SetQuadAllowed( 0 ) isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5, Sub_mesh_6, Sub_mesh_7 ] ]) NETGEN_1D_2D_3D_4 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Rest_1) Sub_mesh_8 = NETGEN_1D_2D_3D_4.GetSubMesh() NETGEN_3D_Parameters_5 = NETGEN_1D_2D_3D_4.Parameters() NETGEN_3D_Parameters_5.SetMaxSize( 2.5 ) NETGEN_3D_Parameters_5.SetSecondOrder( 0 ) NETGEN_3D_Parameters_5.SetOptimize( 1 ) NETGEN_3D_Parameters_5.SetFineness( 2 ) NETGEN_3D_Parameters_5.SetMinSize( 0.000374134 ) NETGEN_3D_Parameters_5.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_5.SetFuseEdges( 1 ) NETGEN_3D_Parameters_5.SetQuadAllowed( 0 ) NETGEN_1D_2D_3D_5 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Group_volume[3]) Sub_mesh_9 = NETGEN_1D_2D_3D_5.GetSubMesh() NETGEN_3D_Parameters_6 = NETGEN_1D_2D_3D_5.Parameters() NETGEN_3D_Parameters_6.SetMaxSize( 25.4615 ) NETGEN_3D_Parameters_6.SetSecondOrder( 0 ) NETGEN_3D_Parameters_6.SetOptimize( 1 ) NETGEN_3D_Parameters_6.SetFineness( 2 ) NETGEN_3D_Parameters_6.SetMinSize( 0.000374134 ) NETGEN_3D_Parameters_6.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_6.SetFuseEdges( 1 ) NETGEN_1D_2D_3D_6 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Group_volume[4]) Sub_mesh_10 = NETGEN_1D_2D_3D_6.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_3D_Parameters_6,Group_volume[4]) NETGEN_1D_2D_3D_7 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Group_volume[5]) Sub_mesh_11 = NETGEN_1D_2D_3D_7.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_3D_Parameters_6,Group_volume[5]) NETGEN_1D_2D_3D_8 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Group_volume[6]) Sub_mesh_12 = NETGEN_1D_2D_3D_8.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_3D_Parameters_6,Group_volume[6]) NETGEN_3D_Parameters_6.SetQuadAllowed( 0 ) #isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5,Sub_mesh_9,Sub_mesh_6, Sub_mesh_7, Sub_mesh_8 ] ]) isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5,Sub_mesh_9,Sub_mesh_10,Sub_mesh_11,Sub_mesh_12,Sub_mesh_6, Sub_mesh_7, Sub_mesh_8 ] ]) #if Phi_vector[0]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_1 ) #if Phi_vector[1]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_2 ) #if Phi_vector[2]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_3 ) #if Phi_vector[3]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_4 ) if Phi_vector[0]==0.0: Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_9 ) if Phi_vector[1]==0.0: Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_10 ) if Phi_vector[2]==0.0: Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_11 ) if Phi_vector[3]==0.0: Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_12 ) isDone = Mesh_1.Compute() if Phi_vector[0]!=0.0: Mesh_1.GroupOnGeom(Group_volume[3],'Flt_cnt1',SMESH.VOLUME) if Phi_vector[1]!=0.0: Mesh_1.GroupOnGeom(Group_volume[4],'Flt_cnt2',SMESH.VOLUME) if Phi_vector[2]!=0.0: Mesh_1.GroupOnGeom(Group_volume[5],'Flt_cnt3',SMESH.VOLUME) if Phi_vector[3]!=0.0: Mesh_1.GroupOnGeom(Group_volume[6],'Flt_cnt4',SMESH.VOLUME) if Phi_vector[0]!=None: Mesh_1.GroupOnGeom(Contact1_1,'C1_1',SMESH.FACE) if Phi_vector[1]!=None: Mesh_1.GroupOnGeom(Contact1_2,'C1_2',SMESH.FACE) if Phi_vector[2]!=None: Mesh_1.GroupOnGeom(Contact1_3,'C1_3',SMESH.FACE) if Phi_vector[3]!=None: Mesh_1.GroupOnGeom(Contact1_4,'C1_4',SMESH.FACE) Encap_contact = Mesh_1.GroupOnGeom(encap_inner_ROI1,'Encap_contact',SMESH.VOLUME) Encap_rest = Mesh_1.GroupOnGeom(encap_outer_ROI1,'Encap_rest',SMESH.VOLUME) RegOfInt = Mesh_1.GroupOnGeom(ROI1,'RegOfInt',SMESH.VOLUME) Rst = Mesh_1.GroupOnGeom(Rest_1,'Rst',SMESH.VOLUME) ## Set names of Mesh objects smesh.SetName(NETGEN_1D_2D_3D.GetAlgorithm(), 'NETGEN 1D-2D-3D') smesh.SetName(NETGEN_1D_2D.GetAlgorithm(), 'NETGEN 1D-2D') smesh.SetName(NETGEN_2D_Parameters_1, 'NETGEN 2D Parameters_1') smesh.SetName(NETGEN_3D_Parameters_2, 'NETGEN 3D Parameters_2') smesh.SetName(NETGEN_3D_Parameters_1, 'NETGEN 3D Parameters_1') smesh.SetName(NETGEN_3D_Parameters_5, 'NETGEN 3D Parameters_5') smesh.SetName(NETGEN_3D_Parameters_6, 'NETGEN 3D Parameters_6') smesh.SetName(NETGEN_3D_Parameters_3, 'NETGEN 3D Parameters_3') smesh.SetName(NETGEN_3D_Parameters_4, 'NETGEN 3D Parameters_4') smesh.SetName(Sub_mesh_4, 'Sub-mesh_4') smesh.SetName(Sub_mesh_1, 'Sub-mesh_1') smesh.SetName(Sub_mesh_3, 'Sub-mesh_3') smesh.SetName(Sub_mesh_2, 'Sub-mesh_2') smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1') smesh.SetName(Rst, 'Rst') smesh.SetName(Sub_mesh_12, 'Sub_mesh_12') smesh.SetName(Sub_mesh_11, 'Sub_mesh_11') smesh.SetName(Sub_mesh_10, 'Sub_mesh_10') smesh.SetName(RegOfInt, 'RegOfInt') smesh.SetName(Encap_rest, 'Encap_rest') smesh.SetName(Encap_contact, 'Encap_contact') smesh.SetName(Sub_mesh_7, 'Sub-mesh_7') smesh.SetName(Sub_mesh_6, 'Sub-mesh_6') smesh.SetName(Sub_mesh_5, 'Sub-mesh_5') smesh.SetName(Sub_mesh_8, 'Sub-mesh_8') smesh.SetName(Sub_mesh_9, 'Sub-mesh_9') #if Phi_vector[0]!=None: # # smesh.SetName(C1_1, 'C1_1') #if Phi_vector[1]!=None: # # smesh.SetName(C1_2, 'C1_2') #if Phi_vector[2]!=None: # # smesh.SetName(C1_3, 'C1_3') #if Phi_vector[3]!=None: # # smesh.SetName(C1_4, 'C1_4') Mesh_1.ExportMED(os.environ['PATIENTDIR']+'/Meshes/Mesh_unref.med') #if salome.sg.hasDesktop(): # salome.sg.updateObjBrowser(True) import killSalome killSalome.killAllPorts()
gpl-3.0
rafaeltg/Deep-Learning-Algorithms
pydl/ts/stats.py
2
4655
import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.tsa.stattools as stools from statsmodels.tsa.seasonal import seasonal_decompose __all__ = ['acf', 'pacf', 'test_stationarity', 'decompose', 'correlated_lags'] def acf(ts, nlags=20, plot=False, ax=None): """ Autocorrelation function :param ts: time series :param nlags: number of lags to calculate the acf function :param plot: whether to plot the acf or not :param ax: custom plot axes :return: - acf value for each lag - confidence level value - plotted ax (if 'plot' is true) """ lag_acf = stools.acf(ts, nlags=nlags) conf_level = 1.96/np.sqrt(len(ts)) if plot: if ax is None: ax = plt.gca(xlim=(1, nlags), ylim=(-1.0, 1.0)) ax.plot(lag_acf) ax.axhline(y=-conf_level, linestyle='--', color='gray') ax.axhline(y=conf_level, linestyle='--', color='gray') ax.set_title('Autocorrelation Function') ax.set_xlabel('Lags') ax.set_ylabel('ACF') return lag_acf, conf_level, ax return lag_acf.tolist(), conf_level def pacf(ts, nlags=20, method='ols', alpha=None, plot=False, ax=None): """ Partial autocorrelation function :param ts: time series :param nlags: number of lags to calculate the acf function :param method: :param alpha: :param plot: whether to plot the pacf or not :param ax: custom plot axes :return: """ if alpha is not None: lag_pacf, confint = stools.pacf(ts, nlags=nlags, method=method, alpha=alpha) else: lag_pacf = stools.pacf(ts, nlags=nlags, method=method) if plot: if ax is None: ax = plt.gca(xlim=(1, nlags), ylim=(-1.0, 1.0)) ax.plot(lag_pacf) ax.axhline(y=0, linestyle='--', color='gray') ax.set_title('Partial Autocorrelation Function') ax.set_xlabel('Lags') ax.set_ylabel('PACF') if alpha is not None: ax.plot(confint[:, 0], linestyle='--', color='red') ax.plot(confint[:, 1], linestyle='--', color='red') return lag_pacf, confint, ax else: conf_level = 1.96/np.sqrt(len(ts)) ax.axhline(y=-conf_level, linestyle='--', color='gray') ax.axhline(y=conf_level, linestyle='--', color='gray') return lag_pacf, ax if alpha: return lag_pacf, confint else: return lag_pacf def test_stationarity(ts, to_file='', log_result=False): """ Perform Augmented Dickey-Fuller test """ if isinstance(ts, np.ndarray): ts = ts.flatten() dftest = stools.adfuller(ts, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for k, v in dftest[4].items(): dfoutput['Critical Value (%s)' % k] = v if to_file != '': dfoutput.to_csv(to_file) elif log_result: print('Results of Dickey-Fuller Test:') print(dfoutput) return dfoutput def decompose(ts, plot=False, axes=None): """ Seasonal decomposition (Trend + Seasonality + Residual) :param ts: time series :param plot: whether to plot the seasonal components or not :param axes: custom list of plot axes :return: """ decomposition = seasonal_decompose(ts, freq=7) trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid if plot: if axes is None or not isinstance(axes, np.ndarray): _, axes = plt.subplots(4, 1, sharex=True) axes[0].plot(ts) axes[0].set_title('Original') axes[1].plot(trend) axes[1].set_title('Trend') axes[2].plot(seasonal) axes[2].set_title('Seasonality') axes[3].plot(residual) axes[3].set_title('Residuals') return trend, seasonal, residual, axes return trend, seasonal, residual def correlated_lags(ts, corr_lags=1, max_lags=100): """ Return the index of the correlated lags. :param ts: time series :param corr_lags: number of correlated lags to return. If -1, return all :param max_lags: number of lags to calculate the acf function """ assert max_lags > corr_lags, "'max_lags' must be greater than 'corr_lags'" acfs, conf = acf(ts, max_lags) acfs = np.asarray(acfs) idx = np.argsort(acfs) most_corr = [] for i in idx[-2::-1]: if acfs[i] > conf: most_corr.append(i) if len(most_corr) == corr_lags: break return sorted(most_corr)
mit
evgchz/scikit-learn
sklearn/cross_decomposition/cca_.py
18
3129
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
ritviksahajpal/EPIC
SSURGO/SSURGO_to_csv.py
1
12793
################################################################## # SSURGO_to_csv.py Apr 2015 # ritvik sahajpal ([email protected]) # ################################################################## import constants, logging, os, us, csv, pdb, glob import numpy as np import pandas as pd def open_or_die(path_file, perm='r', header=None, sep=' ', delimiter=' ', usecols=[]): """ Open file or quit gracefully :param path_file: Path of file to open :return: Handle to file (netCDF), or dataframe (csv) or numpy array """ try: if os.path.splitext(path_file)[1] == '.txt': df = pd.read_csv(path_file, sep=sep, header=header, usecols=usecols) return df else: logging.info('Invalid file type') except: logging.info('Error opening file '+path_file) def component_aggregation(group): # Sort by depth, makes it easier to process later group.sort('hzdept_r',inplace=True) # Determine number of soil layers list_depths = np.append(group['hzdepb_r'],group['hzdept_r']) num_layers = len(np.unique(list_depths))-1 # Exclude 0 if(num_layers <= 0): logging.warn('Incorrect number of soil layers '+str(num_layers)+' '+str(group['cokey'])) return return group def read_ssurgo_tables(soil_dir): # Read in SSURGO data pd_mapunit = open_or_die(soil_dir+os.sep+constants.MAPUNIT+'.txt' ,sep=constants.SSURGO_SEP,header=None,usecols=constants.mapunit_vars.keys()) pd_component = open_or_die(soil_dir+os.sep+constants.COMPONENT+'.txt',sep=constants.SSURGO_SEP,header=None,usecols=constants.component_vars.keys()) pd_chorizon = open_or_die(soil_dir+os.sep+constants.CHORIZON+'.txt' ,sep=constants.SSURGO_SEP,header=None,usecols=constants.chorizon_vars.keys()) pd_muaggatt = open_or_die(soil_dir+os.sep+constants.MUAGGATT+'.txt' ,sep=constants.SSURGO_SEP,header=None,usecols=constants.muaggatt_vars.keys()) pd_chfrags = open_or_die(soil_dir+os.sep+constants.CHFRAGS+'.txt' ,sep=constants.SSURGO_SEP,header=None,usecols=constants.chfrags_vars.keys()) # if any of the dataframes are empty then return a error value if ((pd_mapunit is None) or (pd_component is None) or (pd_chorizon is None) or (pd_muaggatt is None) or (pd_chfrags is None)): raise ValueError('Empty dataframe from one of SSURGO files') # Rename dataframe columns from integers to SSURGO specific names pd_mapunit.rename(columns=constants.mapunit_vars ,inplace=True) pd_component.rename(columns=constants.component_vars,inplace=True) pd_chorizon.rename(columns=constants.chorizon_vars ,inplace=True) pd_muaggatt.rename(columns=constants.muaggatt_vars ,inplace=True) pd_chfrags.rename(columns=constants.chfrags_vars ,inplace=True) # Sum up Fragvol_r in pd_chfrags # See http://www.nrel.colostate.edu/wiki/nri/images/2/21/Workflow_NRI_SSURGO_2010.pdf pd_chfrags = pd_chfrags.groupby('chkey').sum().reset_index(level=0) # Aggregate pd_chorizon data based on cokey chorizon_agg = pd_chorizon.groupby('cokey').apply(component_aggregation) # Join chfrags and chorizon_agg data chfrags_chor = chorizon_agg.merge(pd_chfrags,left_on='chkey',right_on='chkey') # Join chfrags_chor data to the component table ccomp = chfrags_chor.merge(pd_component,left_on='cokey',right_on='cokey') # Join the chor_comp data to pd_muaggatt table # Set how='outer' since we do not want to miss any mukey's muag_ccomp = ccomp.merge(pd_muaggatt,left_on='mukey',right_on='mukey', how='outer') # Join muag_ccomp to mapunit data # Set how='outer' since we do not want to miss any mukey's map_data = muag_ccomp.merge(pd_mapunit,left_on='mukey',right_on='mukey', how='outer') return map_data def SSURGO_to_csv(): sgo_data = pd.DataFrame() for st in constants.list_st: logging.info(st) # For each state, process the SSURGO tabular files for dir_name, subdir_list, file_list in os.walk(constants.data_dir): if('_'+st+'_' in dir_name and constants.TABULAR in subdir_list): logging.info(dir_name[-3:]) # County FIPS code try: tmp_df = read_ssurgo_tables(dir_name+os.sep+constants.TABULAR) except ValueError: logging.info('Empty dataframe from one of SSURGO files') continue tmp_df['state'] = st tmp_df['county'] = dir_name[-3:] tmp_df['FIPS'] = int(us.states.lookup(st).fips+dir_name[-3:]) sgo_data = pd.concat([tmp_df,sgo_data],ignore_index =True) # Drop columns with all missing values sgo_data.dropna(axis=1,how='all',inplace=True) # Replace hydgrp values with integers sgo_data.replace(constants.hydgrp_vars,inplace=True) # If any null values exist, replace with mean of value in mukey df3 = pd.DataFrame() logging.info('If any null values exist, replace with mean of value in mukey') if(np.any(sgo_data.isnull())): df1 = sgo_data.set_index('mukey') df2 = sgo_data.groupby('mukey').mean() df3 = df1.combine_first(df2) # If any null values remain, replace by county mean logging.info('If any null values remain, replace by county mean') if(np.any(df3.isnull())): df1 = df3.reset_index().set_index('FIPS') cnt_mean = sgo_data.groupby(['FIPS']).mean() df3 = df1.combine_first(cnt_mean) else: pass # If any null values remain, replace by state mean logging.info('If any null values remain, replace by state mean') if(np.any(df3.isnull())): df1 = df3.reset_index().set_index('state') st_mean = sgo_data.groupby(['state']).mean() df3 = df1.combine_first(st_mean) else: pass else: pass df3.reset_index(inplace=True) # Convert niccdcd and hydgrp to integers df3['hydgrp'] = df3['hydgrp'].astype(int) df3['niccdcd'] = df3['niccdcd'].astype(int) # Drop components with non zero initial depth #logging.info('Drop faulty components') #drop_df = df3.groupby('cokey').filter(lambda x: x['hzdept_r'].min() <= 0) logging.info('Select the dominant component') dom_df = df3.groupby('mukey').apply(lambda g: g[g['comppct_r']==g['comppct_r'].max()]) #drop_df.to_csv(constants.out_dir+'drop.csv') out_ssurgo_dir = constants.r_soil_dir+os.sep+constants.SOIL+os.sep constants.make_dir_if_missing(out_ssurgo_dir) df3.to_csv(out_ssurgo_dir+os.sep+constants.all) dom_df.to_csv(out_ssurgo_dir+os.sep+constants.dominant) logging.info('Done!') return dom_df def write_epic_soil_file(group): if(not(os.path.isfile(constants.t_soil_dir+str(int(group.mukey.iloc[0]))+'.sol'))): epic_file = open(constants.t_soil_dir+str(int(group.mukey.iloc[0]))+'.sol', 'w') num_layers = len(group.hzdepb_r) # Line 1 epic_file.write(str(group.mukey.iloc[0])+' State: '+str(group.state.iloc[0])+' FIPS: '+str(group.FIPS.iloc[0])+'\n') # Line 2 epic_file.write(('{:8.2f}'*10+'\n').format(group.albedodry_r.iloc[0],group.hydgrp.iloc[0],0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)) # Line 3 epic_file.write(('{:8.2f}'*9+'\n').format(0.0,0.0,100.0,0.0,0.0,0.0,0.0,0.0,0.0)) # Soil characteristics per soil layer epic_file.write(''.join(['{:8.2f}'.format(n*constants.CONV_DEPTH) for n in group.hzdepb_r])+'\n') # Depth to bottom of layer (m) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.dbthirdbar_r])+'\n') # Bulk Density (T/m^3) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.wfifteenbar_r])+'\n') # Soil water content at wilting point (1500 KPA), (m/m) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.wthirdbar_r])+'\n') # Water content at field capacity (33 KPA), (m/m) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.sandtotal_r])+'\n') # Sand content (%) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.silttotal_r])+'\n') # Silt content (%) epic_file.write(''.join(['{:8.2f}'.format(n) for n in np.zeros(num_layers)])+'\n') # Initial Org N concentration (g/T) ---zeros--- epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.ph1to1h2o_r])+'\n') # Soil pH () epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.sumbases_r])+'\n') # Sum of bases (cmol/kg) epic_file.write(''.join(['{:8.2f}'.format(n*constants.OM_TO_WOC) for n in group.om_r])+'\n') # Organic matter content (%) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.caco3_r])+'\n') # CaCO3 content (%) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.cec7_r])+'\n') # Cation exchange capacity (cmol/kg) epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.Fragvol_r])+'\n') # Coarse fragment content (% by vol) epic_file.write(''.join(['{:8.2f}'.format(n) for n in np.zeros(num_layers)])+'\n') # Initial NO3 conc (g/T) ---zeros--- epic_file.write(''.join(['{:8.2f}'.format(n) for n in np.zeros(num_layers)])+'\n') # Initial Labile P (g/T) ---zeros--- epic_file.write(''.join(['{:8.2f}'.format(n) for n in np.zeros(num_layers)])+'\n') # Crop residue (T/ha) ---zeros--- epic_file.write(''.join(['{:8.2f}'.format(n) for n in group.dbovendry_r])+'\n') # Oven dry Bulk Density (T/m^3) epic_file.write(''.join(['{:8.2f}'.format(n) for n in np.zeros(num_layers)])+'\n') # ---zeros--- epic_file.write(''.join(['{:8.2f}'.format(n*constants.CONV_KSAT) for n in group.ksat_r])+'\n') # Saturated conductivity (mm/h) for i in range(constants.ZERO_LINES): epic_file.write(''.join(['{:8.2f}'.format(n) for n in np.zeros(num_layers)])+'\n') # EPIC constant lines epic_file.write('\n\n\n') epic_file.write(' 275. 200. 150. 140. 130. 120. 110.\n') epic_file.write(' 0.20 0.40 0.50 0.60 0.80 1.00 1.20\n') epic_file.write(' .004 .006 .008 .009 .010 .010 .010\n') epic_file.close() else: logging.info('File exists: '+constants.t_soil_dir+str(group.mukey.iloc[0])+'.sol') def csv_to_EPIC(df): try: df.groupby('mukey').apply(write_epic_soil_file) except Exception,e: logging.info(str(e)) # Output ieSlList.dat epic_SlList_file = open(constants.out_dir+os.sep+constants.SLLIST, 'w') idx = 1 for filename in glob.iglob(os.path.join(constants.t_soil_dir, '*.sol')): epic_SlList_file.write(('%5s "soils//%s"\n')%(idx,os.path.basename(filename))) idx += 1 epic_SlList_file.close() if __name__ == '__main__': df = SSURGO_to_csv() csv_to_EPIC(df) #def uniq_vals(group): # try: # return group[group['cokey'] == mode(np.array(group.cokey))[0][0]] # except Exception, e: # logger.info(e) #def wavg(val_col_name, wt_col_name): # def inner(group): # return (group[val_col_name] * group[wt_col_name]).sum() / group[wt_col_name].sum() # inner.__name__ = val_col_name # return inner #def wt_mean(group): # # custom function for calculating a weighted mean # # values passed in should be vectors of equal length # g = group.groupby('layer_id') # for key,val in epic_soil_vars.iteritems(): # group[val] = group[val] / g[val].transform('sum') * group['compct_r'] # return group #def average_mukey_soil_vars(group): # return group.mean(numeric_only=True) #df4 = pd.DataFrame() #df5 = pd.DataFrame() #logger.info('Compute weighted means') #for key,val in epic_soil_vars.iteritems(): # print val # df4[val] = df3.groupby(['mukey','layer_id']).apply(wavg(val, 'comppct_r')) #cols = [col for col in df4.columns if col not in ['mukey', 'layer_id']] #tmp_df4 = df4[cols] #df3.reset_index(inplace=True) #df4.reset_index(inplace=True) #df5 = df3[df3.columns.difference(tmp_df4.columns)] #df6 = df5.groupby('mukey').apply(uniq_vals) #df7 = df4.merge(df6,on=['mukey','layer_id']) #df3.to_csv(out_dir+'SSURGO3.csv') #df4.to_csv(out_dir+'SSURGO4.csv') #df5.to_csv(out_dir+'SSURGO5.csv') #df6.to_csv(out_dir+'SSURGO6.csv') #df7.to_csv(out_dir+'SSURGO7.csv') #logger.info('Done!') #pdb.set_trace() #logger.info('Done!')
mit
pauldeng/nilmtk
nilmtk/disaggregate/maximum_likelihood_estimation.py
5
27147
import pandas as pd import numpy as np from disaggregator import Disaggregator from matplotlib import pyplot as plt from datetime import timedelta from scipy.stats import poisson, norm from sklearn import mixture class MLE(Disaggregator): """ Disaggregation of a single appliance based on its features and using the maximum likelihood of all features. Attributes ---------- appliance: str Name of the appliance stats: list of dicts One dict for feature with: units: tuple For instance: ('power','active') resistive: boolean To decide if 'apparent' == 'active' thDelta: int Treshold for delta values on the power. Used on train_on_chunk method thLikelihood: int Treshold for the maximum likelihood sample_period: str For resampling in training and disaggregate methods sample_method: str Pandas method for resampling onpower: dict {'name':str, 'gmm': str, 'model': sklearn model} offpower: dict {'name':str, 'gmm': str, 'model': sklearn model} duration: dict {'name':str, 'gmm': str, 'model': sklearn model} onpower_train: pandas.Dataframe() Training samples of onpower offpower_train: pandas.Dataframe() Training samples of offpower duaration_train: pandas.Dataframe() Training samples of duration powerNoise: int For the disaggregate_chunk method, minimum delta value of a event to be considered, otherwise is noise. powerPair: int For the disaggregate_chunk method, max delta value difference between onpower and offpower timeWindow: int For the disaggregate_chunk method, a time frame to speed up disaggregate_chunk method. TODO: ----- * Build a method for choosing thLikelihood automatically based on its optimization using ROC curve. * Method for measuring ROC curve. """ def __init__(self): """ Inizialise of the model by default """ super(MLE, self).__init__() # Metadata self.appliance = None self.stats = [] self.units = None self.resistive = False self.thDelta = 0 self.thLikelihood = 0 self.sample_period = None self.sampling_method = None # FEATURES: self.onpower = {'name': 'gmm', 'model': mixture.GMM(n_components=2)} self.offpower = {'name': 'gmm', 'model': mixture.GMM(n_components=2)} self.duration = {'name': 'poisson', 'model': poisson(0)} # Trainings: self.onpower_train = pd.DataFrame(columns=['onpower']) self.offpower_train = pd.DataFrame(columns=['offpower']) self.duration_train = pd.DataFrame(columns=['duration']) # Constrains self.powerNoise = 0 # Background noise in the main self.powerPair = 0 # Max diff between onpower and offpower self.timeWindow = 0 # To avoid high computation def __retrain(self, feature, feature_train): print "Training " + feature_train.columns[0] if feature['name'] == 'gmm': feature['model'].fit(feature_train) elif feature['name'] == 'norm': mu, std = norm.fit(feature_train) feature['model'] = norm(loc=mu, scale=std) elif feature['name'] == 'poisson': self.onpower['model'] = poisson(feature_train.mean()) else: raise NameError( "Name of the model for " + str(feature_train.columns[0]) + " unknown or not implemented") def __physical_quantity(self, chunk): if not self.resistive: print "Checking units" units_mismatched = True for name in chunk.columns: if name == self.units: units = name units_mismatched = False if units_mismatched: stringError = self.appliance + " cannot be disaggregated. " + self.appliance + \ " is a non-resistive element and units mismatches: disaggregated data is in " + \ str(self.units) + \ " and aggregated data is " + str(units) raise ValueError(stringError) else: units = chunk.columns[0] return units def __pdf(self, feature, delta): if feature['name'] == 'norm': score = feature['model'].pdf(delta) elif feature['name'] == 'gmm': score = np.exp(feature['model'].score([delta]))[0] elif feature['name'] == 'poisson': # Decimal values produce odd values in poisson (bug) delta = np.round(delta) score = feature['model'].pmf(delta) else: raise AttributeError("Wrong model for" + feature['name'] + " It must be: gmm, norm or poisson") return score def __pdf2(self, feature, delta): if feature['name'] == 'norm': score = feature['model'].pdf(delta) elif feature['name'] == 'gmm': score = np.exp(feature['model'].score([delta])) elif feature['name'] == 'poisson': # Decimal values produce odd values in poisson (bug) delta = np.round(delta) score = feature['model'].pmf(delta) else: raise AttributeError("Wrong model for" + feature['name'] + " It must be: gmm, norm or poisson") return score def update(self, **kwargs): """ This method will update attributes of the model passed by kwargs. Parameters ---------- kwargs : key word arguments Notes ----- """ print "Updating model" print kwargs for key in kwargs: setattr(self, key, kwargs[key]) def train(self, metergroup): """ Train using ML. Call disaggregate_chunk method Parameters ---------- metergroup : a nilmtk.MeterGroup object Notes ----- * Inizialise "stats" and "feature_train" on the model. * Instance is initialised to 1. Use meter.instance to provide more information (TODO) """ # Inizialise stats and training data: self.stats = [] self.onpower_train = pd.DataFrame(columns=['onpower']) self.offpower_train = pd.DataFrame(columns=['offpower']) self.duration_train = pd.DataFrame(columns=['duration']) # Calling train_on_chunk by instance and identifier: instance = 1 # initial instance. for meter in metergroup.meters: for chunk in meter.power_series(): identifier = (meter.appliances[0].type['type'], instance) print identifier if chunk.empty: print "Chunk empty" else: print "Training on chunk" self.train_on_chunk(pd.DataFrame(chunk.resample( self.sample_period, how=self.sampling_method)), identifier ) # self.train_on_chunk(pd.DataFrame(chunk),identifier) instance += 1 def train_on_chunk(self, chunk, identifier): """ Extracts features from chunk, concatenates feature_train (onpower_train, offpower_train and duration_train) with new features and retrains feature models. Updates stats attribute. Parameters ---------- chunk : pd.DataFrame where each column represents a disaggregated appliance identifier : tuple of (nilmtk.appliance, int) representing instance of that appliance for this chunk Notes ----- * Disaggregates only the selected appliance.(TODO: Disaggregates many) """ # EXTRACT FEATURES: # find units: self.__setattr__('units', chunk.columns[0]) # Loading treshold for getting events: thDelta = getattr(self, 'thDelta') chunk.index.name = 'date_time' # To prevent learning many samples at the middle of a edge: chunk.ix[:, 0][chunk.ix[:, 0] < thDelta] = 0 # Learning edges chunk['delta'] = chunk.ix[:, 0].diff() chunk.delta.fillna(0, inplace=True) edges = chunk[np.abs(chunk['delta']) > thDelta].delta # Pairing on/off events if len(edges) > 1: offpower = edges[edges.apply(np.sign).diff() == -2] onpower = edges[edges.apply(np.sign).diff(-1) == 2] duration = offpower.reset_index().date_time - \ onpower.reset_index().date_time duration = duration.astype('timedelta64[s]') # Set consistent index for concatenation: onpower = pd.DataFrame(onpower).reset_index(drop=True) onpower.columns = ['onpower'] offpower = pd.DataFrame(offpower).reset_index(drop=True) offpower.columns = ['offpower'] duration = pd.DataFrame(duration).reset_index(drop=True) duration.columns = ['duration'] # Len of samples: print "Samples of onpower: " + str(len(onpower)) print "Samples of offpower: " + str(len(offpower)) print "Samples of duration: " + str(len(duration)) number_of_events = len(onpower) # Features (concatenation) self.onpower_train = pd.concat( [self.onpower_train, onpower]).reset_index(drop=True) self.offpower_train = pd.concat( [self.offpower_train, offpower]).reset_index(drop=True) self.duration_train = pd.concat( [self.duration_train, duration]).reset_index(drop=True) else: number_of_events = 0 print """WARNING: No paired events found on this chunk. Is it thDelta too high?""" # RE-TRAIN FEATURE MODELS: self.__retrain(self.onpower, self.onpower_train) self.__retrain(self.offpower, self.offpower_train) self.__retrain(self.duration, self.duration_train) # UPDATE STATS: stat_dict = {'appliance': identifier[ 0], 'instance': identifier[1], 'Nevents': number_of_events} instanceFound = False if len(self.stats) == 0: self.stats.append(stat_dict) else: for stat in self.stats: if ((stat['appliance'] == stat_dict['appliance']) and (stat['instance'] == stat_dict['instance'])): index = self.stats.index(stat) self.stats[index]['Nevents'] = self.stats[ index]['Nevents'] + number_of_events instanceFound = True if not instanceFound: self.stats.append(stat_dict) def disaggregate(self, mains, output_datastore): """ Passes each chunk from mains generator to disaggregate_chunk() and passes the output to _write_disaggregated_chunk_to_datastore() Will have a default implementation in super class. Can be overridden for more simple in-memory disaggregation, or more complex out-of-core disaggregation. Parameters ---------- mains : nilmtk.ElecMeter (single-phase) or nilmtk.MeterGroup (multi-phase) output_datastore : instance of nilmtk.DataStore or str of datastore location """ dis_main = pd.DataFrame() chunk_number = 0 for chunk in mains.power_series(): dis_chunk = self.disaggregate_chunk( pd.DataFrame(chunk.resample(self.sample_period, how=self.sampling_method))) dis_main = pd.concat([dis_main, dis_chunk]) chunk_number += 1 print str(chunk_number) + " chunks disaggregated" # Saving output datastore: output_datastore.append(key=mains.key, value=dis_main) def disaggregate_chunk(self, chunk): """ Checks units. Disaggregates "chunk" with MaximumLikelihood algorithm. Optimization: Filters events with powerNoise. Filters paired-events with powerPair. Windowing with timeWindow for speeding up. Parameters ---------- chunk : pd.DataFrame (in NILMTK format) Returns ------- chunk : pd.DataFrame where each column represents a disaggregated appliance Notes ----- * Disaggregation is not prooved. (TODO: verify the process with the Groundtruth) * Disaggregates only the selected appliance.(TODO: Disaggregates many) """ # An resistive element has active power equal to apparent power. # Checking power units. units = self.__physical_quantity() # EVENTS OUT OF THE CHUNK: # Delta values: column_name = 'diff_' + units[1] chunk[column_name] = chunk.loc[:, units].diff() # Filter the noise. chunk['onpower'] = (chunk[column_name] > self.powerNoise) chunk['offpower'] = (chunk[column_name] < -self.powerNoise) events = chunk[(chunk.onpower == True) | (chunk.offpower == True)] detection_list = [] singleOnevent = 0 # Max Likelihood algorithm (optimized): for onevent in events[events.onpower == True].iterrows(): # onTime = onevent[0] # deltaOn = onevent[1][1] # windowning: offevents = events[(events.offpower == True) & (events.index > onevent[0]) & ( events.index < onevent[0] + timedelta(seconds=self.timeWindow))] # Filter paired events: offevents = offevents[ abs(onevent[1][1] - offevents[column_name].abs()) < self.powerPair] # Max likelihood computation: if not offevents.empty: # pon = self.__pdf(self.onpower, onevent[1][1]) for offevent in offevents.iterrows(): # offTime = offevent[0] # deltaOff = offevent[1][1] # poff = self.__pdf(self.offpower, offevent[1][1]) # duration = offevent[0] - onTime # pduration = self.__pdf(self.duration, (offevent[0] - onTime).total_seconds()) likelihood = self.__pdf(self.onpower, onevent[1][1]) * \ self.__pdf(self.offpower, offevent[1][1]) * \ self.__pdf(self.duration, (offevent[0] - \ onevent[0]).total_seconds()) detection_list.append( {'likelihood': likelihood, 'onTime': onevent[0], 'offTime': offevent[0], 'deltaOn': onevent[1][1]}) else: singleOnevent += 1 # Passing detections to a pandas.DataFrame detections = pd.DataFrame( columns=('onTime', 'offTime', 'likelihood', 'deltaOn')) for i in range(len(detection_list)): detections.loc[i] = [detection_list[i]['onTime'], detection_list[i][ 'offTime'], detection_list[i]['likelihood'], detection_list[i]['deltaOn']] detections = detections[detections.likelihood >= self.thLikelihood] # Constructing dis_chunk (power of disaggregated appliance) dis_chunk = pd.DataFrame( index=chunk.index, columns=[str(units[0]) + '_' + str(units[1])]) dis_chunk.fillna(0, inplace=True) # Ruling out overlapped detecttions ordering by likelihood value. detections = detections.sort('likelihood', ascending=False) for row in detections.iterrows(): # onTime = row[1][0] offTime = row[1][1] deltaOn = row[1][3] if ((dis_chunk[(dis_chunk.index >= row[1][0]) and (dis_chunk.index < row[1][1])].sum().values[0]) == 0): # delta = chunk[chunk.index == onTime][column_name].values[0] dis_chunk[(dis_chunk.index >= row[1][0]) & ( dis_chunk.index < row[1][1])] = row[1][3] # Stat information: print str(len(events)) + " events found." print str(len(events[events.onpower == True])) + " onEvents found" print str(singleOnevent) + " onEvents no paired." return dis_chunk def no_overfitting(self): """ Crops feature_train(onpower_train, offpower_train and duration_train) to get same samples from different appliances(same model-appliance) and avoids overfittings to a many samples appliance. Updates stats attribute. Does the retraining. """ # Instance with minimun length should be the maximum length train_len = [] [train_len.append(st['Nevents']) for st in self.stats] train_len = np.array(train_len) max_len = train_len[train_len != 0].min() # CROPS FEATURE SAMPLES onpower_train = pd.DataFrame() offpower_train = pd.DataFrame() duration_train = pd.DataFrame() start = 0 end = 0 for ind in np.arange(len(self.stats)): if self.stats[ind]['Nevents'] != 0: if ind == 0: start = 0 else: start = end end += self.stats[ind]['Nevents'] aux = self.onpower_train[start:end] aux = aux[:max_len] onpower_train = pd.concat([onpower_train, aux]) aux = self.offpower_train[start:end] aux = aux[:max_len] offpower_train = pd.concat([offpower_train, aux]) aux = self.duration_train[start:end] aux = aux[:max_len] duration_train = pd.concat([duration_train, aux]) # udating stats: self.stats[ind]['Nevents'] = max_len self.onpower_train = onpower_train self.offpower_train = offpower_train self.duration_train = duration_train # RE-TRAINS FEATURES: self.__retrain(self.onpower, self.onpower_train) self.__retrain(self.offpower, self.offpower_train) self.__retrain(self.duration, self.duration_train) def check_cdfIntegrity(self, step): """ Cheks integrity of feature model distributions. CDF has to be bounded by one. Parameters ---------- step: resolution step size on the x-axis for pdf and cdf functions. """ # Selecting bins automatically: x_max = self.onpower_train.max().values[0] x_min = 0 step = 1 x_onpower = np.arange(x_min, x_max, step).reshape(-1, 1) x_max = 0 x_min = self.offpower_train.min().values[0] step = 1 x_offpower = np.arange(x_min, x_max, step).reshape(-1, 1) x_max = self.duration_train.max().values[0] x_min = 0 step = 1 x_duration = np.arange(x_min, x_max, step).reshape(-1, 1) # Evaluating score for: # Onpower y_onpower = self.__pdf2(self.onpower, x_onpower) print "Onpower cdf: " + str(y_onpower.sum()) # Offpower y_offpower = self.__pdf2(self.offpower, x_offpower) print "Offpower cdf: " + str(y_offpower.sum()) # duration y_duration = self.__pdf2(self.duration, x_duration) print "Duration cdf: " + str(y_duration.sum()) # Plots: # fig1 = plt.figure() # ax1 = fig1.add_subplot(311) # ax2 = fig1.add_subplot(312) # ax3 = fig1.add_subplot(313) # ax1.plot(x_onpower, y_onpower) # ax1.set_title("PDF CDF: Onpower") # ax1.set_ylabel("density") # ax1.set_xlabel("Watts") # ax2.plot(x_offpower, y_offpower) # ax2.set_title(" PDF CDF: Offpower") # ax2.set_ylabel("denisty") # ax2.set_xlabel("Watts") # ax3.plot(x_duration, y_duration) # ax3.set_title("PDF CDF: Duration") # ax3.set_ylabel("density") # ax3.set_xlabel("Seconds") def featuresHist(self, **kwargs): """ Visualization tool to check if feature model distributions fit to samples for feature training (onpower_train, offpower_train and duration_train) Parameters ---------- kwargs : keyword arguments list with bins_onpower, bins_offpower and bin_duration. bins_feature: numpy.arange for plotting the hist with specified bin sizes. """ # Selecting bins automatically: bins_onpower = np.arange(self.onpower_train.min().values[0], self.onpower_train.max().values[0], (self.onpower_train.max().values[0] - self.onpower_train.min().values[0]) / 50) bins_offpower = np.arange(self.offpower_train.min().values[0], self.offpower_train.max().values[0], (self.offpower_train.max().values[0] - self.offpower_train.min().values[0]) / 50) bins_duration = np.arange(self.duration_train.min().values[0], self.duration_train.max().values[0], (self.duration_train.max().values[0] - self.duration_train.min().values[0]) / 50) # If a bin has been specified update the bin sizes. for key in kwargs: if key == 'bins_onpower': bins_onpower = kwargs[key] elif key == 'bins_offpower': bins_offpower = kwargs[key] elif key == 'bins_duration': bins_duration = kwargs[key] else: print "Non valid kwarg" # Plot structure: fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) # Evaluating score for: # Onpower x = np.arange(bins_onpower.min(), bins_onpower.max() + \ np.diff(bins_onpower)[0], np.diff(bins_onpower)[0] / float(1000)).reshape(-1, 1) y = self.__pdf2(self.onpower, x) norm = pd.cut( self.onpower_train.onpower, bins=bins_onpower).value_counts().max() / max(y) # Plots for Onpower ax1.hist( self.onpower_train.onpower.values, bins=bins_onpower, alpha=0.5) ax1.plot(x, y * norm) ax1.set_title("Feature: Onpower") ax1.set_ylabel("Counts") ax1.set_xlabel("Watts") # Offpower x = np.arange(bins_offpower.min(), bins_offpower.max() + \ np.diff(bins_offpower)[0], np.diff(bins_offpower)[0] / float(1000)).reshape(-1, 1) y = self.__pdf2(self.offpower, x) norm = pd.cut(self.offpower_train.offpower, bins=bins_offpower).value_counts().max() / max(y) # Plots for Offpower ax2.hist(self.offpower_train.offpower.values, bins=bins_offpower, alpha=0.5) ax2.plot(x, y * norm) ax2.set_title("Feature: Offpower") ax2.set_ylabel("Counts") ax2.set_xlabel("Watts") # Duration x = np.arange(bins_duration.min(), bins_duration.max() + \ np.diff(bins_duration)[0], np.diff(bins_duration)[0] / float(1000)).reshape(-1, 1) y = self.__pdf2(self.duration, x) norm = pd.cut(self.duration_train.duration, bins=bins_duration).value_counts().max() / max(y) # Plots for duration ax3.hist(self.duration_train.duration.values, bins=bins_duration, alpha=0.5) ax3.plot(x, y * norm) ax3.set_title("Feature: Duration") ax3.set_ylabel("Counts") ax3.set_xlabel("Seconds") def featuresHist_colors(self, **kwargs): """ Visualization tool to check if samples for feature training (onpower_train, offpower_train and duration_train) are equal for each appliance (same model appliance). Each appliance represented by a different color. Parameters ---------- kwargs : keyword arguments list with bins_onpower, bins_offpower and bin_duration. bins_feature: numpy.arange for plotting the hist with specified bin sizes. """ # Selecting bins automatically: bins_onpower = np.arange(self.onpower_train.min().values[0], self.onpower_train.max().values[0], (self.onpower_train.max().values[0] - self.onpower_train.min().values[0]) / 50) bins_offpower = np.arange(self.offpower_train.min().values[0], self.offpower_train.max().values[0], (self.offpower_train.max().values[0] - self.offpower_train.min().values[0]) / 50) bins_duration = np.arange(self.duration_train.min().values[0], self.duration_train.max().values[0], (self.duration_train.max().values[0] - self.duration_train.min().values[0]) / 50) # If a bin has been specified update the bin sizes. # Updating bins with specified values. for key in kwargs: if key == 'bins_onpower': bins_onpower = kwargs[key] elif key == 'bins_offpower': bins_offpower = kwargs[key] elif key == 'bins_duration': bins_duration = kwargs[key] else: print "Non valid kwarg" # Plot: fig1 = plt.figure() ax1 = fig1.add_subplot(311) ax2 = fig1.add_subplot(312) ax3 = fig1.add_subplot(313) start = 0 end = 0 for ind in np.arange(len(self.stats)): if self.stats[ind]['Nevents'] != 0: if ind == 0: start = 0 else: start = end end += self.stats[ind]['Nevents'] ax1.hist( self.onpower_train[start:end].onpower.values, bins=bins_onpower, alpha=0.5) ax2.hist( self.offpower_train[start:end].offpower.values, bins=bins_offpower, alpha=0.5) ax3.hist( self.duration_train[start:end].duration.values, bins=bins_duration, alpha=0.5) ax1.set_title("Feature: Onpower") ax1.set_xlabel("Watts") ax1.set_ylabel("Counts") ax2.set_title("Feature: Offpower") ax2.set_xlabel("Watts") ax2.set_ylabel("Counts") ax3.set_title("Feature: Duration") ax3.set_xlabel("Seconds") ax3.set_ylabel("Counts")
apache-2.0
Chandra-MARX/marx-test
tests/positions.py
1
21371
''' In every |marx| simulation, one or more sources are placed at some sky position. |marx| simulates photons coming from that position, traces them through the mirror and gratings and finally places them on the chip. With a known aspect solution, chip coordinates can then be transformed back to sky coordinates. In general, this will not recover the exact sky position where a photon started out. A big part of that is scatter in the mirrors, which blurs the image (see :ref:`sect-tests.PSF` for tests of the PSF). However, with a large number of photons, we can fit the average position which should be close to the real sky position. In real observations, other factors contribute, such as the finite resolution of the detectors (|marx| usually takes that into account, but it can be switched of through the ``--pixadj="EXACT"`` switch in :marxtool:`marx2fits`) and the uncertainty of the aspect solution. Within a single observation, positions will be less certain for fainter sources (due to Poisson statistics) and for sources at a larger off-axis angles (due to the larger PSF). ''' import shutil import subprocess import os from collections import OrderedDict from marxtest import base from marxtest.process_utils import marxpars_from_asol title = 'Coordinates on the sky and the chip' tests = ['ONC', 'RegularGrid', 'RegularGridHRCI'] class ONC(base.MarxTest): '''The `Orion Nebula Cluster (ONC) <http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=onc>`_ is a dense star forming region with about 1600 X-ray sources observed in the COUP survey by `Getman et al (2005) <http://adsabs.harvard.edu/abs/2005ApJS..160..319G>`_ . We simulate this field with |marx| and then run a source detection to check how well we recover the input coordinates. This will depend on the number of counts detected and the position in the field. To simplify the simulation input, we assume that all sources have flat lightcurves and are monoenergetic at the observed mean energy (the energy matters because the effective area is energy dependent and so is the PSF). We write a short C code that reads an input coordiante list and generates the photons in this manner. We compile the code, and call it as a :ref:`sect-usersource`. ''' title = 'Chandra Orion Ultradeep project' obsid = 3744 figures = OrderedDict([('ds9', {'alternative': '', 'caption': '`ds9`_ image of the observed data (left) and simulation (right). The sources detected in the simulation are overlayed. There are few cases where the read-out streak is identified as source or where two close sources are detected as one larger resolved source. The COUP catalog used as input is based on much longer merged observations and has been checked against optical and IR observations to remove such spurious detections.'}), ('dist', {'alternative': 'Scatter plot with distance from aimpoint vs coordinate error in the fit.', 'caption': 'Apart from a few outliers close to the aimpoint (mostly confused sources, see above), the distribution of coordinate errors follows spreads out with increasing distance, i.e. size of the PSF.'}) ]) summary='For this field, we know the true input coordinates so we can check how well |marx| reproduces those. In the center of the field (about one armin) the coordiante error is less than the size of an ACIS pixel for all sources and the average error never grows much beyond 1 ACIS pixel even for far off-axis source. The upper envelope of the distribution of errors is approximate linear and reaches 1 arcsec at a distance of 200 arcsec. No strong correlation of coordiante error and count rate of the source is apparent, indicating that the dominant error is not just due to Poisson counting statistics.' @base.Python def step_2(self): '''Make input coordinate table Coordinates are relative to pointing direction in arcmin''' import os from astropy.table import Table from astropy.io import fits asolfile = self.get_data_file('asol') asol = fits.getheader(asolfile, 1) coup = Table.read(os.path.join(self.pkg_data, 'COUP.tsv'), format='ascii.fast_tab') tab = Table() tab['RA'] = (coup['RAJ2000'] - asol['RA_NOM']) * 60 tab['DEC'] = (coup['DEJ2000'] - asol['DEC_NOM']) * 60 tab['weight'] = 10**(coup['Lt'] - 27) tab['energy'] = coup['<E>'] tab.write('coup.marxin', format='ascii.no_header', overwrite=True) @base.CCode def step_5(self): '''C code for a grid of sources. (``user.h`` and ``jdmath.h`` are shipped with |marx|.)''' ccode=r''' #include <stdio.h> #include <stdlib.h> #include <jdmath.h> #include "user.h" /* This user source implements many point sources via a file that * specifies the source positions and energies. The current implementation * assumes the format: * RA Dec weight energy * Here RA, Dec specifiy the source position, weight specifies the strength * of the source in relation to the others. */ typedef struct { double cosx, cosy, cosz; double weight; double energy; } Point_Source_Type; static unsigned int Num_Points; static Point_Source_Type *Point_Sources; static unsigned int Max_Num_Points; static char *do_realloc (char *p, unsigned int len) { if (p == NULL) p = malloc (len); else p = realloc (p, len); if (p == NULL) fprintf (stderr, "Not enough memory\n"); return p; } static void free_sources (void) { if (Point_Sources == NULL) return; free ((char *) Point_Sources); Point_Sources = NULL; } static int add_source (double ra, double dec, double weight, double energy) { Point_Source_Type *p; double cosx, cosy, cosz; /* Convert to God's units from arc-min */ ra = ra * (PI/(180.0 * 60.0)); dec = dec * (PI/(180.0 * 60.0)); if (Max_Num_Points == Num_Points) { Max_Num_Points += 32; p = (Point_Source_Type *)do_realloc ((char *)Point_Sources, Max_Num_Points * sizeof (Point_Source_Type)); if (p == NULL) { free_sources (); return -1; } Point_Sources = p; } p = Point_Sources + Num_Points; /* Note the the minus sign is to generate a vector pointing from the * source to the origin */ p->cosx = -cos (dec) * cos (ra); p->cosy = -cos (dec) * sin(ra); p->cosz = -sin (dec); p->weight = weight; p->energy = energy; Num_Points += 1; return 0; } static void normalize_sources (void) { double total; unsigned int i; total = 0; for (i = 0; i < Num_Points; i++) { Point_Sources[i].weight += total; total = Point_Sources[i].weight; } for (i = 0; i < Num_Points; i++) Point_Sources[i].weight /= total; /* Make sure no round-off error affects the weight of the last point */ Point_Sources[Num_Points - 1].weight = 1.0; } int user_open_source (char **argv, int argc, double area, double cosx, double cosy, double cosz) { FILE *fp; char line[1024]; char *file; unsigned int linenum; file = argv[0]; if (file == NULL) { fprintf (stderr, "UserSource Model requires FILE as argument\n"); return -1; } fp = fopen (file, "r"); if (fp == NULL) { fprintf (stderr, "Unable to open %s\n", file); return -1; } linenum = 0; while (NULL != fgets (line, sizeof (line), fp)) { double ra, dec, weight, energy; linenum++; if (4 != sscanf (line, "%lf %lf %lf %lf", &ra, &dec, &weight, &energy)) continue; if (weight <= 0.0) { fprintf (stderr, "weight on line %d of %s must be positive\n", linenum, file); free_sources (); return -1; } if (-1 == add_source (ra, dec, weight, energy)) { fclose (fp); return -1; } } fclose (fp); if (Num_Points == 0) { fprintf (stderr, "%s contains no sources\n", file); return -1; } normalize_sources (); return 0; } void user_close_source (void) { free_sources (); } int user_create_ray (double *delta_t, double *energy, double *cosx, double *cosy, double *cosz) { double r; Point_Source_Type *p; p = Point_Sources; r = JDMrandom (); while (r > p->weight) p++; *delta_t = -1.0; *energy = p->energy; *cosx = p->cosx; *cosy = p->cosy; *cosz = p->cosz; return 0; } int main (int a, char **b) { (void) a; (void) b; return 1; } ''' return 'pnts.c', ccode @base.Python def step_6(self): '''compile USER code |marx| ships with a few examples of user sources. We pick one of them, copy them to the right directory and compile it with gcc. ''' marxpath = self.conf.get('marx', 'path') src = os.path.join(marxpath, 'share', 'doc', 'marx', 'examples', 'user-source') shutil.copy(os.path.join(src, 'user.h'), os.path.join(self.basepath, 'user.h')) jdmath_h = os.path.join(marxpath, 'include') jdmath_a = os.path.join(marxpath, 'lib', 'libjdmath.a') subprocess.call(['gcc', '-shared', 'pnts.c', '-o', 'pnts.so', '-fPIC', '-I' + jdmath_h, jdmath_a]) @base.Shell def step_7(self): '''Unzip fits file. MARX cannot read zipped fits files, so we need to unzip the .fits.gz asol files that we downloaded from the archive. On the other hand, `CIAO`_ tools work on both zipped or unzipped files, so there is no need to unzip all of them, just the files that MARX reads as input. ''' asol = self.get_data_file('asol') return [f'gunzip -f {asol}'] @base.Marx def step_8(self): '''run marx USER source matching observation''' asol = self.get_data_file('asol') evt = self.get_data_file('evt2') pars = marxpars_from_asol(self.conf, asol, evt) pars['OutputDir'] = 'COUP' pars['SourceType'] = 'USER' pars['UserSourceFile'] = os.path.join(self.basepath, 'pnts.so') pars['UserSourceArgs'] = os.path.join(self.basepath, 'coup.marxin') return pars @base.Marx2fits def step_9(self): 'turn into fits file' return '--pixadj=EDSER', 'COUP', 'COUP.fits' @base.Ciao def step_10(self): '''ds9 image of the PSF In the observation, the brightest sources are piled-up. We don't bother simulating this here, so we just set the scaling limits to bring out the fainter details and ignore the bright peaks. ''' return ['''ds9 -log -cmap heat {0} COUP.fits -scale limits 0 2000 -frame 1 -regions command 'text 5:35:15 -5:22:09 # text=Observation font="helvetica 24"' -frame 2 -regions command 'text 5:35:15 -5:22:09 # text=MARX font="helvetica 24"' -region load src.fits -saveimage {1} -exit'''.format(self.get_data_file("evt2"), self.figpath(list(self.figures.keys())[0]))] @base.Ciao def step_11(self): '''Source detection''' out = ['dmcopy "COUP.fits[EVENTS][bin x=2500:5500:2,y=2500:5500:2]" im.fits option=image clobber=yes', 'mkpsfmap im.fits psf.map 1.4 ecf=0.5', 'celldetect im.fits src.fits psffile=psf.map clobber=yes' ] return out @base.Python def step_15(self): '''Check position of detected sources''' import numpy as np import matplotlib.pyplot as plt from astropy.table import Table from astropy.coordinates import SkyCoord from astropy.io import fits src = Table.read('src.fits') srcin = Table.read(os.path.join(self.pkg_data, 'COUP.tsv'), format='ascii.fast_tab') src_co = SkyCoord(src['RA'], src['DEC'], unit='deg') srcin_co = SkyCoord(srcin['RAJ2000'], srcin['DEJ2000'], unit='deg') idx, d2d, d3d = src_co.match_to_catalog_sky(srcin_co) asolfile = self.get_data_file('asol') asol = fits.getheader(asolfile, 1) cen = SkyCoord(asol['RA_NOM'], asol['DEC_NOM'], unit='deg') d = cen.separation(src_co).arcsec fig = plt.figure() ax1 = plt.subplot(111) scat1 = ax1.scatter(d, d2d.arcsec, c=np.log10(src['NET_COUNTS']), lw=1) ax1.set_xlabel('distance from aimpoint [arcsec]') ax1.set_ylabel('coordinate error [arcsec]') ax1.set_xlim([0, 350]) ax1.set_ylim([0, 2]) cbar1 = fig.colorbar(scat1, ax=ax1) cbar1.set_label('log(net counts per source)') fig.savefig(self.figpath(list(self.figures.keys())[1])) class RegularGrid(base.MarxTest): '''In this example we place a radial grid of sources on the sky. Each source emits an equal number of photons (exactly, no Poisson statistics) so that we can compare the accuracy of the position we recover. Note that the *detected* number of photons will be smaller for off-axis photons because of vignetting! We write a short C code that generates the photons in this manner, compile it, and call is as a :ref:`sect-usersource`. ''' DetectorType = 'ACIS-I' title = 'Regular Grid (ACIS)' figures = OrderedDict([('ds9', {'alternative': 'Sources positioned like knots in a spider web.', 'caption': '`ds9`_ image of the simulation. The size of the PSF increases further away from the aimpoint.'}), ('hist', {'alternative': 'Plot is described in the caption.', 'caption': '*left*: The error in the position (measured radially to the optical axis) increases with the distance to the optical axis. One part of this is just that the effective area and thus the number of counts decreases. There is also a systematic trend where sources at larger off-acis angle are systematically fitted too close to the center. Further investigation is necessary to check if this is a problem of |marx| related or :ciao:`celldetect`. In any case, the typical offset is below 0.2 arcsec, which is less then half a pixel in ACIS. *right*: Difference in position angle between input and fit. (Outliers beyond the plot range are not shown.)'}) ]) summary = 'The input position is typically recovered to much better than one pixel for sources with a few hundred counts. There is a small systematic trend that needs to be studied further.' @base.CCode def step_5(self): '''C code for a grid of sources. (``user.h`` is shipped with |marx|.)''' ccode=''' #include <stdio.h> #include <math.h> #include "user.h" static double Source_CosX; static double Source_CosY; static double Source_CosZ; int user_open_source (char **argv, int argc, double area, double cosx, double cosy, double cosz) { return 0; } void user_close_source (void) { } static double To_Radians = (M_PI / 180.0 / 3600.0); #define ARC_SECONDS_PER_CELL 50 #define ANGULAR_STEPS 16 int user_create_ray (double *delta_t, double *energy, double *cosx, double *cosy, double *cosz) { static int last_i = 0; static int last_j = 0; double theta, phi; double cos_theta, sin_theta; if (last_j == ANGULAR_STEPS){ last_j = 0; last_i++; } if (last_i == 20) last_i = 0; theta = To_Radians * last_i * ARC_SECONDS_PER_CELL; phi = (10. /180 * M_PI) + last_j * 2 * M_PI / ANGULAR_STEPS; sin_theta = sin(theta); *cosx = -cos (theta); *cosy = sin_theta * cos (phi); *cosz = sin_theta * sin (phi); *delta_t = -1.0; *energy = -1.0; if (last_i ==0){ last_i++; } else { last_j++; } return 0; } int main (int a, char **b) { (void) a; (void) b; return 1; }''' return 'radialgrid.c', ccode @base.Python def step_6(self): '''compile USER code''' marxpath = self.conf.get('marx', 'path') src = os.path.join(marxpath, 'share', 'doc', 'marx', 'examples', 'user-source', 'user.h') shutil.copy(os.path.join(src), os.path.join(self.basepath, 'user.h')) subprocess.call(['gcc', '-lm', '-fPIC', '-shared', 'radialgrid.c', '-o', 'radialgrid.so']) @base.Marx def step_7(self): '''run USER source''' return {'SourceType': 'USER', 'OutputDir': 'points', 'GratingType': 'NONE', 'SourceRA': 90., 'SourceDEC': 0., 'RA_Nom': 90., 'Dec_Nom': 0, 'Roll_Nom': 0, 'DetectorType': self.DetectorType, 'UserSourceFile': os.path.join(self.basepath, 'radialgrid.so'), 'NumRays': -100000, 'ExposureTime': 0} @base.Marx2fits def step_8(self): 'turn into fits file' return '--pixadj=EDSER', 'points', 'points.fits' @base.Ciao def step_10(self): '''ds9 image of the PSF''' return ['''ds9 -width 500 -height 500 -log -cmap heat points.fits -pan to 4097 4097 physical -zoom 0.5 -bin factor 2 -grid -saveimage {0} -exit'''.format(self.figpath(list(self.figures.keys())[0]))] @base.Ciao def step_11(self): '''Source detection''' out = ['dmcopy "points.fits[EVENTS][bin x=3000:5100:2,y=3000:5100:2]" im.fits option=image clobber=yes', 'mkpsfmap im.fits psf.map 1.4 ecf=0.5 clobber=yes', 'celldetect im.fits src.fits psffile=psf.map clobber=yes' ] return out @base.Python def step_15(self): '''Check position of detected sources''' import numpy as np import matplotlib.pyplot as plt from astropy.table import Table from astropy.coordinates import SkyCoord src = Table.read('src.fits') # Find distance from input position. src['RA_INPUT'] = src['RA'] - (src['RA'] // (360./16.)) * (360./16.) - 10. # Problem: Might expect source at 1.0, # but measure at 0.99. In this case distance to next lower source # is 0.99. Thus shift input by 0.005 (about 50 arcsec / 2) # before integer devision src['DEC_INPUT'] = src['DEC'] - ((0.005 + src['DEC']) // (50./3600.)) * (50./3600.) cen = SkyCoord(90., 0, unit='deg') det = SkyCoord(src['RA'], src['DEC'], unit='deg') d = cen.separation(det).arcsec d_err = np.mod(d + 10, 50.) - 10 ang = cen.position_angle(det).degree # Subtract offset that we placed in the C code to avoid 0./360. ambiguity # Step width is 360./16 = 22.5 deg # Offset is 10 deg. Complement we find here is 12.5 deg. ang = ang - 12.5 ang_err = np.mod(ang + 2, 360. / 16.) - 2 ind = d > 10 fig = plt.figure(figsize=(8, 4)) ax1 = plt.subplot(121) scat1 = ax1.scatter(d, d_err, c=src['NET_COUNTS'], lw=1) ax1.set_xlabel('distance [arcsec]') ax1.set_ylabel('distance error [arcsec]') ax1.set_xlim([-10, 620]) ax1.set_ylim([-1, 0.5]) ax2 = plt.subplot(122) scat2 = ax2.scatter(ang, ang_err, c=src['NET_COUNTS'], lw=1) ax2.set_xlabel('pos ang [deg]') ax2.set_ylabel('pos ang error [deg]') ax2.set_xlim([-5, 350]) ax2.set_ylim([-0.3, 0.3]) cbar2 = fig.colorbar(scat2, ax=ax2) cbar2.set_label('net counts per source') fig.savefig(self.figpath(list(self.figures.keys())[1])) class RegularGridHRCI(RegularGrid): '''Same as above, but with HRC-I as a detector. The field-of-view for the HRC-I is larger for than for ACIS-I, but the PSF becomes very large at large off-axis angles and thus the positional uncertainty will be so large that a comparison to |marx| is no longer helpful to test the accuracy of the |marx| simulations. ''' figures = OrderedDict([('ds9', {'alternative': 'Sources positioned like knots in a spider web. The image is very similar to the previous ACIS example.', 'caption': '`ds9`_ image of the simulation. The size of the PSF increases further away from the aimpoint.'}), ('hist', {'alternative': 'Plot is described in the caption.', 'caption': 'See previous example. The same trends are visible with a slightly larger scatter.'}) ]) summary = 'In the central few arcmin the input position is typically recovered to better than 0.2 pixels for sources with a few hundred counts.' DetectorType = 'HRC-I' title = 'Regular grid (HRC)' @base.Ciao def step_10(self): '''ds9 image of the PSF''' return ['''ds9 -width 500 -height 500 -log -cmap heat points.fits -pan to 16392 16392 physical -bin factor 16 -grid -saveimage {0} -exit'''.format(self.figpath(list(self.figures.keys())[0]))] @base.Ciao def step_11(self): '''Source detection''' out = ['dmcopy "points.fits[EVENTS][bin x=8500:24500:8,y=8500:24500:8]" im.fits option=image clobber=yes', 'mkpsfmap im.fits psf.map 1.4 ecf=0.5 clobber=yes', 'celldetect im.fits src.fits psffile=psf.map clobber=yes' ] return out
gpl-2.0
jcrudy/glm-sklearn
glmsklearn/glm.py
1
9972
import statsmodels.api import statsmodels.genmod.families.family import numpy as np from sklearn.metrics import r2_score class GLM(object): ''' A scikit-learn style wrapper for statsmodels.api.GLM. The purpose of this class is to make generalized linear models compatible with scikit-learn's Pipeline objects. family : instance of subclass of statsmodels.genmod.families.family.Family The family argument determines the distribution family to use for GLM fitting. xlabels : iterable of strings, optional (empty by default) The xlabels argument can be used to assign names to data columns. This argument is not generally needed, as names can be captured automatically from most standard data structures. If included, must have length n, where n is the number of features. Note that column order is used to compute term values and make predictions, not column names. ''' def __init__(self, family, add_constant=True): self.family = family self.add_constant = add_constant def _scrub_x(self, X, offset, exposure, **kwargs): ''' Sanitize input predictors and extract column names if appropriate. ''' no_labels = False if 'xlabels' not in kwargs and 'xlabels' not in self.__dict__: #Try to get xlabels from input data (for example, if X is a pandas DataFrame) try: self.xlabels = list(X.columns) except AttributeError: try: self.xlabels = list(X.design_info.column_names) except AttributeError: try: self.xlabels = list(X.dtype.names) except TypeError: no_labels = True elif 'xlabels' not in self.__dict__: self.xlabels = kwargs['xlabels'] #Convert to internally used data type X = np.asarray(X,dtype=np.float64) m,n = X.shape if offset is not None: offset = np.asarray(offset,dtype=np.float64) offset = offset.reshape(offset.shape[0]) if exposure is not None: exposure = np.asarray(exposure,dtype=np.float64) exposure = exposure.reshape(exposure.shape[0]) #Make up labels if none were found if no_labels: self.xlabels = ['x'+str(i) for i in range(n)] return X, offset, exposure def _scrub(self, X, y, offset, exposure, **kwargs): ''' Sanitize input data. ''' #Check whether X is the output of patsy.dmatrices if y is None and type(X) is tuple: y, X = X #Handle X separately X, offset, exposure = self._scrub_x(X, offset, exposure, **kwargs) #Convert y to internally used data type y = np.asarray(y,dtype=np.float64) y = y.reshape(y.shape[0]) #Make sure dimensions match if y.shape[0] != X.shape[0]: raise ValueError('X and y do not have compatible dimensions.') return X, y, offset, exposure def fit(self, X, y = None, offset = None, exposure = None, xlabels = None): ''' Fit a GLM model to the input data X and y. Parameters ---------- X : array-like, shape = [m, n] where m is the number of samples and n is the number of features The training predictors. The X parameter can be a numpy array, a pandas DataFrame, a patsy DesignMatrix, or a tuple of patsy DesignMatrix objects as output by patsy.dmatrices. y : array-like, optional (default=None), shape = [m] where m is the number of samples The training response. The y parameter can be a numpy array, a pandas DataFrame with one column, a Patsy DesignMatrix, or can be left as None (default) if X was the output of a call to patsy.dmatrices (in which case, X contains the response). xlabels : iterable of strings, optional (default=None) Convenient way to set the xlabels parameter while calling fit. Ignored if None (default). See the GLM class for an explanation of the xlabels parameter. ''' #Format and label the data if xlabels is not None: self.set_params(xlabels=xlabels) X, y, offset, exposure = self._scrub(X,y,offset,exposure,**self.__dict__) #Add a constant column if self.add_constant: X = statsmodels.api.add_constant(X, prepend=True) #Do the actual work model = statsmodels.api.GLM(y, X, self.family, offset=offset, exposure=exposure) result = model.fit() self.coef_ = result.params return self def predict(self, X, offset = None, exposure = None): ''' Predict the response based on the input data X. Parameters ---------- X : array-like, shape = [m, n] where m is the number of samples and n is the number of features The training predictors. The X parameter can be a numpy array, a pandas DataFrame, or a patsy DesignMatrix. ''' #Format the data X, offset, exposure = self._scrub_x(X, offset, exposure) #Linear transformation eta = self.transform(X, offset, exposure) #Nonlinear transformation y_hat = self.family.fitted(eta) return y_hat def transform(self, X, offset = None, exposure = None): ''' Perform a linear transformation of X. Parameters ---------- X : array-like, shape = [m, n] where m is the number of samples and n is the number of features The training predictors. The X parameter can be a numpy array, a pandas DataFrame, or a patsy DesignMatrix. ''' #Format the data X, offset, exposure = self._scrub_x(X, offset, exposure) #Add a constant column if self.add_constant: X = statsmodels.api.add_constant(X, prepend=True) #Compute linear combination eta = np.dot(X,self.coef_) #Apply offset and exposure if offset is not None: eta += offset if exposure is not None: eta += np.log(exposure) return eta def score(self, X, y = None, offset = None, exposure = None, xlabels = None): X, y, offset, exposure = self._scrub(X,y,offset,exposure,**self.__dict__) y_pred = self.predict(X, offset=offset, exposure=exposure) return r2_score(y, y_pred) def get_params(self, deep = False): return {} def __repr__(self): return self.__class__.__name__ + '()' def __str__(self): return self.__class__.__name__ + '()' class GLMFamily(GLM): family = NotImplemented def __init__(self, add_constant=True): super(GLMFamily,self).__init__(family=self.__class__.family(), add_constant=add_constant) class BinomialRegressor(GLMFamily): family = statsmodels.genmod.families.family.Binomial class GammaRegressor(GLMFamily): family = statsmodels.genmod.families.family.Gamma class GaussianRegressor(GLMFamily): family = statsmodels.genmod.families.family.Gaussian class InverseGaussianRegressor(GLMFamily): family = statsmodels.genmod.families.family.InverseGaussian class NegativeBinomialRegressor(GLMFamily): family = statsmodels.genmod.families.family.NegativeBinomial class PoissonRegressor(GLMFamily): family = statsmodels.genmod.families.family.Poisson # def fit(self, X, y = None, exposure = None, xlabels = None): # ''' # Fit a GLM model to the input data X and y. # # # Parameters # ---------- # X : array-like, shape = [m, n] where m is the number of samples and n is the number of features # The training predictors. The X parameter can be a numpy array, a pandas DataFrame, a patsy # DesignMatrix, or a tuple of patsy DesignMatrix objects as output by patsy.dmatrices. # # # y : array-like, optional (default=None), shape = [m] where m is the number of samples # The training response. The y parameter can be a numpy array, a pandas DataFrame with one # column, a Patsy DesignMatrix, or can be left as None (default) if X was the output of a # call to patsy.dmatrices (in which case, X contains the response). # # # xlabels : iterable of strings, optional (default=None) # Convenient way to set the xlabels parameter while calling fit. Ignored if None (default). # See the GLM class for an explanation of the xlabels parameter. # # ''' # #Format and label the data # if xlabels is not None: # self.set_params(xlabels=xlabels) # X, y = self._scrub(X,y,**self.__dict__) # if exposure is not None: # exposure = np.asarray(exposure) # exposure = exposure.reshape(exposure.shape[0]) # if exposure.shape != y.shape: # raise ValueError('Shape of exposure does not match shape of y.') # # #Add a constant column # if self.add_constant: # X = statsmodels.api.add_constant(X, prepend=True) # # #Do the actual work # if exposure is None: # model = statsmodels.api.GLM(y, X, self.family) # else: # model = statsmodels.api.GLM(y, X, self.family, exposure=exposure) # result = model.fit() # self.coef_ = result.params # # return self
bsd-3-clause
valsusa/PICronos
Explicit/1d1v-python/landau_damping.py
1
5578
""" 1D electrostatic particle-in-cell solver for studying the Landau damping. Translation of the landau.m MATLAB routine by G. Lapenta. E. Boella: [email protected] """ import os, time start_time = time.clock() import numpy as np #array syntax import pylab as plt #plot import matplotlib.patches as mpatches #plot import scipy import scipy.fftpack from scipy import sparse #special functions, optimization, linear algebra from scipy.sparse import linalg from scipy.linalg import norm # Output folder #path = './Results' #if not os.path.exists(path): # os.makedirs(path) # Set plotting parameters params = {'axes.labelsize': 'large', 'xtick.labelsize': 'medium', 'ytick.labelsize': 'medium', 'font.size': 15, 'font.family': 'sans-serif', 'text.usetex': False, 'mathtext.fontset': 'stixsans',} plt.rcParams.update(params) ## Switch on interactive plotting mode plt.ion() # Simulation parameters L = 12. # Domain size DT = 0.1 # Time step NT = 200 # Number of time steps TOut = round(NT/100) # Output period verbose = True NG = 60 # Number of grid cells N = NG * 500 # Number of particles WP = 1 # Plasma frequency QM = -1. # Charge/mass ratio VT = 1. # Thermal speed # perturbation VP1 = 0.5 * VT mode = 1 Q = WP**2 / (QM*N/L) # rho0*L/N: charge carried by a single particle? rho_back = -Q*N/L # Background charge density? dx = L / NG # Grid step # Auxilliary vectors p = np.concatenate([np.arange(N), np.arange(N)]) # Some indices up to N Poisson = sparse.spdiags(([1, -2, 1] * np.ones((1, NG-1), dtype=int).T).T, [-1, 0, 1], NG-1, NG-1) Poisson = Poisson.tocsc() # Cell center coordinates xg = np.linspace(0, L-dx, NG) + dx/2 # electrons xp = np.linspace(0, L-L/N, N).T # Particle positions vp = VT * np.random.randn(N) # particle thermal spread # Add electron perturbation to excite the desired mode vp += VP1 * np.cos(2 * np.pi * xp / L * mode) xp[np.where(xp < 0)] += L xp[np.where(xp >= L)] -= L histEnergy, histPotE, histKinE, Ep, normphi, t = [], [], [], [], [], [] if verbose: plt.figure(1, figsize=(16,9)) # Main cycle for it in xrange(NT+1): # update particle position xp xp += vp * DT # Periodic boundary condition xp[np.where(xp < 0)] += L xp[np.where(xp >= L)] -= L # Project particles->grid g1 = np.floor(xp/dx - 0.5) g = np.concatenate((g1, g1+1)) fraz1 = 1 - np.abs(xp/dx - g1 - 0.5) fraz = np.concatenate((fraz1, 1-fraz1)) g[np.where(g < 0)] += NG g[np.where(g > NG-1)] -= NG mat = sparse.csc_matrix((fraz, (p, g)), shape=(N, NG)) rho = Q / dx * mat.toarray().sum(axis=0) + rho_back # Compute electric field potential Phi = linalg.spsolve(Poisson, -dx**2 * rho[0:NG-1]) Phi = np.concatenate((Phi,[0])) normphi.append(norm(Phi)) # Electric field on the grid Eg = (np.roll(Phi, 1) - np.roll(Phi, -1)) / (2*dx) Ep.append(Eg[round(NG/2)]) # Electric field fft ft = abs(scipy.fft(Eg)) k = scipy.fftpack.fftfreq(Eg.size,xg[1]-xg[0]) # interpolation grid->particle and velocity update vp += mat * QM * Eg * DT bins,edges=np.histogram(vp,bins=40,range=(-3.2,3.2)) left,right = edges[:-1],edges[1:] vc = np.array([left,right]).T.flatten() fv = np.array([bins,bins]).T.flatten() Etot = 0.5 * (Eg**2).sum() * dx histEnergy.append(Etot+0.5 * Q/QM * (vp**2).sum()) histPotE.append(0.5 * (Eg**2).sum() * dx) histKinE.append(0.5 * Q/QM * (vp**2).sum()) t.append(it*DT) if (np.mod(it, TOut) == 0) and verbose: # Phase space plt.clf() plt.subplot(2, 2, 1) plt.scatter(xp[0:-1:2], vp[0:-1:2], s=0.5, marker='.', color='blue') plt.xlim(0, L) plt.ylim(-6, 6) plt.xlabel('x') plt.ylabel('v') plt.legend((mpatches.Patch(color='w'), ), (r'$\omega_{pe}t=$' + str(DT*it), ), loc=1, frameon=False) # Electric field plt.subplot(2, 2, 2) plt.xlim(0, 15) plt.ylim(0, 50) plt.xlabel('x') plt.plot(L*k, ft, label='fft(E)', linewidth=2) plt.legend(loc=1) # Energies plt.subplot(2, 2, 3) plt.xlim(0, NT*DT) plt.ylim(1e-5, 100) plt.xlabel('time') plt.yscale('log') plt.plot(t, histPotE, label='Potential', linewidth=2) plt.plot(t, histKinE, label='Kinetic', linewidth=2) plt.plot(t, histEnergy, label='Total Energy', linestyle='--', linewidth=2) plt.legend(loc=4) plt.subplot(2, 2, 4) plt.xlim(0, NT*DT) plt.ylim(-0.5, 0.5) plt.xlabel('time') #plt.yscale('log') plt.plot(t,Ep, label='E(x=L/2)', linewidth=2) plt.legend(loc=1) plt.pause(0.000000000000001) print it #plt.savefig(os.path.join(path, 'twostream%3.3i' % (it/TOut,) + '.png')) np.savetxt('norm_phi.txt',(t,normphi)) print 'Time elapsed: ', time.clock() - start_time # Comment this line if you want the figure to automatically close at the end of the simulation raw_input('Press enter...')
lgpl-3.0
richrr/scripts
python/make_convex_hull_pcoa_plot.py
1
3870
#!/usr/bin/env python # File created on 09 Jul 2013 from __future__ import division #https://groups.google.com/forum/#!searchin/qiime-forum/PCoA/qiime-forum/zigFP_wKaps/QPzKZgQW55IJ # adapted from __author__ = "Yoshiki Vazquez Baeza" __copyright__ = "Copyright 2013, ApocaQIIME" __credits__ = ["Yoshiki Vazquez Baeza"] __license__ = "GPL" __version__ = "1.7.0" __maintainer__ = "Yoshiki Vazquez Baeza" __email__ = "[email protected]" __status__ = "Use at your own risk" # the creation of the convex hull is based on the example as provided by scipy # see this URL http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.ConvexHull.html import os import sys sys.path.insert(0,"/usr/lib/python2.7/dist-packages/") from scipy.spatial import ConvexHull import numpy as np import matplotlib.pyplot as plt from qiime.sort import natsort from qiime.parse import parse_coords, parse_mapping_file from qiime.util import (parse_command_line_parameters, make_option, qiime_system_call) from qiime.colors import get_qiime_hex_string_color script_info = {} script_info['brief_description'] = "" script_info['script_description'] = "" script_info['script_usage'] = [("","","")] script_info['output_description']= "" script_info['required_options'] = [ make_option('-i','--coordinates_fp', type="existing_filepath",help='the ' 'input coordinates filepath'), make_option('-m','--mapping_file_fp', type="existing_filepath",help='the ' 'mapping file filepath'), make_option('-c','--category',type="string",help='header name of the ' 'category of interest that you want the convex hulls to be created on') ] script_info['optional_options'] = [ make_option('-o','--output_fp', type="new_filepath", help='filename and ' 'format for the plot, the extension will determine the format of the ' 'output file (pdf, eps or png)', default='convex_hull.pdf') ] script_info['version'] = __version__ def main(): option_parser, opts, args = parse_command_line_parameters(**script_info) coordinates_fp = opts.coordinates_fp mapping_file_fp = opts.mapping_file_fp category_header_name = opts.category output_fp = opts.output_fp coords_headers, coords_data, coords_eigenvalues, coords_percents = parse_coords(open(coordinates_fp, 'U')) mapping_data, mapping_headers, _ = parse_mapping_file(open(mapping_file_fp, 'U')) category_header_index = mapping_headers.index(category_header_name) category_names = list(set([line[category_header_index] for line in mapping_data])) xtitle = 'PC1 (%.0f%%)' % round(coords_percents[0]) ytitle = 'PC2 (%.0f%%)' % round(coords_percents[1]) main_figure = plt.figure() main_axes = main_figure.add_subplot(1, 1, 1, axisbg='white') plt.xlabel(xtitle) plt.ylabel(ytitle) main_axes.tick_params(axis='y') main_axes.tick_params(axis='x') # sort the data!!! that way you can match make_3d_plots.py for index, category in enumerate(natsort(category_names)): sample_ids_list = [line[0] for line in mapping_data if line[category_header_index] == category] qiime_color = get_qiime_hex_string_color(index) if len(sample_ids_list) < 3: continue indices = [coords_headers.index(sample_id) for sample_id in sample_ids_list] points = coords_data[indices, :2]# * coords_percents[:2] hull = ConvexHull(points) main_axes.plot(points[:,0], points[:,1], 'o', color=qiime_color) for simplex in hull.simplices: main_axes.plot(points[simplex,0], points[simplex,1], 'k-') main_axes.plot(points[hull.vertices,0], points[hull.vertices,1], '--', lw=2, color=qiime_color) # plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], '--', color=qiime_color) #plt.show() main_figure.savefig(output_fp) if __name__ == "__main__": main()
gpl-3.0
ycaihua/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
mattilyra/scikit-learn
sklearn/cluster/mean_shift_.py
15
15507
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Martino Sorbaro <[email protected]> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin from ..externals.joblib import Parallel from ..externals.joblib import delayed def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0, n_jobs=1): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile), n_jobs=n_jobs) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] # separate function for each seed's iterative loop def _mean_shift_single_seed(my_mean, X, nbrs, max_iter): # For each seed, climb gradient until convergence or max_iter bandwidth = nbrs.get_params()['radius'] stop_thresh = 1e-3 * bandwidth # when mean has converged completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): return tuple(my_mean), len(points_within) completed_iterations += 1 def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, n_jobs=1): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. .. versionadded:: 0.17 Parallel Execution using *n_jobs*. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_mean_shift.py for an example. """ if bandwidth is None: bandwidth = estimate_bandwidth(X, n_jobs=n_jobs) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None,\ got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth, n_jobs=n_jobs).fit(X) # execute iterations on all seeds in parallel all_res = Parallel(n_jobs=n_jobs)( delayed(_mean_shift_single_seed) (seed, X, nbrs, max_iter) for seed in seeds) # copy results in a dictionary for i in range(len(seeds)): if all_res[i] is not None: center_intensity_dict[all_res[i][0]] = all_res[i][1] if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy \ or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth, n_jobs=n_jobs).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1, n_jobs=n_jobs).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f," " using data points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=1): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq self.n_jobs = n_jobs def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all, n_jobs=self.n_jobs) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/matplotlib/markers.py
10
26324
""" This module contains functions to handle markers. Used by both the marker functionality of `~matplotlib.axes.Axes.plot` and `~matplotlib.axes.Axes.scatter`. All possible markers are defined here: ============================== =============================================== marker description ============================== =============================================== "." point "," pixel "o" circle "v" triangle_down "^" triangle_up "<" triangle_left ">" triangle_right "1" tri_down "2" tri_up "3" tri_left "4" tri_right "8" octagon "s" square "p" pentagon "*" star "h" hexagon1 "H" hexagon2 "+" plus "x" x "D" diamond "d" thin_diamond "|" vline "_" hline TICKLEFT tickleft TICKRIGHT tickright TICKUP tickup TICKDOWN tickdown CARETLEFT caretleft CARETRIGHT caretright CARETUP caretup CARETDOWN caretdown "None" nothing None nothing " " nothing "" nothing ``'$...$'`` render the string using mathtext. `verts` a list of (x, y) pairs used for Path vertices. The center of the marker is located at (0,0) and the size is normalized. path a `~matplotlib.path.Path` instance. (`numsides`, `style`, `angle`) see below ============================== =============================================== The marker can also be a tuple (`numsides`, `style`, `angle`), which will create a custom, regular symbol. `numsides`: the number of sides `style`: the style of the regular symbol: ===== ============================================= Value Description ===== ============================================= 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (`numsides` and `angle` is ignored) ===== ============================================= `angle`: the angle of rotation of the symbol, in degrees For backward compatibility, the form (`verts`, 0) is also accepted, but it is equivalent to just `verts` for giving a raw set of vertices that define the shape. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import numpy as np from .cbook import is_math_text, is_string_like, is_numlike, iterable from matplotlib import rcParams from .path import Path from .transforms import IdentityTransform, Affine2D # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN) = list(xrange(8)) class MarkerStyle(object): markers = { '.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', TICKLEFT: 'tickleft', TICKRIGHT: 'tickright', TICKUP: 'tickup', TICKDOWN: 'tickdown', CARETLEFT: 'caretleft', CARETRIGHT: 'caretright', CARETUP: 'caretup', CARETDOWN: 'caretdown', "None": 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing' } # Just used for informational purposes. is_filled() # is calculated in the _set_* functions. filled_markers = ( 'o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd') fillstyles = ('full', 'left', 'right', 'bottom', 'top', 'none') _half_fillstyles = ('left', 'right', 'bottom', 'top') # TODO: Is this ever used as a non-constant? _point_size_reduction = 0.5 def __init__(self, marker=None, fillstyle='full'): """ MarkerStyle Attributes ---------- markers : list of known markes fillstyles : list of known fillstyles filled_markers : list of known filled markers. Parameters ---------- marker : string or array_like, optional, default: None See the descriptions of possible markers in the module docstring. fillstyle : string, optional, default: 'full' 'full', 'left", 'right', 'bottom', 'top', 'none' """ self._fillstyle = fillstyle self.set_marker(marker) self.set_fillstyle(fillstyle) def __getstate__(self): d = self.__dict__.copy() d.pop('_marker_function') return d def __setstate__(self, statedict): self.__dict__ = statedict self.set_marker(self._marker) self._recache() def _recache(self): self._path = Path(np.empty((0, 2))) self._transform = IdentityTransform() self._alt_path = None self._alt_transform = None self._snap_threshold = None self._joinstyle = 'round' self._capstyle = 'butt' self._filled = True self._marker_function() if six.PY3: def __bool__(self): return bool(len(self._path.vertices)) else: def __nonzero__(self): return bool(len(self._path.vertices)) def is_filled(self): return self._filled def get_fillstyle(self): return self._fillstyle def set_fillstyle(self, fillstyle): """ Sets fillstyle Parameters ---------- fillstyle : string amongst known fillstyles """ if fillstyle not in self.fillstyles: raise ValueError("Unrecognized fillstyle %s" % ' '.join(self.fillstyles)) self._fillstyle = fillstyle self._recache() def get_joinstyle(self): return self._joinstyle def get_capstyle(self): return self._capstyle def get_marker(self): return self._marker def set_marker(self, marker): if (iterable(marker) and len(marker) in (2, 3) and marker[1] in (0, 1, 2, 3)): self._marker_function = self._set_tuple_marker elif isinstance(marker, np.ndarray): self._marker_function = self._set_vertices elif not isinstance(marker, list) and marker in self.markers: self._marker_function = getattr( self, '_set_' + self.markers[marker]) elif is_string_like(marker) and is_math_text(marker): self._marker_function = self._set_mathtext_path elif isinstance(marker, Path): self._marker_function = self._set_path_marker else: try: Path(marker) self._marker_function = self._set_vertices except ValueError: raise ValueError('Unrecognized marker style {}'.format(marker)) self._marker = marker self._recache() def get_path(self): return self._path def get_transform(self): return self._transform.frozen() def get_alt_path(self): return self._alt_path def get_alt_transform(self): return self._alt_transform.frozen() def get_snap_threshold(self): return self._snap_threshold def _set_nothing(self): self._filled = False def _set_custom_marker(self, path): verts = path.vertices rescale = max(np.max(np.abs(verts[:, 0])), np.max(np.abs(verts[:, 1]))) self._transform = Affine2D().scale(0.5 / rescale) self._path = path def _set_path_marker(self): self._set_custom_marker(self._marker) def _set_vertices(self): verts = self._marker marker = Path(verts) self._set_custom_marker(marker) def _set_tuple_marker(self): marker = self._marker if is_numlike(marker[0]): if len(marker) == 2: numsides, rotation = marker[0], 0.0 elif len(marker) == 3: numsides, rotation = marker[0], marker[2] symstyle = marker[1] if symstyle == 0: self._path = Path.unit_regular_polygon(numsides) self._joinstyle = 'miter' elif symstyle == 1: self._path = Path.unit_regular_star(numsides) self._joinstyle = 'bevel' elif symstyle == 2: self._path = Path.unit_regular_asterisk(numsides) self._filled = False self._joinstyle = 'bevel' elif symstyle == 3: self._path = Path.unit_circle() self._transform = Affine2D().scale(0.5).rotate_deg(rotation) else: verts = np.asarray(marker[0]) path = Path(verts) self._set_custom_marker(path) def _set_mathtext_path(self): """ Draws mathtext markers '$...$' using TextPath object. Submitted by tcb """ from matplotlib.text import TextPath from matplotlib.font_manager import FontProperties # again, the properties could be initialised just once outside # this function # Font size is irrelevant here, it will be rescaled based on # the drawn size later props = FontProperties(size=1.0) text = TextPath(xy=(0, 0), s=self.get_marker(), fontproperties=props, usetex=rcParams['text.usetex']) if len(text.vertices) == 0: return xmin, ymin = text.vertices.min(axis=0) xmax, ymax = text.vertices.max(axis=0) width = xmax - xmin height = ymax - ymin max_dim = max(width, height) self._transform = Affine2D() \ .translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height) \ .scale(1.0 / max_dim) self._path = text self._snap = False def _half_fill(self): fs = self.get_fillstyle() result = fs in self._half_fillstyles return result def _set_circle(self, reduction=1.0): self._transform = Affine2D().scale(0.5 * reduction) self._snap_threshold = 6.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_circle() else: # build a right-half circle if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._path = self._alt_path = Path.unit_circle_righthalf() self._transform.rotate_deg(rotate) self._alt_transform = self._transform.frozen().rotate_deg(180.) def _set_pixel(self): self._path = Path.unit_rectangle() # Ideally, you'd want -0.5, -0.5 here, but then the snapping # algorithm in the Agg backend will round this to a 2x2 # rectangle from (-1, -1) to (1, 1). By offsetting it # slightly, we can force it to be (0, 0) to (1, 1), which both # makes it only be a single pixel and places it correctly # aligned to 1-width stroking (i.e. the ticks). This hack is # the best of a number of bad alternatives, mainly because the # backends are not aware of what marker is actually being used # beyond just its path data. self._transform = Affine2D().translate(-0.49999, -0.49999) self._snap_threshold = None def _set_point(self): self._set_circle(reduction=self._point_size_reduction) _triangle_path = Path( [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) # Going down halfway looks to small. Golden ratio is too far. _triangle_path_u = Path( [[0.0, 1.0], [-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_d = Path( [[-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [1.0, -1.0], [-1.0, -1.0], [-3 / 5., -1 / 5.]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_l = Path( [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_r = Path( [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_triangle(self, rot, skip): self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = self._triangle_path else: mpaths = [self._triangle_path_u, self._triangle_path_l, self._triangle_path_d, self._triangle_path_r] if fs == 'top': self._path = mpaths[(0 + skip) % 4] self._alt_path = mpaths[(2 + skip) % 4] elif fs == 'bottom': self._path = mpaths[(2 + skip) % 4] self._alt_path = mpaths[(0 + skip) % 4] elif fs == 'left': self._path = mpaths[(1 + skip) % 4] self._alt_path = mpaths[(3 + skip) % 4] else: self._path = mpaths[(3 + skip) % 4] self._alt_path = mpaths[(1 + skip) % 4] self._alt_transform = self._transform self._joinstyle = 'miter' def _set_triangle_up(self): return self._set_triangle(0.0, 0) def _set_triangle_down(self): return self._set_triangle(180.0, 2) def _set_triangle_left(self): return self._set_triangle(90.0, 3) def _set_triangle_right(self): return self._set_triangle(270.0, 1) def _set_square(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 2.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: # build a bottom filled square out of two rectangles, one # filled. Use the rotation to support left, right, bottom # or top if fs == 'bottom': rotate = 0. elif fs == 'top': rotate = 180. elif fs == 'left': rotate = 270. else: rotate = 90. self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0], [0.0, 0.5]]) self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_diamond(self): self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, 0.0]]) if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_thin_diamond(self): self._set_diamond() self._transform.scale(0.6, 1.0) def _set_pentagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 polypath = Path.unit_regular_polygon(5) fs = self.get_fillstyle() if not self._half_fill(): self._path = polypath else: verts = polypath.vertices y = (1 + np.sqrt(5)) / 4. top = Path([verts[0], verts[1], verts[4], verts[0]]) bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]]) left = Path([verts[0], verts[1], verts[2], [0, -y], verts[0]]) right = Path([verts[0], verts[4], verts[3], [0, -y], verts[0]]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_star(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_star(5, innerCircle=0.381966) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices top = Path(np.vstack((verts[0:4, :], verts[7:10, :], verts[0]))) bottom = Path(np.vstack((verts[3:8, :], verts[3]))) left = Path(np.vstack((verts[0:6, :], verts[0]))) right = Path(np.vstack((verts[0], verts[5:10, :], verts[0]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'bevel' def _set_hexagon1(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x = np.abs(np.cos(5 * np.pi / 6.)) top = Path(np.vstack(([-x, 0], verts[(1, 0, 5), :], [x, 0]))) bottom = Path(np.vstack(([-x, 0], verts[2:5, :], [x, 0]))) left = Path(verts[(0, 1, 2, 3), :]) right = Path(verts[(0, 5, 4, 3), :]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_hexagon2(self): self._transform = Affine2D().scale(0.5).rotate_deg(30) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x, y = np.sqrt(3) / 4, 3 / 4. top = Path(verts[(1, 0, 5, 4, 1), :]) bottom = Path(verts[(1, 2, 3, 4), :]) left = Path(np.vstack(([x, y], verts[(0, 1, 2), :], [-x, -y], [x, y]))) right = Path(np.vstack(([x, y], verts[(5, 4, 3), :], [-x, -y]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_octagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(8) if not self._half_fill(): self._transform.rotate_deg(22.5) self._path = polypath else: x = np.sqrt(2.) / 4. half = Path([[0, -1], [0, 1], [-x, 1], [-1, x], [-1, -x], [-x, -1], [0, -1]]) if fs == 'bottom': rotate = 90. elif fs == 'top': rotate = 270. elif fs == 'right': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._path = self._alt_path = half self._alt_transform = self._transform.frozen().rotate_deg(180.0) self._joinstyle = 'miter' _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _set_vline(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path def _set_hline(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _set_tickleft(self): self._transform = Affine2D().scale(-1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path def _set_tickright(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _set_tickup(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path def _set_tickdown(self): self._transform = Affine2D().scale(1.0, -1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_plus(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._plus_path _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_tri_down(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_up(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_left(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_right(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _set_caretdown(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretup(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretleft(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretright(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_x(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._x_path
gpl-2.0
DavidTingley/ephys-processing-pipeline
installation/klustaviewa-0.3.0/build/lib.linux-x86_64-2.7/kwiklib/dataio/tests/mock_data.py
2
8723
"""Functions that generate mock data.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import os import time import numpy as np import numpy.random as rnd import pandas as pd import shutil import tempfile from kwiklib.utils.colors import COLORS_COUNT from kwiklib.dataio import (save_binary, save_text, check_dtype, check_shape, save_cluster_info, save_group_info) from kwiklib.utils import logger as log # ----------------------------------------------------------------------------- # Global variables # ----------------------------------------------------------------------------- # Mock parameters. nspikes = 1000 nclusters = 20 nextrafet = 1 ngroups = 4 nchannelgroups = 4 cluster_offset = 2 channel_offset = 2 nsamples = 20 ncorrbins = 100 corrbin = .001 nchannels = 32 fetdim = 3 duration = 1. freq = 20000. TEST_FOLDER = tempfile.mkdtemp() # if not os.path.exists(TEST_FOLDER): # os.mkdir(TEST_FOLDER) # ----------------------------------------------------------------------------- # Data creation methods # ----------------------------------------------------------------------------- def create_waveforms(nspikes, nsamples, nchannels): t = np.linspace(-np.pi, np.pi, nsamples) t = t.reshape((1, -1, 1)) # Sinus shaped random waveforms. return (np.array(rnd.randint(size=(nspikes, nsamples, nchannels), low=-32768 // 2, high=32768 // 2), dtype=np.int16) - np.array(32768 // 2 * (.5 + .5 * rnd.rand()) * np.cos(t), dtype=np.int16)) def create_trace(nsamples, nchannels): noise = np.array(rnd.randint(size=(nsamples, nchannels), low=-1000, high=1000), dtype=np.int16) t = np.linspace(0., 100., nsamples) low = np.array(10000 * np.cos(t), dtype=np.int16) return noise + low[:, np.newaxis] def create_features(nspikes, nchannels, fetdim, duration, freq): features = np.array(rnd.randint(size=(nspikes, nchannels * fetdim + 1), low=-1e5, high=1e5), dtype=np.float32) features[:, -1] = np.sort(np.random.randint(size=nspikes, low=0, high=duration * freq)) return features def create_clusters(nspikes, nclusters, cluster_offset=cluster_offset): # Add shift in cluster indices to test robustness. return rnd.randint(size=nspikes, low=cluster_offset, high=nclusters + cluster_offset) # ClusterView def create_cluster_colors(nclusters): return np.mod(np.arange(nclusters, dtype=np.int32), COLORS_COUNT) + 1 def create_group_colors(ngroups): return np.mod(np.arange(ngroups, dtype=np.int32), COLORS_COUNT) + 1 def create_group_names(ngroups): return ["Group {0:d}".format(group) for group in xrange(ngroups)] def create_cluster_groups(nclusters): return np.array(np.random.randint(size=nclusters, low=0, high=4), dtype=np.int32) # ChannelView def create_channel_names(nchannels): return ["Channel {0:d}".format(channel) for channel in xrange(nchannels)] def create_channel_colors(nchannels): return np.mod(np.arange(nchannels, dtype=np.int32), COLORS_COUNT) + 1 def create_channel_group_names(nchannelgroups): return ["Group {0:d}".format(channelgroup) for channelgroup in xrange(nchannelgroups)] def create_channel_groups(nchannels): return np.array(np.random.randint(size=nchannels, low=0, high=4), dtype=np.int32) def create_channel_group_colors(nchannelgroups): return np.mod(np.arange(nchannelgroups, dtype=np.int32), COLORS_COUNT) + 1 def create_masks(nspikes, nchannels, fetdim): return np.clip(rnd.rand(nspikes, nchannels * fetdim + 1) * 1.5, 0, 1) def create_similarity_matrix(nclusters): return np.random.rand(nclusters, nclusters) def create_correlograms(clusters, ncorrbins): n = len(clusters) shape = (n, n, ncorrbins) # data = np.clip(np.random.rand(*shape), .75, 1) data = np.random.rand(*shape) data[0, 0] /= 10 data[1, 1] *= 10 # return IndexedMatrix(clusters, shape=shape, # data=data) return data def create_baselines(clusters): baselines = np.clip(np.random.rand(len(clusters), len(clusters)), .75, 1) baselines[0, 0] /= 10 baselines[1, 1] *= 10 return baselines def create_xml(nchannels, nsamples, fetdim): channels = '\n'.join(["<channel>{0:d}</channel>".format(i) for i in xrange(nchannels)]) xml = """ <parameters> <acquisitionSystem> <nBits>16</nBits> <nChannels>{0:d}</nChannels> <samplingRate>20000</samplingRate> <voltageRange>20</voltageRange> <amplification>1000</amplification> <offset>2048</offset> </acquisitionSystem> <anatomicalDescription> <channelGroups> <group> {2:s} </group> </channelGroups> </anatomicalDescription> <spikeDetection> <channelGroups> <group> <channels> {2:s} </channels> <nSamples>{1:d}</nSamples> <peakSampleIndex>10</peakSampleIndex> <nFeatures>{3:d}</nFeatures> </group> <group> <channels> {2:s} </channels> <nSamples>{1:d}</nSamples> <peakSampleIndex>10</peakSampleIndex> <nFeatures>{3:d}</nFeatures> </group> </channelGroups> </spikeDetection> </parameters> """.format(nchannels, nsamples, channels, fetdim) return xml def create_probe(nchannels): # return np.random.randint(size=(nchannels, 2), low=0, high=10) geometry = np.zeros((nchannels, 2), dtype=np.int32) geometry[:, 0] = np.arange(nchannels) geometry[::2, 0] *= -1 geometry[:, 1] = np.arange(nchannels) graph = [(i, (i + 1) % nchannels) for i in xrange(nchannels)] probe = {'probes': {1: graph}, 'geometry': {i: tuple(geometry[i, :]) for i in xrange(nchannels)}} probe_python = "probes = {0:s}\ngeometry = {{1: {1:s}}}\n".format( str(probe['probes']), str(probe['geometry']), ) return probe_python # ----------------------------------------------------------------------------- # Fixtures # ----------------------------------------------------------------------------- def setup(): # Create mock directory if needed. dir = TEST_FOLDER # Create mock data. waveforms = create_waveforms(nspikes, nsamples, nchannels) features = create_features(nspikes, nchannels, fetdim, duration, freq) clusters = create_clusters(nspikes, nclusters) cluster_colors = create_cluster_colors(nclusters) cluster_groups = create_cluster_groups(nclusters) cluster_info = pd.DataFrame( {'color': cluster_colors, 'group': cluster_groups}, dtype=np.int32, index=np.unique(clusters)) group_colors = create_group_colors(ngroups) group_names = create_group_names(ngroups) group_info = pd.DataFrame( {'color': group_colors, 'name': group_names}, index=np.arange(ngroups)) masks = create_masks(nspikes, nchannels, fetdim) xml = create_xml(nchannels, nsamples, fetdim) probe = create_probe(nchannels) # Create mock files. save_binary(os.path.join(dir, 'test.spk.1'), waveforms) save_text(os.path.join(dir, 'test.fet.1'), features, header=nchannels * fetdim + 1) save_text(os.path.join(dir, 'test.aclu.1'), clusters, header=nclusters) save_text(os.path.join(dir, 'test.clu.1'), clusters, header=nclusters) save_text(os.path.join(dir, 'test.fmask.1'), masks, header=nclusters, fmt='%.6f') save_text(os.path.join(dir, 'test.xml'), xml) save_text(os.path.join(dir, 'test.probe'), probe) def teardown(): # log.debug("Erasing mock data for dataio subpackage.") # Erase the temporary data directory. dir = TEST_FOLDER # if os.path.exists(dir): # shutil.rmtree(dir, ignore_errors=True) # Erase the contents instead, otherwise run into Access denied errors # when trying to re-create the directory right after it has been deleted. for the_file in os.listdir(dir): file_path = os.path.join(dir, the_file) try: os.unlink(file_path) except: pass
gpl-3.0
zhushun0008/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/stochasticModelFrame.py
22
3298
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample import math import sys, os, time from scipy.fftpack import fft, ifft sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF def stochasticModelFrame(x, w, N, stocf) : # x: input array sound, w: analysis window, N: FFT size, # stocf: decimation factor of mag spectrum for stochastic analysis hN = N/2+1 # size of positive spectrum hM = (w.size)/2 # half analysis window size pin = hM # initialize sound pointer in middle of analysis window fftbuffer = np.zeros(N) # initialize buffer for FFT yw = np.zeros(w.size) # initialize output sound frame w = w / sum(w) # normalize analysis window #-----analysis----- xw = x[pin-hM:pin+hM] * w # window the input sound X = fft(xw) # compute FFT mX = 20 * np.log10( abs(X[:hN]) ) # magnitude spectrum of positive frequencies mXenv = resample(np.maximum(-200, mX), mX.size*stocf) # decimate the mag spectrum pX = np.angle(X[:hN]) #-----synthesis----- mY = resample(mXenv, hN) # interpolate to original size pY = 2*np.pi*np.random.rand(hN) # generate phase random values Y = np.zeros(N, dtype = complex) Y[:hN] = 10**(mY/20) * np.exp(1j*pY) # generate positive freq. Y[hN:] = 10**(mY[-2:0:-1]/20) * np.exp(-1j*pY[-2:0:-1]) # generate negative freq. fftbuffer = np.real( ifft(Y) ) # inverse FFT y = fftbuffer*N/2 return mX, pX, mY, pY, y # example call of stochasticModel function if __name__ == '__main__': (fs, x) = UF.wavread('../../../sounds/ocean.wav') w = np.hanning(1024) N = 1024 stocf = 0.2 maxFreq = 10000.0 lastbin = N*maxFreq/fs first = 1000 last = first+w.size mX, pX, mY, pY, y = stochasticModelFrame(x[first:last], w, N, stocf) plt.figure(1, figsize=(9, 7)) plt.subplot(4,1,1) plt.plot(np.arange(first, last)/float(fs), x[first:last]) plt.axis([first/float(fs), last/float(fs), min(x[first:last]), max(x[first:last])]) plt.title('x (ocean.wav)') plt.subplot(4,1,2) plt.plot(float(fs)*np.arange(mX.size)/N, mX, 'r', lw=1.5, label="mX") plt.plot(float(fs)*np.arange(mY.size)/N, mY, 'k', lw=1.5, label="mY") plt.legend() plt.axis([0, maxFreq, -80, max(mX)+3]) plt.title('mX + mY (stochastic approximation)') plt.subplot(4,1,3) plt.plot(float(fs)*np.arange(pX.size)/N, pX, 'c', lw=1.5, label="pX") plt.plot(float(fs)*np.arange(pY.size)/N, pY-np.pi, 'k', lw=1.5, label="pY") plt.axis([0, maxFreq, -np.pi, np.pi]) plt.legend() plt.title('pX + pY (random phases)') plt.subplot(4,1,4) plt.plot(np.arange(first, last)/float(fs), y, 'b', lw=1.5) plt.axis([first/float(fs), last/float(fs), min(y), max(y)]) plt.title('y') plt.tight_layout() plt.savefig('stochasticModelFrame.png') plt.show()
agpl-3.0
schets/scikit-learn
sklearn/metrics/tests/test_pairwise.py
16
22326
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import _parallel_pairwise from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Tests that precomputed metric returns pointer to, and not copy of, X. S = np.dot(X, X.T) S2 = pairwise_distances(S, metric="precomputed") assert_true(S is S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unkown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {} kwds['gamma'] = 0.1 K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. XA = np.arange(45) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.resize(np.arange(45), (5, 9)) XB = np.arange(32) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
ogrisel/scipy
scipy/stats/morestats.py
1
70237
# Author: Travis Oliphant, 2002 # # Further updates and enhancements by many SciPy developers. # from __future__ import division, print_function, absolute_import import math import warnings import numpy as np from numpy import (isscalar, r_, log, sum, around, unique, asarray, zeros, arange, sort, amin, amax, any, atleast_1d, sqrt, ceil, floor, array, poly1d, compress, not_equal, pi, exp, ravel, angle) from numpy.testing.decorators import setastest from scipy.lib.six import string_types from scipy import optimize from scipy import special from . import statlib from . import stats from .stats import find_repeats from . import distributions from ._distn_infrastructure import rv_generic __all__ = ['mvsdist', 'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot', 'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot', 'shapiro', 'anderson', 'ansari', 'bartlett', 'levene', 'binom_test', 'fligner', 'mood', 'wilcoxon', 'pdf_fromgamma', 'circmean', 'circvar', 'circstd', 'anderson_ksamp' ] def bayes_mvs(data, alpha=0.90): """ Bayesian confidence intervals for the mean, var, and std. Parameters ---------- data : array_like Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`. Requires 2 or more data points. alpha : float, optional Probability that the returned confidence interval contains the true parameter. Returns ------- mean_cntr, var_cntr, std_cntr : tuple The three results are for the mean, variance and standard deviation, respectively. Each result is a tuple of the form:: (center, (lower, upper)) with `center` the mean of the conditional pdf of the value given the data, and `(lower, upper)` a confidence interval, centered on the median, containing the estimate to a probability `alpha`. Notes ----- Each tuple of mean, variance, and standard deviation estimates represent the (center, (lower, upper)) with center the mean of the conditional pdf of the value given the data and (lower, upper) is a confidence interval centered on the median, containing the estimate to a probability `alpha`. Converts data to 1-D and assumes all data has the same mean and variance. Uses Jeffrey's prior for variance and std. Equivalent to tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat)) References ---------- T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and standard-deviation from data", http://hdl.handle.net/1877/438, 2006. """ res = mvsdist(data) if alpha >= 1 or alpha <= 0: raise ValueError("0 < alpha < 1 is required, but alpha=%s was given." % alpha) return tuple((x.mean(), x.interval(alpha)) for x in res) def mvsdist(data): """ 'Frozen' distributions for mean, variance, and standard deviation of data. Parameters ---------- data : array_like Input array. Converted to 1-D using ravel. Requires 2 or more data-points. Returns ------- mdist : "frozen" distribution object Distribution object representing the mean of the data vdist : "frozen" distribution object Distribution object representing the variance of the data sdist : "frozen" distribution object Distribution object representing the standard deviation of the data Notes ----- The return values from bayes_mvs(data) is equivalent to ``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``. In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)`` on the three distribution objects returned from this function will give the same results that are returned from `bayes_mvs`. Examples -------- >>> from scipy.stats import mvsdist >>> data = [6, 9, 12, 7, 8, 8, 13] >>> mean, var, std = mvsdist(data) We now have frozen distribution objects "mean", "var" and "std" that we can examine: >>> mean.mean() 9.0 >>> mean.interval(0.95) (6.6120585482655692, 11.387941451734431) >>> mean.std() 1.1952286093343936 """ x = ravel(data) n = len(x) if (n < 2): raise ValueError("Need at least 2 data-points.") xbar = x.mean() C = x.var() if (n > 1000): # gaussian approximations for large n mdist = distributions.norm(loc=xbar, scale=math.sqrt(C/n)) sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C/(2.*n))) vdist = distributions.norm(loc=C, scale=math.sqrt(2.0/n)*C) else: nm1 = n-1 fac = n*C/2. val = nm1/2. mdist = distributions.t(nm1,loc=xbar,scale=math.sqrt(C/nm1)) sdist = distributions.gengamma(val,-2,scale=math.sqrt(fac)) vdist = distributions.invgamma(val,scale=fac) return mdist, vdist, sdist def kstat(data,n=2): """ Return the nth k-statistic (1<=n<=4 so far). The nth k-statistic is the unique symmetric unbiased estimator of the nth cumulant kappa_n. Parameters ---------- data : array_like Input array. n : int, {1, 2, 3, 4}, optional Default is equal to 2. Returns ------- kstat : float The nth k-statistic. See Also -------- kstatvar: Returns an unbiased estimator of the variance of the k-statistic. Notes ----- The cumulants are related to central moments but are specifically defined using a power series expansion of the logarithm of the characteristic function (which is the Fourier transform of the PDF). In particular let phi(t) be the characteristic function, then:: ln phi(t) = > kappa_n (it)^n / n! (sum from n=0 to inf) The first few cumulants (kappa_n) in terms of central moments (mu_n) are:: kappa_1 = mu_1 kappa_2 = mu_2 kappa_3 = mu_3 kappa_4 = mu_4 - 3*mu_2**2 kappa_5 = mu_5 - 10*mu_2 * mu_3 References ---------- http://mathworld.wolfram.com/k-Statistic.html http://mathworld.wolfram.com/Cumulant.html """ if n > 4 or n < 1: raise ValueError("k-statistics only supported for 1<=n<=4") n = int(n) S = zeros(n+1,'d') data = ravel(data) N = len(data) for k in range(1,n+1): S[k] = sum(data**k,axis=0) if n == 1: return S[1]*1.0/N elif n == 2: return (N*S[2]-S[1]**2.0)/(N*(N-1.0)) elif n == 3: return (2*S[1]**3 - 3*N*S[1]*S[2]+N*N*S[3]) / (N*(N-1.0)*(N-2.0)) elif n == 4: return (-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 - 4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) / \ (N*(N-1.0)*(N-2.0)*(N-3.0)) else: raise ValueError("Should not be here.") def kstatvar(data,n=2): """ Returns an unbiased estimator of the variance of the k-statistic. See `kstat` for more details of the k-statistic. Parameters ---------- data : array_like Input array. n : int, {1, 2}, optional Default is equal to 2. Returns ------- kstatvar : float The nth k-statistic variance. See Also -------- kstat """ data = ravel(data) N = len(data) if n == 1: return kstat(data,n=2)*1.0/N elif n == 2: k2 = kstat(data,n=2) k4 = kstat(data,n=4) return (2*k2*k2*N + (N-1)*k4)/(N*(N+1)) else: raise ValueError("Only n=1 or n=2 supported.") def _calc_uniform_order_statistic_medians(x): """See Notes section of `probplot` for details.""" N = len(x) osm_uniform = np.zeros(N, dtype=np.float64) osm_uniform[-1] = 0.5**(1.0 / N) osm_uniform[0] = 1 - osm_uniform[-1] i = np.arange(2, N) osm_uniform[1:-1] = (i - 0.3175) / (N + 0.365) return osm_uniform def _parse_dist_kw(dist, enforce_subclass=True): """Parse `dist` keyword. Parameters ---------- dist : str or stats.distributions instance. Several functions take `dist` as a keyword, hence this utility function. enforce_subclass : bool, optional If True (default), `dist` needs to be a `_distn_infrastructure.rv_generic` instance. It can sometimes be useful to set this keyword to False, if a function wants to accept objects that just look somewhat like such an instance (for example, they have a ``ppf`` method). """ if isinstance(dist, rv_generic): pass elif isinstance(dist, string_types): try: dist = getattr(distributions, dist) except AttributeError: raise ValueError("%s is not a valid distribution name" % dist) elif enforce_subclass: msg = ("`dist` should be a stats.distributions instance or a string " "with the name of such a distribution.") raise ValueError(msg) return dist def probplot(x, sparams=(), dist='norm', fit=True, plot=None): """ Calculate quantiles for a probability plot, and optionally show the plot. Generates a probability plot of sample data against the quantiles of a specified theoretical distribution (the normal distribution by default). `probplot` optionally calculates a best-fit line for the data and plots the results using Matplotlib or a given plot function. Parameters ---------- x : array_like Sample/response data from which `probplot` creates the plot. sparams : tuple, optional Distribution-specific shape parameters (shape parameters plus location and scale). dist : str or stats.distributions instance, optional Distribution or distribution function name. The default is 'norm' for a normal probability plot. Objects that look enough like a stats.distributions instance (i.e. they have a ``ppf`` method) are also accepted. fit : bool, optional Fit a least-squares regression (best-fit) line to the sample data if True (default). plot : object, optional If given, plots the quantiles and least squares fit. `plot` is an object that has to have methods "plot" and "text". The `matplotlib.pyplot` module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created. Returns ------- (osm, osr) : tuple of ndarrays Tuple of theoretical quantiles (osm, or order statistic medians) and ordered responses (osr). `osr` is simply sorted input `x`. For details on how `osm` is calculated see the Notes section. (slope, intercept, r) : tuple of floats, optional Tuple containing the result of the least-squares fit, if that is performed by `probplot`. `r` is the square root of the coefficient of determination. If ``fit=False`` and ``plot=None``, this tuple is not returned. Notes ----- Even if `plot` is given, the figure is not shown or saved by `probplot`; ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after calling `probplot`. `probplot` generates a probability plot, which should not be confused with a Q-Q or a P-P plot. Statsmodels has more extensive functionality of this type, see ``statsmodels.api.ProbPlot``. The formula used for the theoretical quantiles (horizontal axis of the probability plot) is Filliben's estimate:: quantiles = dist.ppf(val), for 0.5**(1/n), for i = n val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1 1 - 0.5**(1/n), for i = 1 where ``i`` indicates the i-th ordered value and ``n`` is the total number of values. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> nsample = 100 >>> np.random.seed(7654321) A t distribution with small degrees of freedom: >>> ax1 = plt.subplot(221) >>> x = stats.t.rvs(3, size=nsample) >>> res = stats.probplot(x, plot=plt) A t distribution with larger degrees of freedom: >>> ax2 = plt.subplot(222) >>> x = stats.t.rvs(25, size=nsample) >>> res = stats.probplot(x, plot=plt) A mixture of two normal distributions with broadcasting: >>> ax3 = plt.subplot(223) >>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5], ... size=(nsample/2.,2)).ravel() >>> res = stats.probplot(x, plot=plt) A standard normal distribution: >>> ax4 = plt.subplot(224) >>> x = stats.norm.rvs(loc=0, scale=1, size=nsample) >>> res = stats.probplot(x, plot=plt) Produce a new figure with a loggamma distribution, using the ``dist`` and ``sparams`` keywords: >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> x = stats.loggamma.rvs(c=2.5, size=500) >>> stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax) >>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5") Show the results with Matplotlib: >>> plt.show() """ x = np.asarray(x) osm_uniform = _calc_uniform_order_statistic_medians(x) dist = _parse_dist_kw(dist, enforce_subclass=False) if sparams is None: sparams = () if isscalar(sparams): sparams = (sparams,) if not isinstance(sparams, tuple): sparams = tuple(sparams) osm = dist.ppf(osm_uniform, *sparams) osr = sort(x) if fit or (plot is not None): # perform a linear fit. slope, intercept, r, prob, sterrest = stats.linregress(osm, osr) if plot is not None: plot.plot(osm, osr, 'bo', osm, slope*osm + intercept, 'r-') try: if hasattr(plot, 'set_title'): # Matplotlib Axes instance or something that looks like it plot.set_title('Probability Plot') plot.set_xlabel('Quantiles') plot.set_ylabel('Ordered Values') else: # matplotlib.pyplot module plot.title('Probability Plot') plot.xlabel('Quantiles') plot.ylabel('Ordered Values') except: # Not an MPL object or something that looks (enough) like it. # Don't crash on adding labels or title pass # Add R^2 value to the plot as text xmin = amin(osm) xmax = amax(osm) ymin = amin(x) ymax = amax(x) posx = xmin + 0.70 * (xmax - xmin) posy = ymin + 0.01 * (ymax - ymin) plot.text(posx, posy, "$R^2=%1.4f$" % r) if fit: return (osm, osr), (slope, intercept, r) else: return osm, osr def ppcc_max(x, brack=(0.0,1.0), dist='tukeylambda'): """Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a one-parameter family of distributions. See also ppcc_plot """ dist = _parse_dist_kw(dist) osm_uniform = _calc_uniform_order_statistic_medians(x) osr = sort(x) # this function computes the x-axis values of the probability plot # and computes a linear regression (including the correlation) # and returns 1-r so that a minimization function maximizes the # correlation def tempfunc(shape, mi, yvals, func): xvals = func(mi, shape) r, prob = stats.pearsonr(xvals, yvals) return 1-r return optimize.brent(tempfunc, brack=brack, args=(osm_uniform, osr, dist.ppf)) def ppcc_plot(x,a,b,dist='tukeylambda', plot=None, N=80): """Returns (shape, ppcc), and optionally plots shape vs. ppcc (probability plot correlation coefficient) as a function of shape parameter for a one-parameter family of distributions from shape value a to b. See also ppcc_max """ svals = r_[a:b:complex(N)] ppcc = svals*0.0 k = 0 for sval in svals: r1,r2 = probplot(x,sval,dist=dist,fit=1) ppcc[k] = r2[-1] k += 1 if plot is not None: plot.plot(svals, ppcc, 'x') plot.title('(%s) PPCC Plot' % dist) plot.xlabel('Prob Plot Corr. Coef.') plot.ylabel('Shape Values') return svals, ppcc def boxcox_llf(lmb, data): r"""The boxcox log-likelihood function. Parameters ---------- lmb : scalar Parameter for Box-Cox transformation. See `boxcox` for details. data : array_like Data to calculate Box-Cox log-likelihood for. If `data` is multi-dimensional, the log-likelihood is calculated along the first axis. Returns ------- llf : float or ndarray Box-Cox log-likelihood of `data` given `lmb`. A float for 1-D `data`, an array otherwise. See Also -------- boxcox, probplot, boxcox_normplot, boxcox_normmax Notes ----- The Box-Cox log-likelihood function is defined here as .. math:: llf = (\lambda - 1) \sum_i(\log(x_i)) - N/2 \log(\sum_i (y_i - \bar{y})^2 / N), where ``y`` is the Box-Cox transformed input data ``x``. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes >>> np.random.seed(1245) Generate some random variates and calculate Box-Cox log-likelihood values for them for a range of ``lmbda`` values: >>> x = stats.loggamma.rvs(5, loc=10, size=1000) >>> lmbdas = np.linspace(-2, 10) >>> llf = np.zeros(lmbdas.shape, dtype=np.float) >>> for ii, lmbda in enumerate(lmbdas): ... llf[ii] = stats.boxcox_llf(lmbda, x) Also find the optimal lmbda value with `boxcox`: >>> x_most_normal, lmbda_optimal = stats.boxcox(x) Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a horizontal line to check that that's really the optimum: >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(lmbdas, llf, 'b.-') >>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r') >>> ax.set_xlabel('lmbda parameter') >>> ax.set_ylabel('Box-Cox log-likelihood') Now add some probability plots to show that where the log-likelihood is maximized the data transformed with `boxcox` looks closest to normal: >>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right' >>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs): ... xt = stats.boxcox(x, lmbda=lmbda) ... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt) ... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc) ... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-') ... ax_inset.set_xticklabels([]) ... ax_inset.set_yticklabels([]) ... ax_inset.set_title('$\lambda=%1.2f$' % lmbda) >>> plt.show() """ data = np.asarray(data) N = data.shape[0] if N == 0: return np.nan y = boxcox(data, lmb) y_mean = np.mean(y, axis=0) llf = (lmb - 1) * np.sum(np.log(data), axis=0) llf -= N / 2.0 * np.log(np.sum((y - y_mean)**2. / N, axis=0)) return llf def _boxcox_conf_interval(x, lmax, alpha): # Need to find the lambda for which # f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1 fac = 0.5 * distributions.chi2.ppf(1 - alpha, 1) target = boxcox_llf(lmax, x) - fac def rootfunc(lmbda, data, target): return boxcox_llf(lmbda, data) - target # Find positive endpoint of interval in which answer is to be found newlm = lmax + 0.5 N = 0 while (rootfunc(newlm, x, target) > 0.0) and (N < 500): newlm += 0.1 N += 1 if N == 500: raise RuntimeError("Could not find endpoint.") lmplus = optimize.brentq(rootfunc, lmax, newlm, args=(x, target)) # Now find negative interval in the same way newlm = lmax - 0.5 N = 0 while (rootfunc(newlm, x, target) > 0.0) and (N < 500): newlm -= 0.1 N += 1 if N == 500: raise RuntimeError("Could not find endpoint.") lmminus = optimize.brentq(rootfunc, newlm, lmax, args=(x, target)) return lmminus, lmplus def boxcox(x, lmbda=None, alpha=None): r""" Return a positive dataset transformed by a Box-Cox power transformation. Parameters ---------- x : ndarray Input array. Should be 1-dimensional. lmbda : {None, scalar}, optional If `lmbda` is not None, do the transformation for that value. If `lmbda` is None, find the lambda that maximizes the log-likelihood function and return it as the second output argument. alpha : {None, float}, optional If `alpha` is not None, return the ``100 * (1-alpha)%`` confidence interval for `lmbda` as the third output argument. Must be between 0.0 and 1.0. Returns ------- boxcox : ndarray Box-Cox power transformed array. maxlog : float, optional If the `lmbda` parameter is None, the second returned argument is the lambda that maximizes the log-likelihood function. (min_ci, max_ci) : tuple of float, optional If `lmbda` parameter is None and `alpha` is not None, this returned tuple of floats represents the minimum and maximum confidence limits given `alpha`. See Also -------- probplot, boxcox_normplot, boxcox_normmax, boxcox_llf Notes ----- The Box-Cox transform is given by:: y = (x**lmbda - 1) / lmbda, for lmbda > 0 log(x), for lmbda = 0 `boxcox` requires the input data to be positive. Sometimes a Box-Cox transformation provides a shift parameter to achieve this; `boxcox` does not. Such a shift parameter is equivalent to adding a positive constant to `x` before calling `boxcox`. The confidence limits returned when `alpha` is provided give the interval where: .. math:: llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2}\chi^2(1 - \alpha, 1), with ``llf`` the log-likelihood function and :math:`\chi^2` the chi-squared function. References ---------- G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal of the Royal Statistical Society B, 26, 211-252 (1964). Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt We generate some random variates from a non-normal distribution and make a probability plot for it, to show it is non-normal in the tails: >>> fig = plt.figure() >>> ax1 = fig.add_subplot(211) >>> x = stats.loggamma.rvs(5, size=500) + 5 >>> stats.probplot(x, dist=stats.norm, plot=ax1) >>> ax1.set_xlabel('') >>> ax1.set_title('Probplot against normal distribution') We now use `boxcox` to transform the data so it's closest to normal: >>> ax2 = fig.add_subplot(212) >>> xt, _ = stats.boxcox(x) >>> stats.probplot(xt, dist=stats.norm, plot=ax2) >>> ax2.set_title('Probplot after Box-Cox transformation') >>> plt.show() """ x = np.asarray(x) if x.size == 0: return x if any(x <= 0): raise ValueError("Data must be positive.") if lmbda is not None: # single transformation return special.boxcox(x, lmbda) # If lmbda=None, find the lmbda that maximizes the log-likelihood function. lmax = boxcox_normmax(x, method='mle') y = boxcox(x, lmax) if alpha is None: return y, lmax else: # Find confidence interval interval = _boxcox_conf_interval(x, lmax, alpha) return y, lmax, interval def boxcox_normmax(x, brack=(-2.0, 2.0), method='pearsonr'): """Compute optimal Box-Cox transform parameter for input data. Parameters ---------- x : array_like Input array. brack : 2-tuple, optional The starting interval for a downhill bracket search with `optimize.brent`. Note that this is in most cases not critical; the final result is allowed to be outside this bracket. method : str, optional The method to determine the optimal transform parameter (`boxcox` ``lmbda`` parameter). Options are: 'pearsonr' (default) Maximizes the Pearson correlation coefficient between ``y = boxcox(x)`` and the expected values for ``y`` if `x` would be normally-distributed. 'mle' Minimizes the log-likelihood `boxcox_llf`. This is the method used in `boxcox`. 'all' Use all optimization methods available, and return all results. Useful to compare different methods. Returns ------- maxlog : float or ndarray The optimal transform parameter found. An array instead of a scalar for ``method='all'``. See Also -------- boxcox, boxcox_llf, boxcox_normplot Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) # make this example reproducible Generate some data and determine optimal ``lmbda`` in various ways: >>> x = stats.loggamma.rvs(5, size=30) + 5 >>> y, lmax_mle = stats.boxcox(x) >>> lmax_pearsonr = stats.boxcox_normmax(x) >>> lmax_mle 7.177... >>> lmax_pearsonr 7.916... >>> stats.boxcox_normmax(x, method='all') array([ 7.91667384, 7.17718692]) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> stats.boxcox_normplot(x, -10, 10, plot=ax) >>> ax.axvline(lmax_mle, color='r') >>> ax.axvline(lmax_pearsonr, color='g', ls='--') >>> plt.show() """ def _pearsonr(x, brack): osm_uniform = _calc_uniform_order_statistic_medians(x) xvals = distributions.norm.ppf(osm_uniform) def _eval_pearsonr(lmbda, xvals, samps): # This function computes the x-axis values of the probability plot # and computes a linear regression (including the correlation) and # returns ``1 - r`` so that a minimization function maximizes the # correlation. y = boxcox(samps, lmbda) yvals = np.sort(y) r, prob = stats.pearsonr(xvals, yvals) return 1 - r return optimize.brent(_eval_pearsonr, brack=brack, args=(xvals, x)) def _mle(x, brack): def _eval_mle(lmb, data): # function to minimize return -boxcox_llf(lmb, data) return optimize.brent(_eval_mle, brack=brack, args=(x,)) def _all(x, brack): maxlog = np.zeros(2, dtype=np.float) maxlog[0] = _pearsonr(x, brack) maxlog[1] = _mle(x, brack) return maxlog methods = {'pearsonr': _pearsonr, 'mle': _mle, 'all': _all} if not method in methods.keys(): raise ValueError("Method %s not recognized." % method) optimfunc = methods[method] return optimfunc(x, brack) def boxcox_normplot(x, la, lb, plot=None, N=80): """Compute parameters for a Box-Cox normality plot, optionally show it. A Box-Cox normality plot shows graphically what the best transformation parameter is to use in `boxcox` to obtain a distribution that is close to normal. Parameters ---------- x : array_like Input array. la, lb : scalar The lower and upper bounds for the ``lmbda`` values to pass to `boxcox` for Box-Cox transformations. These are also the limits of the horizontal axis of the plot if that is generated. plot : object, optional If given, plots the quantiles and least squares fit. `plot` is an object that has to have methods "plot" and "text". The `matplotlib.pyplot` module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created. N : int, optional Number of points on the horizontal axis (equally distributed from `la` to `lb`). Returns ------- lmbdas : ndarray The ``lmbda`` values for which a Box-Cox transform was done. ppcc : ndarray Probability Plot Correlelation Coefficient, as obtained from `probplot` when fitting the Box-Cox transformed input `x` against a normal distribution. See Also -------- probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max Notes ----- Even if `plot` is given, the figure is not shown or saved by `boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after calling `probplot`. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt Generate some non-normally distributed data, and create a Box-Cox plot: >>> x = stats.loggamma.rvs(5, size=500) + 5 >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> stats.boxcox_normplot(x, -20, 20, plot=ax) Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in the same plot: >>> _, maxlog = stats.boxcox(x) >>> ax.axvline(maxlog, color='r') >>> plt.show() """ x = np.asarray(x) if x.size == 0: return x if lb <= la: raise ValueError("`lb` has to be larger than `la`.") lmbdas = np.linspace(la, lb, num=N) ppcc = lmbdas * 0.0 for i, val in enumerate(lmbdas): # Determine for each lmbda the correlation coefficient of transformed x z = boxcox(x, lmbda=val) _, r2 = probplot(z, dist='norm', fit=True) ppcc[i] = r2[-1] if plot is not None: plot.plot(lmbdas, ppcc, 'x') try: if hasattr(plot, 'set_title'): # Matplotlib Axes instance or something that looks like it plot.set_title('Box-Cox Normality Plot') plot.set_ylabel('Prob Plot Corr. Coef.') plot.set_xlabel('$\lambda$') else: # matplotlib.pyplot module plot.title('Box-Cox Normality Plot') plot.ylabel('Prob Plot Corr. Coef.') plot.xlabel('$\lambda$') except Exception: # Not an MPL object or something that looks (enough) like it. # Don't crash on adding labels or title pass return lmbdas, ppcc def shapiro(x, a=None, reta=False): """ Perform the Shapiro-Wilk test for normality. The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a normal distribution. Parameters ---------- x : array_like Array of sample data. a : array_like, optional Array of internal parameters used in the calculation. If these are not given, they will be computed internally. If x has length n, then a must have length n/2. reta : bool, optional Whether or not to return the internally computed a values. The default is False. Returns ------- W : float The test statistic. p-value : float The p-value for the hypothesis test. a : array_like, optional If `reta` is True, then these are the internally computed "a" values that may be passed into this function on future calls. See Also -------- anderson : The Anderson-Darling test for normality References ---------- .. [1] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm """ N = len(x) if N < 3: raise ValueError("Data must be at least length 3.") if a is None: a = zeros(N,'f') init = 0 else: if len(a) != N//2: raise ValueError("len(a) must equal len(x)/2") init = 1 y = sort(x) a, w, pw, ifault = statlib.swilk(y, a[:N//2], init) if not ifault in [0,2]: warnings.warn(str(ifault)) if N > 5000: warnings.warn("p-value may not be accurate for N > 5000.") if reta: return w, pw, a else: return w, pw # Values from Stephens, M A, "EDF Statistics for Goodness of Fit and # Some Comparisons", Journal of he American Statistical # Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737 _Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092]) _Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957]) # From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution", # Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588. _Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038]) # From Stephens, M A, "Tests of Fit for the Logistic Distribution Based # on the Empirical Distribution Function.", Biometrika, # Vol. 66, Issue 3, Dec. 1979, pp 591-595. _Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010]) def anderson(x,dist='norm'): """ Anderson-Darling test for data coming from a particular distribution The Anderson-Darling test is a modification of the Kolmogorov- Smirnov test `kstest` for the null hypothesis that a sample is drawn from a population that follows a particular distribution. For the Anderson-Darling test, the critical values depend on which distribution is being tested against. This function works for normal, exponential, logistic, or Gumbel (Extreme Value Type I) distributions. Parameters ---------- x : array_like array of sample data dist : {'norm','expon','logistic','gumbel','extreme1'}, optional the type of distribution to test against. The default is 'norm' and 'extreme1' is a synonym for 'gumbel' Returns ------- A2 : float The Anderson-Darling test statistic critical : list The critical values for this distribution sig : list The significance levels for the corresponding critical values in percents. The function returns critical values for a differing set of significance levels depending on the distribution that is being tested against. Notes ----- Critical values provided are for the following significance levels: normal/exponenential 15%, 10%, 5%, 2.5%, 1% logistic 25%, 10%, 5%, 2.5%, 1%, 0.5% Gumbel 25%, 10%, 5%, 2.5%, 1% If A2 is larger than these critical values then for the corresponding significance level, the null hypothesis that the data come from the chosen distribution can be rejected. References ---------- .. [1] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm .. [2] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, Vol. 69, pp. 730-737. .. [3] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters, Annals of Statistics, Vol. 4, pp. 357-369. .. [4] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value Distribution, Biometrika, Vol. 64, pp. 583-588. .. [5] Stephens, M. A. (1977). Goodness of Fit with Special Reference to Tests for Exponentiality , Technical Report No. 262, Department of Statistics, Stanford University, Stanford, CA. .. [6] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function, Biometrika, Vol. 66, pp. 591-595. """ if not dist in ['norm','expon','gumbel','extreme1','logistic']: raise ValueError("Invalid distribution; dist must be 'norm', " "'expon', 'gumbel', 'extreme1' or 'logistic'.") y = sort(x) xbar = np.mean(x, axis=0) N = len(y) if dist == 'norm': s = np.std(x, ddof=1, axis=0) w = (y-xbar)/s z = distributions.norm.cdf(w) sig = array([15,10,5,2.5,1]) critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N),3) elif dist == 'expon': w = y / xbar z = distributions.expon.cdf(w) sig = array([15,10,5,2.5,1]) critical = around(_Avals_expon / (1.0 + 0.6/N),3) elif dist == 'logistic': def rootfunc(ab,xj,N): a,b = ab tmp = (xj-a)/b tmp2 = exp(tmp) val = [sum(1.0/(1+tmp2),axis=0)-0.5*N, sum(tmp*(1.0-tmp2)/(1+tmp2),axis=0)+N] return array(val) sol0 = array([xbar,np.std(x, ddof=1, axis=0)]) sol = optimize.fsolve(rootfunc,sol0,args=(x,N),xtol=1e-5) w = (y-sol[0])/sol[1] z = distributions.logistic.cdf(w) sig = array([25,10,5,2.5,1,0.5]) critical = around(_Avals_logistic / (1.0+0.25/N),3) else: # (dist == 'gumbel') or (dist == 'extreme1'): # the following is incorrect, see ticket:1097 ## def fixedsolve(th,xj,N): ## val = stats.sum(xj)*1.0/N ## tmp = exp(-xj/th) ## term = sum(xj*tmp,axis=0) ## term /= sum(tmp,axis=0) ## return val - term ## s = optimize.fixed_point(fixedsolve, 1.0, args=(x,N),xtol=1e-5) ## xbar = -s*log(sum(exp(-x/s),axis=0)*1.0/N) xbar, s = distributions.gumbel_l.fit(x) w = (y-xbar)/s z = distributions.gumbel_l.cdf(w) sig = array([25,10,5,2.5,1]) critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)),3) i = arange(1,N+1) S = sum((2*i-1.0)/N*(log(z)+log(1-z[::-1])),axis=0) A2 = -N-S return A2, critical, sig def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N): """ Compute A2akN equation 7 of Scholz and Stephens. Parameters ---------- samples : sequence of 1-D array_like Array of sample arrays. Z : array_like Sorted array of all observations. Zstar : array_like Sorted array of unique observations. k : int Number of samples. n : array_like Number of observations in each sample. N : int Total number of observations. Returns ------- A2aKN : float The A2aKN statistics of Scholz and Stephens 1987. """ A2akN = 0. Z_ssorted_left = Z.searchsorted(Zstar, 'left') if N == Zstar.size: lj = 1. else: lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left Bj = Z_ssorted_left + lj / 2. for i in arange(0, k): s = np.sort(samples[i]) s_ssorted_right = s.searchsorted(Zstar, side='right') Mij = s_ssorted_right.astype(np.float) fij = s_ssorted_right - s.searchsorted(Zstar, 'left') Mij -= fij / 2. inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / \ (Bj * (N - Bj) - N * lj / 4.) A2akN += inner.sum() / n[i] A2akN *= (N - 1.) / N return A2akN def _anderson_ksamp_right(samples, Z, Zstar, k, n, N): """ Compute A2akN equation 6 of Scholz & Stephens. Parameters ---------- samples : sequence of 1-D array_like Array of sample arrays. Z : array_like Sorted array of all observations. Zstar : array_like Sorted array of unique observations. k : int Number of samples. n : array_like Number of observations in each sample. N : int Total number of observations. Returns ------- A2KN : float The A2KN statistics of Scholz and Stephens 1987. """ A2kN = 0. lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1], 'left') Bj = lj.cumsum() for i in arange(0, k): s = np.sort(samples[i]) Mij = s.searchsorted(Zstar[:-1], side='right') inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj)) A2kN += inner.sum() / n[i] return A2kN def anderson_ksamp(samples, midrank=True): """The Anderson-Darling test for k-samples. The k-sample Anderson-Darling test is a modification of the one-sample Anderson-Darling test. It tests the null hypothesis that k-samples are drawn from the same population without having to specify the distribution function of that population. The critical values depend on the number of samples. Parameters ---------- samples : sequence of 1-D array_like Array of sample data in arrays. midrank : bool, optional Type of Anderson-Darling test which is computed. Default (True) is the midrank test applicable to continuous and discrete populations. If False, the right side empirical distribution is used. Returns ------- A2 : float Normalized k-sample Anderson-Darling test statistic. critical : array The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%. p : float An approximate significance level at which the null hypothesis for the provided samples can be rejected. Raises ------ ValueError If less than 2 samples are provided, a sample is empty, or no distinct observations are in the samples. See Also -------- ks_2samp : 2 sample Kolmogorov-Smirnov test anderson : 1 sample Anderson-Darling test Notes ----- [1]_ Defines three versions of the k-sample Anderson-Darling test: one for continuous distributions and two for discrete distributions, in which ties between samples may occur. The default of this routine is to compute the version based on the midrank empirical distribution function. This test is applicable to continuous and discrete data. If midrank is set to False, the right side empirical distribution is used for a test for discrete data. According to [1]_, the two discrete test statistics differ only slightly if a few collisions due to round-off errors occur in the test not adjusted for ties between samples. .. versionadded:: 0.14.0 References ---------- .. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample Anderson-Darling Tests, Journal of the American Statistical Association, Vol. 82, pp. 918-924. Examples -------- >>> from scipy import stats >>> np.random.seed(314159) The null hypothesis that the two random samples come from the same distribution can be rejected at the 5% level because the returned test value is greater than the critical value for 5% (1.961) but not at the 2.5% level. The interpolation gives an approximate significance level of 3.1%: >>> stats.anderson_ksamp([np.random.normal(size=50), ... np.random.normal(loc=0.5, size=30)]) (2.4615796189876105, array([ 0.325, 1.226, 1.961, 2.718, 3.752]), 0.03134990135800783) The null hypothesis cannot be rejected for three samples from an identical distribution. The approximate p-value (87%) has to be computed by extrapolation and may not be very accurate: >>> stats.anderson_ksamp([np.random.normal(size=50), ... np.random.normal(size=30), np.random.normal(size=20)]) (-0.73091722665244196, array([ 0.44925884, 1.3052767 , 1.9434184 , 2.57696569, 3.41634856]), 0.8789283903979661) """ k = len(samples) if (k < 2): raise ValueError("anderson_ksamp needs at least two samples") samples = list(map(np.asarray, samples)) Z = np.sort(np.hstack(samples)) N = Z.size Zstar = np.unique(Z) if Zstar.size < 2: raise ValueError("anderson_ksamp needs more than one distinct " "observation") n = np.array([sample.size for sample in samples]) if any(n == 0): raise ValueError("anderson_ksamp encountered sample without " "observations") if midrank: A2kN = _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N) else: A2kN = _anderson_ksamp_right(samples, Z, Zstar, k, n, N) h = (1. / arange(1, N)).sum() H = (1. / n).sum() g = 0 for l in arange(1, N-1): inner = np.array([1. / ((N - l) * m) for m in arange(l+1, N)]) g += inner.sum() a = (4*g - 6) * (k - 1) + (10 - 6*g)*H b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6 c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h d = (2*h + 6)*k**2 - 4*h*k sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.)) m = k - 1 A2 = (A2kN - m) / math.sqrt(sigmasq) # The b_i values are the interpolation coefficients from Table 2 # of Scholz and Stephens 1987 b0 = np.array([0.675, 1.281, 1.645, 1.96, 2.326]) b1 = np.array([-0.245, 0.25, 0.678, 1.149, 1.822]) b2 = np.array([-0.105, -0.305, -0.362, -0.391, -0.396]) critical = b0 + b1 / math.sqrt(m) + b2 / m pf = np.polyfit(critical, log(np.array([0.25, 0.1, 0.05, 0.025, 0.01])), 2) if A2 < critical.min() or A2 > critical.max(): warnings.warn("approximate p-value will be computed by extrapolation") p = math.exp(np.polyval(pf, A2)) return A2, critical, p def ansari(x,y): """ Perform the Ansari-Bradley test for equal scale parameters The Ansari-Bradley test is a non-parametric test for the equality of the scale parameter of the distributions from which two samples were drawn. Parameters ---------- x, y : array_like arrays of sample data Returns ------- AB : float The Ansari-Bradley test statistic p-value : float The p-value of the hypothesis test See Also -------- fligner : A non-parametric test for the equality of k variances mood : A non-parametric test for the equality of two scale parameters Notes ----- The p-value given is exact when the sample sizes are both less than 55 and there are no ties, otherwise a normal approximation for the p-value is used. References ---------- .. [1] Sprent, Peter and N.C. Smeeton. Applied nonparametric statistical methods. 3rd ed. Chapman and Hall/CRC. 2001. Section 5.8.2. """ x,y = asarray(x),asarray(y) n = len(x) m = len(y) if m < 1: raise ValueError("Not enough other observations.") if n < 1: raise ValueError("Not enough test observations.") N = m+n xy = r_[x,y] # combine rank = stats.rankdata(xy) symrank = amin(array((rank,N-rank+1)),0) AB = sum(symrank[:n],axis=0) uxy = unique(xy) repeats = (len(uxy) != len(xy)) exact = ((m < 55) and (n < 55) and not repeats) if repeats and ((m < 55) or (n < 55)): warnings.warn("Ties preclude use of exact statistic.") if exact: astart, a1, ifault = statlib.gscale(n,m) ind = AB-astart total = sum(a1,axis=0) if ind < len(a1)/2.0: cind = int(ceil(ind)) if (ind == cind): pval = 2.0*sum(a1[:cind+1],axis=0)/total else: pval = 2.0*sum(a1[:cind],axis=0)/total else: find = int(floor(ind)) if (ind == floor(ind)): pval = 2.0*sum(a1[find:],axis=0)/total else: pval = 2.0*sum(a1[find+1:],axis=0)/total return AB, min(1.0,pval) # otherwise compute normal approximation if N % 2: # N odd mnAB = n*(N+1.0)**2 / 4.0 / N varAB = n*m*(N+1.0)*(3+N**2)/(48.0*N**2) else: mnAB = n*(N+2.0)/4.0 varAB = m*n*(N+2)*(N-2.0)/48/(N-1.0) if repeats: # adjust variance estimates # compute sum(tj * rj**2,axis=0) fac = sum(symrank**2,axis=0) if N % 2: # N odd varAB = m*n*(16*N*fac-(N+1)**4)/(16.0 * N**2 * (N-1)) else: # N even varAB = m*n*(16*fac-N*(N+2)**2)/(16.0 * N * (N-1)) z = (AB - mnAB)/sqrt(varAB) pval = distributions.norm.sf(abs(z)) * 2.0 return AB, pval def bartlett(*args): """ Perform Bartlett's test for equal variances Bartlett's test tests the null hypothesis that all input samples are from populations with equal variances. For samples from significantly non-normal populations, Levene's test `levene`_ is more robust. Parameters ---------- sample1, sample2,... : array_like arrays of sample data. May be different lengths. Returns ------- T : float The test statistic. p-value : float The p-value of the test. References ---------- .. [1] http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm .. [2] Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press. """ k = len(args) if k < 2: raise ValueError("Must enter at least two input sample vectors.") Ni = zeros(k) ssq = zeros(k,'d') for j in range(k): Ni[j] = len(args[j]) ssq[j] = np.var(args[j], ddof=1) Ntot = sum(Ni,axis=0) spsq = sum((Ni-1)*ssq,axis=0)/(1.0*(Ntot-k)) numer = (Ntot*1.0-k)*log(spsq) - sum((Ni-1.0)*log(ssq),axis=0) denom = 1.0 + (1.0/(3*(k-1)))*((sum(1.0/(Ni-1.0),axis=0))-1.0/(Ntot-k)) T = numer / denom pval = distributions.chi2.sf(T,k-1) # 1 - cdf return T, pval def levene(*args,**kwds): """ Perform Levene test for equal variances. The Levene test tests the null hypothesis that all input samples are from populations with equal variances. Levene's test is an alternative to Bartlett's test `bartlett` in the case where there are significant deviations from normality. Parameters ---------- sample1, sample2, ... : array_like The sample data, possibly with different lengths center : {'mean', 'median', 'trimmed'}, optional Which function of the data to use in the test. The default is 'median'. proportiontocut : float, optional When `center` is 'trimmed', this gives the proportion of data points to cut from each end. (See `scipy.stats.trim_mean`.) Default is 0.05. Returns ------- W : float The test statistic. p-value : float The p-value for the test. Notes ----- Three variations of Levene's test are possible. The possibilities and their recommended usages are: * 'median' : Recommended for skewed (non-normal) distributions> * 'mean' : Recommended for symmetric, moderate-tailed distributions. * 'trimmed' : Recommended for heavy-tailed distributions. References ---------- .. [1] http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm .. [2] Levene, H. (1960). In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I. Olkin et al. eds., Stanford University Press, pp. 278-292. .. [3] Brown, M. B. and Forsythe, A. B. (1974), Journal of the American Statistical Association, 69, 364-367 """ # Handle keyword arguments. center = 'median' proportiontocut = 0.05 for kw, value in kwds.items(): if kw not in ['center', 'proportiontocut']: raise TypeError("levene() got an unexpected keyword argument '%s'" % kw) if kw == 'center': center = value else: proportiontocut = value k = len(args) if k < 2: raise ValueError("Must enter at least two input sample vectors.") Ni = zeros(k) Yci = zeros(k,'d') if not center in ['mean','median','trimmed']: raise ValueError("Keyword argument <center> must be 'mean', 'median'" + "or 'trimmed'.") if center == 'median': func = lambda x: np.median(x, axis=0) elif center == 'mean': func = lambda x: np.mean(x, axis=0) else: # center == 'trimmed' args = tuple(stats.trimboth(np.sort(arg), proportiontocut) for arg in args) func = lambda x: np.mean(x, axis=0) for j in range(k): Ni[j] = len(args[j]) Yci[j] = func(args[j]) Ntot = sum(Ni,axis=0) # compute Zij's Zij = [None]*k for i in range(k): Zij[i] = abs(asarray(args[i])-Yci[i]) # compute Zbari Zbari = zeros(k,'d') Zbar = 0.0 for i in range(k): Zbari[i] = np.mean(Zij[i], axis=0) Zbar += Zbari[i]*Ni[i] Zbar /= Ntot numer = (Ntot-k)*sum(Ni*(Zbari-Zbar)**2,axis=0) # compute denom_variance dvar = 0.0 for i in range(k): dvar += sum((Zij[i]-Zbari[i])**2,axis=0) denom = (k-1.0)*dvar W = numer / denom pval = distributions.f.sf(W,k-1,Ntot-k) # 1 - cdf return W, pval @setastest(False) def binom_test(x,n=None,p=0.5): """ Perform a test that the probability of success is p. This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is `p`. Parameters ---------- x : integer or array_like the number of successes, or if x has length 2, it is the number of successes and the number of failures. n : integer the number of trials. This is ignored if x gives both the number of successes and failures p : float, optional The hypothesized probability of success. 0 <= p <= 1. The default value is p = 0.5 Returns ------- p-value : float The p-value of the hypothesis test References ---------- .. [1] http://en.wikipedia.org/wiki/Binomial_test """ x = atleast_1d(x).astype(np.integer) if len(x) == 2: n = x[1]+x[0] x = x[0] elif len(x) == 1: x = x[0] if n is None or n < x: raise ValueError("n must be >= x") n = np.int_(n) else: raise ValueError("Incorrect length for x.") if (p > 1.0) or (p < 0.0): raise ValueError("p must be in range [0,1]") d = distributions.binom.pmf(x,n,p) rerr = 1+1e-7 if (x == p*n): # special case as shortcut, would also be handled by `else` below pval = 1. elif (x < p*n): i = np.arange(np.ceil(p*n),n+1) y = np.sum(distributions.binom.pmf(i,n,p) <= d*rerr,axis=0) pval = distributions.binom.cdf(x,n,p) + distributions.binom.sf(n-y,n,p) else: i = np.arange(np.floor(p*n) + 1) y = np.sum(distributions.binom.pmf(i,n,p) <= d*rerr,axis=0) pval = distributions.binom.cdf(y-1,n,p) + distributions.binom.sf(x-1,n,p) return min(1.0,pval) def _apply_func(x,g,func): # g is list of indices into x # separating x into different groups # func should be applied over the groups g = unique(r_[0,g,len(x)]) output = [] for k in range(len(g)-1): output.append(func(x[g[k]:g[k+1]])) return asarray(output) def fligner(*args,**kwds): """ Perform Fligner's test for equal variances. Fligner's test tests the null hypothesis that all input samples are from populations with equal variances. Fligner's test is non-parametric in contrast to Bartlett's test `bartlett` and Levene's test `levene`. Parameters ---------- sample1, sample2, ... : array_like arrays of sample data. Need not be the same length center : {'mean', 'median', 'trimmed'}, optional keyword argument controlling which function of the data is used in computing the test statistic. The default is 'median'. proportiontocut : float, optional When `center` is 'trimmed', this gives the proportion of data points to cut from each end. (See `scipy.stats.trim_mean`.) Default is 0.05. Returns ------- Xsq : float the test statistic p-value : float the p-value for the hypothesis test Notes ----- As with Levene's test there are three variants of Fligner's test that differ by the measure of central tendency used in the test. See `levene` for more information. References ---------- .. [1] http://www.stat.psu.edu/~bgl/center/tr/TR993.ps .. [2] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample tests for scale. 'Journal of the American Statistical Association.' 71(353), 210-213. """ # Handle keyword arguments. center = 'median' proportiontocut = 0.05 for kw, value in kwds.items(): if kw not in ['center', 'proportiontocut']: raise TypeError("fligner() got an unexpected keyword argument '%s'" % kw) if kw == 'center': center = value else: proportiontocut = value k = len(args) if k < 2: raise ValueError("Must enter at least two input sample vectors.") if not center in ['mean','median','trimmed']: raise ValueError("Keyword argument <center> must be 'mean', 'median'" + "or 'trimmed'.") if center == 'median': func = lambda x: np.median(x, axis=0) elif center == 'mean': func = lambda x: np.mean(x, axis=0) else: # center == 'trimmed' args = tuple(stats.trimboth(arg, proportiontocut) for arg in args) func = lambda x: np.mean(x, axis=0) Ni = asarray([len(args[j]) for j in range(k)]) Yci = asarray([func(args[j]) for j in range(k)]) Ntot = sum(Ni,axis=0) # compute Zij's Zij = [abs(asarray(args[i])-Yci[i]) for i in range(k)] allZij = [] g = [0] for i in range(k): allZij.extend(list(Zij[i])) g.append(len(allZij)) ranks = stats.rankdata(allZij) a = distributions.norm.ppf(ranks/(2*(Ntot+1.0)) + 0.5) # compute Aibar Aibar = _apply_func(a,g,sum) / Ni anbar = np.mean(a, axis=0) varsq = np.var(a,axis=0, ddof=1) Xsq = sum(Ni*(asarray(Aibar)-anbar)**2.0,axis=0)/varsq pval = distributions.chi2.sf(Xsq,k-1) # 1 - cdf return Xsq, pval def mood(x, y, axis=0): """ Perform Mood's test for equal scale parameters. Mood's two-sample test for scale parameters is a non-parametric test for the null hypothesis that two samples are drawn from the same distribution with the same scale parameter. Parameters ---------- x, y : array_like Arrays of sample data. axis: int, optional The axis along which the samples are tested. `x` and `y` can be of different length along `axis`. If `axis` is None, `x` and `y` are flattened and the test is done on all values in the flattened arrays. Returns ------- z : scalar or ndarray The z-score for the hypothesis test. For 1-D inputs a scalar is returned; p-value : scalar ndarray The p-value for the hypothesis test. See Also -------- fligner : A non-parametric test for the equality of k variances ansari : A non-parametric test for the equality of 2 variances bartlett : A parametric test for equality of k variances in normal samples levene : A parametric test for equality of k variances Notes ----- The data are assumed to be drawn from probability distributions ``f(x)`` and ``f(x/s) / s`` respectively, for some probability density function f. The null hypothesis is that ``s == 1``. For multi-dimensional arrays, if the inputs are of shapes ``(n0, n1, n2, n3)`` and ``(n0, m1, n2, n3)``, then if ``axis=1``, the resulting z and p values will have shape ``(n0, n2, n3)``. Note that ``n1`` and ``m1`` don't have to be equal, but the other dimensions do. Examples -------- >>> from scipy import stats >>> x2 = np.random.randn(2, 45, 6, 7) >>> x1 = np.random.randn(2, 30, 6, 7) >>> z, p = stats.mood(x1, x2, axis=1) >>> p.shape (2, 6, 7) Find the number of points where the difference in scale is not significant: >>> (p > 0.1).sum() 74 Perform the test with different scales: >>> x1 = np.random.randn(2, 30) >>> x2 = np.random.randn(2, 35) * 10.0 >>> stats.mood(x1, x2, axis=1) (array([-5.84332354, -5.6840814 ]), array([5.11694980e-09, 1.31517628e-08])) """ x = np.asarray(x, dtype=float) y = np.asarray(y, dtype=float) if axis is None: x = x.flatten() y = y.flatten() axis = 0 # Determine shape of the result arrays res_shape = tuple([x.shape[ax] for ax in range(len(x.shape)) if ax != axis]) if not (res_shape == tuple([y.shape[ax] for ax in range(len(y.shape)) if ax != axis])): raise ValueError("Dimensions of x and y on all axes except `axis` " "should match") n = x.shape[axis] m = y.shape[axis] N = m + n if N < 3: raise ValueError("Not enough observations.") xy = np.concatenate((x, y), axis=axis) if axis != 0: xy = np.rollaxis(xy, axis) xy = xy.reshape(xy.shape[0], -1) # Generalized to the n-dimensional case by adding the axis argument, and # using for loops, since rankdata is not vectorized. For improving # performance consider vectorizing rankdata function. all_ranks = np.zeros_like(xy) for j in range(xy.shape[1]): all_ranks[:, j] = stats.rankdata(xy[:, j]) Ri = all_ranks[:n] M = sum((Ri - (N + 1.0) / 2) ** 2, axis=0) # Approx stat. mnM = n * (N * N - 1.0) / 12 varM = m * n * (N + 1.0) * (N + 2) * (N - 2) / 180 z = (M - mnM) / sqrt(varM) # sf for right tail, cdf for left tail. Factor 2 for two-sidedness z_pos = z > 0 pval = np.zeros_like(z) pval[z_pos] = 2 * distributions.norm.sf(z[z_pos]) pval[~z_pos] = 2 * distributions.norm.cdf(z[~z_pos]) if res_shape == (): # Return scalars, not 0-D arrays z = z[0] pval = pval[0] else: z.shape = res_shape pval.shape = res_shape return z, pval def wilcoxon(x, y=None, zero_method="wilcox", correction=False): """ Calculate the Wilcoxon signed-rank test. The Wilcoxon signed-rank test tests the null hypothesis that two related paired samples come from the same distribution. In particular, it tests whether the distribution of the differences x - y is symmetric about zero. It is a non-parametric version of the paired T-test. Parameters ---------- x : array_like The first set of measurements. y : array_like, optional The second set of measurements. If `y` is not given, then the `x` array is considered to be the differences between the two sets of measurements. zero_method : string, {"pratt", "wilcox", "zsplit"}, optional "pratt": Pratt treatment: includes zero-differences in the ranking process (more conservative) "wilcox": Wilcox treatment: discards all zero-differences "zsplit": Zero rank split: just like Pratt, but spliting the zero rank between positive and negative ones correction : bool, optional If True, apply continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the z-statistic. Default is False. Returns ------- T : float The sum of the ranks of the differences above or below zero, whichever is smaller. p-value : float The two-sided p-value for the test. Notes ----- Because the normal approximation is used for the calculations, the samples used should be large. A typical rule is to require that n > 20. References ---------- .. [1] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test """ if not zero_method in ["wilcox", "pratt", "zsplit"]: raise ValueError("Zero method should be either 'wilcox' \ or 'pratt' or 'zsplit'") if y is None: d = x else: x, y = map(asarray, (x, y)) if len(x) != len(y): raise ValueError('Unequal N in wilcoxon. Aborting.') d = x-y if zero_method == "wilcox": d = compress(not_equal(d, 0), d, axis=-1) # Keep all non-zero differences count = len(d) if (count < 10): warnings.warn("Warning: sample size too small for normal approximation.") r = stats.rankdata(abs(d)) r_plus = sum((d > 0) * r, axis=0) r_minus = sum((d < 0) * r, axis=0) if zero_method == "zsplit": r_zero = sum((d == 0) * r, axis=0) r_plus += r_zero / 2. r_minus += r_zero / 2. T = min(r_plus, r_minus) mn = count*(count + 1.) * 0.25 se = count*(count + 1.) * (2. * count + 1.) if zero_method == "pratt": r = r[d != 0] replist, repnum = find_repeats(r) if repnum.size != 0: # Correction for repeated elements. se -= 0.5 * (repnum * (repnum * repnum - 1)).sum() se = sqrt(se / 24) correction = 0.5 * int(bool(correction)) * np.sign(T - mn) z = (T - mn - correction) / se prob = 2. * distributions.norm.sf(abs(z)) return T, prob def _hermnorm(N): # return the negatively normalized hermite polynomials up to order N-1 # (inclusive) # using the recursive relationship # p_n+1 = p_n(x)' - x*p_n(x) # and p_0(x) = 1 plist = [None]*N plist[0] = poly1d(1) for n in range(1,N): plist[n] = plist[n-1].deriv() - poly1d([1,0])*plist[n-1] return plist def pdf_fromgamma(g1,g2,g3=0.0,g4=None): if g4 is None: g4 = 3*g2*g2 sigsq = 1.0/g2 sig = sqrt(sigsq) mu = g1*sig**3.0 p12 = _hermnorm(13) for k in range(13): p12[k] = p12[k]/sig**k # Add all of the terms to polynomial totp = p12[0] - (g1/6.0*p12[3]) + \ (g2/24.0*p12[4] + g1*g1/72.0*p12[6]) - \ (g3/120.0*p12[5] + g1*g2/144.0*p12[7] + g1**3.0/1296.0*p12[9]) + \ (g4/720*p12[6] + (g2*g2/1152.0+g1*g3/720)*p12[8] + g1*g1*g2/1728.0*p12[10] + g1**4.0/31104.0*p12[12]) # Final normalization totp = totp / sqrt(2*pi)/sig def thefunc(x): xn = (x-mu)/sig return totp(xn)*exp(-xn*xn/2.0) return thefunc def _circfuncs_common(samples, high, low): samples = np.asarray(samples) if samples.size == 0: return np.nan, np.nan ang = (samples - low)*2*pi / (high-low) return samples, ang def circmean(samples, high=2*pi, low=0, axis=None): """ Compute the circular mean for samples in a range. Parameters ---------- samples : array_like Input array. high : float or int, optional High boundary for circular mean range. Default is ``2*pi``. low : float or int, optional Low boundary for circular mean range. Default is 0. axis : int, optional Axis along which means are computed. The default is to compute the mean of the flattened array. Returns ------- circmean : float Circular mean. """ samples, ang = _circfuncs_common(samples, high, low) res = angle(np.mean(exp(1j*ang), axis=axis)) mask = res < 0 if (mask.ndim > 0): res[mask] += 2*pi elif mask: res = res + 2*pi return res*(high-low)/2.0/pi + low def circvar(samples, high=2*pi, low=0, axis=None): """ Compute the circular variance for samples assumed to be in a range Parameters ---------- samples : array_like Input array. low : float or int, optional Low boundary for circular variance range. Default is 0. high : float or int, optional High boundary for circular variance range. Default is ``2*pi``. axis : int, optional Axis along which variances are computed. The default is to compute the variance of the flattened array. Returns ------- circvar : float Circular variance. Notes ----- This uses a definition of circular variance that in the limit of small angles returns a number close to the 'linear' variance. """ samples, ang = _circfuncs_common(samples, high, low) res = np.mean(exp(1j*ang), axis=axis) R = abs(res) return ((high-low)/2.0/pi)**2 * 2 * log(1/R) def circstd(samples, high=2*pi, low=0, axis=None): """ Compute the circular standard deviation for samples assumed to be in the range [low to high]. Parameters ---------- samples : array_like Input array. low : float or int, optional Low boundary for circular standard deviation range. Default is 0. high : float or int, optional High boundary for circular standard deviation range. Default is ``2*pi``. axis : int, optional Axis along which standard deviations are computed. The default is to compute the standard deviation of the flattened array. Returns ------- circstd : float Circular standard deviation. Notes ----- This uses a definition of circular standard deviation that in the limit of small angles returns a number close to the 'linear' standard deviation. """ samples, ang = _circfuncs_common(samples, high, low) res = np.mean(exp(1j*ang), axis=axis) R = abs(res) return ((high-low)/2.0/pi) * sqrt(-2*log(R)) # Tests to include (from R) -- some of these already in stats. ######## # X Ansari-Bradley # X Bartlett (and Levene) # X Binomial # Y Pearson's Chi-squared (stats.chisquare) # Y Association Between Paired samples (stats.pearsonr, stats.spearmanr) # stats.kendalltau) -- these need work though # Fisher's exact test # X Fligner-Killeen Test # Y Friedman Rank Sum (stats.friedmanchisquare?) # Y Kruskal-Wallis # Y Kolmogorov-Smirnov # Cochran-Mantel-Haenszel Chi-Squared for Count # McNemar's Chi-squared for Count # X Mood Two-Sample # X Test For Equal Means in One-Way Layout (see stats.ttest also) # Pairwise Comparisons of proportions # Pairwise t tests # Tabulate p values for pairwise comparisons # Pairwise Wilcoxon rank sum tests # Power calculations two sample test of prop. # Power calculations for one and two sample t tests # Equal or Given Proportions # Trend in Proportions # Quade Test # Y Student's T Test # Y F Test to compare two variances # XY Wilcoxon Rank Sum and Signed Rank Tests
bsd-3-clause
stylianos-kampakis/scikit-learn
sklearn/tests/test_pipeline.py
162
14875
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False) )) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y))
bsd-3-clause
kpj/SDEMotif
figures.py
1
3875
""" Produce some nice figures """ from itertools import cycle import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from setup import generate_basic_system from plotter import plot_system, plot_system_evolution, plot_corr_mat from nm_data_generator import add_node_to_system from main import analyze_system from solver import solve_system from filters import filter_steady_state from utils import compute_correlation_matrix def detailed_system(): syst = generate_basic_system() plt.figure() plot_system(syst, plt.gca()) plt.savefig('presentation/images/FFL.pdf', dpi=300) def plot_series(syst, ax, uosd=True): syst, mat, sol = analyze_system( syst, use_ode_sde_diff=uosd, repetition_num=5, tmax=10) plot_system_evolution(sol[:50], ax, show_legend=False) ax.set_xticks([], []) ax.set_yticks([], []) ax.set_xlabel('') ax.set_ylabel('') def plot_mat(syst, ax): syst, mat, sol = analyze_system( syst, use_ode_sde_diff=True, repetition_num=5, tmax=10) plot_corr_mat(mat, ax) ax.set_xticks([], []) ax.set_yticks([], []) def plot_hist(syst, ax): single_run_matrices = [] for _ in range(50): sol = solve_system(syst) sol_extract = sol.T[int(len(sol.T)*3/4):] if filter_steady_state(sol_extract): continue single_run_mat = compute_correlation_matrix(np.array([sol_extract])) if single_run_mat.shape == (4, 4): single_run_mat = single_run_mat[:-1,:-1] assert single_run_mat.shape == (3, 3) single_run_matrices.append(single_run_mat) single_run_matrices = np.asarray(single_run_matrices) # plotting cols = cycle(['b', 'r', 'g', 'c', 'm', 'y', 'k']) for i, row in enumerate(single_run_matrices.T): for j, series in enumerate(row): if i == j: break sns.distplot(series, ax=ax, label=r'$c_{{{},{}}}$'.format(i,j)) ax.set_xlim((-1,1)) ax.set_xticks([], []) ax.set_yticks([], []) def configuration_overview(func, fname, draw_all=True): fig = plt.figure() gs = gridspec.GridSpec(3, 5, width_ratios=[1,.2,1,1,1]) for i, conf in enumerate([(1,1), (4,2), (2,1)]): syst = generate_basic_system(*conf) func(syst, plt.subplot(gs[i, 0])) if draw_all: for j, m in enumerate(add_node_to_system(syst)[3:6]): func(m, plt.subplot(gs[i, j+2])) if draw_all: fig.text(0.5, 0.04, 'varied embedding', ha='center', fontsize=20) fig.text(0.085, 0.5, 'varied parameters', va='center', rotation='vertical', fontsize=20) plt.savefig('presentation/images/overview_{}.pdf'.format(fname)) def distribution_filter_threshold(): plt.figure() sns.distplot( np.random.normal(.1, .1, size=1000), label='before embedding', hist_kws=dict(alpha=.2)) sns.distplot( np.random.normal(0, .1, size=1000), label='after embedding', hist_kws=dict(alpha=.2)) thres = .1 plt.axvspan(-thres, thres, facecolor='r', alpha=0.1, label='threshold') plt.xlim((-1,1)) plt.xlabel('correlation') plt.legend(loc='best') plt.savefig('presentation/images/dist_thres.pdf') def main(): sns.set_style('white') plt.style.use('seaborn-poster') detailed_system() configuration_overview( lambda s,a: plot_system(s, a, netx_plot=True), 'sub', draw_all=False) configuration_overview( lambda s,a: plot_system(s, a, netx_plot=True), 'all') configuration_overview( lambda s,a: plot_series(s,a,uosd=False), 'series_orig') configuration_overview(plot_series, 'series') configuration_overview(plot_mat, 'mat') configuration_overview(plot_hist, 'hist') distribution_filter_threshold() if __name__ == '__main__': main()
mit
grhawk/IChemiton
dot.ipython/profile_ichemiton/ipython_config.py
1
19779
# Configuration file for ipython. c = get_config() #------------------------------------------------------------------------------ # InteractiveShellApp configuration #------------------------------------------------------------------------------ # A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` # Execute the given command string. # c.InteractiveShellApp.code_to_run = '' # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.InteractiveShellApp.exec_PYTHONSTARTUP = True # lines of code to run at IPython startup. # c.InteractiveShellApp.exec_lines = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'none', # 'osx', 'pyglet', 'qt', 'qt4', 'tk', 'wx'). # c.InteractiveShellApp.gui = None # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.InteractiveShellApp.pylab = None # Configure matplotlib for interactive use with the default matplotlib backend. # c.InteractiveShellApp.matplotlib = None # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.InteractiveShellApp.pylab_import_all = True # A list of dotted module names of IPython extensions to load. # c.InteractiveShellApp.extensions = [] # Run the module as a script. # c.InteractiveShellApp.module_to_run = '' # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.InteractiveShellApp.hide_initial_ns = True # dotted module name of an IPython extension to load. # c.InteractiveShellApp.extra_extension = '' # List of files to run at IPython startup. # c.InteractiveShellApp.exec_files = [] # A file to be run # c.InteractiveShellApp.file_to_run = '' #------------------------------------------------------------------------------ # TerminalIPythonApp configuration #------------------------------------------------------------------------------ # TerminalIPythonApp will inherit config from: BaseIPythonApplication, # Application, InteractiveShellApp # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.TerminalIPythonApp.exec_PYTHONSTARTUP = True # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.TerminalIPythonApp.pylab = None # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.TerminalIPythonApp.verbose_crash = False # Run the module as a script. # c.TerminalIPythonApp.module_to_run = '' # The date format used by logging formatters for %(asctime)s # c.TerminalIPythonApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # Whether to overwrite existing config files when copying # c.TerminalIPythonApp.overwrite = False # Execute the given command string. # c.TerminalIPythonApp.code_to_run = '' # Set the log level by value or name. # c.TerminalIPythonApp.log_level = 30 # lines of code to run at IPython startup. # c.TerminalIPythonApp.exec_lines = [] # Suppress warning messages about legacy config files # c.TerminalIPythonApp.ignore_old_config = False # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.TerminalIPythonApp.extra_config_file = u'' # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.TerminalIPythonApp.hide_initial_ns = True # dotted module name of an IPython extension to load. # c.TerminalIPythonApp.extra_extension = '' # A file to be run # c.TerminalIPythonApp.file_to_run = '' # The IPython profile to use. # c.TerminalIPythonApp.profile = u'default' # Configure matplotlib for interactive use with the default matplotlib backend. # c.TerminalIPythonApp.matplotlib = None # If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. # c.TerminalIPythonApp.force_interact = False # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.TerminalIPythonApp.pylab_import_all = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.TerminalIPythonApp.ipython_dir = u'' # Whether to display a banner upon starting IPython. # c.TerminalIPythonApp.display_banner = True # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.TerminalIPythonApp.copy_config_files = False # List of files to run at IPython startup. # c.TerminalIPythonApp.exec_files = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'none', # 'osx', 'pyglet', 'qt', 'qt4', 'tk', 'wx'). # c.TerminalIPythonApp.gui = None # A list of dotted module names of IPython extensions to load. # c.TerminalIPythonApp.extensions = [] # Start IPython quickly by skipping the loading of config files. # c.TerminalIPythonApp.quick = False # The Logging format template # c.TerminalIPythonApp.log_format = '[%(name)s]%(highlevel)s %(message)s' #------------------------------------------------------------------------------ # TerminalInteractiveShell configuration #------------------------------------------------------------------------------ # TerminalInteractiveShell will inherit config from: InteractiveShell # auto editing of files with syntax errors. # c.TerminalInteractiveShell.autoedit_syntax = False # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.TerminalInteractiveShell.color_info = True # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.TerminalInteractiveShell.ast_transformers = [] # # c.TerminalInteractiveShell.history_length = 10000 # Don't call post-execute functions that have failed in the past. # c.TerminalInteractiveShell.disable_failing_post_execute = False # Show rewritten input, e.g. for autocall. # c.TerminalInteractiveShell.show_rewritten_input = True # Set the color scheme (NoColor, Linux, or LightBG). # c.TerminalInteractiveShell.colors = 'Linux' # Autoindent IPython code entered interactively. # c.TerminalInteractiveShell.autoindent = True # # c.TerminalInteractiveShell.separate_in = '\n' # Deprecated, use PromptManager.in2_template # c.TerminalInteractiveShell.prompt_in2 = ' .\\D.: ' # # c.TerminalInteractiveShell.separate_out = '' # Deprecated, use PromptManager.in_template # c.TerminalInteractiveShell.prompt_in1 = 'In [\\#]: ' # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.TerminalInteractiveShell.autocall = 0 # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.TerminalInteractiveShell.screen_length = 0 # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.TerminalInteractiveShell.editor = u'/usr/bin/nano' # Deprecated, use PromptManager.justify # c.TerminalInteractiveShell.prompts_pad_left = True # The part of the banner to be printed before the profile # c.TerminalInteractiveShell.banner1 = 'Python 2.7.3 (default, Mar 13 2014, 11:03:55) \nType "copyright", "credits" or "license" for more information.\n\nIPython 2.3.1 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # # c.TerminalInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # The part of the banner to be printed after the profile # c.TerminalInteractiveShell.banner2 = '' # # c.TerminalInteractiveShell.separate_out2 = '' # # c.TerminalInteractiveShell.wildcards_case_sensitive = True # # c.TerminalInteractiveShell.debug = False # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.TerminalInteractiveShell.confirm_exit = True # # c.TerminalInteractiveShell.ipython_dir = '' # # c.TerminalInteractiveShell.readline_remove_delims = '-/~' # Start logging to the default log file. # c.TerminalInteractiveShell.logstart = False # The name of the logfile to use. # c.TerminalInteractiveShell.logfile = '' # The shell program to be used for paging. # c.TerminalInteractiveShell.pager = 'less' # Enable magic commands to be called without the leading %. # c.TerminalInteractiveShell.automagic = True # Save multi-line entries as one entry in readline history # c.TerminalInteractiveShell.multiline_history = True # # c.TerminalInteractiveShell.readline_use = True # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.TerminalInteractiveShell.deep_reload = False # Start logging to the given file in append mode. # c.TerminalInteractiveShell.logappend = '' # # c.TerminalInteractiveShell.xmode = 'Context' # # c.TerminalInteractiveShell.quiet = False # Enable auto setting the terminal title. # c.TerminalInteractiveShell.term_title = False # # c.TerminalInteractiveShell.object_info_string_level = 0 # Deprecated, use PromptManager.out_template # c.TerminalInteractiveShell.prompt_out = 'Out[\\#]: ' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.TerminalInteractiveShell.cache_size = 1000 # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.TerminalInteractiveShell.ast_node_interactivity = 'last_expr' # Automatically call the pdb debugger after every exception. # c.TerminalInteractiveShell.pdb = False #------------------------------------------------------------------------------ # PromptManager configuration #------------------------------------------------------------------------------ # This is the primary interface for producing IPython's prompts. # Output prompt. '\#' will be transformed to the prompt number # c.PromptManager.out_template = 'Out[\\#]: ' # Continuation prompt. # c.PromptManager.in2_template = ' .\\D.: ' # If True (default), each prompt will be right-aligned with the preceding one. # c.PromptManager.justify = True # Input prompt. '\#' will be transformed to the prompt number # c.PromptManager.in_template = 'In [\\#]: ' # # c.PromptManager.color_scheme = 'Linux' #------------------------------------------------------------------------------ # HistoryManager configuration #------------------------------------------------------------------------------ # A class to organize all history-related functionality in one place. # HistoryManager will inherit config from: HistoryAccessor # Should the history database include output? (default: no) # c.HistoryManager.db_log_output = False # Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. # c.HistoryManager.db_cache_size = 0 # Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # c.HistoryManager.hist_file = u'' # Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. # c.HistoryManager.connection_options = {} # enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. # c.HistoryManager.enabled = True #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # PlainTextFormatter configuration #------------------------------------------------------------------------------ # The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') # PlainTextFormatter will inherit config from: BaseFormatter # # c.PlainTextFormatter.type_printers = {} # # c.PlainTextFormatter.newline = '\n' # # c.PlainTextFormatter.float_precision = '' # # c.PlainTextFormatter.verbose = False # # c.PlainTextFormatter.deferred_printers = {} # # c.PlainTextFormatter.pprint = True # # c.PlainTextFormatter.max_width = 79 # # c.PlainTextFormatter.singleton_printers = {} #------------------------------------------------------------------------------ # IPCompleter configuration #------------------------------------------------------------------------------ # Extension of the completer class with IPython-specific features # IPCompleter will inherit config from: Completer # Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 # Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. # c.IPCompleter.merge_completions = True # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored # c.IPCompleter.limit_to__all__ = False # Activate greedy completion # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. # c.IPCompleter.greedy = False #------------------------------------------------------------------------------ # ScriptMagics configuration #------------------------------------------------------------------------------ # Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. # Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths # c.ScriptMagics.script_magics = [] # Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. # c.ScriptMagics.script_paths = {} #------------------------------------------------------------------------------ # StoreMagics configuration #------------------------------------------------------------------------------ # Lightweight persistence for python variables. # # Provides the %store magic. # If True, any %store-d variables will be automatically restored when IPython # starts. # c.StoreMagics.autorestore = False
gpl-2.0
JohnDMcMaster/uvscada
camac/2228a_calplt.py
1
2764
#!/usr/bin/env python import matplotlib.pyplot as plt import argparse import csv import os import sys def hms(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) return "%d:%02d:%02d" % (h, m, s) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Use LeCroy 2228A test mode to collect calibration data') parser.add_argument('--force', action='store_true', help="Overwrite files if they already exist") parser.add_argument('fn', help='File name in') parser.add_argument('dir', nargs='?', default=None, help='Output dir') args = parser.parse_args() data = [] f = open(args.fn) if args.dir is None: args.dir = os.path.splitext(args.fn)[0] print 'Saving to %s' % (args.dir,) if os.path.exists(args.dir): if not args.force: raise Exception("Refusing to overwrite existing data") else: os.mkdir(args.dir) tm = 9.6 hdr = f.readline() csvr = csv.reader(f, delimiter=',') ts = [] vs = [] off = None # old without t # slot,iter,ch0,ch1,ch2,ch3,ch4,ch5,ch6,ch7 if len(hdr) == 10: for row in csvr: ts.append(int(row[1]) * tm) v = [int(v) for v in row[2:]] if off is None: off = v vs.append([vi - offi for vi, offi in zip(v, off)]) # old without t # slot,iter,t,ch0,ch1,ch2,ch3,ch4,ch5,ch6,ch7 else: csvr = csv.reader(f, delimiter=',') ts = [] vs = [] off = None for row in csvr: ts.append(float(row[2])) v = [int(v) for v in row[3:]] if off is None: off = v vs.append([vi - offi for vi, offi in zip(v, off)]) total_t = ts[-1] - ts[0] vs = zip(*vs) # Plot everything together if 1: for colors = 'rgbybmcr' pargs = [] for i in xrange(8): pargs.extend([ts, vs[i], colors[i]]) plt.plot(*pargs) #plt.semilogy([small for (t, small, large) in data]) #plt.plotting(semilogy) plt.title('All drift over %s' % hms(total_t)) plt.xlabel('Sample #') plt.ylabel('ADC delta') #plt.show() plt.savefig(os.path.join(args.dir, 'all.png')) # Individual if 1: for i in xrange(8): plt.clf() plt.plot(ts, vs[i], 'b-') plt.title('CH%d over %s' % (i, hms(total_t))) plt.xlabel('Sample #') plt.ylabel('ADC delta') #plt.show() plt.savefig(os.path.join(args.dir, 'ch%d.png' % i))
bsd-2-clause
alexsavio/scikit-learn
examples/applications/plot_stock_market.py
76
8522
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt try: from matplotlib.finance import quotes_historical_yahoo_ochl except ImportError: # quotes_historical_yahoo_ochl was named quotes_historical_yahoo before matplotlib 1.4 from matplotlib.finance import quotes_historical_yahoo as quotes_historical_yahoo_ochl from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [quotes_historical_yahoo_ochl(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
juliusbierk/scikit-image
doc/examples/plot_local_binary_pattern.py
17
6774
""" =============================================== Local Binary Pattern for texture classification =============================================== In this example, we will see how to classify textures based on LBP (Local Binary Pattern). LBP looks at points surrounding a central point and tests whether the surrounding points are greater than or less than the central point (i.e. gives a binary result). Before trying out LBP on an image, it helps to look at a schematic of LBPs. The below code is just used to plot the schematic. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt METHOD = 'uniform' plt.rcParams['font.size'] = 9 def plot_circle(ax, center, radius, color): circle = plt.Circle(center, radius, facecolor=color, edgecolor='0.5') ax.add_patch(circle) def plot_lbp_model(ax, binary_values): """Draw the schematic for a local binary pattern.""" # Geometry spec theta = np.deg2rad(45) R = 1 r = 0.15 w = 1.5 gray = '0.5' # Draw the central pixel. plot_circle(ax, (0, 0), radius=r, color=gray) # Draw the surrounding pixels. for i, facecolor in enumerate(binary_values): x = R * np.cos(i * theta) y = R * np.sin(i * theta) plot_circle(ax, (x, y), radius=r, color=str(facecolor)) # Draw the pixel grid. for x in np.linspace(-w, w, 4): ax.axvline(x, color=gray) ax.axhline(x, color=gray) # Tweak the layout. ax.axis('image') ax.axis('off') size = w + 0.2 ax.set_xlim(-size, size) ax.set_ylim(-size, size) fig, axes = plt.subplots(ncols=5, figsize=(7, 2)) titles = ['flat', 'flat', 'edge', 'corner', 'non-uniform'] binary_patterns = [np.zeros(8), np.ones(8), np.hstack([np.ones(4), np.zeros(4)]), np.hstack([np.zeros(3), np.ones(5)]), [1, 0, 0, 1, 1, 1, 0, 0]] for ax, values, name in zip(axes, binary_patterns, titles): plot_lbp_model(ax, values) ax.set_title(name) """ .. image:: PLOT2RST.current_figure The figure above shows example results with black (or white) representing pixels that are less (or more) intense than the central pixel. When surrounding pixels are all black or all white, then that image region is flat (i.e. featureless). Groups of continuous black or white pixels are considered "uniform" patterns that can be interpreted as corners or edges. If pixels switch back-and-forth between black and white pixels, the pattern is considered "non-uniform". When using LBP to detect texture, you measure a collection of LBPs over an image patch and look at the distribution of these LBPs. Lets apply LBP to a brick texture. """ from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data from skimage.color import label2rgb # settings for LBP radius = 3 n_points = 8 * radius def overlay_labels(image, lbp, labels): mask = np.logical_or.reduce([lbp == each for each in labels]) return label2rgb(mask, image=image, bg_label=0, alpha=0.5) def highlight_bars(bars, indexes): for i in indexes: bars[i].set_facecolor('r') image = data.load('brick.png') lbp = local_binary_pattern(image, n_points, radius, METHOD) def hist(ax, lbp): n_bins = lbp.max() + 1 return ax.hist(lbp.ravel(), normed=True, bins=n_bins, range=(0, n_bins), facecolor='0.5') # plot histograms of LBP of textures fig, (ax_img, ax_hist) = plt.subplots(nrows=2, ncols=3, figsize=(9, 6)) plt.gray() titles = ('edge', 'flat', 'corner') w = width = radius - 1 edge_labels = range(n_points // 2 - w, n_points // 2 + w + 1) flat_labels = list(range(0, w + 1)) + list(range(n_points - w, n_points + 2)) i_14 = n_points // 4 # 1/4th of the histogram i_34 = 3 * (n_points // 4) # 3/4th of the histogram corner_labels = (list(range(i_14 - w, i_14 + w + 1)) + list(range(i_34 - w, i_34 + w + 1))) label_sets = (edge_labels, flat_labels, corner_labels) for ax, labels in zip(ax_img, label_sets): ax.imshow(overlay_labels(image, lbp, labels)) for ax, labels, name in zip(ax_hist, label_sets, titles): counts, _, bars = hist(ax, lbp) highlight_bars(bars, labels) ax.set_ylim(ymax=np.max(counts[:-1])) ax.set_xlim(xmax=n_points + 2) ax.set_title(name) ax_hist[0].set_ylabel('Percentage') for ax in ax_img: ax.axis('off') """ .. image:: PLOT2RST.current_figure The above plot highlights flat, edge-like, and corner-like regions of the image. The histogram of the LBP result is a good measure to classify textures. Here, we test the histogram distributions against each other using the Kullback-Leibler-Divergence. """ # settings for LBP radius = 2 n_points = 8 * radius def kullback_leibler_divergence(p, q): p = np.asarray(p) q = np.asarray(q) filt = np.logical_and(p != 0, q != 0) return np.sum(p[filt] * np.log2(p[filt] / q[filt])) def match(refs, img): best_score = 10 best_name = None lbp = local_binary_pattern(img, n_points, radius, METHOD) n_bins = lbp.max() + 1 hist, _ = np.histogram(lbp, normed=True, bins=n_bins, range=(0, n_bins)) for name, ref in refs.items(): ref_hist, _ = np.histogram(ref, normed=True, bins=n_bins, range=(0, n_bins)) score = kullback_leibler_divergence(hist, ref_hist) if score < best_score: best_score = score best_name = name return best_name brick = data.load('brick.png') grass = data.load('grass.png') wall = data.load('rough-wall.png') refs = { 'brick': local_binary_pattern(brick, n_points, radius, METHOD), 'grass': local_binary_pattern(grass, n_points, radius, METHOD), 'wall': local_binary_pattern(wall, n_points, radius, METHOD) } # classify rotated textures print('Rotated images matched against references using LBP:') print('original: brick, rotated: 30deg, match result: ', match(refs, rotate(brick, angle=30, resize=False))) print('original: brick, rotated: 70deg, match result: ', match(refs, rotate(brick, angle=70, resize=False))) print('original: grass, rotated: 145deg, match result: ', match(refs, rotate(grass, angle=145, resize=False))) # plot histograms of LBP of textures fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(nrows=2, ncols=3, figsize=(9, 6)) plt.gray() ax1.imshow(brick) ax1.axis('off') hist(ax4, refs['brick']) ax4.set_ylabel('Percentage') ax2.imshow(grass) ax2.axis('off') hist(ax5, refs['grass']) ax5.set_xlabel('Uniform LBP values') ax3.imshow(wall) ax3.axis('off') hist(ax6, refs['wall']) """ .. image:: PLOT2RST.current_figure """ plt.show()
bsd-3-clause
kagayakidan/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
NickC1/skedm
build/lib/skedm/utilities.py
1
9845
""" Metrics for scoring predictions and also some more specialized math needed for skedm """ import numpy as np from scipy import stats as stats from numba import jit def weighted_mean(X, distances ): """ Calculates the weighted mean given a set of values and their corresponding distances. Only 1/distance is implemented. This essentially is just a weighted mean down axis=1. Parameters ---------- X : 2d array Training values. shape(nsamples,number near neighbors) distances : 2d array Sorted distances to the near neighbors for the indices. shape(nsamples,number near neighbors) Returns ------- w_mean : 2d array Weighted predictions """ distances = distances+0.00001 #ensures no zeros when dividing W = 1./distances denom = np.sum(W, axis=1,keepdims=True) W/=denom w_mean = np.sum(X * W, axis=1) return w_mean.ravel() def mi_digitize(X): """ Digitize a time series for mutual information analysis Parameters ---------- X : 1D array array to be digitized of length m Returns ------- Y : 1D array digitized array of length m """ minX = np.min(X) - 1e-5 #subtract for correct binning maxX = np.max(X) + 1e-5 #add for correct binning nbins = int(np.sqrt(len(X)/20)) nbins = max(4,nbins) #make sure there are atleast four bins bins = np.linspace(minX, maxX, nbins+1) #add one for correct num bins Y = np.digitize(X, bins) return Y def corrcoef(preds,actual): """ Correlation Coefficient of between predicted values and actual values Parameters ---------- preds : array shape (num samples,num targets) test : array of shape (num samples, num targets) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ cc = np.corrcoef(preds,actual)[1,0] return cc def classCompare(preds,actual): """ Percent correct between predicted values and actual values Parameters ---------- preds : array shape (num samples,num targets) test : array of shape (num samples, num targets) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ cc = np.mean( preds == actual ) return cc def classificationError(preds,actual): """ Percent correct between predicted values and actual values scaled to the most common prediction of the space Parameters ---------- preds : array shape (num samples,) test : array of shape (num samples,) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ most_common,_=stats.mode(actual,axis=None) num = np.mean(preds == actual) denom = np.mean(actual == most_common) cc = num/denom.astype('float') return cc def kleckas_tau(preds,actual): """ Calculates kleckas tau Parameters ---------- preds : array shape (num samples,) test : array of shape (num samples,) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ ncorr = np.sum(preds == actual) #number correctly classified cats_unique = np.unique(actual) sum_t = 0 for cat in cats_unique: ni = np.sum(cat==actual) pi = float(ni)/len(preds) sum_t += ni*pi tau = (ncorr - sum_t) / (len(preds) - sum_t) return tau def cohens_kappa(preds,actual): """ Calculates cohens kappa Parameters ---------- preds : array shape (num samples,) test : array of shape (num samples,) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ c = cohen_kappa_score(preds,actual) return c def klekas_tau_spatial(X,max_lag,percent_calc=.5): """ Similar to mutual_information_spatial, it calculates the kleckas tau value between a shifted and unshifted slice of the space. It makes slices in both the rows and the columns. Parameters ---------- X : 2-D array input two-dimensional image max_lag : integer maximum amount to shift the space percent_calc : float How many rows and columns to use average over. Using the whole space is overkill. Returns ------- R_mut : 1-D array the mutual inforation averaged down the rows (vertical) C_mut : 1-D array the mutual information averaged across the columns (horizontal) r_mi : 2-D array the mutual information down each row (vertical) c_mi : 2-D array the mutual information across each columns (horizontal) """ rs, cs = np.shape(X) rs_iters = int(rs*percent_calc) cs_iters = int(cs*percent_calc) r_picks = np.random.choice(np.arange(rs),size=rs_iters,replace=False) c_picks = np.random.choice(np.arange(cs),size=cs_iters,replace=False) # The r_picks are used to calculate the MI in the columns # and the c_picks are used to calculate the MI in the rows c_mi = np.zeros((max_lag,rs_iters)) r_mi = np.zeros((max_lag,cs_iters)) for ii in range(rs_iters): m_slice = X[r_picks[ii],:] for j in range(max_lag): shift = j+1 new_m = m_slice[:-shift] shifted = m_slice[shift:] c_mi[j,ii] = kleckas_tau(new_m,shifted) for ii in range(cs_iters): m_slice = X[:,c_picks[ii]] for j in range(max_lag): shift = j+1 new_m = m_slice[:-shift] shifted = m_slice[shift:] r_mi[j,ii] = kleckas_tau(new_m,shifted) r_mut = np.mean(r_mi,axis=1) c_mut = np.mean(c_mi,axis=1) return r_mut, c_mut, r_mi, c_mi def varianceExplained(preds,actual): """ Explained variance between predicted values and actual values scaled to the most common prediction of the space Parameters ---------- preds : array shape (num samples,num targets) actual : array of shape (num samples, num targets) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ cc = np.var(preds - actual) / np.var(actual) return cc def score(preds,actual): """ The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. Parameters ---------- preds : array shape (num samples,num targets) test : array of shape (num samples, num targets) actual values from the testing set Returns ------- cc : float Returns the correlation coefficient """ u = np.square(actual - preds ).sum() v = np.square(actual - actual.mean()).sum() r2 = 1 - u/v if v == 0.: print('Targets are all the same. Returning 0.') r2=0 return r2 def weighted_mode(a, w, axis=0): """This function is borrowed from sci-kit learn's extmath.py Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: print('both weights') w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts @jit def quick_mode_axis1(X): """ Takes the mode of an array across the columns. aka axis=1 X : np.array """ X = X.astype(int) len_x = len(X) mode = np.zeros(len_x) for i in range(len_x): mode[i] = np.bincount(X[i,:]).argmax() return mode @jit def quick_mode_axis1_keep_nearest_neigh(X): """ The current implementation of the mode takes the lowest value instead of the closest value. For example if the neighbors have values: [7,7,2,3,4,1,1] the current implementation will keep 1 as the value. For our purposes, the ordering is important, so we want to keep the first value. """ X = X.astype(int) len_x = len(X) mode = np.zeros(len_x) for i in range(len_x): loc = np.bincount(X[i,:])[X[i,:]].argmax() #reorder before argmax mode[i] = X[i,:][loc] return mode def keep_diversity(X,thresh=1.): """ Throws out rows of only one class. X : 2d array of ints Returns keep : 1d boolean ex: [1 1 1 1] [2 1 2 3] [2 2 2 2] [3 2 1 4] returns: [F] [T] [F] [T] """ X = X.astype(int) mode = quick_mode_axis1(X).reshape(-1,1) compare = np.repeat(mode,X.shape[1],axis=1) thresh = int(thresh*X.shape[1]) keep = np.sum(compare==X, axis=1) < X.shape[1] return keep
mit
juliusbierk/scikit-image
skimage/io/_plugins/matplotlib_plugin.py
16
4961
from collections import namedtuple import numpy as np import warnings import matplotlib.pyplot as plt from ...util import dtype as dtypes from ...exposure import is_low_contrast from ...util.colormap import viridis _default_colormap = 'gray' _nonstandard_colormap = viridis _diverging_colormap = 'RdBu' ImageProperties = namedtuple('ImageProperties', ['signed', 'out_of_range_float', 'low_dynamic_range', 'unsupported_dtype']) def _get_image_properties(image): """Determine nonstandard properties of an input image. Parameters ---------- image : array The input image. Returns ------- ip : ImageProperties named tuple The properties of the image: - signed: whether the image has negative values. - out_of_range_float: if the image has floating point data outside of [-1, 1]. - low_dynamic_range: if the image is in the standard image range (e.g. [0, 1] for a floating point image) but its dynamic range would be too small to display with standard image ranges. - unsupported_dtype: if the image data type is not a standard skimage type, e.g. ``numpy.uint64``. """ immin, immax = np.min(image), np.max(image) imtype = image.dtype.type try: lo, hi = dtypes.dtype_range[imtype] except KeyError: lo, hi = immin, immax signed = immin < 0 out_of_range_float = (np.issubdtype(image.dtype, np.float) and (immin < lo or immax > hi)) low_dynamic_range = (immin != immax and is_low_contrast(image)) unsupported_dtype = image.dtype not in dtypes._supported_types return ImageProperties(signed, out_of_range_float, low_dynamic_range, unsupported_dtype) def _raise_warnings(image_properties): """Raise the appropriate warning for each nonstandard image type. Parameters ---------- image_properties : ImageProperties named tuple The properties of the considered image. """ ip = image_properties if ip.unsupported_dtype: warnings.warn("Non-standard image type; displaying image with " "stretched contrast.") if ip.low_dynamic_range: warnings.warn("Low image dynamic range; displaying image with " "stretched contrast.") if ip.out_of_range_float: warnings.warn("Float image out of standard range; displaying " "image with stretched contrast.") def _get_display_range(image): """Return the display range for a given set of image properties. Parameters ---------- image : array The input image. Returns ------- lo, hi : same type as immin, immax The display range to be used for the input image. cmap : string The name of the colormap to use. """ ip = _get_image_properties(image) immin, immax = np.min(image), np.max(image) if ip.signed: magnitude = max(abs(immin), abs(immax)) lo, hi = -magnitude, magnitude cmap = _diverging_colormap elif any(ip): _raise_warnings(ip) lo, hi = immin, immax cmap = _nonstandard_colormap else: lo = 0 imtype = image.dtype.type hi = dtypes.dtype_range[imtype][1] cmap = _default_colormap return lo, hi, cmap def imshow(im, *args, **kwargs): """Show the input image and return the current axes. By default, the image is displayed in greyscale, rather than the matplotlib default colormap. Images are assumed to have standard range for their type. For example, if a floating point image has values in [0, 0.5], the most intense color will be gray50, not white. If the image exceeds the standard range, or if the range is too small to display, we fall back on displaying exactly the range of the input image, along with a colorbar to clearly indicate that this range transformation has occurred. For signed images, we use a diverging colormap centered at 0. Parameters ---------- im : array, shape (M, N[, 3]) The image to display. *args, **kwargs : positional and keyword arguments These are passed directly to `matplotlib.pyplot.imshow`. Returns ------- ax_im : `matplotlib.pyplot.AxesImage` The `AxesImage` object returned by `plt.imshow`. """ if kwargs.get('cmap', None) == 'viridis': kwargs['cmap'] = viridis lo, hi, cmap = _get_display_range(im) kwargs.setdefault('interpolation', 'nearest') kwargs.setdefault('cmap', cmap) kwargs.setdefault('vmin', lo) kwargs.setdefault('vmax', hi) ax_im = plt.imshow(im, *args, **kwargs) if cmap != _default_colormap: plt.colorbar() return ax_im imread = plt.imread show = plt.show def _app_show(): show()
bsd-3-clause
airbnb/superset
superset/examples/sf_population_polygons.py
3
2118
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import pandas as pd from sqlalchemy import BigInteger, Float, Text from superset import db from superset.utils import core as utils from .helpers import get_example_data, TBL def load_sf_population_polygons( only_metadata: bool = False, force: bool = False ) -> None: tbl_name = "sf_population_polygons" database = utils.get_example_database() table_exists = database.has_table_by_name(tbl_name) if not only_metadata and (not table_exists or force): data = get_example_data("sf_population.json.gz") df = pd.read_json(data) df["contour"] = df.contour.map(json.dumps) df.to_sql( tbl_name, database.get_sqla_engine(), if_exists="replace", chunksize=500, dtype={ "zipcode": BigInteger, "population": BigInteger, "contour": Text, "area": Float, }, index=False, ) print("Creating table {} reference".format(tbl_name)) tbl = db.session.query(TBL).filter_by(table_name=tbl_name).first() if not tbl: tbl = TBL(table_name=tbl_name) tbl.description = "Population density of San Francisco" tbl.database = database db.session.merge(tbl) db.session.commit() tbl.fetch_metadata()
apache-2.0
ajrichards/bayesian-examples
estimation/two-component-gaussian-em.py
2
6433
#!/usr/bin/env python """ This is an implementation of two-component Gaussian example from Elements of Statistical Learning (pp 272) """ ## make imports from __future__ import division import sys import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import scipy.stats as stats class TwoComponentGaussian(): def __init__(self, y, num_iters, num_runs,verbose=False): self.y = y self.verbose = verbose self.max_like, self.best_est = self.run_em_algorithm(num_iters, num_runs) ### make defs for initial guessing, expectation, and maximization def get_init_guesses(self,y): ## make intial guesses for the parameters (mu1, sig1, mu2, sig2 and pi) n = len(self.y) mu1 = y[np.random.randint(0,n)] mu2 = y[np.random.randint(0,n)] sig1 = np.random.uniform(0.5,1.5) sig2 = np.random.uniform(0.5,1.5) pi = 0.5 return {'n':n, 'mu1':mu1, 'mu2':mu2, 'sig1':sig1, 'sig2':sig2, 'pi':pi} def perform_expectation(self, y, parms): gamma_hat = np.zeros((parms['n']),'float') for i in range(parms['n']): phi_theta1 = stats.norm.pdf(y[i],loc=parms['mu1'],scale=np.sqrt(parms['sig1'])) phi_theta2 = stats.norm.pdf(y[i],loc=parms['mu2'],scale=np.sqrt(parms['sig2'])) numer = parms['pi'] * phi_theta2 denom = ((1.0 - parms['pi']) * phi_theta1) + (parms['pi'] * phi_theta2) gamma_hat[i] = numer / denom return gamma_hat def perform_maximization(self,y,parms,gamma_hat): """ maximization """ ## use weighted maximum likelihood fits to get updated parameter estimates numer_muhat1 = 0 denom_hat1 = 0 numer_sighat1 = 0 numer_muhat2 = 0 denom_hat2 = 0 numer_sighat2 = 0 pi_hat = 0 ## get numerators and denomanators for updating of parameter estimates for i in range(parms['n']): numer_muhat1 = numer_muhat1 + ((1.0 - gamma_hat[i]) * y[i]) numer_sighat1 = numer_sighat1 + ( (1.0 - gamma_hat[i]) * ( y[i] - parms['mu1'] )**2 ) denom_hat1 = denom_hat1 + (1.0 - gamma_hat[i]) numer_muhat2 = numer_muhat2 + (gamma_hat[i] * y[i]) numer_sighat2 = numer_sighat2 + (gamma_hat[i] * ( y[i] - parms['mu2'] )**2) denom_hat2 = denom_hat2 + gamma_hat[i] pi_hat = pi_hat + (gamma_hat[i] / parms['n']) ## calculate estimates mu_hat1 = numer_muhat1 / denom_hat1 sig_hat1 = numer_sighat1 / denom_hat1 mu_hat2 = numer_muhat2 / denom_hat2 sig_hat2 = numer_sighat2 / denom_hat2 return {'mu1':mu_hat1, 'mu2':mu_hat2, 'sig1': sig_hat1, 'sig2':sig_hat2, 'pi':pi_hat, 'n':parms['n']} def get_likelihood(self,y,parms,gamma_hat): """ likelihood """ part1 = 0 part2 = 0 for i in range(parms['n']): phi_theta1 = stats.norm.pdf(y[i],loc=parms['mu1'],scale=np.sqrt(parms['sig1'])) phi_theta2 = stats.norm.pdf(y[i],loc=parms['mu2'],scale=np.sqrt(parms['sig2'])) part1 = part1 + ( (1.0 - gamma_hat[i]) * np.log(phi_theta1) + gamma_hat[i] * np.log(phi_theta2) ) part2 = part2 + ( (1.0 - gamma_hat[i]) * np.log(parms['pi']) + gamma_hat[i] * np.log(1.0 - parms['pi']) ) return part1 + part2 def run_em_algorithm(self, num_iters, num_runs, verbose = True): """ main algorithm functions """ max_like = -np.inf best_estimates = None for j in range(num_runs): iter_count = 0 parms = self.get_init_guesses(self.y) ## iterate between E-step and M-step while iter_count < num_iters: iter_count += 1 ## ensure we have reasonable estimates if parms['sig1'] < 0.0 or parms['sig2'] < 0.0: iter_count = 1 parms = get_init_guesses() ## E-step gamma_hat = self.perform_expectation(self.y,parms) log_like = self.get_likelihood(self.y,parms,gamma_hat) ## M-step parms = self.perform_maximization(self.y,parms,gamma_hat) if log_like > max_like: max_like = log_like best_estimates = parms.copy() if self.verbose == True: print('run:',j+1, '--- mu1: ',round(parms['mu1'],2),'--- mu2:',round(parms['mu2'],2),) print('--- obs.data likelihood: ', round(log_like,4)) print("runs complete") return max_like, best_estimates if __name__ == '__main__': y1 = np.array([-0.39,0.12,0.94,1.67,1.76,2.44,3.72,4.28,4.92,5.53]) y2 = np.array([ 0.06,0.48,1.01,1.68,1.80,3.25,4.12,4.60,5.28,6.22]) y = np.hstack((y1,y2)) num_iters = 25 num_runs = 20 verbose = True make_plots = True tcg = TwoComponentGaussian(y, num_iters, num_runs,verbose=verbose) print('max likelihood', tcg.max_like) print('best estimates', tcg.best_est) if make_plots: fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(111) n, bins, patches = ax.hist(y,bins=20,facecolor="#9999FF",alpha=0.7,normed=1,histtype='stepfilled') #n, bins, patches = plt.hist(y,15,normed=1,facecolor='gray',alpha=0.75) ## add a 'best fit' line (book results) mu1 = 4.62 mu2 = 1.06 sig1 = 0.87 sig2 = 0.77 p1 = mlab.normpdf( bins, mu1, np.sqrt(sig1)) p2 = mlab.normpdf( bins, mu2, np.sqrt(sig2)) l1 = ax.plot(bins, p1, 'r--', linewidth=1) l2 = ax.plot(bins, p2, 'r--', linewidth=1) ## add a 'best fit' line (results from here) p3 = mlab.normpdf( bins, tcg.best_est['mu1'], np.sqrt(tcg.best_est['sig1'])) p4 = mlab.normpdf( bins, tcg.best_est['mu2'], np.sqrt(tcg.best_est['sig2'])) l3 = ax.plot(bins, p3, 'k-', linewidth=1) l4 = ax.plot(bins, p4, 'k-', linewidth=1) plt.xlabel('y') plt.ylabel('freq') plt.ylim([0,0.8]) plt.legend( (l1[0], l3[0]), ('Book Estimate', 'EM Estimate') ) plt.savefig('../TwoComponentGauss.png') plt.show()
bsd-3-clause
nutils/nutils
examples/drivencavity.py
1
6644
#! /usr/bin/env python3 # # In this script we solve the lid driven cavity problem for stationary Stokes # and Navier-Stokes flow. That is, a unit square domain, with no-slip left, # bottom and right boundaries and a top boundary that is moving at unit # velocity in positive x-direction. import nutils, numpy # The main function defines the parameter space for the script. Configurable # parameters are the mesh density (in number of elements along an edge), # element type (square, triangle, or mixed), polynomial degree, and Reynolds # number. def main(nelems: 'number of elements' = 12, etype: 'type of elements (square/triangle/mixed)' = 'square', degree: 'polynomial degree for velocity' = 3, reynolds: 'reynolds number' = 1000.): domain, geom = nutils.mesh.unitsquare(nelems, etype) ns = nutils.function.Namespace() ns.Re = reynolds ns.x = geom ns.ubasis, ns.pbasis = nutils.function.chain([ domain.basis('std', degree=degree).vector(2), domain.basis('std', degree=degree-1), ]) ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.stress_ij = '(u_i,j + u_j,i) / Re - p δ_ij' sqr = domain.boundary.integral('u_k u_k d:x' @ ns, degree=degree*2) wallcons = nutils.solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary['top'].integral('(u_0 - 1)^2 d:x' @ ns, degree=degree*2) lidcons = nutils.solver.optimize('lhs', sqr, droptol=1e-15) cons = numpy.choose(numpy.isnan(lidcons), [lidcons, wallcons]) cons[-1] = 0 # pressure point constraint res = domain.integral('(ubasis_ni,j stress_ij + pbasis_n u_k,k) d:x' @ ns, degree=degree*2) with nutils.log.context('stokes'): lhs0 = nutils.solver.solve_linear('lhs', res, constrain=cons) postprocess(domain, ns, lhs=lhs0) res += domain.integral('ubasis_ni u_i,j u_j d:x' @ ns, degree=degree*3) with nutils.log.context('navierstokes'): lhs1 = nutils.solver.newton('lhs', res, lhs0=lhs0, constrain=cons).solve(tol=1e-10) postprocess(domain, ns, lhs=lhs1) return lhs0, lhs1 # Postprocessing in this script is separated so that it can be reused for the # results of Stokes and Navier-Stokes, and because of the extra steps required # for establishing streamlines. def postprocess(domain, ns, every=.05, spacing=.01, **arguments): ns = ns.copy_() # copy namespace so that we don't modify the calling argument ns.streambasis = domain.basis('std', degree=2)[1:] # remove first dof to obtain non-singular system ns.stream = 'streambasis_n ?streamdofs_n' # stream function sqr = domain.integral('((u_0 - stream_,1)^2 + (u_1 + stream_,0)^2) d:x' @ ns, degree=4) arguments['streamdofs'] = nutils.solver.optimize('streamdofs', sqr, arguments=arguments) # compute streamlines bezier = domain.sample('bezier', 9) x, u, p, stream = bezier.eval(['x_i', 'sqrt(u_k u_k)', 'p', 'stream'] @ ns, **arguments) with nutils.export.mplfigure('flow.png') as fig: # plot velocity as field, pressure as contours, streamlines as dashed ax = fig.add_axes([.1,.1,.8,.8], yticks=[], aspect='equal') import matplotlib.collections ax.add_collection(matplotlib.collections.LineCollection(x[bezier.hull], colors='w', linewidths=.5, alpha=.2)) ax.tricontour(x[:,0], x[:,1], bezier.tri, stream, 16, colors='k', linestyles='dotted', linewidths=.5, zorder=9) caxu = fig.add_axes([.1,.1,.03,.8], title='velocity') imu = ax.tripcolor(x[:,0], x[:,1], bezier.tri, u, shading='gouraud', cmap='jet') fig.colorbar(imu, cax=caxu) caxu.yaxis.set_ticks_position('left') caxp = fig.add_axes([.87,.1,.03,.8], title='pressure') imp = ax.tricontour(x[:,0], x[:,1], bezier.tri, p, 16, cmap='gray', linestyles='solid') fig.colorbar(imp, cax=caxp) # If the script is executed (as opposed to imported), :func:`nutils.cli.run` # calls the main function with arguments provided from the command line. To # keep with the default arguments simply run :sh:`python3 drivencavity.py`. if __name__ == '__main__': nutils.cli.run(main) # Once a simulation is developed and tested, it is good practice to save a few # strategic return values for regression testing. The :mod:`nutils.testing` # module, which builds on the standard :mod:`unittest` framework, facilitates # this by providing :func:`nutils.testing.TestCase.assertAlmostEqual64` for the # embedding of desired results as compressed base64 data. class test(nutils.testing.TestCase): @nutils.testing.requires('matplotlib') def test_square(self): lhs0, lhs1 = main(nelems=3, etype='square', reynolds=100, degree=3) with self.subTest('stokes'): self.assertAlmostEqual64(lhs0, ''' eNp1zj1IQlEUB/BrCJKEQxLRFNFQxvN1vTcpoqWhzZaGElr7WKOGirApiIaipcEKoiXCpaKEiCKnhjzn XX1PejaEJGGFRCCiCH153YrXOXCG3+Fw/oT8rZFeQpaVqDGVmjHNxEKSJmxM2rOIal1aDlsxKyK+gF/a sZbHEA5gDmL6FduuWRnHsAQXcABEXeGP/5rVrdUPqyxWma1q2ih3u1g7/+JnPf3+BiYtr5ToBGvm33yN d/C3pLTrTi9d9Y2yCkuxU2Z6pa17CqpKMzTo+6AbdLJmc3eupC7axKFmF7NiR5c2aBpiUYugAxUcRk/N mgyn2MVXsME83INblRZW6hMFfIA6CMRvbotonTgL7/ACWQjBfjwcT8MT6HAJSxCEI8hAvroxIQZ7cA7F X+3ET3CgG1Ucxz5sRDu2IMctTONQNVkFbNW5iScGIT8HbdXq''') with self.subTest('navier-stokes'): self.assertAlmostEqual64(lhs1, ''' eNptzktoU0EUBuC7KeLGguKioS4MBdPekNyZSWIwEihowVVBxJW0pYuiFgpiXSh0F0ltELvoC2zAVuor RuiTJlRLC6Hof2cml0wwCxVqCl1XFOqi4p27LPlXP985HI5hHM/1i4aRMzvVL7VqOs4j5VMhS9un8k2Z kEnZLL+271v3mLYb8oG4KuKiR0yGtkk6om1MODzLH/Ma/xZK0b+eXROveJzX7Vs8ZcXYUFTbkYiJp7yF b9i3VTO765m/fFL+5IM8ZBfFHJvybCD4WvVWi86BZPIsj3j3Gv3cKKXKUDhJovQ7TbBhdsrSdjl4xcqS btrEZukM7VDa3ge2wnHSRAt0lmboSFjbCfNMuGItkH7aSxdpi9Q2c+Gf80JFgpdIHxkgdaJtt3aufFq2 iRXxUPqchLfnV63yLT/Pd2CKLXqfadsL9DmGmLeruPPl42diN/44jyV8wBuMogvteIe827MYxwTWkMOi K1k8QxrTbl9xZQpPMIzn2EDR3cgjg5dYxzYKKIHjDzbx252sY9mdHuKHaRj/AYh1yFc=''') @nutils.testing.requires('matplotlib') def test_mixed(self): lhs0, lhs1 = main(nelems=3, etype='mixed', reynolds=100, degree=2) with self.subTest('stokes'): self.assertAlmostEqual64(lhs0, ''' eNpjYICAiRePnWdg0D736SyIF3P2nK6VYSWQHWS+1SjI3MAkyLz6rMbZI2BZhXMJZxyMNp/xMbwMFA8y LzNhYNh6YdUFiElzzykYgGg94yBzkH6oBQwvLm80YmA4r6dkCOYZq5h4GZUYgdg8QHKbJpA2OHhp8zmQ iM8Vp6tpV03PMp1TPQ/ipwPJcIOtZyAmvT69Bcy6BOXHnM0+m3w28ezmM+ZnY88EnW0/O+vs2bO7zq48 W352FdA8ABC3SoM=''') with self.subTest('navier-stokes'): self.assertAlmostEqual64(lhs1, ''' eNpjYICA1RezLjIwPD639hyIl31umX6vgQGQHWTuaRhkLmYcZB54bvvZq2dBsofPqZ4tMoo4o22oaxJk HmReasLAsOrihAsQkxzOJl0B0TJAOZB+qAUMtZefGzIwxOjtNgDxfho9MbI1UjcCsV/pMTA802VgqDNY qrsEbL+I7nGD0/o655ouMIFN3QLUqWSUcQZiEvMZbrA7npyG8IXPyJ2RPiN65ubpn6dPn+Y9I3XG4Awf UMzlDPuZ60A9AH73RT0=''')
mit
JarnoRFB/GENNN
ga.py
1
7202
import random import copy from time import gmtime, strftime import os import matplotlib.pyplot as plt class GA: def __init__(self, parms): # self._parms = parms self._population_size = parms['population'] self._rate_mutation = parms['mutation']['rate'] self._rate_crossover = parms['crossover']['rate'] self._candidate_class = parms['candidate_class'] self._start_time = strftime("%Y.%m.%d-%H.%M.%S", gmtime()) self._candidate_id = 0 # Create Random start population self._population = list( self._candidate_class(candidate_id=i, start_time_str=self._start_time, runtime_spec=parms['RUNTIME_SPEC']) for i in range(self._population_size) ) self._candidate_id = self._population_size self.generation = 0 self.best_candidate = None self.best_candidate_forever = None self.fitness_avg = None self.diversity = None # set base_logdir self._base_logdir = os.path.join(self._parms['RUNTIME_SPEC']['logdir'], str(self._start_time)) os.makedirs(self._base_logdir, exist_ok=True) # Create running file file_loc = os.path.join(self._base_logdir, "_running") with open(file_loc, 'w') as fd: fd.write("running") # Save json file_loc = os.path.join(self._base_logdir, "ga.json") with open(file_loc, 'w') as fp: fp.write(str(self._parms)) self._all_fitness_avg = list() self._all_fitness_best = list() self._all_diversity = list() def mutate(self): self.best_candidate = None self.fitness_avg = None self.diversity = None for candidate in self._population: candidate.mutation(self._rate_mutation) def crossover(self, strategy): if self._rate_crossover == 0: return self.best_candidate = None self.fitness_avg = None self.diversity = None # Number of Crossover operations crossovers = int((self._population_size * self._rate_crossover) / 2) for i in range(crossovers): candidate1 = random.randint(0, len(self._population) - 1) candidate2 = random.randint(0, len(self._population) - 1) # Get new Candidate 2 until Candidates are different while candidate1 == candidate2: candidate2 = random.randint(0, len(self._population) - 1) self._population[candidate1].crossover(other_candidate=self._population[candidate2], crossover_parms=strategy) def evaluate(self, calc_diversity): self.diversity = 0 self.fitness_avg = 0 self.generation += 1 # Here we can make Multi computing # Set: best_candidate and fitness_avg for candidate in self._population: candidate.to_next_generation(self.generation) self.fitness_avg += candidate.get_fitness() if self.best_candidate is None or candidate.get_fitness() > self.best_candidate.get_fitness(): self.best_candidate = copy.deepcopy(candidate) self.fitness_avg /= len(self._population) if (self.best_candidate_forever is None or self.best_candidate_forever.get_fitness() < self.best_candidate.get_fitness()): # Copy best candidate. self.best_candidate_forever = copy.deepcopy(self.best_candidate) # Compute Diversity if wanted if calc_diversity: self._calc_diversity() self._all_fitness_avg.append(copy.copy(self.fitness_avg)) self._all_fitness_best.append(copy.copy(self.best_candidate.get_fitness())) self._all_diversity.append(copy.copy(self.diversity)) def write_stats(self): file = os.path.join(self._base_logdir, 'graph.png') fig = plt.figure() ax = fig.add_subplot(111) ax.plot(self._all_fitness_avg, label='Fitness avg') ax.plot(self._all_fitness_best, label='Fitness best') ax.plot(self._all_diversity, label='diversity') ax.set_xlabel('Generation') ax.legend() fig.savefig(file, format='png') plt.clf() plt.close(fig) # Calc best Candidate more print("BestID: " + str(self.best_candidate_forever._candidate_id) + "- Fitness: " + str(round(self.best_candidate_forever.get_fitness(),3))) file_loc = os.path.join(self._base_logdir, "besetID") with open(file_loc, 'w') as fd: fd.write(str(self.best_candidate_forever._candidate_id)) # Remove running file file_loc = os.path.join(self._base_logdir, "_running") os.remove(file_loc) def _calc_diversity(self): divs = 0 for idx_from, candidate_from in enumerate(self._population): for candidate_to in self._population[idx_from + 1:]: self.diversity += candidate_from.get_diversity(candidate_to) divs += 1 self.diversity /= divs def selection(self, strategy="Tournament", tournament_win_rate=0.75, tournament_size=10): if strategy == "Tournament": self._selection_tournament(tournament_win_rate, tournament_size) def _selection_tournament(self, win_rate=0.75, tournement_size=10): new_population = list() sorted_candidates = sorted(self._population, key=lambda x: x.get_fitness()) for tournement in range(self._population_size): # Create tournement candidates idx_candidates = [i for i in range(self._population_size)] random.shuffle(idx_candidates) best_candidate_idx = max(idx_candidates[0:tournement_size]) worst_candidate_idx = min(idx_candidates[0:tournement_size]) if random.random() <= win_rate: # new_population.append(copy.deepcopy(sorted_candidates[best_candidate_idx])) network_spec_copy = copy.deepcopy(sorted_candidates[best_candidate_idx].network_spec) new_population.append(self._candidate_class(candidate_id=self._candidate_id, start_time_str=self._start_time, network_spec=network_spec_copy, runtime_spec=self._parms['RUNTIME_SPEC'])) self._candidate_id += 1 else: # new_population.append(copy.deepcopy(sorted_candidates[worst_candidate_idx])) network_spec_copy = copy.deepcopy(sorted_candidates[worst_candidate_idx].network_spec) new_population.append(self._candidate_class(candidate_id=self._candidate_id, start_time_str=self._start_time, network_spec=network_spec_copy, runtime_spec=self._parms['RUNTIME_SPEC'])) self._candidate_id += 1 self._population = new_population
mit
KristianJensen/cameo
cameo/api/designer.py
1
10721
# Copyright 2014 Novo Nordisk Foundation Center for Biosustainability, DTU. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function __all__ = ['design'] import re import numpy as np from IPython.core.display import display from IPython.core.display import HTML from pandas import DataFrame from cameo import Metabolite, Model, phenotypic_phase_plane, fba from cameo import config, util from cameo.core.result import Result from cameo.api.hosts import hosts, Host from cameo.api.products import products from cameo.exceptions import SolveError from cameo.strain_design.heuristic import GeneKnockoutOptimization from cameo.strain_design.heuristic.objective_functions import biomass_product_coupled_yield from cameo.ui import notice, searching, stop_loader from cameo.strain_design import pathway_prediction from cameo.util import TimeMachine from cameo.models import universal from cameo.visualization import visualization from cameo.visualization.plotting import Grid import logging logger = logging.getLogger(__name__) # TODO: implement cplex preference (if available) class _OptimizationRunner(object): def __call__(self, strategy, *args, **kwargs): (host, model, pathway) = (strategy[0], strategy[1], strategy[2]) with TimeMachine() as tm: pathway.plug_model(model, tm) objective = biomass_product_coupled_yield(model.biomass, pathway.product, model.carbon_source) opt = GeneKnockoutOptimization(model=model, objective_function=objective, progress=True, plot=False) return opt.run(product=pathway.product.id, max_evaluations=10000) class DesignerResult(Result): def __init__(self, designs, *args, **kwargs): super(DesignerResult, self).__init__(*args, **kwargs) self.designs = designs def _repr_latex_(self): pass class StrainDesings(Result): def __init__(self, organism, designs, *args, **kwargs): super(StrainDesings, self).__init__(*args, **kwargs) class Designer(object): """High-level strain design functionality. Example ------- design = Designer() designs = design(product='L-glutamate') """ def __init__(self): """""" pass def __call__(self, product='L-glutamate', hosts=hosts, database=None, view=config.default_view): """The works. The following workflow will be followed to determine suitable metabolic engineering strategies for a desired product: - Determine production pathways for desired product and host organisms. Try a list of default hosts if no hosts are specified. - Determine maximum theoretical yields and production envelopes for all routes. - Determine if production routes can be coupled to growth. - Determine over-expression, down-regulation, and KO targets. Parameters ---------- product : str or Metabolite The desired product. hosts : list or Model or Host A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host. Returns ------- Designs """ if database is None: database = universal.metanetx_universal_model_bigg_rhea notice("Starting searching for compound %s" % product) product = self.__translate_product_to_universal_reactions_model_metabolite(product, database) pathways = self.predict_pathways(product, hosts=hosts, database=database) optimization_reports = self.optimize_strains(pathways, view) return optimization_reports @staticmethod def optimize_strains(pathways, view): runner = _OptimizationRunner() designs = [(host, model, pathway) for (host, model) in pathways for pathway in pathways[host, model] if pathway.needs_optimization(model, objective=model.biomass)] return view.map(runner, designs) def predict_pathways(self, product, hosts=None, database=None): # TODO: make this work with a single host or model """Predict production routes for a desired product and host spectrum. Parameters ---------- product : str or Metabolite The desired product. hosts : list or Model or Host A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host. Returns ------- dict ... """ pathways = dict() product = self.__translate_product_to_universal_reactions_model_metabolite(product, database) for host in hosts: if isinstance(host, Model): host = Host(name='UNKNOWN_HOST', models=[host]) for model in list(host.models): notice('Predicting pathways for product %s in %s (using model %s).' % (product.name, host, model.id)) identifier = searching() try: logger.debug('Trying to set solver to cplex for pathway predictions.') model.solver = 'cplex' # CPLEX is better predicting pathways except ValueError: logger.debug('Could not set solver to cplex for pathway predictions.') pass pathway_predictor = pathway_prediction.PathwayPredictor(model, universal_model=database, compartment_regexp=re.compile(".*_c$")) # TODO adjust these numbers to something reasonable predicted_pathways = pathway_predictor.run(product, max_predictions=4, timeout=3 * 60, silent=True) pathways[(host, model)] = predicted_pathways stop_loader(identifier) self.__display_pathways_information(predicted_pathways, host, model) return pathways def __translate_product_to_universal_reactions_model_metabolite(self, product, database): if isinstance(product, Metabolite): return product elif isinstance(product, str): search_result = products.search(product) notice("Found %d compounds that match query '%s'" % (len(search_result), product)) self.__display_product_search_result(search_result) notice("Choosing best match (%s) ... please interrupt if this is not the desired compound." % search_result.name[0]) self.__display_compound(search_result.InChI[0]) return database.metabolites.get_by_id(search_result.index[0]) @staticmethod def __display_product_search_result(search_result): if util.in_ipnb(): Designer.__display_product_search_results_html(search_result) else: Designer.__display_product_search_results_cli(search_result) @staticmethod def __display_compound(inchi): if util.in_ipnb(): Designer.__display_compound_html(inchi) else: Designer.__display_compound_cli(inchi) @staticmethod def __display_compound_html(inchi): svg = Designer.__generate_svg(inchi) display(HTML(""" <p> %s </p> """ % svg)) @staticmethod def __display_compound_cli(inchi): text = Designer.__generate_ascii(inchi) print(text) @staticmethod def __display_product_search_results_html(search_result): rows = [] for index, row in search_result.iterrows(): name = row["name"] formula = row["formula"] rows.append("<tr><td>%s</td><td>%s</td><td>%s</td></tr>" % (index, name, formula)) display(HTML( """ <table> <thead> <th>Id</th> <th>Name</th> <th>Formula</th> </thead> <tbody> %s </tbody> </table> """ % "\n".join(rows) )) @staticmethod def __display_product_search_results_cli(search_result): rows = np.ndarray((len(search_result), 3), dtype=object) for i, index in enumerate(search_result.index): row = search_result.loc[index] name = row["name"] formula = row["formula"] rows[i, ] = [index, name, formula] i += 1 display(DataFrame(rows, columns=["Id", "Name", "Formula"])) @staticmethod def __generate_svg(inchi): if isinstance(inchi, float) or inchi is None: return "" else: return visualization.inchi_to_svg(inchi, three_d=False) @staticmethod def __generate_ascii(inchi): if isinstance(inchi, float) or inchi is None: return "" else: return visualization.inchi_to_ascii(inchi) @staticmethod def __display_pathways_information(predicted_pathways, host, original_model): # TODO: remove copy hack. with Grid(nrows=2, title="Production envelopes for %s (%s)" % (host.name, original_model.id)) as grid: for i, pathway in enumerate(predicted_pathways): pathway_id = "Pathway %i" % (i + 1) with TimeMachine() as tm: pathway.plug_model(original_model, tm) production_envelope = phenotypic_phase_plane(original_model, variables=[original_model.biomass], objective=pathway.product) production_envelope.plot(grid, title=pathway_id, width=400, height=300) @staticmethod def calculate_yield(model, source, product): try: flux_dist = fba(model, objective=product) return flux_dist[product.id] / abs(flux_dist[source.id]) except SolveError: return 0.0 design = Designer()
apache-2.0
Srisai85/numpy
numpy/fft/fftpack.py
72
45497
""" Discrete Fourier Transforms Routines in this module: fft(a, n=None, axis=-1) ifft(a, n=None, axis=-1) rfft(a, n=None, axis=-1) irfft(a, n=None, axis=-1) hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) fftn(a, s=None, axes=None) ifftn(a, s=None, axes=None) rfftn(a, s=None, axes=None) irfftn(a, s=None, axes=None) fft2(a, s=None, axes=(-2,-1)) ifft2(a, s=None, axes=(-2, -1)) rfft2(a, s=None, axes=(-2,-1)) irfft2(a, s=None, axes=(-2, -1)) i = inverse transform r = transform of purely real data h = Hermite transform n = n-dimensional transform 2 = 2-dimensional transform (Note: 2D routines are just nD routines with different default behavior.) The underlying code for these functions is an f2c-translated and modified version of the FFTPACK routines. """ from __future__ import division, absolute_import, print_function __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] from numpy.core import (array, asarray, zeros, swapaxes, shape, conjugate, take, sqrt) from . import fftpack_lite as fftpack _fft_cache = {} _real_fft_cache = {} def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti, work_function=fftpack.cfftf, fft_cache=_fft_cache): a = asarray(a) if n is None: n = a.shape[axis] if n < 1: raise ValueError("Invalid number of FFT data points (%d) specified." % n) try: # Thread-safety note: We rely on list.pop() here to atomically # retrieve-and-remove a wsave from the cache. This ensures that no # other thread can get the same wsave while we're using it. wsave = fft_cache.setdefault(n, []).pop() except (IndexError): wsave = init_function(n) if a.shape[axis] != n: s = list(a.shape) if s[axis] > n: index = [slice(None)]*len(s) index[axis] = slice(0, n) a = a[index] else: index = [slice(None)]*len(s) index[axis] = slice(0, s[axis]) s[axis] = n z = zeros(s, a.dtype.char) z[index] = a a = z if axis != -1: a = swapaxes(a, axis, -1) r = work_function(a, wsave) if axis != -1: r = swapaxes(r, axis, -1) # As soon as we put wsave back into the cache, another thread could pick it # up and start using it, so we must not do this until after we're # completely done using it ourselves. fft_cache[n].append(wsave) return r def _unitary(norm): if norm not in (None, "ortho"): raise ValueError("Invalid norm value %s, should be None or \"ortho\"." % norm) return norm is not None def fft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation. """ a = asarray(a).astype(complex) if n is None: n = a.shape[axis] output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache) if _unitary(norm): output *= 1 / sqrt(n) return output def ifft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., ``a[0]`` should contain the zero frequency term, ``a[1:n/2+1]`` should contain the positive-frequency terms, and ``a[n/2+1:]`` should contain the negative-frequency terms, in order of decreasingly negative frequency. See `numpy.fft` for details. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.legend(('real', 'imaginary')) <matplotlib.legend.Legend object at 0x...> >>> plt.show() """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache) return output * (1 / (sqrt(n) if unitary else n)) def rfft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n//2 + 1``. When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If `n` is even, ``A[-1]`` contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms. """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf, _real_fft_cache) if _unitary(norm): output *= 1 / sqrt(a.shape[axis]) return output def irfft(a, n=None, axis=-1, norm=None): """ Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermitian-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real. """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb, _real_fft_cache) return output * (1 / (sqrt(n) if unitary else n)) def hfft(a, n=None, axis=-1, norm=None): """ Compute the FFT of a signal which has Hermitian symmetry (real spectrum). Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n) def ihfft(a, n=None, axis=-1, norm=None): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = conjugate(rfft(a, n, axis)) return output * (1 / (sqrt(n) if unitary else n)) def _cook_nd_args(a, s=None, axes=None, invreal=0): if s is None: shapeless = 1 if axes is None: s = list(a.shape) else: s = take(a.shape, axes) else: shapeless = 0 s = list(s) if axes is None: axes = list(range(-len(s), 0)) if len(s) != len(axes): raise ValueError("Shape and axes have different lengths.") if invreal and shapeless: s[-1] = (a.shape[axes[-1]] - 1) * 2 return s, axes def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None): a = asarray(a) s, axes = _cook_nd_args(a, s, axes) itl = list(range(len(axes))) itl.reverse() for ii in itl: a = function(a, n=s[ii], axis=axes[ii], norm=norm) return a def fftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional discrete Fourier Transform. This function computes the *N*-dimensional discrete Fourier Transform over any number of axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. fft : The one-dimensional FFT, with definitions and conventions used. rfftn : The *n*-dimensional FFT of real input. fft2 : The two-dimensional FFT. fftshift : Shifts zero-frequency terms to centre of array Notes ----- The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See `numpy.fft` for details, definitions and conventions used. Examples -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, fft, norm) def ifftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifftn(fftn(a)) == a`` to within numerical accuracy. For a description of the definitions and conventions used, see `numpy.fft`. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to ``n`` for ``ifft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the IFFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. ifft : The one-dimensional inverse FFT. ifft2 : The two-dimensional inverse FFT. ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning of array. Notes ----- See `numpy.fft` for definitions and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called. Examples -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, ifft, norm) def fft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ]]) """ return _raw_fftnd(a, s, axes, fft, norm) def ifft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) """ return _raw_fftnd(a, s, axes, ifft, norm) def rfftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters ---------- a : array_like Input array, taken to be real. s : sequence of ints, optional Shape (length along each transformed axis) to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). The final element of `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. The length of the last axis transformed will be ``s[-1]//2+1``, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT of real input. fft : The one-dimensional FFT, with definitions and conventions used. rfft : The one-dimensional FFT of real input. fftn : The n-dimensional FFT. rfft2 : The two-dimensional FFT of real input. Notes ----- The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes. See `fft` for details, definitions and conventions used. Examples -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[ 8.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[ 4.+0.j, 0.+0.j], [ 4.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) s, axes = _cook_nd_args(a, s, axes) a = rfft(a, s[-1], axes[-1], norm) for ii in range(len(axes)-1): a = fft(a, s[ii], axes[ii], norm) return a def rfft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional FFT of a real array. Parameters ---------- a : array Input array, taken to be real. s : sequence of ints, optional Shape of the FFT. axes : sequence of ints, optional Axes over which to compute the FFT. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The result of the real 2-D FFT. See Also -------- rfftn : Compute the N-dimensional discrete Fourier Transform for real input. Notes ----- This is really just `rfftn` with different default behavior. For more details see `rfftn`. """ return rfftn(a, s, axes, norm) def irfftn(a, s=None, axes=None, norm=None): """ Compute the inverse of the N-dimensional FFT of real input. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, and for the same reason.) The input should be ordered in the same way as is returned by `rfftn`, i.e. as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes. Parameters ---------- a : array_like Input array. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of `s`, or the length of the input in every axis except for the last one if `s` is not given. In the final transformed axis the length of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, `s` must be specified. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- rfftn : The forward n-dimensional FFT of real input, of which `ifftn` is the inverse. fft : The one-dimensional FFT, with definitions and conventions used. irfft : The inverse of the one-dimensional FFT of real input. irfft2 : The inverse of the two-dimensional FFT of real input. Notes ----- See `fft` for definitions and conventions used. See `rfft` for definitions and conventions used for real input. Examples -------- >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) s, axes = _cook_nd_args(a, s, axes, invreal=1) for ii in range(len(axes)-1): a = ifft(a, s[ii], axes[ii], norm) a = irfft(a, s[-1], axes[-1], norm) return a def irfft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input array s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`. """ return irfftn(a, s, axes, norm)
bsd-3-clause
astrikos/nl_banks_stats
bank.py
1
1112
from pandas import ExcelFile class Bank(object): def __init__(self, transactions_file): self.transactions_file = transactions_file self.import_data(transactions_file) def import_data(self, transactions_file): pass class ABN(Bank): def import_data(self, transactions_file): xls = ExcelFile(transactions_file) self.data = xls.parse('Sheet0', index_col=3, na_values=['NA']) def get_amount(self, transaction_type, pattern): if transaction_type: t_slice = self.data[[d > 0 for d in self.data['amount']]] else: t_slice = self.data[[d < 0 for d in self.data['amount']]] final_slice = t_slice if pattern: final_slice = t_slice[ [pattern.lower() in d.lower() for d in t_slice['description']] ] amount_series = final_slice['amount'] if transaction_type: word = 'income' else: word = 'expenses' print 'Total amount of %s is: %dE' % ( word, sum([d for d in amount_series]) )
lgpl-3.0
takaakiaoki/PyFoam
PyFoam/Applications/SamplePlot.py
2
44177
# ICE Revision: $Id: /local/openfoam/Python/PyFoam/PyFoam/Applications/SamplePlot.py 8488 2013-11-03T14:38:32.775063Z bgschaid $ """ Application class that implements pyFoamSamplePlot.py """ import sys,string from os import path from optparse import OptionGroup from .PyFoamApplication import PyFoamApplication from PyFoam.RunDictionary.SampleDirectory import SampleDirectory from PyFoam.Basics.SpreadsheetData import WrongDataSize from PyFoam.Error import error,warning from .PlotHelpers import cleanFilename from PyFoam.ThirdParty.six import print_ class SamplePlot(PyFoamApplication): def __init__(self, args=None, **kwargs): description="""\ Reads data from the sample-dictionary and generates appropriate gnuplot-commands. As an option the data can be written to a CSV-file. """ PyFoamApplication.__init__(self, args=args, description=description, usage="%prog [options] <casedir>", nr=1, changeVersion=False, interspersed=True, **kwargs) modeChoices=["separate","timesInOne","fieldsInOne","linesInOne","complete"] def addOptions(self): data=OptionGroup(self.parser, "Data", "Select the data to plot") self.parser.add_option_group(data) data.add_option("--line", action="append", default=None, dest="line", help="Thesample line from which data is plotted (can be used more than once)") data.add_option("--field", action="append", default=None, dest="field", help="The fields that are plotted (can be used more than once). If none are specified all found fields are used") data.add_option("--pattern-for-line", action="store", default=None, dest="linePattern", help="Usually the name of the line is automatically determined from the file name by taking the first part. If this regular expression is specified then it is used: the first group in the pattern will be the line name") data.add_option("--default-value-names", action="store", default=None, dest="valueNames", help="Usually the names of the values automatically determined from the file. If they are specified (as a comma separated list of names) then these names are used and all the files MUST have these values") data.add_option("--no-extension-needed", action="store_false", default=True, dest="needsExtension", help="The files do not have an extension") data.add_option("--is-distribution", action="store_true", default=False, dest="isDistribution", help="The files in the directory are distributions. This sets the names of the lines and fields accordingly") data.add_option("--postfix-for-field-names", action="append", default=[], dest="fieldPostfix", help="Possible postfix for field names of the form 'name_postfix'. Note that this should not be a possible field name") data.add_option("--prefix-for-field-names", action="append", default=[], dest="fieldPrefix", help="Possible prefix for field names of the form 'prefix_name'. Note that this should not be a possible field name") data.add_option("--directory-name", action="store", default="samples", dest="dirName", help="Alternate name for the directory with the samples (Default: %default)") data.add_option("--preferred-component", action="store", type="int", default=None, dest="component", help="The component that should be used for vectors. Otherwise the absolute value is used") data.add_option("--reference-directory", action="store", default=None, dest="reference", help="A reference directory. If fitting sample data is found there it is plotted alongside the regular data") data.add_option("--reference-case", action="store", default=None, dest="referenceCase", help="A reference case where a directory with the same name is looked for. Mutual exclusive with --reference-directory") scale=OptionGroup(self.parser, "Scale", "Scale the data before comparing (not used during plotting)") self.parser.add_option_group(scale) scale.add_option("--scale-data", action="store", type="float", default=1, dest="scaleData", help="Scale the data by this factor. Default: %default") scale.add_option("--offset-data", action="store", type="float", default=0, dest="offsetData", help="Offset the data by this factor. Default: %default") scale.add_option("--scale-x-axis", action="store", type="float", default=1, dest="scaleXAxis", help="Scale the x-axis by this factor. Default: %default") scale.add_option("--offset-x-axis", action="store", type="float", default=0, dest="offsetXAxis", help="Offset the x-axis by this factor. Default: %default") scale.add_option("--scale-reference-data", action="store", type="float", default=1, dest="scaleReferenceData", help="Scale the reference data by this factor. Default: %default") scale.add_option("--offset-reference-data", action="store", type="float", default=0, dest="offsetReferenceData", help="Offset the reference data by this factor. Default: %default") scale.add_option("--scale-reference-x-axis", action="store", type="float", default=1, dest="scaleReferenceXAxis", help="Scale the reference x-axis by this factor. Default: %default") scale.add_option("--offset-reference-x-axis", action="store", type="float", default=0, dest="offsetReferenceXAxis", help="Offset the reference x-axis by this factor. Default: %default") time=OptionGroup(self.parser, "Time", "Select the times to plot") self.parser.add_option_group(time) time.add_option("--time", action="append", default=None, dest="time", help="The times that are plotted (can be used more than once). If none are specified all found times are used") time.add_option("--min-time", action="store", type="float", default=None, dest="minTime", help="The smallest time that should be used") time.add_option("--max-time", action="store", type="float", default=None, dest="maxTime", help="The biggest time that should be used") time.add_option("--fuzzy-time", action="store_true", default=False, dest="fuzzyTime", help="Try to find the next timestep if the time doesn't match exactly") time.add_option("--latest-time", action="store_true", default=False, dest="latestTime", help="Take the latest time from the data") time.add_option("--reference-time", action="store", default=None, dest="referenceTime", help="Take this time from the reference data (instead of using the same time as the regular data)") time.add_option("--tolerant-reference-time", action="store_true", default=False, dest="tolerantReferenceTime", help="Take the reference-time that is nearest to the selected time") output=OptionGroup(self.parser, "Appearance", "How it should be plotted") self.parser.add_option_group(output) output.add_option("--mode", type="choice", default="separate", dest="mode", action="store", choices=self.modeChoices, help="What kind of plots are generated: a) separate for every time, line and field b) all times of a field in one plot c) all fields of a time in one plot d) all lines in one plot e) everything in one plot (Names: "+", ".join(self.modeChoices)+") Default: %default") output.add_option("--unscaled", action="store_false", dest="scaled", default=True, help="Don't scale a value to the same range for all plots") output.add_option("--scale-all", action="store_true", dest="scaleAll", default=False, help="Use the same scale for all fields (else use one scale for each field)") output.add_option("--scale-domain", action="store_true", dest="scaleDomain", default=False, help="Automatically scale the x-domain to the same length for all plots") output.add_option("--domain-minimum", action="store", type="float", dest="domainMin", default=None, help="Use this value as the minimum for the x-domain for all plots") output.add_option("--domain-maximum", action="store", type="float", dest="domainMax", default=None, help="Use this value as the maximum for the x-domain for all plots") output.add_option("--gnuplot-file", action="store", dest="gnuplotFile", default=None, help="Write the necessary gnuplot commands to this file. Else they are written to the standard output") output.add_option("--picture-destination", action="store", dest="pictureDest", default=None, help="Directory the pictures should be stored to") output.add_option("--name-prefix", action="store", dest="namePrefix", default=None, help="Prefix to the picture-name") output.add_option("--csv-file", action="store", dest="csvFile", default=None, help="Write the data to a CSV-file instead of the gnuplot-commands") output.add_option("--excel-file", action="store", dest="excelFile", default=None, help="Write the data to a Excel-file instead of the gnuplot-commands") output.add_option("--pandas-data", action="store_true", dest="pandasData", default=False, help="Pass the raw data in pandas-format") output.add_option("--numpy-data", action="store_true", dest="numpyData", default=False, help="Pass the raw data in numpy-format") data.add_option("--info", action="store_true", dest="info", default=False, help="Print info about the sampled data and exit") output.add_option("--style", action="store", default="lines", dest="style", help="Gnuplot-style for the data (Default: %default)") output.add_option("--clean-filename", action="store_true", dest="cleanFilename", default=False, help="Clean filenames so that they can be used in HTML or Latex-documents") output.add_option("--index-instead-of-time", action="store_true", dest="indexInsteadOfTime", default=False, help="Use an index instead of the time in the filename (mainly needed if the files are used to make a movie with FFMPEG)") output.add_option("--reference-prefix", action="store", dest="refprefix", default="Reference", help="Prefix that gets added to the reference lines. Default: %default") output.add_option("--resample-reference", action="store_true", dest="resampleReference", default=False, help="Resample the reference value to the current x-axis (for CSV or Excel-output)") output.add_option("--extend-data", action="store_true", dest="extendData", default=False, help="Extend the data range if it differs (for CSV or Excel-files)") output.add_option("--silent", action="store_true", dest="silent", default=False, help="Don't write to screen (with the silent and the compare-options)") numerics=OptionGroup(self.parser, "Quantify", "Metrics of the data and numerical comparisons") self.parser.add_option_group(numerics) numerics.add_option("--metrics", action="store_true", dest="metrics", default=None, help="Print the metrics of the data sets") numerics.add_option("--compare", action="store_true", dest="compare", default=None, help="Compare all data sets that are also in the reference data") numerics.add_option("--common-range-compare", action="store_true", dest="commonRange", default=None, help="When comparing two datasets only use the common time range") numerics.add_option("--index-tolerant-compare", action="store_true", dest="indexTolerant", default=None, help="Compare two data sets even if they have different indizes") numerics.add_option("--use-reference-for-comparison", action="store_false", dest="compareOnOriginal", default=True, help="Use the reference-data as the basis for the numerical comparison. Otherwise the original data will be used") def run(self): if self.opts.isDistribution: if self.opts.valueNames or self.opts.linePattern: self.error("The option --is-distribution can not be used with --pattern-for-line or --default-value-names") # self.opts.valueNames="normalized,raw" self.opts.linePattern=".+istribution_(.+)" self.opts.needsExtension=False # remove trailing slashif present if self.opts.dirName[-1]==path.sep: self.opts.dirName=self.opts.dirName[:-1] usedDirName=self.opts.dirName.replace("/","_") if self.opts.valueNames==None: usedValueNames=None else: usedValueNames=self.opts.valueNames.split(","), samples=SampleDirectory(self.parser.getArgs()[0], dirName=self.opts.dirName, postfixes=self.opts.fieldPostfix, prefixes=self.opts.fieldPrefix, valueNames=usedValueNames, namesFromFirstLine=self.opts.isDistribution, linePattern=self.opts.linePattern, needsExtension=self.opts.needsExtension) reference=None if self.opts.reference and self.opts.referenceCase: self.error("Options --reference-directory and --reference-case are mutual exclusive") if (self.opts.csvFile or self.opts.excelFile or self.opts.pandasData or self.opts.numpyData) and (self.opts.compare or self.opts.metrics): self.error("Options --csv-file/--excel-file/--pandas-data/--numpy-data and --compare/--metrics are mutual exclusive") if self.opts.reference: reference=SampleDirectory(self.parser.getArgs()[0], dirName=self.opts.reference, postfixes=self.opts.fieldPostfix, prefixes=self.opts.fieldPrefix) elif self.opts.referenceCase: reference=SampleDirectory(self.opts.referenceCase, dirName=self.opts.dirName, postfixes=self.opts.fieldPostfix, prefixes=self.opts.fieldPrefix) if reference: if path.samefile(reference.dir,samples.dir): self.error("Used sample directory",samples.dir, "and reference directory",reference.dir, "are the same") lines=samples.lines() times=samples.times if self.opts.info: if not self.opts.silent: print_("Times : ",samples.times) print_("Lines : ",samples.lines()) print_("Fields: ",list(samples.values())) self.setData({'times' : samples.times, 'lines' : samples.lines(), 'values' : list(samples.values())}) if reference: if not self.opts.silent: print_("\nReference Data:") print_("Times : ",reference.times) print_("Lines : ",reference.lines()) print_("Fields: ",list(reference.values())) self.setData({'reference':{'times' : samples.times, 'lines' : samples.lines(), 'values' : list(samples.values())}}) return 0 if self.opts.line==None: # error("At least one line has to be specified. Found were",samples.lines()) self.opts.line=lines else: for l in self.opts.line: if l not in lines: error("The line",l,"does not exist in",lines) if self.opts.latestTime: if self.opts.time: self.opts.time.append(samples.times[-1]) else: self.opts.time=[samples.times[-1]] if self.opts.maxTime or self.opts.minTime: if self.opts.time: error("Times",self.opts.time,"and range [",self.opts.minTime,",",self.opts.maxTime,"] set: contradiction") self.opts.time=[] if self.opts.maxTime==None: self.opts.maxTime= 1e20 if self.opts.minTime==None: self.opts.minTime=-1e20 for t in times: if float(t)<=self.opts.maxTime and float(t)>=self.opts.minTime: self.opts.time.append(t) if len(self.opts.time)==0: error("No times in range [",self.opts.minTime,",",self.opts.maxTime,"] found: ",times) elif self.opts.time: iTimes=self.opts.time self.opts.time=[] for t in iTimes: if t in samples.times: self.opts.time.append(t) elif self.opts.fuzzyTime: tf=float(t) use=None dist=1e20 for ts in samples.times: if abs(tf-float(ts))<dist: use=ts dist=abs(tf-float(ts)) if use and use not in self.opts.time: self.opts.time.append(use) else: pass # self.warning("Time",t,"not found in the sample-times. Use option --fuzzy") if self.opts.tolerantReferenceTime: if self.opts.referenceTime: self.error("--tolerant-reference-time and --reference-time can't be used at the same time") refTimes={} for t in self.opts.time: dist=1e20 for rt in reference.times: if abs(float(t)-float(rt))<dist: refTimes[t]=rt dist=abs(float(t)-float(rt)) plots=[] oPlots=[] rPlots=[] if self.opts.mode=="separate": if self.opts.time==None: self.opts.time=samples.times if self.opts.field==None: self.opts.field=list(samples.values()) if self.opts.line==None: self.opts.line=samples.lines() for t in self.opts.time: for f in self.opts.field: for l in self.opts.line: plot=samples.getData(line=[l], value=[f], time=[t], scale=(self.opts.scaleXAxis, self.opts.scaleData), offset=(self.opts.offsetXAxis, self.opts.offsetData)) oPlots.append(plot[:]) if reference: rT=[t] if self.opts.referenceTime: rT=[self.opts.referenceTime] elif self.opts.tolerantReferenceTime: rT=[refTimes[t]] p=reference.getData(line=[l], value=[f], time=rT, note=self.opts.refprefix+" ", scale=(self.opts.scaleReferenceXAxis, self.opts.scaleReferenceData), offset=(self.opts.offsetReferenceXAxis, self.opts.offsetReferenceData)) rPlots.append(p) plot+=p plots.append(plot) elif self.opts.mode=="timesInOne": if self.opts.field==None: self.opts.field=list(samples.values()) if self.opts.line==None: self.opts.line=samples.lines() for f in self.opts.field: for l in self.opts.line: plot=samples.getData(line=[l], value=[f], time=self.opts.time) oPlots.append(plot[:]) if reference: rT=self.opts.time if self.opts.referenceTime: rT=[self.opts.referenceTime] elif self.opts.tolerantReferenceTime: rT=[refTimes[t]] p=reference.getData(line=[l], value=[f], time=rT, note=self.opts.refprefix+" ") rPlots.append(p) plot+=p plots.append(plot) elif self.opts.mode=="fieldsInOne": if self.opts.scaled and not self.opts.scaleAll: warning("In mode '",self.opts.mode,"' all fields are scaled to the same value") self.opts.scaleAll=True if self.opts.time==None: self.opts.time=samples.times if self.opts.line==None: self.opts.line=samples.lines() for t in self.opts.time: for l in self.opts.line: plot=samples.getData(line=[l], value=self.opts.field, time=[t]) oPlots.append(plot[:]) if reference: rT=t if self.opts.referenceTime: rT=self.opts.referenceTime elif self.opts.tolerantReferenceTime: rT=refTimes[t] p=reference.getData(line=[l], value=self.opts.field, time=[rT], note=self.opts.refprefix+" ") rPlots.append(p) plot+=p plots.append(plot) elif self.opts.mode=="linesInOne": if self.opts.field==None: self.opts.field=list(samples.values()) if self.opts.time==None: self.opts.time=samples.times for f in self.opts.field: for t in self.opts.time: plot=samples.getData(line=self.opts.line, value=[f], time=[t]) oPlots.append(plot[:]) if reference: rT=t if self.opts.referenceTime: rT=self.opts.referenceTime elif self.opts.tolerantReferenceTime: rT=refTimes[t] p=reference.getData(line=self.opts.line, value=[f], time=[rT], note=self.opts.refprefix+" ") rPlots.append(p) plot+=p plots.append(plot) elif self.opts.mode=="complete": if self.opts.scaled and not self.opts.scaleAll: warning("In mode '",self.opts.mode,"' all fields are scaled to the same value") self.opts.scaleAll=True plot=samples.getData(line=self.opts.line, value=self.opts.field, time=self.opts.time) oPlots.append(plot[:]) if reference: rT=self.opts.time if self.opts.referenceTime: rT=[self.opts.referenceTime] elif self.opts.tolerantReferenceTime: rT=[refTimes[t]] p=reference.getData(line=self.opts.line, value=self.opts.field, time=rT, note=self.opts.refprefix+" ") plot+=p rPlots.append(p) plots.append(plot) xMin,xMax=None,None if self.opts.scaleDomain: if self.opts.domainMin or self.opts.domainMax: self.error("--scale-domain used. Can't use --domain-minimum or --domain-maximum") xMin,xMax=1e40,-1e40 for p in plots: for d in p: mi,mx=d.domain() xMin=min(xMin,mi) xMax=max(xMax,mx) else: xMin,xMax=self.opts.domainMin,self.opts.domainMax if self.opts.scaled: if self.opts.scaleAll: vRange=None else: vRanges={} for p in plots: for d in p: mi,ma=d.range(component=self.opts.component) nm=d.name if not self.opts.scaleAll: if nm in vRanges: vRange=vRanges[nm] else: vRange=None if vRange==None: vRange=mi,ma else: vRange=min(vRange[0],mi),max(vRange[1],ma) if not self.opts.scaleAll: vRanges[nm]=vRange result="set term png\n" plots=[p for p in plots if len(p)>0] if len(plots)<1: self.error("No plots produced. Nothing done") for p in plots: if len(p)<1: continue name="" if self.opts.namePrefix: name+=self.opts.namePrefix+"_" name+=usedDirName title=None tIndex=times.index(p[0].time()) # name+="_"+"_".join(self.opts.line) if self.opts.mode=="separate": name+="_%s" % (p[0].line()) if self.opts.indexInsteadOfTime: name+="_%s_%04d" % (p[0].name,tIndex) else: name+="_%s_t=%f" % (p[0].name,float(p[0].time())) title="%s at t=%f on %s" % (p[0].name,float(p[0].time()),p[0].line()) elif self.opts.mode=="timesInOne": name+="_%s" % (p[0].line()) if self.opts.time!=None: name+="_"+"_".join(["t="+t for t in self.opts.time]) name+="_%s" % p[0].name title="%s on %s" % (p[0].name,p[0].line()) elif self.opts.mode=="fieldsInOne": name+="_%s" % (p[0].line()) if self.opts.field!=None: name+="_"+"_".join(self.opts.field) if self.opts.time!=None: name+="_"+"_".join(["t="+t for t in self.opts.time]) name+="_%04d" % tIndex title="t=%f on %s" % (float(p[0].time()),p[0].line()) elif self.opts.mode=="linesInOne": name+="_%s" % (p[0].name) if self.opts.line!=None: name+="_"+"_".join(self.opts.line) if self.opts.indexInsteadOfTime: name+="_%04d" % tIndex else: name+="_t=%f" % float(p[0].time()) title="%s at t=%f" % (p[0].name,float(p[0].time())) elif self.opts.mode=="complete": pass name+=".png" if self.opts.pictureDest: name=path.join(self.opts.pictureDest,name) if self.opts.cleanFilename: name=cleanFilename(name) result+='set output "%s"\n' % name if title!=None: result+='set title "%s"\n' % title.replace("_","\\_") result+="plot " if self.opts.scaled: if not self.opts.scaleAll: vRange=vRanges[p[0].name] # only scale if extremas are sufficiently different if abs(vRange[0]-vRange[1])>1e-5*max(abs(vRange[0]),abs(vRange[1])) and max(abs(vRange[0]),abs(vRange[1]))>1e-10: yRange="[%g:%g] " % vRange else: yRange="[]" else: yRange="[]" if xMin or xMax: xRange="[" if xMin: xRange+=str(xMin) xRange+=":" if xMax: xRange+=str(xMax) xRange+="]" else: xRange="[]" if self.opts.scaled or xMin or xMax: result+=xRange+yRange first=True for d in p: if first: first=False else: result+=", " colSpec=d.index+1 if d.isVector(): if self.opts.component!=None: colSpec=d.index+1+self.opts.component else: colSpec="(sqrt($%d**2+$%d**2+$%d**2))" % (d.index+1,d.index+2,d.index+3) # result+='"%s" using 1:%s ' % (d.file,colSpec) def makeCol(spec,sc,off): if type(spec)==str: pre="" else: pre="$" spec=str(spec) if sc==1: if off==0: return spec else: return "(%s%s+%f)" % (pre,spec,off) else: if off==0: return "(%s%s*%f)" % (pre,spec,sc) else: return "(%s%s*%f+%f)" % (pre,spec,sc,off) result+='"%s" using %s:%s ' % (d.file, makeCol(1,d.scale[0],d.offset[0]), makeCol(colSpec,d.scale[1],d.offset[1])) title=d.note if self.opts.mode=="separate": title+="" elif self.opts.mode=="timesInOne": title+="t=%f" % float(d.time()) elif self.opts.mode=="fieldsInOne": title+="%s" % d.name elif self.opts.mode=="linesInOne": title+="t=%f" % float(d.time()) elif self.opts.mode=="complete": title+="%s at t=%f" % (d.name,float(d.time())) if len(self.opts.line)>1: title+=" on %s" % d.line() if title=="": result+="notitle " else: result+='title "%s" ' % title.replace("_","\\_") result+="with %s " % self.opts.style result+="\n" if self.opts.csvFile or self.opts.excelFile or self.opts.pandasData or self.opts.numpyData: tmp=sum(plots,[]) c=tmp[0]() for p in tmp[1:]: try: c+=p() except WrongDataSize: if self.opts.resampleReference: sp=p() for n in sp.names()[1:]: data=c.resample(sp, n, extendData=self.opts.extendData) try: c.append(n,data) except ValueError: c.append(self.opts.refprefix+" "+n,data) else: self.warning("Try the --resample-option") raise if self.opts.csvFile: c.writeCSV(self.opts.csvFile) if self.opts.excelFile: c.getData().to_excel(self.opts.excelFile) if self.opts.pandasData: self.setData({"series":c.getSeries(), "dataFrame":c.getData()}) if self.opts.numpyData: self.setData({"data":c.data.copy()}) elif self.opts.compare or self.opts.metrics: statData={} if self.opts.compare: statData["compare"]={} if self.opts.metrics: statData["metrics"]={} for p in self.opts.line: if self.opts.compare: statData["compare"][p]={} if self.opts.metrics: statData["metrics"][p]={} oPlots=[item for sublist in oPlots for item in sublist] rPlots=[item for sublist in rPlots for item in sublist] if len(rPlots)!=len(oPlots) and self.opts.compare: self.error("Number of original data sets",len(oPlots), "is not equal to the reference data sets", len(rPlots)) if len(rPlots)==0 and self.opts.metrics: rPlots=[None]*len(oPlots) for o,r in zip(oPlots,rPlots): data=o(scaleData=self.opts.scaleData, offsetData=self.opts.offsetData, scaleX=self.opts.scaleXAxis, offsetX=self.opts.offsetXAxis) if self.opts.compare: if o.name!=r.name or (o.index!=r.index and not self.opts.indexTolerant): self.error("Data from original",o.name,o.index, "and reference",r.name,r.index, "do not match. Try --index-tolerant-compare if you're sure that the data is right") ref=r(scaleData=self.opts.scaleReferenceData, offsetData=self.opts.offsetReferenceData, scaleX=self.opts.scaleReferenceXAxis, offsetX=self.opts.offsetReferenceXAxis) else: ref=None for i,n in enumerate(data.names()): if i==0: continue indexName=o.name if n.split(" ")[-1]!=indexName: indexName=n.split(" ")[-1] if self.opts.metrics: if not self.opts.silent: print_("Metrics for",indexName,"(Path:",o.file,")") result=data.metrics(data.names()[i], minTime=self.opts.minTime, maxTime=self.opts.maxTime) statData["metrics"][o.line()][indexName]=result if not self.opts.silent: print_(" Min :",result["min"]) print_(" Max :",result["max"]) print_(" Average :",result["average"]) print_(" Weighted average :",result["wAverage"]) if not self.opts.compare: print_("Data size:",data.size()) print_(" Time Range :",result["tMin"],result["tMax"]) if self.opts.compare: oname=data.names()[i] if self.opts.referenceTime or self.opts.tolerantReferenceTime: oname=ref.names()[i] if not self.opts.silent: print_("Comparing",indexName,"with name",oname,"(Path:",r.file,")",end="") if self.opts.compareOnOriginal: if not self.opts.silent: print_("on original data points") result=data.compare(ref, data.names()[i], otherName=oname,common=self.opts.commonRange, minTime=self.opts.minTime, maxTime=self.opts.maxTime) else: if not self.opts.silent: print_("on reference data points") result=ref.compare(data, oname, otherName=data.names()[i], common=self.opts.commonRange, minTime=self.opts.minTime, maxTime=self.opts.maxTime) statData["compare"][o.line()][indexName]=result if not self.opts.silent: print_(" Max difference :",result["max"],"(at",result["maxPos"],")") print_(" Average difference :",result["average"]) print_(" Weighted average :",result["wAverage"]) print_("Data size:",data.size(),"Reference:",ref.size()) if not self.opts.metrics: print_(" Time Range :",result["tMin"],result["tMax"]) if not self.opts.silent: print_() self.setData(statData) else: dest=sys.stdout if self.opts.gnuplotFile: dest=open(self.opts.gnuplotFile,"w") dest.write(result) # Should work with Python3 and Python2
gpl-2.0
yeatmanlab/BrainTools
projects/NLR_MEG/nlr_stats.py
1
7281
# -*- coding: utf-8 -*- # Author: Kambiz Tavabi <[email protected]> # """Docsting """ import matplotlib matplotlib.use('Agg') import os from os import path as op import numpy as np from functools import partial import time import mne from mne import set_log_level as log from mne.stats import ttest_1samp_no_p from mne.minimum_norm import (read_inverse_operator, apply_inverse) import mnefun from mnefun import anova_time from mnefun import get_fsaverage_medial_vertices __copyright__ = "Copyright 2015, ILABS" __status__ = "Development" log(verbose='Warning') # cd to meg directory os.chdir('/media/ALAYA/data/ilabs/nlr/') work_dir = os.getcwd() # set up mnefun parameters of interest p = mnefun.Params(lp_cut=40.) p.analyses = ['Words_noise'] p.subjects = ['nlr01', 'nlr02', 'nlr04', 'nlr05', 'nlr06', 'nlr07', 'nlr08'] p.structurals = ['nlr01', 'nlr02', 'nlr04', 'nlr05', 'nlr06', 'nlr07', 'nlr08'] do_plots = False reload_data = True do_contrasts = True do_anova = False # Local variables lambda2 = 1. / 9. n_smooth = 15 fs_verts = [np.arange(10242), np.arange(10242)] fs_medial = get_fsaverage_medial_vertices() inv_type = 'meg-fixed' # can be meg-eeg, meg-fixed, meg, eeg-fixed, or eeg fname_data = op.join(work_dir, '%s_data.npz' % p.analyses[0]) sigma = 1e-3 n_jobs = 18 tmin, tmax = 0.15, 0.20 # time window for RM-ANOVA conditions = ['epochs_word_c254_p20_010', 'epochs_word_c254_p50_010', 'epochs_word_c137_p20_010', 'epochs_word_c141_p20_010', 'epochs_noise_010', 'epochs_word_c254_p20_020', 'epochs_word_c254_p50_020', 'epochs_word_c137_p20_020', 'epochs_word_c141_p20_020', 'epochs_noise_020'] # events of interest contrasts = [[4, 0], [9, 5], [2, 0], [7, 5], [0, 5], [1, 6], [2, 7], [3, 8]] # contrasts of interest # Plot (butterfly & topographic) conditions averaged over subjects in sensor domain. if do_plots: if not op.exists(work_dir + '/figures'): os.mkdir(work_dir + '/figures') for c in conditions: evo = [] for subj in p.subjects: ev_name = 'evoked_%s' % c evoked_file = op.join(work_dir, subj, 'inverse', '%s_%d-sss_eq_%s-ave.fif' % (p.analyses[0], p.lp_cut, subj)) evo.append(mne.read_evokeds(evoked_file, condition=c, baseline=(None, 0), kind='average', proj=True)) evo_grand_ave = np.sum(evo) h0 = evo_grand_ave.plot_topomap(times=np.arange(0, evo_grand_ave.times[-1], 0.1)) h0.savefig(op.join(work_dir, 'figures', ev_name + '_topomap'), dpi=96, format='png') h1 = evo_grand_ave.plot() h1.savefig(op.join(work_dir, 'figures', ev_name + '_butterfly'), dpi=96, format='png') ###################################### # Do source imaging and handle data.# ###################################### if reload_data: naves = np.zeros(len(p.subjects), int) for si, (subj, struc) in enumerate(zip(p.subjects, p.structurals)): print('Loading data for subject %s...' % subj) inv_dir = op.join(work_dir, subj, 'inverse') # load the inverse inv = op.join(inv_dir, '%s-%d-sss-%s-inv.fif' % (subj, p.lp_cut, inv_type)) inv = read_inverse_operator(inv) fname = op.join(inv_dir, '%s_%d-sss_eq_%s-ave.fif' % (p.analyses[0], p.lp_cut, subj)) aves = [mne.Evoked(fname, cond, baseline=(None, 0), proj=True, kind='average') for cond in conditions] nave = np.unique([a.nave for a in aves]) assert len(nave) == 1 for ave, cond in zip(aves, conditions): assert ave.comment == cond naves[si] = nave[0] # apply inverse, bin, morph stcs = [apply_inverse(ave, inv, lambda2, 'dSPM') for ave in aves] stcs = [stc.bin(0.005) for stc in stcs] m = mne.compute_morph_matrix(struc, 'fsaverage', stcs[0].vertices, fs_verts, n_smooth) stcs = [stc.morph_precomputed('fsaverage', fs_verts, m) for stc in stcs] # put in big matrix if subj == p.subjects[0]: data = np.empty((len(stcs), len(p.subjects), stcs[0].shape[0], stcs[0].shape[1])) for di, stc in enumerate(stcs): data[di, si, :, :] = stc.data times = stc.times print('Writing data...') np.savez_compressed(fname_data, data=data, times=times, naves=naves) else: print('Loading saved data...') data = np.load(fname_data) data, times, naves = data['data'], data['times'], data['naves'] # 1-sample t-test in time (uncorrected) on source data for given contrasts and save results as source time course. for s in range(len(p.subjects)): for cont in contrasts: contrast = '-'.join([conditions[c] for c in cont[::-1]]) X = data[:, s, :, :] X = (np.abs(X[cont[1]]) - np.abs(X[cont[0]])) stc = mne.SourceEstimate(X, fs_verts, times[0], np.diff(times[:2])) stc.save(op.join(p.work_dir, 'stcs', 'nlr%.0f_contrast_%s' % (s + 1, contrast))) if do_contrasts: if not op.exists(work_dir + '/stcs'): os.mkdir(work_dir + '/stcs') stat_fun = partial(ttest_1samp_no_p, sigma=sigma) for cont in contrasts: contrast = '-'.join([conditions[c] for c in cont[::-1]]) print(' Running t-tests for %s' % contrast) X = (np.abs(data[cont[1]]) - np.abs(data[cont[0]])) stc = mne.SourceEstimate(stat_fun(X), fs_verts, times[0], np.diff(times[:2])) stc.save(op.join(work_dir, 'stcs', 'contrast_%s' % contrast)) # Compute spatiotemporal RM-ANOVA (one-way) and visualize results on surface if do_anova: for cont in contrasts: t0 = time.time() contrast = '-'.join([conditions[c] for c in cont[::-1]]) tt = '%s-%s' % (tmin, tmax) print(' Running spatiotemporal RM-ANOVA for %s in the interval %s ms' % (contrast, tt)) mask = np.logical_and(times >= tmin, times <= tmax) X = np.swapaxes(np.swapaxes(data[cont], 0, 1), 2, 3)[:, :, mask, :] X = np.reshape(X, (X.shape[0], 2 * X.shape[2], X.shape[3])) X = np.abs(X) tvals, pvals, dof = anova_time(X) d = np.sign(tvals) * -np.log10(np.minimum(np.abs(pvals), 1)) # -np.log10(np.minimum(np.abs(p) * 20484, 1) bonferroni correction d[fs_medial] = 0 stc_anova = mne.SourceEstimate(d, fs_verts, 0, 1e-3, 'fsaverage') stc_anova.save(op.join(work_dir, 'stcs', 'anova_%s_%s' % (contrast, tt))) fmin, fmid, fmax = 2, 4, 6 colormap = mne.viz.mne_analyze_colormap(limits=[fmin, fmid, fmax]) brain = stc_anova.plot(hemi='split', colormap=colormap, time_label=None, smoothing_steps=n_smooth, transparent=True, config_opts={}, views=['lat', 'med']) brain.save_image(op.join(work_dir, 'stcs', 'anova_%s_%s.png' % (contrast, tt))) print(' Time: %s' % round((time.time() - t0) / 60., 2)) brain.close()
bsd-3-clause
justincassidy/scikit-learn
examples/decomposition/plot_ica_vs_pca.py
306
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
lazywei/scikit-learn
examples/exercises/plot_cv_diabetes.py
231
2527
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation, datasets, linear_model diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = linear_model.Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = linear_model.LassoCV(alphas=alphas) k_fold = cross_validation.KFold(len(X), 3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
hagabbar/pycbc_copy
setup.py
1
20651
#!/usr/bin/env python # Copyright (C) 2012 Alex Nitz, Duncan Brown, Andrew Miller, Josh Willis # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ setup.py file for PyCBC package """ from __future__ import print_function import os, fnmatch, sys, subprocess, shutil # FIXME: trace.fullmodname was undocumented in Python 2 and actually became an # internal function in Python 3. We should not depend on it. try: from trace import fullmodname except ImportError: from trace import _fullmodname as fullmodname try: from setuptools.command.install import install as _install from setuptools.command.install_egg_info import install_egg_info as egg_info USE_SETUPTOOLS = True except: from distutils.command.install import install as _install USE_SETUPTOOLS = False from distutils.errors import DistutilsError from distutils.core import setup, Command, Extension from distutils.command.clean import clean as _clean from distutils.file_util import write_file from distutils.version import LooseVersion try: import numpy.version if LooseVersion(numpy.version.version) < LooseVersion("1.6.4"): print(" Numpy >= 1.6.4 is required for pycbc dependencies. \n" " We found version %s already installed. Please update \n" " to a more recent version and then retry PyCBC \n" " installation. \n" " \n" " Using pip: [pip install 'numpy>=1.6.4' --upgrade --user] \n" "" % numpy.version.version) exit(1) except ImportError: pass requires = ['lal.lal', 'lalsimulation.lalsimulation', 'glue'] setup_requires = [] install_requires = setup_requires + ['Mako>=1.0.1', 'argparse>=1.3.0', 'decorator>=3.4.2', 'scipy>=0.13.0', 'weave>=0.16.0', 'unittest2', 'matplotlib>=1.3.1', 'numpy>=1.9.0', 'pillow', 'h5py>=2.5', 'jinja2', 'mpld3>=0.3', 'pyRXP>=2.1.0', 'pycbc-glue-obsolete==1.1.0', 'kombine>=0.8.2', 'emcee==2.2.1', 'corner>=2.0.1', 'requests>=1.2.1', 'beautifulsoup4>=4.6.0', 'astropy>=2.0.1' ] #FIXME Remove me when we bump to h5py > 2.5 try: import h5py except ImportError: setup_requires.append('cython') else: import h5py.version if h5py.version.version < '2.5': setup_requires.append('cython') def find_package_data(dirname): def find_paths(dirname): items = [] for fname in os.listdir(dirname): path = os.path.join(dirname, fname) if os.path.isdir(path): items += find_paths(path) elif not path.endswith(".py") and not path.endswith(".pyc"): items.append(path) return items items = find_paths(dirname) return [os.path.relpath(path, dirname) for path in items] # Add swig-generated files to the list of things to clean, so they # get regenerated each time. class clean(_clean): def finalize_options (self): _clean.finalize_options(self) self.clean_files = [] self.clean_folders = ['docs/_build'] def run(self): _clean.run(self) for f in self.clean_files: try: os.unlink(f) print('removed {0}'.format(f)) except: pass for fol in self.clean_folders: shutil.rmtree(fol, ignore_errors=True) print('removed {0}'.format(fol)) class install(_install): def run(self): etcdirectory = os.path.join(self.install_data, 'etc') if not os.path.exists(etcdirectory): os.makedirs(etcdirectory) filename = os.path.join(etcdirectory, 'pycbc-user-env.sh') self.execute(write_file, (filename, [self.extra_dirs]), "creating %s" % filename) env_file = open(filename, 'w') print("# Source this file to access PyCBC", file=env_file) print("PATH=" + self.install_scripts + ":$PATH", file=env_file) print("PYTHONPATH=" + self.install_libbase + ":$PYTHONPATH", file=env_file) print("export PYTHONPATH", file=env_file) print("export PATH", file=env_file) env_file.close() _install.run(self) def do_setup(*args): return True _install._called_from_setup=do_setup test_results = [] # Run all of the testing scripts class TestBase(Command): user_options = [] test_modules = [] def initialize_options(self): self.scheme = None self.build_dir = None def finalize_options(self): #Populate the needed variables self.set_undefined_options('build',('build_lib', 'build_dir')) def find_test_modules(self,pattern): # Find all the unittests that match a given string pattern modules= [] for path, dirs, files in os.walk("test"): for filename in fnmatch.filter(files, pattern): #add the test directories to the path sys.path.append(os.path.join(path)) #save the module name for importing modules.append(fullmodname(filename)) return modules def run(self): self.run_command('build') # Get the list of cpu test modules self.test_modules = self.find_test_modules("test*.py") # Run from the build directory if 'PYTHONPATH' in os.environ: os.environ['PYTHONPATH'] = self.build_dir + ":" + os.environ['PYTHONPATH'] else: os.environ['PYTHONPATH'] = self.build_dir test_results.append("\n" + (self.scheme + " tests ").rjust(30)) for test in self.test_modules: test_command = [sys.executable, 'test/' + test + '.py', '-s', self.scheme] a = subprocess.call(test_command, env=os.environ) if a != 0: result_str = str(test).ljust(30) + ": Fail : " + str(a) else: result_str = str(test).ljust(30) + ": Pass" test_results.append(result_str) for test in test_results: print(test) class test(Command): def has_cuda(self): import pycbc return pycbc.HAVE_CUDA sub_commands = [('test_cpu',None),('test_cuda',has_cuda)] user_options = [] description = "run the available tests for all compute schemes (cpu, cuda)" def initialize_options(self): pass def finalize_options(self): pass def run(self): for cmd_name in self.get_sub_commands(): self.run_command(cmd_name) class test_cpu(TestBase): description = "run all CPU tests" def initialize_options(self): TestBase.initialize_options(self) self.scheme = 'cpu' class test_cuda(TestBase): description = "run CUDA tests" def initialize_options(self): TestBase.initialize_options(self) self.scheme = 'cuda' # write versioning info def get_version_info(): """Get VCS info and write version info to version.py """ from pycbc import _version_helper # If this is a pycbc git repo always populate versoin information using GIT try: vcs_info = _version_helper.generate_git_version_info() with open('pycbc/version.py', 'w') as f: f.write("# coding: utf-8\n") f.write("# Generated by setup.py for PyCBC on %s.\n\n" % vcs_info.build_date) # print general info f.write('version = \'%s\'\n' % vcs_info.version) f.write('date = \'%s\'\n' % vcs_info.date) f.write('release = %s\n' % vcs_info.release) f.write('last_release = \'%s\'\n' % vcs_info.last_release) # print git info f.write('\ngit_hash = \'%s\'\n' % vcs_info.hash) f.write('git_branch = \'%s\'\n' % vcs_info.branch) f.write('git_tag = \'%s\'\n' % vcs_info.tag) f.write('git_author = \'%s\'\n' % vcs_info.author) f.write('git_committer = \'%s\'\n' % vcs_info.committer) f.write('git_status = \'%s\'\n' % vcs_info.status) f.write('git_builder = \'%s\'\n' % vcs_info.builder) f.write('git_build_date = \'%s\'\n' % vcs_info.build_date) f.write('git_verbose_msg = """Branch: %s\n' 'Tag: %s\n' 'Id: %s\n' 'Builder: %s\n' 'Build date: %s\n' 'Repository status is %s"""\n' %(vcs_info.branch, vcs_info.tag, vcs_info.hash, vcs_info.builder, vcs_info.build_date, vcs_info.status)) f.write('from pycbc._version import *\n') version = vcs_info.version # If this is a release or another kind of source distribution of PyCBC except: version = '1.9.1dev' release = 'False' date = hash = branch = tag = author = committer = status = builder = build_date = '' with open('pycbc/version.py', 'w') as f: f.write("# Generated by setup.py for PyCBC.\n\n") # print general infov f.write('version = \'%s\'\n' % version) f.write('date = \'%s\'\n' % date) f.write('release = %s\n' % release) # print git info f.write('\ngit_hash = \'%s\'\n' % hash) f.write('git_branch = \'%s\'\n' % branch) f.write('git_tag = \'%s\'\n' % tag) f.write('git_author = \'%s\'\n' % author) f.write('git_committer = \'%s\'\n' % committer) f.write('git_status = \'%s\'\n' % status) f.write('git_builder = \'%s\'\n' % builder) f.write('git_build_date = \'%s\'\n' % build_date) f.write('git_verbose_msg = """Version: %s Release: %s \n' ' """\n' % (version, release)) f.write('from pycbc._version import *\n') from pycbc import version version = version.version return version class build_docs(Command): user_options = [] description = "Build the documentation pages" def initialize_options(self): pass def finalize_options(self): pass def run(self): subprocess.check_call("cd docs; cp Makefile.std Makefile; cp conf_std.py conf.py; sphinx-apidoc " " -o ./ -f -A 'PyCBC dev team' -V '0.1' ../pycbc && make html", stderr=subprocess.STDOUT, shell=True) class build_gh_pages(Command): user_options = [] description = "Build the documentation pages for GitHub" def initialize_options(self): pass def finalize_options(self): pass def run(self): subprocess.check_call("mkdir -p _gh-pages/latest && touch _gh-pages/.nojekyll && " "cd docs; cp Makefile.gh_pages Makefile; cp conf_std.py conf.py; sphinx-apidoc " " -o ./ -f -A 'PyCBC dev team' -V '0.1' ../pycbc && make html", stderr=subprocess.STDOUT, shell=True) cmdclass = { 'test' : test, 'build_docs' : build_docs, 'build_gh_pages' : build_gh_pages, 'install' : install, 'test_cpu':test_cpu, 'test_cuda':test_cuda, 'clean' : clean, } extras_require = {'cuda': ['pycuda>=2015.1', 'scikit-cuda']} # do the actual work of building the package VERSION = get_version_info() setup ( name = 'PyCBC', version = VERSION, description = 'Analyze gravitational-wave data, find signals, and study their parameters.', long_description = open('descr.rst').read(), author = 'Ligo Virgo Collaboration - PyCBC team', author_email = '[email protected]', url = 'https://ligo-cbc.github.io', download_url = 'https://github.com/ligo-cbc/pycbc/tarball/v%s' % VERSION, keywords = ['ligo', 'physics', 'gravity', 'signal processing', 'gravitational waves'], cmdclass = cmdclass, setup_requires = setup_requires, extras_require = extras_require, install_requires = install_requires, scripts = [ 'bin/minifollowups/pycbc_injection_minifollowup', 'bin/minifollowups/pycbc_foreground_minifollowup', 'bin/minifollowups/pycbc_sngl_minifollowup', 'bin/minifollowups/pycbc_single_template_plot', 'bin/minifollowups/pycbc_plot_chigram', 'bin/minifollowups/pycbc_page_coincinfo', 'bin/minifollowups/pycbc_page_injinfo', 'bin/minifollowups/pycbc_page_snglinfo', 'bin/minifollowups/pycbc_plot_trigger_timeseries', 'bin/pycbc_banksim', 'bin/pycbc_banksim_skymax', 'bin/pycbc_banksim_combine_banks', 'bin/pycbc_banksim_match_combine', 'bin/pycbc_faithsim', 'bin/pycbc_inspiral', 'bin/pycbc_inspiral_skymax', 'bin/pycbc_live', 'bin/pycbc_live_nagios_monitor', 'bin/pycbc_single_template', 'bin/pycbc_multi_inspiral', 'bin/pycbc_make_banksim', 'bin/pycbc_splitbank', 'bin/pycbc_hdf5_splitbank', 'bin/pycbc_split_inspinj', 'bin/bank/pycbc_brute_bank', 'bin/bank/pycbc_geom_aligned_2dstack', 'bin/bank/pycbc_geom_aligned_bank', 'bin/bank/pycbc_geom_nonspinbank', 'bin/bank/pycbc_aligned_bank_cat', 'bin/bank/pycbc_aligned_stoch_bank', 'bin/bank/pycbc_coinc_bank2hdf', 'bin/bank/pycbc_tmpltbank_to_chi_params', 'bin/bank/pycbc_bank_verification', 'bin/pycbc_make_faithsim', 'bin/pycbc_get_ffinal', 'bin/pycbc_inj_cut', 'bin/pycbc_upload_xml_to_gracedb', 'bin/pycbc_dark_vs_bright_injections', 'bin/pycbc_make_html_page', 'bin/pycbc_optimal_snr', 'bin/pycbc_fit_sngl_trigs', 'bin/pycbc_randomize_inj_dist_by_optsnr', 'bin/pycbc_create_injections', 'bin/hdfcoinc/pycbc_calculate_psd', 'bin/hdfcoinc/pycbc_average_psd', 'bin/hdfcoinc/pycbc_coinc_mergetrigs', 'bin/hdfcoinc/pycbc_coinc_findtrigs', 'bin/hdfcoinc/pycbc_coinc_statmap', 'bin/hdfcoinc/pycbc_coinc_statmap_inj', 'bin/hdfcoinc/pycbc_page_foreground', 'bin/hdfcoinc/pycbc_page_foundmissed', 'bin/hdfcoinc/pycbc_page_ifar', 'bin/hdfcoinc/pycbc_page_snrifar', 'bin/hdfcoinc/pycbc_page_snrratehist', 'bin/hdfcoinc/pycbc_page_sensitivity', 'bin/hdfcoinc/pycbc_page_banktriggerrate', 'bin/hdfcoinc/pycbc_coinc_hdfinjfind', 'bin/hdfcoinc/pycbc_page_snrchi', 'bin/hdfcoinc/pycbc_page_segments', 'bin/hdfcoinc/pycbc_page_segtable', 'bin/hdfcoinc/pycbc_page_segplot', 'bin/hdfcoinc/pycbc_page_vetotable', 'bin/hdfcoinc/pycbc_plot_psd_file', 'bin/hdfcoinc/pycbc_plot_psd_timefreq', 'bin/hdfcoinc/pycbc_plot_range', 'bin/hdfcoinc/pycbc_foreground_censor', 'bin/hdfcoinc/pycbc_plot_hist', 'bin/hdfcoinc/pycbc_page_recovery', 'bin/hdfcoinc/pycbc_page_injtable', 'bin/hdfcoinc/pycbc_strip_injections', 'bin/hdfcoinc/pycbc_page_coinc_snrchi', 'bin/hdfcoinc/pycbc_distribute_background_bins', 'bin/hdfcoinc/pycbc_combine_statmap', 'bin/hdfcoinc/pycbc_stat_dtphase', 'bin/hdfcoinc/pycbc_plot_singles_vs_params', 'bin/hdfcoinc/pycbc_plot_singles_timefreq', 'bin/hdfcoinc/pycbc_plot_throughput', 'bin/hdfcoinc/pycbc_plot_background_coincs', 'bin/hdfcoinc/pycbc_plot_bank_bins', 'bin/hdfcoinc/pycbc_merge_psds', 'bin/hdfcoinc/pycbc_plot_gating', 'bin/hdfcoinc/pycbc_fit_sngls_by_template', 'bin/hdfcoinc/pycbc_fit_sngls_over_param', 'bin/hdfcoinc/pycbc_fit_sngls_binned', 'bin/hdfcoinc/pycbc_template_recovery_hist', 'bin/hwinj/pycbc_generate_hwinj', 'bin/hwinj/pycbc_generate_hwinj_from_xml', 'bin/hwinj/pycbc_plot_hwinj', 'bin/hwinj/pycbc_insert_frame_hwinj', 'bin/pycbc_submit_dax', 'bin/mvsc/pycbc_mvsc_get_features', 'bin/pycbc_coinc_time', 'bin/pygrb/pycbc_make_offline_grb_workflow', 'bin/pygrb/pycbc_make_grb_summary_page', 'bin/pycbc_condition_strain', 'bin/workflows/pycbc_make_inference_workflow', 'bin/inference/pycbc_inference', 'bin/inference/pycbc_inference_extract_samples', 'bin/inference/pycbc_inference_plot_acceptance_rate', 'bin/inference/pycbc_inference_plot_acf', 'bin/inference/pycbc_inference_plot_acl', 'bin/inference/pycbc_inference_plot_geweke', 'bin/inference/pycbc_inference_plot_gelman_rubin', 'bin/inference/pycbc_inference_plot_inj_recovery', 'bin/inference/pycbc_inference_plot_movie', 'bin/inference/pycbc_inference_plot_inj_intervals', 'bin/inference/pycbc_inference_plot_posterior', 'bin/inference/pycbc_inference_plot_prior', 'bin/inference/pycbc_inference_plot_samples', 'bin/inference/pycbc_inference_table_summary', 'bin/plotting/pycbc_plot_waveform', 'bin/plotting/pycbc_banksim_plot_eff_fitting_factor', 'bin/plotting/pycbc_banksim_table_point_injs', 'bin/plotting/pycbc_banksim_plot_fitting_factors', 'bin/workflows/pycbc_create_sbank_workflow', 'bin/workflows/pycbc_create_uberbank_workflow', 'bin/workflows/pycbc_make_coinc_search_workflow', 'bin/workflows/pycbc_make_psd_estimation_workflow', 'bin/workflows/pycbc_create_bank_verifier_workflow', 'bin/pycbc_compress_bank', 'bin/pycbc_ringinj', 'tools/einsteinathome/pycbc_build_eah.sh' ], packages = [ 'pycbc', 'pycbc.calibration', 'pycbc.distributions', 'pycbc.fft', 'pycbc.types', 'pycbc.filter', 'pycbc.psd', 'pycbc.waveform', 'pycbc.events', 'pycbc.noise', 'pycbc.vetoes', 'pycbc.tmpltbank', 'pycbc.workflow', 'pycbc.results', 'pycbc.io', 'pycbc.inference', 'pycbc.inject', 'pycbc.frame', 'pycbc.catalog', ], package_data = {'pycbc.workflow': find_package_data('pycbc/workflow'), 'pycbc.results': find_package_data('pycbc/results'), 'pycbc.tmpltbank': find_package_data('pycbc/tmpltbank')}, )
gpl-3.0
timothydmorton/transit-fitting
setup.py
2
1295
from setuptools import setup, find_packages import os,sys def readme(): with open('README.md') as f: return f.read() import sys if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins builtins.__TRANSITFIT_SETUP__ = True import transitfit version = transitfit.__version__ # Publish the library to PyPI. if "publish" in sys.argv[-1]: os.system("python setup.py sdist upload") sys.exit() # Push a new tag to GitHub. if "tag" in sys.argv: os.system("git tag -a {0} -m 'version {0}'".format(version)) os.system("git push --tags") sys.exit() setup(name = "transitfit", version = version, description = "Pythonic fitting of transits.", long_description = readme(), author = "Timothy D. Morton", author_email = "[email protected]", url = "https://github.com/timothydmorton/transit-fitting", packages = find_packages(), classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering :: Astronomy' ], install_requires=['pandas>=0.14','emcee>=2', 'kplr', 'transit', 'triangle_plot'], zip_safe=False )
mit
ljschumacher/tierpsy-tracker
tierpsy/analysis/blob_feats/getBlobsFeats.py
1
6209
import json import os import cv2 import numpy as np import pandas as pd import tables from tierpsy.analysis.ske_create.getSkeletonsTables import getWormMask from tierpsy.analysis.ske_create.helperIterROI import generateMoviesROI from tierpsy.helper.misc import TABLE_FILTERS def _getBlobFeatures(blob_cnt, blob_mask, roi_image, roi_corner): if blob_cnt.size > 0: area = float(cv2.contourArea(blob_cnt)) # find use the best rotated bounding box, the fitEllipse function produces bad results quite often # this method is better to obtain an estimate of the worm length than # eccentricity (CMx, CMy), (L, W), angle = cv2.minAreaRect(blob_cnt) #adjust CM from the ROI reference frame to the image reference CMx += roi_corner[0] CMy += roi_corner[1] if L == 0 or W == 0: return None #something went wrong abort if W > L: L, W = W, L # switch if width is larger than length quirkiness = np.sqrt(1 - W**2 / L**2) hull = cv2.convexHull(blob_cnt) # for the solidity solidity = area / cv2.contourArea(hull) perimeter = float(cv2.arcLength(blob_cnt, True)) compactness = 4 * np.pi * area / (perimeter**2) # calculate the mean intensity of the worm intensity_mean, intensity_std = cv2.meanStdDev(roi_image, mask=blob_mask) intensity_mean = intensity_mean[0,0] intensity_std = intensity_std[0,0] # calculate hu moments, they are scale and rotation invariant hu_moments = cv2.HuMoments(cv2.moments(blob_cnt)) # save everything into the the proper output format mask_feats = (CMx, CMy, area, perimeter, L, W, quirkiness, compactness, angle, solidity, intensity_mean, intensity_std, *hu_moments.flatten()) else: return tuple([np.nan]*19) return mask_feats def getBlobsFeats(skeletons_file, masked_image_file, strel_size): # extract the base name from the masked_image_file. This is used in the # progress status. base_name = masked_image_file.rpartition('.')[0].rpartition(os.sep)[-1] progress_prefix = base_name + ' Calculating individual blobs features.' #read trajectories data with pandas with pd.HDFStore(skeletons_file, 'r') as ske_file_id: trajectories_data = ske_file_id['/trajectories_data'] with tables.File(skeletons_file, 'r') as ske_file_id: dd = ske_file_id.get_node('/trajectories_data') is_light_background = dd._v_attrs['is_light_background'] expected_fps = dd._v_attrs['expected_fps'] bgnd_param = dd._v_attrs['bgnd_param'] bgnd_param = json.loads(bgnd_param.decode("utf-8")) #get generators to get the ROI for each frame ROIs_generator = generateMoviesROI(masked_image_file, trajectories_data, progress_prefix = progress_prefix) def _gen_rows_blocks(): block_size = 1000 #use rows for the ROIs_generator, this should balance the data in a given tread block = [] for roi_dicts in ROIs_generator: for irow, (roi_image, roi_corner) in roi_dicts.items(): block.append((irow, (roi_image, roi_corner))) if len(block) == block_size: yield block block = [] if len(block) > 0: yield block def _roi2feats(block): #from a output= [] for irow, (roi_image, roi_corner) in block: row_data = trajectories_data.loc[irow] blob_mask, blob_cnt, _ = getWormMask(roi_image, row_data['threshold'], strel_size, min_blob_area=row_data['area'] / 2, is_light_background = is_light_background) feats = _getBlobFeatures(blob_cnt, blob_mask, roi_image, roi_corner) output.append((irow, feats)) return output # initialize output data as a numpy recarray (pytables friendly format) feats_names = ['coord_x', 'coord_y', 'area', 'perimeter', 'box_length', 'box_width', 'quirkiness', 'compactness', 'box_orientation', 'solidity', 'intensity_mean', 'intensity_std', 'hu0', 'hu1', 'hu2', 'hu3', 'hu4', 'hu5', 'hu6'] features_df = np.recarray(len(trajectories_data), dtype = [(x, np.float32) for x in feats_names]) feats_generator = map(_roi2feats, _gen_rows_blocks()) for block in feats_generator: for irow, row_dat in block: features_df[irow] = row_dat with tables.File(skeletons_file, 'r+') as fid: if '/blob_features' in fid: fid.remove_node('/blob_features') fid.create_table( '/', 'blob_features', obj=features_df, filters=TABLE_FILTERS) assert all(x in feats_names for x in fid.get_node('/blob_features').colnames) if __name__ == '__main__': #masked_image_file = '/Volumes/behavgenom_archive$/Avelino/Worm_Rig_Tests/short_movies/MaskedVideos/double_pick_021216/N2_N6_Set4_Pos5_Ch5_02122016_160343.hdf5' masked_image_file = '/Volumes/behavgenom_archive$/Serena/MaskedVideos/recording 29.9 green 100-200/recording 29.9 green_X1.hdf5' skeletons_file = masked_image_file.replace('MaskedVideos', 'Results').replace('.hdf5', '_skeletons.hdf5') is_light_background = True strel_size = 5 getBlobFeats(skeletons_file, masked_image_file, is_light_background, strel_size)
mit
andreadelprete/pinocchio_inv_dyn
python/pinocchio_inv_dyn/geom_utils.py
1
6063
#from polytope_conversion_utils import * from numpy import zeros, sqrt, array, vstack import numpy as np #from math import cos, sin, tan, atan, pi import matplotlib.pyplot as plt #import cdd import plot_utils as plut #from polytope_conversion_utils import poly_face_to_span, NotPolyFace NUMBER_TYPE = 'float' # 'float' or 'fraction' ''' Compute the projection matrix of the cross product. ''' def crossMatrix( v ): VP = np.array( [[ 0, -v[2], v[1] ], [ v[2], 0, -v[0] ], [-v[1], v[0], 0 ]] ); return VP; ''' Check whether v is inside a 3d cone with the specified normal direction and friction coefficient. ''' def is_vector_inside_cone(v, mu, n): P = np.eye(3) - np.outer(n, n); return (np.linalg.norm(np.dot(P,v)) - mu*np.dot(n,v)<=0.0); ''' Find the intersection between two lines: a1^T x = b1 a2^T x = b2 ''' def find_intersection(a1, b1, a2, b2): x = np.zeros(2); den = (a1[0]*a2[1] - a2[0]*a1[1]); if(abs(den)<1e-6): print "ERROR: Impossible to find intersection between two lines that are parallel"; return x; if(np.abs(a1[0])>np.abs(a2[0])): x[1] = (-a2[0]*b1 + a1[0]*b2)/den; x[0] = (b1-a1[1]*x[1])/a1[0]; else: x[1] = (-a2[0]*b1 + a1[0]*b2)/den; x[0] = (b2-a2[1]*x[1])/a2[0]; return x; ''' Find the line passing through two points: a^T x1 + b = 0 a^T x2 + b = 0 ''' def find_line(x1, x2): den = (x1[0]*x2[1] - x2[0]*x1[1]); if(abs(den)<1e-4): # print "ERROR: x1 and x2 are too close, x1=(%f,%f), x2=(%f,%f)" % (x1[0],x1[1],x2[0],x2[1]); return (zeros(2),-1); # a = np.array([-(x1[1] - x2[1])/den, -(x2[0] - x1[0])/den]); # a_norm = np.linalg.norm(a); # a /= a_norm; # b = -1.0/a_norm; a = np.array([x2[1]-x1[1], x1[0]-x2[0]]); a /= np.linalg.norm(a); b = -a[0]*x1[0] - a[1]*x1[1]; # print "a=(%f,%f), a2=(%f,%f), b=%f, b2=%f" % (a[0],a[1],a2[0],a2[1],b,b2); return (a,b); ''' Compute the area of a 2d triangle with vertices a, b and c. ''' def compute_triangle_area(a, b, c): la = np.linalg.norm(a-b); lb = np.linalg.norm(b-c); lc = np.linalg.norm(c-a); s = 0.5*(la+lb+lc); return sqrt(s*(s-la)*(s-lb)*(s-lc)); ''' Plot inequalities A*x<=b on x-y plane. ''' def plot_inequalities(A, b, x_bounds, y_bounds, ls='--', color='k', ax=None, lw=8): if(A.shape[1]!=2): print "[ERROR in plot_inequalities] matrix does not have 2 columns"; return; # if(A.shape[0]!=len(b)): # print "[ERROR in plot_inequalities] matrix and vector does not have the same number of rows"; # return; if(ax==None): f, ax = plut.create_empty_figure(); p = np.zeros(2); # p height p_x = np.zeros(2); p_y = np.zeros(2); for i in range(A.shape[0]): if(np.abs(A[i,1])>1e-13): p_x[0] = x_bounds[0]; # p x coordinate p_x[1] = x_bounds[1]; # p x coordinate p[0] = p_x[0]; p[1] = 0; p_y[0] = (b[i] - np.dot(A[i,:],p) )/A[i,1]; p[0] = p_x[1]; p_y[1] = (b[i] - np.dot(A[i,:],p) )/A[i,1]; ax.plot(p_x, p_y, ls=ls, color=color, linewidth=lw); elif(np.abs(A[i,0])>1e-13): p_y[0] = y_bounds[0]; p_y[1] = y_bounds[1]; p[0] = 0; p[1] = p_y[0]; p_x[0] = (b[i] - np.dot(A[i,:],p) )/A[i,0]; p[1] = p_y[1]; p_x[1] = (b[i] - np.dot(A[i,:],p) )/A[i,0]; ax.plot(p_x, p_y, ls=ls, color=color, linewidth=lw); else: pass; # print "[WARNING] Could not print one inequality as all coefficients are 0: A[%d,:]=[%f,%f]" % (i,A[i,0],A[i,1]); ax.set_xlim(x_bounds) ax.set_ylim(y_bounds) return ax; ''' Plot the polytope A*x<=b with vectices V ''' def plot_polytope(A, b, V=None, color='b', ax=None, plotLines=True, lw=4): A = np.asarray(A); b = np.asarray(b); if(ax==None): f, ax = plut.create_empty_figure(); if(V==None): try: from polytope_conversion_utils import poly_face_to_span, NotPolyFace V = poly_face_to_span(A,b).T; except (ValueError,NotPolyFace) as e: print "WARNING: "+str(e); if(V==None): X_MIN = -1.; X_MAX = 1.; Y_MIN = -1.; Y_MAX = 1.; else: X_MIN = np.min(V[:,0]); X_MAX = np.max(V[:,0]); X_MIN -= 0.1*(X_MAX-X_MIN); X_MAX += 0.1*(X_MAX-X_MIN); Y_MIN = np.min(V[:,1]); Y_MAX = np.max(V[:,1]); Y_MIN -= 0.1*(Y_MAX-Y_MIN); Y_MAX += 0.1*(Y_MAX-Y_MIN); if(plotLines): plot_inequalities(A, b, [X_MIN,X_MAX], [Y_MIN,Y_MAX], color=color, ls='--', ax=ax, lw=lw); n = b.shape[0]; if(n<2): return (ax,None); line = None; if(V!=None): xx = np.zeros(2); yy = np.zeros(2); for i in range(n): xx[0] = V[i,0]; xx[1] = V[(i+1)%n,0]; yy[0] = V[i,1]; yy[1] = V[(i+1)%n,1]; line, = ax.plot(xx, yy, color='r', ls='-', markersize=30); #, lw=2*lw); ax.set_xlim([X_MIN, X_MAX]); ax.set_ylim([Y_MIN, Y_MAX]); return (ax, line); def compute_convex_hull(S): """ Returns the matrix A and the vector b such that: {x = S z, sum z = 1, z>=0} if and only if {A x + b >= 0}. """ import cdd V = np.hstack([np.ones((S.shape[1], 1)), S.T]) # V-representation: first column is 0 for rays, 1 for vertices V_cdd = cdd.Matrix(V, number_type=NUMBER_TYPE) V_cdd.rep_type = cdd.RepType.GENERATOR P = cdd.Polyhedron(V_cdd) H = np.array(P.get_inequalities()) b, A = H[:, 0], H[:, 1:] return (A,b)
gpl-2.0
arbuz001/sms-tools
workspace/A6/A6Part2.py
2
12166
import os import sys import numpy as np import math from scipy.signal import get_window import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../software/models/')) import utilFunctions as UF import harmonicModel as HM import stft eps = np.finfo(float).eps #sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../A2/')) #import A2Part1 """ A6Part2 - Segmentation of stable note regions in an audio signal Complete the function segmentStableNotesRegions() to identify the stable regions of notes in a specific monophonic audio signal. The function returns an array of segments where each segment contains the starting and the ending frame index of a stable note. The input argument to the function are the wav file name including the path (inputFile), threshold to be used for deciding stable notes (stdThsld) in cents, minimum allowed duration of a stable note (minNoteDur), number of samples to be considered for computing standard deviation (winStable), analysis window (window), window size (M), FFT size (N), hop size (H), error threshold used in the f0 detection (f0et), magnitude threshold for spectral peak picking (t), minimum allowed f0 (minf0) and maximum allowed f0 (maxf0). The function returns a numpy array of shape (k,2), where k is the total number of detected segments. The two columns in each row contains the starting and the ending frame indexes of a stable note segment. The segments must be returned in the increasing order of their start times. In order to facilitate the assignment we have configured the input parameters to work with a particular sound, '../../sounds/sax-phrase-short.wav'. The code and parameters to estimate the fundamental frequency is completed. Thus you start from an f0 curve obtained using the f0Detection() function and you will use that to obtain the note segments. All the steps to be implemented in order to solve this question are indicated in segmentStableNotesRegions() as comments. These are the steps: 1. In order to make the processing musically relevant, the f0 values should be converted first from Hertz to Cents, which is a logarithmic scale. 2. At each time frame (for each f0 value) you should compute the standard deviation of the past winStable number of f0 samples (including the f0 sample at the current audio frame). 3. You should then apply a deviation threshold, stdThsld, to determine if the current frame belongs to a stable note region or not. Since we are interested in the stable note regions, the standard deviation of the previous winStable number of f0 samples (including the current sample) should be less than stdThsld i.e. use the current sample and winStable-1 previous samples. Ignore the first winStable-1 samples in this computation. 4. All the consecutive frames belonging to the stable note regions should be grouped together into segments. For example, if the indexes of the frames corresponding to the stable note regions are 3,4,5,6,12,13,14, we get two segments, first 3-6 and second 12-14. 5. After grouping frame indexes into segments filter/remove the segments which are smaller in duration than minNoteDur. Return the segment indexes in the increasing order of their start frame index. Test case 1: Using inputFile='../../sounds/cello-phrase.wav', stdThsld=10, minNoteDur=0.1, winStable = 3, window='hamming', M=1025, N=2048, H=256, f0et=5.0, t=-100, minf0=310, maxf0=650, the function segmentStableNotesRegions() should return 9 segments. Please use loadTestcases.load() to check the expected segment indexes in the output. Test case 2: Using inputFile='../../sounds/cello-phrase.wav', stdThsld=20, minNoteDur=0.5, winStable = 3, window='hamming', M=1025, N=2048, H=256, f0et=5.0, t=-100, minf0=310, maxf0=650, the function segmentStableNotesRegions() should return 6 segments. Please use loadTestcases.load() to check the expected segment indexes in the output. Test case 3: Using inputFile='../../sounds/sax-phrase-short.wav', stdThsld=5, minNoteDur=0.6, winStable = 3, window='hamming', M=1025, N=2048, H=256, f0et=5.0, t=-100, minf0=310, maxf0=650, the function segmentStableNotesRegions() should return just one segment. Please use loadTestcases.load() to check the expected segment indexes in the output. We also provide the function plotSpectogramF0Segments() to plot the f0 contour and the detected segments on the top of the spectrogram of the audio signal in order to visually analyse the outcome of your function. Depending on the analysis parameters and the capabilities of the hardware you use, the function might take a while to run (even half a minute in some cases). """ def segmentStableNotesRegions(inputFile = '../../sounds/sax-phrase-short.wav', stdThsld=10, minNoteDur=0.1, winStable = 3, window='hamming', M=1024, N=2048, H=256, f0et=5.0, t=-100, minf0=310, maxf0=650): """ Function to segment the stable note regions in an audio signal Input: inputFile (string): wav file including the path stdThsld (float): threshold for detecting stable regions in the f0 contour (in cents) minNoteDur (float): minimum allowed segment length (note duration) winStable (integer): number of samples used for computing standard deviation window (string): analysis window M (integer): window size used for computing f0 contour N (integer): FFT size used for computing f0 contour H (integer): Hop size used for computing f0 contour f0et (float): error threshold used for the f0 computation t (float): magnitude threshold in dB used in spectral peak picking minf0 (float): minimum fundamental frequency in Hz maxf0 (float): maximum fundamental frequency in Hz Output: segments (np.ndarray): Numpy array containing starting and ending frame indexes of every segment. """ fs, x = UF.wavread(inputFile) # reading inputFile w = get_window(window, M) # obtaining analysis window f0 = HM.f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et) # estimating F0 # 1. convert f0 values from Hz to Cents (as described in pdf document) f0_in_cents = 1200.0*np.log2(f0/55.0 + eps) #2. create an array containing standard deviation of last winStable samples std_F0 = (stdThsld + eps)*np.ones(winStable - 1,dtype = float) for i in range(winStable - 1, len(f0_in_cents)): std_F0 = np.append(std_F0,np.std(f0_in_cents[(i - winStable + 1):(i + 1)])) # print 'step = ' + str(i) # print 'nBinLow = ' + str(i - winStable + 1) # print 'nBinHigh = ' + str(i + 1) # print 'Values = ' + str(f0_in_cents[(i - winStable + 1):(i + 1)]) # print '****' #3. apply threshold on standard deviation values to find indexes of the stable points in melody idx = np.where(std_F0 < stdThsld)[0] # idx = np.array([3, 4, 5, 6, 12, 13, 17, 18, 19]) #4. create segments of continuous stable points such that consecutive stable points belong to same segment idx_Start = np.array([],dtype=np.int64) idx_End = np.array([],dtype=np.int64) pointer_Start = 0 pointer_End = 0 for i in range(0, len(idx)-1): # print 'pointer_Start = ' + str(pointer_Start) # print 'pointer_End = ' + str(pointer_End) # print '****' if((idx[i+1] - idx[i]) != 1): idx_Start = np.append(idx_Start,pointer_Start) idx_End = np.append(idx_End,pointer_End) pointer_End += 1 pointer_Start = (i+1) else: pointer_End += 1 idx_Start = np.append(idx_Start,pointer_Start) idx_End = np.append(idx_End,pointer_End) #5. apply segment filtering, i.e. remove segments with are < minNoteDur in length idx_segments = np.where((idx_End - idx_Start + 1)*H/float(fs) >= minNoteDur)[0] segments_Start = idx[idx_Start[idx_segments]] segments_End = idx[idx_End[idx_segments]] segments = np.array([segments_Start,segments_End]) segments = np.transpose(segments) #plotSpectogramF0Segments(x, fs, w, N, H, f0, segments) return segments def plotSpectogramF0Segments(x, fs, w, N, H, f0, segments): """ Code for plotting the f0 contour on top of the spectrogram """ # frequency range to plot maxplotfreq = 1000.0 fontSize = 16 fig = plt.figure() ax = fig.add_subplot(111) mX, pX = stft.stftAnal(x, fs, w, N, H) #using same params as used for analysis mX = np.transpose(mX[:,:int(N*(maxplotfreq/fs))+1]) timeStamps = np.arange(mX.shape[1])*H/float(fs) binFreqs = np.arange(mX.shape[0])*fs/float(N) plt.pcolormesh(timeStamps, binFreqs, mX) plt.plot(timeStamps, f0, color = 'k', linewidth=5) for ii in range(segments.shape[0]): plt.plot(timeStamps[segments[ii,0]:segments[ii,1]], f0[segments[ii,0]:segments[ii,1]], color = '#A9E2F3', linewidth=1.5) plt.autoscale(tight=True) plt.ylabel('Frequency (Hz)', fontsize = fontSize) plt.xlabel('Time (s)', fontsize = fontSize) plt.legend(('f0','segments')) xLim = ax.get_xlim() yLim = ax.get_ylim() ax.set_aspect((xLim[1]-xLim[0])/(2.0*(yLim[1]-yLim[0]))) plt.autoscale(tight=True) plt.show() #inputFile = '../../sounds/sax-phrase-short.wav' #stdThsld=5 #minNoteDur=0.6 #winStable = 3 #window='hamming' #M=1025 #N=2048 #H=256 #f0et=5.0 #t=-100 #minf0=310 #maxf0=650 #inputFile = '../../sounds/cello-phrase.wav' #stdThsld=20 #minNoteDur=0.5 #winStable = 3 #window='hamming' #M=1025 #N=2048 #H=256 #f0et=5.0 #t=-100 #minf0=310 #maxf0=650 ##z = segmentStableNotesRegions(inputFile, stdThsld, minNoteDur, winStable, window, M, N, H, f0et, t, minf0 , maxf0) #fs, x = UF.wavread(inputFile) # reading inputFile #w = get_window(window, M) # obtaining analysis window #f0 = HM.f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et) # estimating F0 ## 1. convert f0 values from Hz to Cents (as described in pdf document) #f0_in_cents = 1200.0*np.log2(f0/55.0 + eps) ##2. create an array containing standard deviation of last winStable samples #std_F0 = (stdThsld + eps)*np.ones(winStable - 1,dtype = float) #for i in range(winStable - 1, len(f0_in_cents)): # std_F0 = np.append(std_F0,np.std(f0_in_cents[(i - winStable + 1):(i + 1)])) ## print 'step = ' + str(i) ## print 'nBinLow = ' + str(i - winStable + 1) ## print 'nBinHigh = ' + str(i + 1) ## print 'Values = ' + str(f0_in_cents[(i - winStable + 1):(i + 1)]) ## print '****' ##3. apply threshold on standard deviation values to find indexes of the stable points in melody #idx = np.where(std_F0 < stdThsld)[0] ## idx = np.array([3, 4, 5, 6, 12, 13, 17, 18, 19]) ##4. create segments of continuous stable points such that consecutive stable points belong to same segment #idx_Start = np.array([],dtype=np.int64) #idx_End = np.array([],dtype=np.int64) #pointer_Start = 0 #pointer_End = 0 #for i in range(0, len(idx)-1): ## print 'pointer_Start = ' + str(pointer_Start) ## print 'pointer_End = ' + str(pointer_End) ## print '****' # # if((idx[i+1] - idx[i]) != 1): # idx_Start = np.append(idx_Start,pointer_Start) # idx_End = np.append(idx_End,pointer_End) # pointer_End += 1 # pointer_Start = (i+1) # else: # pointer_End += 1 # #idx_Start = np.append(idx_Start,pointer_Start) #idx_End = np.append(idx_End,pointer_End) ##5. apply segment filtering, i.e. remove segments with are < minNoteDur in length #idx_segments = np.where((idx_End - idx_Start + 1)*H/float(fs) >= minNoteDur)[0] #segments_Start = idx[idx_Start[idx_segments]] #segments_End = idx[idx_End[idx_segments]] #segments = np.array([segments_Start,segments_End]) #segments = np.transpose(segments) #plotSpectogramF0Segments(x, fs, w, N, H, f0, segments)
agpl-3.0
cl4rke/scikit-learn
sklearn/linear_model/stochastic_gradient.py
130
50966
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import scipy.sparse as sp from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils.seq_dataset import ArrayDataset, CSRDataset from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} SPARSE_INTERCEPT_DECAY = 0.01 """For sparse data intercept updates are scaled by this decay factor to avoid intercept oscillation.""" DEFAULT_EPSILON = 0.1 """Default value of ``epsilon`` parameter. """ class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _make_dataset(X, y_i, sample_weight): """Create ``Dataset`` abstraction for sparse and dense inputs. This also returns the ``intercept_decay`` which is different for sparse datasets. """ if sp.issparse(X): dataset = CSRDataset(X.data, X.indptr, X.indices, y_i, sample_weight) intercept_decay = SPARSE_INTERCEPT_DECAY else: dataset = ArrayDataset(X, y_i, sample_weight) intercept_decay = 1.0 return dataset, intercept_decay def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = _make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights, " "use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the contructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (t + t0) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = _make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
xwolf12/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
marcinsiwicki/ThinkStats2
code/timeseries.py
66
18035
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import pandas import numpy as np import statsmodels.formula.api as smf import statsmodels.tsa.stattools as smtsa import matplotlib.pyplot as pyplot import thinkplot import thinkstats2 FORMATS = ['png'] def ReadData(): """Reads data about cannabis transactions. http://zmjones.com/static/data/mj-clean.csv returns: DataFrame """ transactions = pandas.read_csv('mj-clean.csv', parse_dates=[5]) return transactions def tmean(series): """Computes a trimmed mean. series: Series returns: float """ t = series.values n = len(t) if n <= 3: return t.mean() trim = max(1, n/10) return np.mean(sorted(t)[trim:n-trim]) def GroupByDay(transactions, func=np.mean): """Groups transactions by day and compute the daily mean ppg. transactions: DataFrame of transactions returns: DataFrame of daily prices """ groups = transactions[['date', 'ppg']].groupby('date') daily = groups.aggregate(func) daily['date'] = daily.index start = daily.date[0] one_year = np.timedelta64(1, 'Y') daily['years'] = (daily.date - start) / one_year return daily def GroupByQualityAndDay(transactions): """Divides transactions by quality and computes mean daily price. transaction: DataFrame of transactions returns: map from quality to time series of ppg """ groups = transactions.groupby('quality') dailies = {} for name, group in groups: dailies[name] = GroupByDay(group) return dailies def PlotDailies(dailies): """Makes a plot with daily prices for different qualities. dailies: map from name to DataFrame """ thinkplot.PrePlot(rows=3) for i, (name, daily) in enumerate(dailies.items()): thinkplot.SubPlot(i+1) title = 'price per gram ($)' if i == 0 else '' thinkplot.Config(ylim=[0, 20], title=title) thinkplot.Scatter(daily.ppg, s=10, label=name) if i == 2: pyplot.xticks(rotation=30) else: thinkplot.Config(xticks=[]) thinkplot.Save(root='timeseries1', formats=FORMATS) def RunLinearModel(daily): """Runs a linear model of prices versus years. daily: DataFrame of daily prices returns: model, results """ model = smf.ols('ppg ~ years', data=daily) results = model.fit() return model, results def PlotFittedValues(model, results, label=''): """Plots original data and fitted values. model: StatsModel model object results: StatsModel results object """ years = model.exog[:, 1] values = model.endog thinkplot.Scatter(years, values, s=15, label=label) thinkplot.Plot(years, results.fittedvalues, label='model') def PlotResiduals(model, results): """Plots the residuals of a model. model: StatsModel model object results: StatsModel results object """ years = model.exog[:, 1] thinkplot.Plot(years, results.resid, linewidth=0.5, alpha=0.5) def PlotResidualPercentiles(model, results, index=1, num_bins=20): """Plots percentiles of the residuals. model: StatsModel model object results: StatsModel results object index: which exogenous variable to use num_bins: how many bins to divide the x-axis into """ exog = model.exog[:, index] resid = results.resid.values df = pandas.DataFrame(dict(exog=exog, resid=resid)) bins = np.linspace(np.min(exog), np.max(exog), num_bins) indices = np.digitize(exog, bins) groups = df.groupby(indices) means = [group.exog.mean() for _, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.resid) for _, group in groups][1:-1] thinkplot.PrePlot(3) for percent in [75, 50, 25]: percentiles = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(means, percentiles, label=label) def SimulateResults(daily, iters=101, func=RunLinearModel): """Run simulations based on resampling residuals. daily: DataFrame of daily prices iters: number of simulations func: function that fits a model to the data returns: list of result objects """ _, results = func(daily) fake = daily.copy() result_seq = [] for _ in range(iters): fake.ppg = results.fittedvalues + thinkstats2.Resample(results.resid) _, fake_results = func(fake) result_seq.append(fake_results) return result_seq def SimulateIntervals(daily, iters=101, func=RunLinearModel): """Run simulations based on different subsets of the data. daily: DataFrame of daily prices iters: number of simulations func: function that fits a model to the data returns: list of result objects """ result_seq = [] starts = np.linspace(0, len(daily), iters).astype(int) for start in starts[:-2]: subset = daily[start:] _, results = func(subset) fake = subset.copy() for _ in range(iters): fake.ppg = (results.fittedvalues + thinkstats2.Resample(results.resid)) _, fake_results = func(fake) result_seq.append(fake_results) return result_seq def GeneratePredictions(result_seq, years, add_resid=False): """Generates an array of predicted values from a list of model results. When add_resid is False, predictions represent sampling error only. When add_resid is True, they also include residual error (which is more relevant to prediction). result_seq: list of model results years: sequence of times (in years) to make predictions for add_resid: boolean, whether to add in resampled residuals returns: sequence of predictions """ n = len(years) d = dict(Intercept=np.ones(n), years=years, years2=years**2) predict_df = pandas.DataFrame(d) predict_seq = [] for fake_results in result_seq: predict = fake_results.predict(predict_df) if add_resid: predict += thinkstats2.Resample(fake_results.resid, n) predict_seq.append(predict) return predict_seq def GenerateSimplePrediction(results, years): """Generates a simple prediction. results: results object years: sequence of times (in years) to make predictions for returns: sequence of predicted values """ n = len(years) inter = np.ones(n) d = dict(Intercept=inter, years=years, years2=years**2) predict_df = pandas.DataFrame(d) predict = results.predict(predict_df) return predict def PlotPredictions(daily, years, iters=101, percent=90, func=RunLinearModel): """Plots predictions. daily: DataFrame of daily prices years: sequence of times (in years) to make predictions for iters: number of simulations percent: what percentile range to show func: function that fits a model to the data """ result_seq = SimulateResults(daily, iters=iters, func=func) p = (100 - percent) / 2 percents = p, 100-p predict_seq = GeneratePredictions(result_seq, years, add_resid=True) low, high = thinkstats2.PercentileRows(predict_seq, percents) thinkplot.FillBetween(years, low, high, alpha=0.3, color='gray') predict_seq = GeneratePredictions(result_seq, years, add_resid=False) low, high = thinkstats2.PercentileRows(predict_seq, percents) thinkplot.FillBetween(years, low, high, alpha=0.5, color='gray') def PlotIntervals(daily, years, iters=101, percent=90, func=RunLinearModel): """Plots predictions based on different intervals. daily: DataFrame of daily prices years: sequence of times (in years) to make predictions for iters: number of simulations percent: what percentile range to show func: function that fits a model to the data """ result_seq = SimulateIntervals(daily, iters=iters, func=func) p = (100 - percent) / 2 percents = p, 100-p predict_seq = GeneratePredictions(result_seq, years, add_resid=True) low, high = thinkstats2.PercentileRows(predict_seq, percents) thinkplot.FillBetween(years, low, high, alpha=0.2, color='gray') def Correlate(dailies): """Compute the correlation matrix between prices for difference qualities. dailies: map from quality to time series of ppg returns: correlation matrix """ df = pandas.DataFrame() for name, daily in dailies.items(): df[name] = daily.ppg return df.corr() def CorrelateResid(dailies): """Compute the correlation matrix between residuals. dailies: map from quality to time series of ppg returns: correlation matrix """ df = pandas.DataFrame() for name, daily in dailies.items(): _, results = RunLinearModel(daily) df[name] = results.resid return df.corr() def TestCorrelateResid(dailies, iters=101): """Tests observed correlations. dailies: map from quality to time series of ppg iters: number of simulations """ t = [] names = ['high', 'medium', 'low'] for name in names: daily = dailies[name] t.append(SimulateResults(daily, iters=iters)) corr = CorrelateResid(dailies) arrays = [] for result_seq in zip(*t): df = pandas.DataFrame() for name, results in zip(names, result_seq): df[name] = results.resid opp_sign = corr * df.corr() < 0 arrays.append((opp_sign.astype(int))) print(np.sum(arrays)) def RunModels(dailies): """Runs linear regression for each group in dailies. dailies: map from group name to DataFrame """ rows = [] for daily in dailies.values(): _, results = RunLinearModel(daily) intercept, slope = results.params p1, p2 = results.pvalues r2 = results.rsquared s = r'%0.3f (%0.2g) & %0.3f (%0.2g) & %0.3f \\' row = s % (intercept, p1, slope, p2, r2) rows.append(row) # print results in a LaTeX table print(r'\begin{tabular}{|c|c|c|}') print(r'\hline') print(r'intercept & slope & $R^2$ \\ \hline') for row in rows: print(row) print(r'\hline') print(r'\end{tabular}') def FillMissing(daily, span=30): """Fills missing values with an exponentially weighted moving average. Resulting DataFrame has new columns 'ewma' and 'resid'. daily: DataFrame of daily prices span: window size (sort of) passed to ewma returns: new DataFrame of daily prices """ dates = pandas.date_range(daily.index.min(), daily.index.max()) reindexed = daily.reindex(dates) ewma = pandas.ewma(reindexed.ppg, span=span) resid = (reindexed.ppg - ewma).dropna() fake_data = ewma + thinkstats2.Resample(resid, len(reindexed)) reindexed.ppg.fillna(fake_data, inplace=True) reindexed['ewma'] = ewma reindexed['resid'] = reindexed.ppg - ewma return reindexed def AddWeeklySeasonality(daily): """Adds a weekly pattern. daily: DataFrame of daily prices returns: new DataFrame of daily prices """ frisat = (daily.index.dayofweek==4) | (daily.index.dayofweek==5) fake = daily.copy() fake.ppg[frisat] += np.random.uniform(0, 2, frisat.sum()) return fake def PrintSerialCorrelations(dailies): """Prints a table of correlations with different lags. dailies: map from category name to DataFrame of daily prices """ filled_dailies = {} for name, daily in dailies.items(): filled_dailies[name] = FillMissing(daily, span=30) # print serial correlations for raw price data for name, filled in filled_dailies.items(): corr = thinkstats2.SerialCorr(filled.ppg, lag=1) print(name, corr) rows = [] for lag in [1, 7, 30, 365]: row = [str(lag)] for name, filled in filled_dailies.items(): corr = thinkstats2.SerialCorr(filled.resid, lag) row.append('%.2g' % corr) rows.append(row) print(r'\begin{tabular}{|c|c|c|c|}') print(r'\hline') print(r'lag & high & medium & low \\ \hline') for row in rows: print(' & '.join(row) + r' \\') print(r'\hline') print(r'\end{tabular}') filled = filled_dailies['high'] acf = smtsa.acf(filled.resid, nlags=365, unbiased=True) print('%0.3f, %0.3f, %0.3f, %0.3f, %0.3f' % (acf[0], acf[1], acf[7], acf[30], acf[365])) def SimulateAutocorrelation(daily, iters=1001, nlags=40): """Resample residuals, compute autocorrelation, and plot percentiles. daily: DataFrame iters: number of simulations to run nlags: maximum lags to compute autocorrelation """ # run simulations t = [] for _ in range(iters): filled = FillMissing(daily, span=30) resid = thinkstats2.Resample(filled.resid) acf = smtsa.acf(resid, nlags=nlags, unbiased=True)[1:] t.append(np.abs(acf)) high = thinkstats2.PercentileRows(t, [97.5])[0] low = -high lags = range(1, nlags+1) thinkplot.FillBetween(lags, low, high, alpha=0.2, color='gray') def PlotAutoCorrelation(dailies, nlags=40, add_weekly=False): """Plots autocorrelation functions. dailies: map from category name to DataFrame of daily prices nlags: number of lags to compute add_weekly: boolean, whether to add a simulated weekly pattern """ thinkplot.PrePlot(3) daily = dailies['high'] SimulateAutocorrelation(daily) for name, daily in dailies.items(): if add_weekly: daily = AddWeeklySeasonality(daily) filled = FillMissing(daily, span=30) acf = smtsa.acf(filled.resid, nlags=nlags, unbiased=True) lags = np.arange(len(acf)) thinkplot.Plot(lags[1:], acf[1:], label=name) def MakeAcfPlot(dailies): """Makes a figure showing autocorrelation functions. dailies: map from category name to DataFrame of daily prices """ axis = [0, 41, -0.2, 0.2] thinkplot.PrePlot(cols=2) PlotAutoCorrelation(dailies, add_weekly=False) thinkplot.Config(axis=axis, loc='lower right', ylabel='correlation', xlabel='lag (day)') thinkplot.SubPlot(2) PlotAutoCorrelation(dailies, add_weekly=True) thinkplot.Save(root='timeseries9', axis=axis, loc='lower right', xlabel='lag (days)', formats=FORMATS) def PlotRollingMean(daily, name): """Plots rolling mean and EWMA. daily: DataFrame of daily prices """ dates = pandas.date_range(daily.index.min(), daily.index.max()) reindexed = daily.reindex(dates) thinkplot.PrePlot(cols=2) thinkplot.Scatter(reindexed.ppg, s=15, alpha=0.1, label=name) roll_mean = pandas.rolling_mean(reindexed.ppg, 30) thinkplot.Plot(roll_mean, label='rolling mean') pyplot.xticks(rotation=30) thinkplot.Config(ylabel='price per gram ($)') thinkplot.SubPlot(2) thinkplot.Scatter(reindexed.ppg, s=15, alpha=0.1, label=name) ewma = pandas.ewma(reindexed.ppg, span=30) thinkplot.Plot(ewma, label='EWMA') pyplot.xticks(rotation=30) thinkplot.Save(root='timeseries10', formats=FORMATS) def PlotFilled(daily, name): """Plots the EWMA and filled data. daily: DataFrame of daily prices """ filled = FillMissing(daily, span=30) thinkplot.Scatter(filled.ppg, s=15, alpha=0.3, label=name) thinkplot.Plot(filled.ewma, label='EWMA', alpha=0.4) pyplot.xticks(rotation=30) thinkplot.Save(root='timeseries8', ylabel='price per gram ($)', formats=FORMATS) def PlotLinearModel(daily, name): """Plots a linear fit to a sequence of prices, and the residuals. daily: DataFrame of daily prices name: string """ model, results = RunLinearModel(daily) PlotFittedValues(model, results, label=name) thinkplot.Save(root='timeseries2', title='fitted values', xlabel='years', xlim=[-0.1, 3.8], ylabel='price per gram ($)', formats=FORMATS) PlotResidualPercentiles(model, results) thinkplot.Save(root='timeseries3', title='residuals', xlabel='years', ylabel='price per gram ($)', formats=FORMATS) #years = np.linspace(0, 5, 101) #predict = GenerateSimplePrediction(results, years) def main(name): thinkstats2.RandomSeed(18) transactions = ReadData() dailies = GroupByQualityAndDay(transactions) PlotDailies(dailies) RunModels(dailies) PrintSerialCorrelations(dailies) MakeAcfPlot(dailies) name = 'high' daily = dailies[name] PlotLinearModel(daily, name) PlotRollingMean(daily, name) PlotFilled(daily, name) years = np.linspace(0, 5, 101) thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name) PlotPredictions(daily, years) xlim = years[0]-0.1, years[-1]+0.1 thinkplot.Save(root='timeseries4', title='predictions', xlabel='years', xlim=xlim, ylabel='price per gram ($)', formats=FORMATS) name = 'medium' daily = dailies[name] thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name) PlotIntervals(daily, years) PlotPredictions(daily, years) xlim = years[0]-0.1, years[-1]+0.1 thinkplot.Save(root='timeseries5', title='predictions', xlabel='years', xlim=xlim, ylabel='price per gram ($)', formats=FORMATS) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
spacecowboy/article-annriskgroups-source
AnnVariables.py
1
7842
# coding: utf-8 # In[1]: # import stuffs #get_ipython().magic('matplotlib inline') import numpy as np import pandas as pd from pyplotthemes import get_savefig, classictheme as plt plt.latex = True # In[2]: from datasets import get_mayo, get_veteran, get_lung, get_breasttrn d = get_mayo(prints=True, norm_in=True, norm_out=False) durcol = d.columns[0] eventcol = d.columns[1] if np.any(d[durcol] < 0): raise ValueError("Negative times encountered") print("End time:", d.iloc[:, 0].max()) d # In[3]: import ann from classensemble import ClassEnsemble def get_net(rows, incols, func=ann.geneticnetwork.FITNESS_SURV_KAPLAN_MIN, mingroup=None, hidden_count=3, popsize=100, generations=200, mutchance=0.15, conchance=0, crossover=ann.geneticnetwork.CROSSOVER_UNIFORM, selection=ann.geneticnetwork.SELECTION_TOURNAMENT): outcount = 2 l = incols + hidden_count + outcount + 1 net = ann.geneticnetwork(incols, hidden_count, outcount) net.fitness_function = func if mingroup is None: mingroup = int(0.25 * rows) # Be explicit here even though I changed the defaults net.connection_mutation_chance = conchance net.activation_mutation_chance = 0 # Some other values net.crossover_method = crossover net.selection_method = selection net.population_size = popsize net.generations = generations net.weight_mutation_chance = mutchance ann.utils.connect_feedforward(net, hidden_act=net.TANH, out_act=net.SOFTMAX) c = net.connections.reshape((l, l)) c[-outcount:, :(incols + hidden_count)] = 1 net.connections = c.ravel() return net def _netgen(df, netcount, funcs=None, **kwargs): # Expects (function, mingroup) if funcs is None: funcs = [ann.geneticnetwork.FITNESS_SURV_KAPLAN_MIN, ann.geneticnetwork.FITNESS_SURV_KAPLAN_MAX] rows = df.shape[0] incols = df.shape[1] - 2 hnets = [] lnets = [] for i in range(netcount): if i % 2: n = get_net(rows, incols, funcs[0], **kwargs) hnets.append(n) else: n = get_net(rows, incols, funcs[1], **kwargs) lnets.append(n) return hnets, lnets def _kanngen(df, netcount, **kwargs): return _netgen(df, netcount, **kwargs) def _riskgen(df, netcount, **kwargs): return _netgen(df, netcount, [ann.geneticnetwork.FITNESS_SURV_RISKGROUP_HIGH, ann.geneticnetwork.FITNESS_SURV_RISKGROUP_LOW], **kwargs) def get_kanngen(netcount, **kwargs): return lambda df: _kanngen(df, netcount, **kwargs) #e = ClassEnsemble(netgen=netgen) #er = ClassEnsemble(netgen=riskgen) class NetFitter(object): def __init__(self, func=ann.geneticnetwork.FITNESS_SURV_KAPLAN_MIN, **kwargs): self.kwargs = kwargs self.func = func def fit(self, df, duration_col, event_col): ''' Same as learn, but instead conforms to the interface defined by Lifelines and accepts a data frame as the data. Also generates new networks using self.netgen is it was defined. ''' rows = df.shape[0] incols = df.shape[1] - 2 self.net = get_net(rows, incols, self.func, **self.kwargs) # Save columns for prediction later self.x_cols = df.columns - [duration_col, event_col] self.net.learn(df[self.x_cols].values, df[[duration_col, event_col]].values) def get_log(self, df): ''' Returns a truncated training log ''' return pd.Series(self.net.log.ravel()[:self.net.generations]) # In[4]: from stats import k_fold_cross_validation from lifelines.estimation import KaplanMeierFitter, median_survival_times def score(T_actual, labels, E_actual): ''' Return a score based on grouping ''' scores = [] labels = labels.ravel() for g in ['high', 'mid', 'low']: members = labels == g if np.sum(members) > 0: kmf = KaplanMeierFitter() kmf.fit(T_actual[members], E_actual[members], label='{}'.format(g)) # Last survival time if np.sum(E_actual[members]) > 0: lasttime = np.max(T_actual[members][E_actual[members] == 1]) else: lasttime = np.nan # End survival rate, median survival time, member count, last event subscore = (kmf.survival_function_.iloc[-1, 0], median_survival_times(kmf.survival_function_), np.sum(members), lasttime) else: # Rpart might fail in this respect subscore = (np.nan, np.nan, np.sum(members), np.nan) scores.append(subscore) return scores def logscore(T_actual, log, E_actual): # Return last value in the log return log[-1] # # Compare stuff # In[ ]: #netcount = 6 models = [] # Try different epoch counts for x in [0.0, 0.01, 0.05, 0.1, 0.15, 0.25, 0.5]: #e = ClassEnsemble(netgen=get_kanngen(netcount, generations=x)) e = NetFitter(func=ann.geneticnetwork.FITNESS_SURV_KAPLAN_MIN, popsize=50, generations=100, conchance=x) #, mingroup=int(0.25*d.shape[0])) e.var_label = 'Connection chance' e.var_value = x models.append(e) # In[ ]: n = 10 k = 4 # Repeated cross-validation repeat_results = [] for rep in range(n): result = k_fold_cross_validation(models, d, durcol, eventcol, k=k, evaluation_measure=logscore, predictor='get_log') repeat_results.append(result) #repeat_results # # Plot results # In[ ]: def plot_logscore(repeat_results, models): boxes = [] labels = [] var_label = None # Makes no sense for low here for many datasets... for i, m in enumerate(models): labels.append(str(m.var_value)) var_label = m.var_label vals = [] for result in repeat_results: vals.extend(result[i]) boxes.append(vals) plt.figure() plt.boxplot(boxes, labels=labels, vert=False, colors=plt.colors[:len(models)]) plt.ylabel(var_label) plt.title("Cross-validation: n={} k={}".format(n, k)) plt.xlabel("Something..") #plt.gca().set_xscale('log') plot_logscore(repeat_results, models) # In[ ]: def plot_score(repeat_results, models, scoreindex=0): boxes = [] labels = [] var_label = [] # Makes no sense for low here for many datasets... for i, g in enumerate(['high', 'mid', 'low']): for j, m in enumerate(models): if g == 'high': labels.append('H ' + str(m.var_value)) elif g == 'low': labels.append('L ' + str(m.var_value)) else: labels.append('M ' + str(m.var_value)) var_label = m.var_label vals = [] for result in repeat_results: for subscore in result[j]: vals.append(subscore[i][scoreindex]) boxes.append(vals) plt.figure() plt.boxplot(boxes, labels=labels, vert=False, colors=plt.colors[:len(models)]) plt.ylabel(var_label) plt.title("Cross-validation: n={} k={}".format(n, k)) if scoreindex == 0: plt.xlabel("End Survival Rate") elif scoreindex == 1: plt.xlabel("Median Survival Time") elif scoreindex == 2: plt.xlabel("Group size") elif scoreindex == 3: plt.xlabel("Last event time") # In[ ]: plot_score(repeat_results, models, 0) # In[ ]: plot_score(repeat_results, models, 1) # In[ ]: plot_score(repeat_results, models, 2) # In[ ]: plot_score(repeat_results, models, 3) # In[ ]: net = netgen(d)
gpl-3.0
ndingwall/scikit-learn
examples/manifold/plot_mds.py
17
2766
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <[email protected]> # License: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA EPSILON = np.finfo(np.float32).eps n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / (similarities + EPSILON) * 100 np.fill_diagonal(similarities, 0) # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(np.full(len(segments), 0.5)) ax.add_collection(lc) plt.show()
bsd-3-clause
Eric89GXL/scipy
scipy/stats/_binned_statistic.py
5
25939
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.six import callable, xrange from scipy._lib._numpy_compat import suppress_warnings from collections import namedtuple __all__ = ['binned_statistic', 'binned_statistic_2d', 'binned_statistic_dd'] BinnedStatisticResult = namedtuple('BinnedStatisticResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic(x, values, statistic='mean', bins=10, range=None): """ Compute a binned statistic for one or more sets of data. This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a set of sequences - each the same shape as `x`. If `values` is a set of sequences, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10 by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in `x` that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to ``bins[-1]``. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1). range : (float, float) or [(float, float)], optional The lower and upper range of the bins. If not provided, range is simply ``(x.min(), x.max())``. Values outside the range are ignored. Returns ------- statistic : array The values of the selected statistic in each bin. bin_edges : array of dtype float Return the bin edges ``(length(statistic)+1)``. binnumber: 1-D ndarray of ints Indices of the bins (corresponding to `bin_edges`) in which each value of `x` belongs. Same length as `values`. A binnumber of `i` means the corresponding value is between (bin_edges[i-1], bin_edges[i]). See Also -------- numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt First some basic examples: Create two evenly spaced bins in the range of the given sample, and sum the corresponding values in each of those bins: >>> values = [1.0, 1.0, 2.0, 1.5, 3.0] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([ 4. , 4.5]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) Multiple arrays of values can also be passed. The statistic is calculated on each set independently: >>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([[ 4. , 4.5], [ 8. , 9. ]]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', ... bins=3) (array([ 1., 2., 4.]), array([ 1., 2., 3., 4.]), array([1, 2, 1, 2, 3])) As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and then determine how fast our boat is for certain wind speeds: >>> windspeed = 8 * np.random.rand(500) >>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed, ... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7]) >>> plt.figure() >>> plt.plot(windspeed, boatspeed, 'b.', label='raw data') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5, ... label='binned statistic of data') >>> plt.legend() Now we can use ``binnumber`` to select all datapoints with a windspeed below 1: >>> low_boatspeed = boatspeed[binnumber == 0] As a final example, we will use ``bin_edges`` and ``binnumber`` to make a plot of a distribution that shows the mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution function: >>> x = np.linspace(0, 5, num=500) >>> x_pdf = stats.maxwell.pdf(x) >>> samples = stats.maxwell.rvs(size=10000) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf, ... statistic='mean', bins=25) >>> bin_width = (bin_edges[1] - bin_edges[0]) >>> bin_centers = bin_edges[1:] - bin_width/2 >>> plt.figure() >>> plt.hist(samples, bins=50, density=True, histtype='stepfilled', ... alpha=0.2, label='histogram of data') >>> plt.plot(x, x_pdf, 'r-', label='analytical pdf') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2, ... label='binned statistic of data') >>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5) >>> plt.legend(fontsize=10) >>> plt.show() """ try: N = len(bins) except TypeError: N = 1 if N != 1: bins = [np.asarray(bins, float)] if range is not None: if len(range) == 2: range = [range] medians, edges, binnumbers = binned_statistic_dd( [x], values, statistic, bins, range) return BinnedStatisticResult(medians, edges[0], binnumbers) BinnedStatistic2dResult = namedtuple('BinnedStatistic2dResult', ('statistic', 'x_edge', 'y_edge', 'binnumber')) def binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a bidimensional binned statistic for one or more sets of data. This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned along the first dimension. y : (N,) array_like A sequence of values to be binned along the second dimension. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * the number of bins for the two dimensions (nx = ny = bins), * the number of bins in each dimension (nx, ny = bins), * the bin edges for the two dimensions (x_edge = y_edge = bins), * the bin edges in each dimension (x_edge, y_edge = bins). If the bin edges are specified, the number of bins will be, (nx = len(x_edge)-1, ny = len(y_edge)-1). range : (2,2) array_like, optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (2,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section. .. versionadded:: 0.17.0 Returns ------- statistic : (nx, ny) ndarray The values of the selected statistic in each two-dimensional bin. x_edge : (nx + 1) ndarray The bin edges along the first dimension. y_edge : (ny + 1) ndarray The bin edges along the second dimension. binnumber : (N,) array of ints or (2,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd Notes ----- Binedges: All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (2,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (D_edge[i-1], D_edge[i]), where 'D' is either 'x' or 'y'. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats Calculate the counts with explicit bin-edges: >>> x = [0.1, 0.1, 0.1, 0.6] >>> y = [2.1, 2.6, 2.1, 2.1] >>> binx = [0.0, 0.5, 1.0] >>> biny = [2.0, 2.5, 3.0] >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny]) >>> ret.statistic array([[ 2., 1.], [ 1., 0.]]) The bin in which each sample is placed is given by the `binnumber` returned parameter. By default, these are the linearized bin indices: >>> ret.binnumber array([5, 6, 5, 9]) The bin indices can also be expanded into separate entries for each dimension using the `expand_binnumbers` parameter: >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny], ... expand_binnumbers=True) >>> ret.binnumber array([[1, 1, 1, 2], [1, 2, 1, 1]]) Which shows that the first three elements belong in the xbin 1, and the fourth into xbin 2; and so on for y. """ # This code is based on np.histogram2d try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = np.asarray(bins, float) bins = [xedges, yedges] medians, edges, binnumbers = binned_statistic_dd( [x, y], values, statistic, bins, range, expand_binnumbers=expand_binnumbers) return BinnedStatistic2dResult(medians, edges[0], edges[1], binnumbers) BinnedStatisticddResult = namedtuple('BinnedStatisticddResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `sample`, or a list of sequences - each with the same shape as `sample`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification must be in one of the following forms: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... = bins). * The number of bins for all dimensions (nx = ny = ... = bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section of `binned_statistic_2d`. .. versionadded:: 0.17.0 Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin. bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension. binnumber : (N,) array of ints or (D,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d Notes ----- Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'. .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std','min','max'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`) # `Dlen` is the length of elements along each dimension. # This code is based on np.histogramdd try: # `sample` is an ND-array. Dlen, Ndim = sample.shape except (AttributeError, ValueError): # `sample` is a sequence of 1D arrays. sample = np.atleast_2d(sample).T Dlen, Ndim = sample.shape # Store initial shape of `values` to preserve it in the output values = np.asarray(values) input_shape = list(values.shape) # Make sure that `values` is 2D to iterate over rows values = np.atleast_2d(values) Vdim, Vlen = values.shape # Make sure `values` match `sample` if(statistic != 'count' and Vlen != Dlen): raise AttributeError('The number of `values` elements must match the ' 'length of each `sample` dimension.') nbin = np.empty(Ndim, int) # Number of bins in each dimension edges = Ndim * [None] # Bin edges for each dim (will be 2D array) dedges = Ndim * [None] # Spacing between edges (will be 2D array) try: M = len(bins) if M != Ndim: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = Ndim * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(axis=0), float)) smax = np.atleast_1d(np.array(sample.max(axis=0), float)) else: smin = np.zeros(Ndim) smax = np.zeros(Ndim) for i in xrange(Ndim): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in xrange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in xrange(Ndim): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into, in each dimension sampBin = [ np.digitize(sample[:, i], edges[i]) for i in xrange(Ndim) ] # Using `digitize`, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in xrange(Ndim): # Find the rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. sampBin[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. binnumbers = np.ravel_multi_index(sampBin, nbin) result = np.empty([Vdim, nbin.prod()], float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) result[vv, a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) flatsum2 = np.bincount(binnumbers, values[vv] ** 2) result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(binnumbers, None) a = np.arange(len(flatcount)) result[:, a] = flatcount[np.newaxis, :] elif statistic == 'sum': result.fill(0) for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) a = np.arange(len(flatsum)) result[vv, a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.median(values[vv, binnumbers == i]) elif statistic == 'min': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.min(values[vv, binnumbers == i]) elif statistic == 'max': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.max(values[vv, binnumbers == i]) elif callable(statistic): with np.errstate(invalid='ignore'), suppress_warnings() as sup: sup.filter(RuntimeWarning) try: null = statistic([]) except Exception: null = np.nan result.fill(null) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = statistic(values[vv, binnumbers == i]) # Shape into a proper matrix result = result.reshape(np.append(Vdim, nbin)) # Remove outliers (indices 0 and -1 for each bin-dimension). core = tuple([slice(None)] + Ndim * [slice(1, -1)]) result = result[core] # Unravel binnumbers into an ndarray, each row the bins for each dimension if(expand_binnumbers and Ndim > 1): binnumbers = np.asarray(np.unravel_index(binnumbers, nbin)) if np.any(result.shape[1:] != nbin - 2): raise RuntimeError('Internal Shape Error') # Reshape to have output (`reulst`) match input (`values`) shape result = result.reshape(input_shape[:-1] + list(nbin-2)) return BinnedStatisticddResult(result, edges, binnumbers)
bsd-3-clause
flightgong/scikit-learn
examples/covariance/plot_lw_vs_oas.py
248
2903
""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='r') plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='r') plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
bsd-3-clause
zfrenchee/pandas
pandas/tests/plotting/test_deprecated.py
2
1528
# coding: utf-8 import string import pandas as pd import pandas.util.testing as tm import pandas.util._test_decorators as td import pytest from numpy.random import randn import pandas.tools.plotting as plotting from pandas.tests.plotting.common import TestPlotBase """ Test cases for plot functions imported from deprecated pandas.tools.plotting """ @td.skip_if_no_mpl class TestDeprecatedNameSpace(TestPlotBase): @pytest.mark.slow @td.skip_if_no_scipy def test_scatter_plot_legacy(self): df = pd.DataFrame(randn(100, 2)) with tm.assert_produces_warning(FutureWarning): plotting.scatter_matrix(df) with tm.assert_produces_warning(FutureWarning): pd.scatter_matrix(df) @pytest.mark.slow def test_boxplot_deprecated(self): df = pd.DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) df['indic'] = ['foo', 'bar'] * 3 with tm.assert_produces_warning(FutureWarning): plotting.boxplot(df, column=['one', 'two'], by='indic') @pytest.mark.slow def test_radviz_deprecated(self): df = self.iris with tm.assert_produces_warning(FutureWarning): plotting.radviz(frame=df, class_column='Name') @pytest.mark.slow def test_plot_params(self): with tm.assert_produces_warning(FutureWarning): pd.plot_params['xaxis.compat'] = True
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont_fullelines/MoreLines.py
3
7227
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111] #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("More Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('MoreLines1.pdf') plt.clf()
gpl-2.0
gaocegege/treadmill
treadmill/reports.py
3
5262
"""Handles reports over scheduler data.""" import time import datetime import itertools import logging import numpy as np import pandas as pd from functools import reduce _LOGGER = logging.getLogger(__name__) def servers(cell): """Returns dataframe for servers hierarchy.""" def _server_row(server): """Converts server object to dict used to construct dataframe row. """ row = { 'name': server.name, 'memory': server.init_capacity[0], 'cpu': server.init_capacity[1], 'disk': server.init_capacity[2], 'traits': server.traits.traits, 'free.memory': server.free_capacity[0], 'free.cpu': server.free_capacity[1], 'free.disk': server.free_capacity[2], 'state': server.state.value, 'valid_until': server.valid_until } node = server.parent while node: row[node.level] = node.name node = node.parent return row frame = pd.DataFrame.from_dict([ _server_row(server) for server in cell.members().values() ]) if frame.empty: frame = pd.DataFrame(columns=['name', 'memory', 'cpu', 'disk', 'free.memory', 'free.cpu', 'free.disk', 'state']) for col in ['valid_until']: frame[col] = pd.to_datetime(frame[col], unit='s') return frame.set_index('name') def allocations(cell): """Converts cell allocations into dataframe row.""" def _leafs(path, alloc): """Generate leaf allocations - (path, alloc) tuples.""" if not alloc.sub_allocations: return iter([('/'.join(path), alloc)]) else: def _chain(acc, item): """Chains allocation iterators.""" name, suballoc = item return itertools.chain(acc, _leafs(path + [name], suballoc)) return reduce(_chain, iter(alloc.sub_allocations.items()), []) def _alloc_row(label, name, alloc): """Converts allocation to dict/dataframe row.""" if not name: name = 'root' if not label: label = '-' return { 'label': label, 'name': name, 'memory': alloc.reserved[0], 'cpu': alloc.reserved[1], 'disk': alloc.reserved[2], 'rank': alloc.rank, 'traits': alloc.traits, 'max_utilization': alloc.max_utilization, } all_allocs = [] for label, partition in cell.partitions.items(): allocation = partition.allocation leaf_allocs = _leafs([], allocation) alloc_df = pd.DataFrame.from_dict( [_alloc_row(label, name, alloc) for name, alloc in leaf_allocs] ).set_index(['label', 'name']) all_allocs.append(alloc_df) return pd.concat(all_allocs) def apps(cell): """Return application queue and app details as dataframe.""" def _app_row(item): """Converts app queue item into dict for dataframe row.""" rank, util, pending, order, app = item return { 'instance': app.name, 'affinity': app.affinity.name, 'allocation': app.allocation.name, 'rank': rank, 'label': app.allocation.label, 'util': util, 'pending': pending, 'order': order, 'identity_group': app.identity_group, 'identity': app.identity, 'memory': app.demand[0], 'cpu': app.demand[1], 'disk': app.demand[2], 'lease': app.lease, 'expires': app.placement_expiry, 'data_retention_timeout': app.data_retention_timeout, 'server': app.server } queue = [] for partition in cell.partitions.values(): allocation = partition.allocation queue += allocation.utilization_queue(cell.size(allocation.label)) frame = pd.DataFrame.from_dict([_app_row(item) for item in queue]) if frame.empty: return frame for col in ['expires']: frame[col] = pd.to_datetime(frame[col], unit='s') for col in ['lease', 'data_retention_timeout']: frame[col] = pd.to_timedelta(frame[col], unit='s') return frame.set_index('instance') def utilization(prev_utilization, apps_df): """Returns dataseries describing cell utilization. prev_utilization - utilization dataframe before current. apps - app queue dataframe. """ # Passed by ref. row = apps_df.reset_index() if row.empty: return row row['count'] = 1 row['name'] = row['instance'].apply(lambda x: x.split('#')[0]) row = row.groupby('name').agg({'cpu': np.sum, 'memory': np.sum, 'disk': np.sum, 'count': np.sum, 'util': np.max}) row = row.stack() dt_now = datetime.datetime.fromtimestamp(time.time()) current = pd.DataFrame([row], index=pd.DatetimeIndex([dt_now])) if prev_utilization is None: return current else: return prev_utilization.append(current)
apache-2.0
matthew-tucker/mne-python
mne/tests/test_evoked.py
5
16593
# Author: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Andrew Dykstra <[email protected]> # Mads Jensen <[email protected]> # # License: BSD (3-clause) import os.path as op from copy import deepcopy import warnings import numpy as np from scipy import fftpack from numpy.testing import (assert_array_almost_equal, assert_equal, assert_array_equal, assert_allclose) from nose.tools import assert_true, assert_raises, assert_not_equal from mne import (equalize_channels, pick_types, read_evokeds, write_evokeds, grand_average, combine_evoked) from mne.evoked import _get_peak, EvokedArray from mne.epochs import EpochsArray from mne.utils import (_TempDir, requires_pandas, slow_test, requires_scipy_version) from mne.io.meas_info import create_info from mne.externals.six.moves import cPickle as pickle warnings.simplefilter('always') fname = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data', 'test-ave.fif') fname_gz = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data', 'test-ave.fif.gz') @requires_scipy_version('0.14') def test_savgol_filter(): """Test savgol filtering """ h_freq = 10. evoked = read_evokeds(fname, 0) freqs = fftpack.fftfreq(len(evoked.times), 1. / evoked.info['sfreq']) data = np.abs(fftpack.fft(evoked.data)) match_mask = np.logical_and(freqs >= 0, freqs <= h_freq / 2.) mismatch_mask = np.logical_and(freqs >= h_freq * 2, freqs < 50.) assert_raises(ValueError, evoked.savgol_filter, evoked.info['sfreq']) evoked.savgol_filter(h_freq) data_filt = np.abs(fftpack.fft(evoked.data)) # decent in pass-band assert_allclose(np.mean(data[:, match_mask], 0), np.mean(data_filt[:, match_mask], 0), rtol=1e-4, atol=1e-2) # suppression in stop-band assert_true(np.mean(data[:, mismatch_mask]) > np.mean(data_filt[:, mismatch_mask]) * 5) def test_hash_evoked(): """Test evoked hashing """ ave = read_evokeds(fname, 0) ave_2 = read_evokeds(fname, 0) assert_equal(hash(ave), hash(ave_2)) # do NOT use assert_equal here, failing output is terrible assert_true(pickle.dumps(ave) == pickle.dumps(ave_2)) ave_2.data[0, 0] -= 1 assert_not_equal(hash(ave), hash(ave_2)) @slow_test def test_io_evoked(): """Test IO for evoked data (fif + gz) with integer and str args """ tempdir = _TempDir() ave = read_evokeds(fname, 0) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave) ave2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0] # This not being assert_array_equal due to windows rounding assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3)) assert_array_almost_equal(ave.times, ave2.times) assert_equal(ave.nave, ave2.nave) assert_equal(ave._aspect_kind, ave2._aspect_kind) assert_equal(ave.kind, ave2.kind) assert_equal(ave.last, ave2.last) assert_equal(ave.first, ave2.first) assert_true(repr(ave)) # test compressed i/o ave2 = read_evokeds(fname_gz, 0) assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8)) # test str access condition = 'Left Auditory' assert_raises(ValueError, read_evokeds, fname, condition, kind='stderr') assert_raises(ValueError, read_evokeds, fname, condition, kind='standard_error') ave3 = read_evokeds(fname, condition) assert_array_almost_equal(ave.data, ave3.data, 19) # test read_evokeds and write_evokeds types = ['Left Auditory', 'Right Auditory', 'Left visual', 'Right visual'] aves1 = read_evokeds(fname) aves2 = read_evokeds(fname, [0, 1, 2, 3]) aves3 = read_evokeds(fname, types) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), aves1) aves4 = read_evokeds(op.join(tempdir, 'evoked-ave.fif')) for aves in [aves2, aves3, aves4]: for [av1, av2] in zip(aves1, aves): assert_array_almost_equal(av1.data, av2.data) assert_array_almost_equal(av1.times, av2.times) assert_equal(av1.nave, av2.nave) assert_equal(av1.kind, av2.kind) assert_equal(av1._aspect_kind, av2._aspect_kind) assert_equal(av1.last, av2.last) assert_equal(av1.first, av2.first) assert_equal(av1.comment, av2.comment) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') fname2 = op.join(tempdir, 'test-bad-name.fif') write_evokeds(fname2, ave) read_evokeds(fname2) assert_true(len(w) == 2) def test_shift_time_evoked(): """ Test for shifting of time scale """ tempdir = _TempDir() # Shift backward ave = read_evokeds(fname, 0) ave.shift_time(-0.1, relative=True) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave) # Shift forward twice the amount ave_bshift = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0) ave_bshift.shift_time(0.2, relative=True) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave_bshift) # Shift backward again ave_fshift = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0) ave_fshift.shift_time(-0.1, relative=True) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave_fshift) ave_normal = read_evokeds(fname, 0) ave_relative = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0) assert_true(np.allclose(ave_normal.data, ave_relative.data, atol=1e-16, rtol=1e-3)) assert_array_almost_equal(ave_normal.times, ave_relative.times, 10) assert_equal(ave_normal.last, ave_relative.last) assert_equal(ave_normal.first, ave_relative.first) # Absolute time shift ave = read_evokeds(fname, 0) ave.shift_time(-0.3, relative=False) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave) ave_absolute = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0) assert_true(np.allclose(ave_normal.data, ave_absolute.data, atol=1e-16, rtol=1e-3)) assert_equal(ave_absolute.first, int(-0.3 * ave.info['sfreq'])) def test_evoked_resample(): """Test for resampling of evoked data """ tempdir = _TempDir() # upsample, write it out, read it in ave = read_evokeds(fname, 0) sfreq_normal = ave.info['sfreq'] ave.resample(2 * sfreq_normal) write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave) ave_up = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0) # compare it to the original ave_normal = read_evokeds(fname, 0) # and compare the original to the downsampled upsampled version ave_new = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0) ave_new.resample(sfreq_normal) assert_array_almost_equal(ave_normal.data, ave_new.data, 2) assert_array_almost_equal(ave_normal.times, ave_new.times) assert_equal(ave_normal.nave, ave_new.nave) assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind) assert_equal(ave_normal.kind, ave_new.kind) assert_equal(ave_normal.last, ave_new.last) assert_equal(ave_normal.first, ave_new.first) # for the above to work, the upsampling just about had to, but # we'll add a couple extra checks anyway assert_true(len(ave_up.times) == 2 * len(ave_normal.times)) assert_true(ave_up.data.shape[1] == 2 * ave_normal.data.shape[1]) def test_evoked_detrend(): """Test for detrending evoked data """ ave = read_evokeds(fname, 0) ave_normal = read_evokeds(fname, 0) ave.detrend(0) ave_normal.data -= np.mean(ave_normal.data, axis=1)[:, np.newaxis] picks = pick_types(ave.info, meg=True, eeg=True, exclude='bads') assert_true(np.allclose(ave.data[picks], ave_normal.data[picks], rtol=1e-8, atol=1e-16)) @requires_pandas def test_to_data_frame(): """Test evoked Pandas exporter""" ave = read_evokeds(fname, 0) assert_raises(ValueError, ave.to_data_frame, picks=np.arange(400)) df = ave.to_data_frame() assert_true((df.columns == ave.ch_names).all()) df = ave.to_data_frame(index=None).reset_index('time') assert_true('time' in df.columns) assert_array_equal(df.values[:, 1], ave.data[0] * 1e13) assert_array_equal(df.values[:, 3], ave.data[2] * 1e15) def test_evoked_proj(): """Test SSP proj operations """ for proj in [True, False]: ave = read_evokeds(fname, condition=0, proj=proj) assert_true(all(p['active'] == proj for p in ave.info['projs'])) # test adding / deleting proj if proj: assert_raises(ValueError, ave.add_proj, [], {'remove_existing': True}) assert_raises(ValueError, ave.del_proj, 0) else: projs = deepcopy(ave.info['projs']) n_proj = len(ave.info['projs']) ave.del_proj(0) assert_true(len(ave.info['projs']) == n_proj - 1) ave.add_proj(projs, remove_existing=False) assert_true(len(ave.info['projs']) == 2 * n_proj - 1) ave.add_proj(projs, remove_existing=True) assert_true(len(ave.info['projs']) == n_proj) ave = read_evokeds(fname, condition=0, proj=False) data = ave.data.copy() ave.apply_proj() assert_allclose(np.dot(ave._projector, data), ave.data) def test_get_peak(): """Test peak getter """ evoked = read_evokeds(fname, condition=0, proj=True) assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmin=1) assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmax=0.9) assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmin=0.02, tmax=0.01) assert_raises(ValueError, evoked.get_peak, ch_type='mag', mode='foo') assert_raises(RuntimeError, evoked.get_peak, ch_type=None, mode='foo') assert_raises(ValueError, evoked.get_peak, ch_type='misc', mode='foo') ch_idx, time_idx = evoked.get_peak(ch_type='mag') assert_true(ch_idx in evoked.ch_names) assert_true(time_idx in evoked.times) ch_idx, time_idx = evoked.get_peak(ch_type='mag', time_as_index=True) assert_true(time_idx < len(evoked.times)) data = np.array([[0., 1., 2.], [0., -3., 0]]) times = np.array([.1, .2, .3]) ch_idx, time_idx = _get_peak(data, times, mode='abs') assert_equal(ch_idx, 1) assert_equal(time_idx, 1) ch_idx, time_idx = _get_peak(data * -1, times, mode='neg') assert_equal(ch_idx, 0) assert_equal(time_idx, 2) ch_idx, time_idx = _get_peak(data, times, mode='pos') assert_equal(ch_idx, 0) assert_equal(time_idx, 2) assert_raises(ValueError, _get_peak, data + 1e3, times, mode='neg') assert_raises(ValueError, _get_peak, data - 1e3, times, mode='pos') def test_drop_channels_mixin(): """Test channels-dropping functionality """ evoked = read_evokeds(fname, condition=0, proj=True) drop_ch = evoked.ch_names[:3] ch_names = evoked.ch_names[3:] ch_names_orig = evoked.ch_names dummy = evoked.drop_channels(drop_ch, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, evoked.ch_names) assert_equal(len(ch_names_orig), len(evoked.data)) evoked.drop_channels(drop_ch) assert_equal(ch_names, evoked.ch_names) assert_equal(len(ch_names), len(evoked.data)) def test_pick_channels_mixin(): """Test channel-picking functionality """ evoked = read_evokeds(fname, condition=0, proj=True) ch_names = evoked.ch_names[:3] ch_names_orig = evoked.ch_names dummy = evoked.pick_channels(ch_names, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, evoked.ch_names) assert_equal(len(ch_names_orig), len(evoked.data)) evoked.pick_channels(ch_names) assert_equal(ch_names, evoked.ch_names) assert_equal(len(ch_names), len(evoked.data)) evoked = read_evokeds(fname, condition=0, proj=True) assert_true('meg' in evoked) assert_true('eeg' in evoked) evoked.pick_types(meg=False, eeg=True) assert_true('meg' not in evoked) assert_true('eeg' in evoked) assert_true(len(evoked.ch_names) == 60) def test_equalize_channels(): """Test equalization of channels """ evoked1 = read_evokeds(fname, condition=0, proj=True) evoked2 = evoked1.copy() ch_names = evoked1.ch_names[2:] evoked1.drop_channels(evoked1.ch_names[:1]) evoked2.drop_channels(evoked2.ch_names[1:2]) my_comparison = [evoked1, evoked2] equalize_channels(my_comparison) for e in my_comparison: assert_equal(ch_names, e.ch_names) def test_evoked_arithmetic(): """Test evoked arithmetic """ ev = read_evokeds(fname, condition=0) ev1 = EvokedArray(np.ones_like(ev.data), ev.info, ev.times[0], nave=20) ev2 = EvokedArray(-np.ones_like(ev.data), ev.info, ev.times[0], nave=10) # combine_evoked([ev1, ev2]) should be the same as ev1 + ev2: # data should be added according to their `nave` weights # nave = ev1.nave + ev2.nave ev = ev1 + ev2 assert_equal(ev.nave, ev1.nave + ev2.nave) assert_allclose(ev.data, 1. / 3. * np.ones_like(ev.data)) ev = ev1 - ev2 assert_equal(ev.nave, ev1.nave + ev2.nave) assert_equal(ev.comment, ev1.comment + ' - ' + ev2.comment) assert_allclose(ev.data, np.ones_like(ev1.data)) # default comment behavior if evoked.comment is None old_comment1 = ev1.comment old_comment2 = ev2.comment ev1.comment = None with warnings.catch_warnings(record=True): warnings.simplefilter('always') ev = ev1 - ev2 assert_equal(ev.comment, 'unknown') ev1.comment = old_comment1 ev2.comment = old_comment2 # equal weighting ev = combine_evoked([ev1, ev2], weights='equal') assert_allclose(ev.data, np.zeros_like(ev1.data)) # combine_evoked([ev1, ev2], weights=[1, 0]) should yield the same as ev1 ev = combine_evoked([ev1, ev2], weights=[1, 0]) assert_equal(ev.nave, ev1.nave) assert_allclose(ev.data, ev1.data) # simple subtraction (like in oddball) ev = combine_evoked([ev1, ev2], weights=[1, -1]) assert_allclose(ev.data, 2 * np.ones_like(ev1.data)) assert_raises(ValueError, combine_evoked, [ev1, ev2], weights='foo') assert_raises(ValueError, combine_evoked, [ev1, ev2], weights=[1]) # grand average evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True) ch_names = evoked1.ch_names[2:] evoked1.info['bads'] = ['EEG 008'] # test interpolation evoked1.drop_channels(evoked1.ch_names[:1]) evoked2.drop_channels(evoked2.ch_names[1:2]) gave = grand_average([evoked1, evoked2]) assert_equal(gave.data.shape, [len(ch_names), evoked1.data.shape[1]]) assert_equal(ch_names, gave.ch_names) assert_equal(gave.nave, 2) def test_array_epochs(): """Test creating evoked from array """ tempdir = _TempDir() # creating rng = np.random.RandomState(42) data1 = rng.randn(20, 60) sfreq = 1e3 ch_names = ['EEG %03d' % (i + 1) for i in range(20)] types = ['eeg'] * 20 info = create_info(ch_names, sfreq, types) evoked1 = EvokedArray(data1, info, tmin=-0.01) # save, read, and compare evokeds tmp_fname = op.join(tempdir, 'evkdary-ave.fif') evoked1.save(tmp_fname) evoked2 = read_evokeds(tmp_fname)[0] data2 = evoked2.data assert_allclose(data1, data2) assert_allclose(evoked1.times, evoked2.times) assert_equal(evoked1.first, evoked2.first) assert_equal(evoked1.last, evoked2.last) assert_equal(evoked1.kind, evoked2.kind) assert_equal(evoked1.nave, evoked2.nave) # now compare with EpochsArray (with single epoch) data3 = data1[np.newaxis, :, :] events = np.c_[10, 0, 1] evoked3 = EpochsArray(data3, info, events=events, tmin=-0.01).average() assert_allclose(evoked1.data, evoked3.data) assert_allclose(evoked1.times, evoked3.times) assert_equal(evoked1.first, evoked3.first) assert_equal(evoked1.last, evoked3.last) assert_equal(evoked1.kind, evoked3.kind) assert_equal(evoked1.nave, evoked3.nave) # test match between channels info and data ch_names = ['EEG %03d' % (i + 1) for i in range(19)] types = ['eeg'] * 19 info = create_info(ch_names, sfreq, types) assert_raises(ValueError, EvokedArray, data1, info, tmin=-0.01)
bsd-3-clause
dssg/wikienergy
disaggregator/build/pandas/pandas/core/groupby.py
1
123222
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender, make_signature import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): return x.count() # .size != .count(); count excludes nan class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to 0 sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=0, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) self.grouper, exclusions, self.obj = _get_grouper(self.obj, [self.key], axis=self.axis, level=self.level, sort=self.sort) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key], name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) ax = Index(ax.get_level_values(level), name=ax.names[level]) else: if level not in (0, ax.name): raise ValueError("The level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): msg = ("must supply a tuple to get_group with multiple" " grouping keys") raise ValueError(msg) if not len(name) == len(sample): try: # If the original grouper was a tuple return self.indices[name] except KeyError: # turns out it wasn't a tuple msg = ("must supply a a same-length tuple to get_group" " with multiple grouping keys") raise ValueError(msg) name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [g.name for g in grp.groupings if g.level is None and g.in_axis] if len(groupers): self._group_selection = ax.difference(Index(groupers)).tolist() def _set_result_index_ordered(self, result): # set the result index on the passed values object # return the new object # related 8046 # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if not self.grouper.is_monotonic: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result.index = index result = result.sort_index() result.index = self.obj.index return result def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis or kwargs_with_axis['axis']==None: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints. If dropna, will take the nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Parameters ---------- n : int or list of ints a single nth value for the row or a list of nth values dropna : None or str, optional apply the specified dropna operation before counting which row is the nth row. Needs to be None, 'any' or 'all' Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ if isinstance(n, int): nth_values = [n] elif isinstance(n, (set, list, tuple)): nth_values = list(set(n)) if dropna is not None: raise ValueError("dropna option with a list of nth values is not supported") else: raise TypeError("n needs to be an int or a list/set/tuple of ints") m = self.grouper._max_groupsize # filter out values that are outside [-m, m) pos_nth_values = [i for i in nth_values if i >= 0 and i < m] neg_nth_values = [i for i in nth_values if i < 0 and i >= -m] self._set_selection_from_grouper() if not dropna: # good choice if not pos_nth_values and not neg_nth_values: # no valid nth values return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) for i in pos_nth_values: rng[i] = True is_nth = self._cumcount_array(rng) if neg_nth_values: rng = np.zeros(m, dtype=bool) for i in neg_nth_values: rng[- i - 1] = True is_nth |= self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Examples -------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Examples -------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Examples -------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def is_monotonic(self): # return if my group orderings are monotonic return Index(self.group_info[0]).is_monotonic @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups and not counts.all(): if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( com._ensure_object(result), (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _get_group_index_sorter(group_index, ngroups) obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def group_info(self): # for compat return self.bins, self.binlabels, self.ngroups @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : in_axis : if the Grouping is a column in self.obj and hence among Groupby.exclusions list Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True, in_axis=False): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj self.in_axis = in_axis # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.categories if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): if getattr(self.grouper,'ndim', 1) != 1: t = self.name or str(type(self.grouper)) raise ValueError("Grouper for '%s' not 1-dimensional" % t) self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] # if the actual grouper should be obj[key] def is_in_axis(key): if not _is_label_like(key): try: obj._data.items.get_loc(key) except Exception: return False return True # if the the grouper is obj[name] def is_in_obj(gpr): try: return id(gpr) == id(obj[gpr.name]) except Exception: return False for i, (gpr, level) in enumerate(zip(keys, levels)): if is_in_obj(gpr): # df.groupby(df['name']) in_axis, name = True, gpr.name exclusions.append(name) elif is_in_axis(gpr): # df.groupby('name') in_axis, name, gpr = True, gpr, obj[gpr] exclusions.append(name) else: in_axis, name = False, None if isinstance(gpr, Categorical) and len(gpr) != len(obj): raise ValueError("Categorical grouper must have len(grouper) == len(data)") ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort, in_axis=in_axis) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper def _whitelist_method_generator(klass, whitelist) : """ Yields all GroupBy member defs for DataFrame/Series names in _whitelist. Parameters ---------- klass - class where members are defined. Should be Series or DataFrame whitelist - list of names of klass methods to be constructed Returns ------- The generator yields a sequence of strings, each suitable for exec'ing, that define implementations of the named methods for DataFrameGroupBy or SeriesGroupBy. Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ method_wrapper_template = \ """def %(name)s(%(sig)s) : \""" %(doc)s \""" f = %(self)s.__getattr__('%(name)s') return f(%(args)s)""" property_wrapper_template = \ """@property def %(name)s(self) : \""" %(doc)s \""" return self.__getattr__('%(name)s')""" for name in whitelist : # don't override anything that was explicitly defined # in the base class if hasattr(GroupBy,name) : continue # ugly, but we need the name string itself in the method. f = getattr(klass,name) doc = f.__doc__ doc = doc if type(doc)==str else '' if type(f) == types.MethodType : wrapper_template = method_wrapper_template decl, args = make_signature(f) # pass args by name to f because otherwise # GroupBy._make_wrapper won't know whether # we passed in an axis parameter. args_by_name = ['{0}={0}'.format(arg) for arg in args[1:]] params = {'name':name, 'doc':doc, 'sig':','.join(decl), 'self':args[0], 'args':','.join(args_by_name)} else : wrapper_template = property_wrapper_template params = {'name':name, 'doc':doc} yield wrapper_template % params class SeriesGroupBy(GroupBy): # # Make class defs of attributes on SeriesGroupBy whitelist _apply_whitelist = _series_apply_whitelist for _def_str in _whitelist_method_generator(Series,_series_apply_whitelist) : exec(_def_str) def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) return self._set_result_index_ordered(Series(values)) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Examples -------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = _algos.ensure_float64(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects( keys, values, not_indexed_same=True, ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if isinstance(v.index, MultiIndex) or key_index is None: stacked_values = np.vstack(map(np.asarray, values)) result = DataFrame(stacked_values, index=key_index, columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values, keys=key_index, names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack(map(np.asarray, values)) result = DataFrame(stacked_values.T, index=v.index, columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.isin(_DATELIKE_DTYPES).any()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if any([ isinstance(v,Timestamp) for v in values ]) else False return Series(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.tools.merge import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if isinstance(res, Series): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.append(group) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index concatenated = concat(applied, join_axes=[concat_index], axis=self.axis, verify_integrity=False) return self._set_result_index_ordered(concatenated) def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed DataFrame on each group and return a DataFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) """ # try to do a fast transform via merge if possible try: obj = self._obj_with_exclusions if isinstance(func, compat.string_types): result = getattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = getattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remap index based on the grouper # and broadcast it if ((not isinstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or len(result.index) != len(obj.index)): results = obj.values.copy() indices = self.indices for (name, group), (i, row) in zip(self, result.iterrows()): indexer = indices[name] results[indexer] = np.tile(row.values,len(indexer)).reshape(len(indexer),-1) return DataFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can merge the result in # GH 7383 names = result.columns result = obj.merge(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if isinstance(func, compat.string_types): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we get the same results if res.shape == res_fast.shape: res_r = res.values.ravel() res_fast_r = res_fast.values.ravel() mask = notnull(res_r) if (res_r[mask] == res_fast_r[mask]).all(): path = fast_path except: pass return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: # pragma: no cover raise TypeError('Transform function invalid for data types') columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0) """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, 'name', name) res = func(group) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if (isinstance(res, (bool, np.bool_)) or np.isscalar(res) and isnull(res)): if res and notnull(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError("filter function returned a %s, " "but expected a scalar bool" % type(res).__name__) return self._apply_filter(indices, dropna) class DataFrameGroupBy(NDFrameGroupBy): _apply_whitelist = _dataframe_apply_whitelist # # Make class defs of attributes on DataFrameGroupBy whitelist. for _def_str in _whitelist_method_generator(DataFrame,_apply_whitelist) : exec(_def_str) _block_agg_axis = 1 def __getitem__(self, key): if self._selection is not None: raise Exception('Column(s) %s already selected' % self._selection) if isinstance(key, (list, tuple, Series, Index, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: %s" % str(bad_keys)[1:-1]) return DataFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) elif not self.as_index: if key not in self.obj.columns: raise KeyError("Column not found: %s" % key) return DataFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) else: if key not in self.obj: raise KeyError("Column not found: %s" % key) # kind of a kludge return SeriesGroupBy(self.obj[key], selection=key, grouper=self.grouper, exclusions=self.exclusions) def _wrap_generic_output(self, result, obj): result_index = self.grouper.levels[0] if result: if self.axis == 0: result = DataFrame(result, index=obj.columns, columns=result_index).T else: result = DataFrame(result, index=obj.index, columns=result_index) else: result = DataFrame(result) return result def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data, 1 else: return obj._data, 1 def _insert_inaxis_grouper_inplace(self, result): # zip in reverse so we can always insert at loc 0 izip = zip(* map(reversed, ( self.grouper.names, self.grouper.get_group_levels(), [grp.in_axis for grp in self.grouper.groupings]))) for name, lev, in_axis in izip: if in_axis: result.insert(0, name, lev) def _wrap_aggregated_output(self, output, names=None): agg_axis = 0 if self.axis == 1 else 1 agg_labels = self._obj_with_exclusions._get_axis(agg_axis) output_keys = self._decide_output_index(output, agg_labels) if not self.as_index: result = DataFrame(output, columns=output_keys) self._insert_inaxis_grouper_inplace(result) result = result.consolidate() else: index = self.grouper.result_index result = DataFrame(output, index=index, columns=output_keys) if self.axis == 1: result = result.T return self._reindex_output(result).convert_objects() def _wrap_agged_blocks(self, items, blocks): if not self.as_index: index = np.arange(blocks[0].values.shape[1]) mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) self._insert_inaxis_grouper_inplace(result) result = result.consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result).convert_objects() def _reindex_output(self, result): """ if we have categorical groupers, then we want to make sure that we have a fully reindex-output to the levels. These may have not participated in the groupings (e.g. may have all been nan groups) This can re-expand the output space """ groupings = self.grouper.groupings if groupings is None: return result elif len(groupings) == 1: return result elif not any([ping._was_factor for ping in groupings]): return result levels_list = [ ping._group_index for ping in groupings ] index = MultiIndex.from_product(levels_list, names=self.grouper.names) d = { self.obj._get_axis_name(self.axis) : index, 'copy' : False } return result.reindex(**d).sortlevel(axis=self.axis) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy(self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions) def _apply_to_column_groupbys(self, func): from pandas.tools.merge import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1) from pandas.tools.plotting import boxplot_frame_groupby DataFrameGroupBy.boxplot = boxplot_frame_groupby class PanelGroupBy(NDFrameGroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self._selected_obj.items else: slice_axis = self._selection_list slicer = lambda x: self._selected_obj[x] else: raise NotImplementedError for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def aggregate(self, arg, *args, **kwargs): """ Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a Panel or when passed to Panel.apply. If pass a dict, the keys must be DataFrame column names Returns ------- aggregated : Panel """ if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) return self._aggregate_generic(arg, *args, **kwargs) def _wrap_generic_output(self, result, obj): if self.axis == 0: new_axes = list(obj.axes) new_axes[0] = self.grouper.result_index elif self.axis == 1: x, y, z = obj.axes new_axes = [self.grouper.result_index, z, x] else: x, y, z = obj.axes new_axes = [self.grouper.result_index, y, x] result = Panel._from_axes(result, new_axes) if self.axis == 1: result = result.swapaxes(0, 1).swapaxes(0, 2) elif self.axis == 2: result = result.swapaxes(0, 2) return result def _aggregate_item_by_item(self, func, *args, **kwargs): obj = self._obj_with_exclusions result = {} if self.axis > 0: for item in obj: try: itemg = DataFrameGroupBy(obj[item], axis=self.axis - 1, grouper=self.grouper) result[item] = itemg.aggregate(func, *args, **kwargs) except (ValueError, TypeError): raise new_axes = list(obj.axes) new_axes[self.axis] = self.grouper.result_index return Panel._from_axes(result, new_axes) else: raise NotImplementedError def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError class NDArrayGroupBy(GroupBy): pass #---------------------------------------------------------------------- # Splitting / application class DataSplitter(object): def __init__(self, data, labels, ngroups, axis=0): self.data = data self.labels = com._ensure_int64(labels) self.ngroups = ngroups self.axis = axis @cache_readonly def slabels(self): # Sorted labels return com.take_nd(self.labels, self.sort_idx, allow_fill=False) @cache_readonly def sort_idx(self): # Counting sort indexer return _get_group_index_sorter(self.labels, self.ngroups) def __iter__(self): sdata = self._get_sorted_data() if self.ngroups == 0: raise StopIteration starts, ends = lib.generate_slices(self.slabels, self.ngroups) for i, (start, end) in enumerate(zip(starts, ends)): # Since I'm now compressing the group ids, it's now not "possible" # to produce empty slices because such groups would not be observed # in the data # if start >= end: # raise AssertionError('Start %s must be less than end %s' # % (str(start), str(end))) yield i, self._chop(sdata, slice(start, end)) def _get_sorted_data(self): return self.data.take(self.sort_idx, axis=self.axis, convert=False) def _chop(self, sdata, slice_obj): return sdata.iloc[slice_obj] def apply(self, f): raise NotImplementedError class ArraySplitter(DataSplitter): pass class SeriesSplitter(DataSplitter): def _chop(self, sdata, slice_obj): return sdata._get_values(slice_obj).to_dense() class FrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(FrameSplitter, self).__init__(data, labels, ngroups, axis=axis) def fast_apply(self, f, names): # must return keys::list, values::list, mutated::bool try: starts, ends = lib.generate_slices(self.slabels, self.ngroups) except: # fails when all -1 return [], True sdata = self._get_sorted_data() results, mutated = lib.apply_frame_axis0(sdata, f, names, starts, ends) return results, mutated def _chop(self, sdata, slice_obj): if self.axis == 0: return sdata.iloc[slice_obj] else: return sdata._slice(slice_obj, axis=1) # ix[:, slice_obj] class NDFrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(NDFrameSplitter, self).__init__(data, labels, ngroups, axis=axis) self.factory = data._constructor def _get_sorted_data(self): # this is the BlockManager data = self.data._data # this is sort of wasteful but... sorted_axis = data.axes[self.axis].take(self.sort_idx) sorted_data = data.reindex_axis(sorted_axis, axis=self.axis) return sorted_data def _chop(self, sdata, slice_obj): return self.factory(sdata.get_slice(slice_obj, axis=self.axis)) def get_splitter(data, *args, **kwargs): if isinstance(data, Series): klass = SeriesSplitter elif isinstance(data, DataFrame): klass = FrameSplitter else: klass = NDFrameSplitter return klass(data, *args, **kwargs) #---------------------------------------------------------------------- # Misc utilities def get_group_index(label_list, shape): """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations. """ if len(label_list) == 1: return label_list[0] n = len(label_list[0]) group_index = np.zeros(n, dtype=np.int64) mask = np.zeros(n, dtype=bool) for i in range(len(shape)): stride = np.prod([x for x in shape[i + 1:]], dtype=np.int64) group_index += com._ensure_int64(label_list[i]) * stride mask |= label_list[i] < 0 np.putmask(group_index, mask, -1) return group_index _INT64_MAX = np.iinfo(np.int64).max def _int64_overflow_possible(shape): the_prod = long(1) for x in shape: the_prod *= long(x) return the_prod >= _INT64_MAX def decons_group_index(comp_labels, shape): # reconstruct labels label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def _indexer_from_factorized(labels, shape, compress=True): if _int64_overflow_possible(shape): indexer = np.lexsort(np.array(labels[::-1])) return indexer group_index = get_group_index(labels, shape) if compress: comp_ids, obs_ids = _compress_group_index(group_index) max_group = len(obs_ids) else: comp_ids = group_index max_group = com._long_prod(shape) indexer = _get_group_index_sorter(comp_ids.astype(np.int64), max_group) return indexer def _lexsort_indexer(keys, orders=None, na_position='last'): labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) for key, order in zip(keys, orders): # we are already a Categorical if is_categorical_dtype(key): c = key # create the Categorical else: c = Categorical(key,ordered=True) if na_position not in ['last','first']: raise ValueError('invalid na_position: {!r}'.format(na_position)) n = len(c.categories) codes = c.codes.copy() mask = (c.codes == -1) if order: # ascending if na_position == 'last': codes = np.where(mask, n, codes) elif na_position == 'first': codes += 1 else: # not order means descending if na_position == 'last': codes = np.where(mask, n, n-codes-1) elif na_position == 'first': codes = np.where(mask, 0, n-codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return _indexer_from_factorized(labels, shape) def _nargsort(items, kind='quicksort', ascending=True, na_position='last'): """ This is intended to be a drop-in replacement for np.argsort which handles NaNs It adds ascending and na_position parameters. GH #6399, #5231 """ # specially handle Categorical if is_categorical_dtype(items): return items.argsort(ascending=ascending) items = np.asanyarray(items) idx = np.arange(len(items)) mask = isnull(items) non_nans = items[~mask] non_nan_idx = idx[~mask] nan_idx = np.nonzero(mask)[0] if not ascending: non_nans = non_nans[::-1] non_nan_idx = non_nan_idx[::-1] indexer = non_nan_idx[non_nans.argsort(kind=kind)] if not ascending: indexer = indexer[::-1] # Finally, place the NaNs at the end or the beginning according to na_position if na_position == 'last': indexer = np.concatenate([indexer, nan_idx]) elif na_position == 'first': indexer = np.concatenate([nan_idx, indexer]) else: raise ValueError('invalid na_position: {!r}'.format(na_position)) return indexer class _KeyMapper(object): """ Ease my suffering. Map compressed group id -> key tuple """ def __init__(self, comp_ids, ngroups, labels, levels): self.levels = levels self.labels = labels self.comp_ids = comp_ids.astype(np.int64) self.k = len(labels) self.tables = [_hash.Int64HashTable(ngroups) for _ in range(self.k)] self._populate_tables() def _populate_tables(self): for labs, table in zip(self.labels, self.tables): table.map(self.comp_ids, labs.astype(np.int64)) def get_key(self, comp_id): return tuple(level[table.get_item(comp_id)] for table, level in zip(self.tables, self.levels)) def _get_indices_dict(label_list, keys): shape = list(map(len, keys)) ngroups = np.prod(shape) group_index = get_group_index(label_list, shape) sorter = _get_group_index_sorter(group_index, ngroups) sorted_labels = [lab.take(sorter) for lab in label_list] group_index = group_index.take(sorter) return lib.indices_fast(sorter, group_index, keys, sorted_labels) #---------------------------------------------------------------------- # sorting levels...cleverly? def _get_group_index_sorter(group_index, ngroups): """ _algos.groupsort_indexer implements `counting sort` and it is at least O(ngroups), where ngroups = prod(shape) shape = map(len, keys) that is, linear in the number of combinations (cartesian product) of unique values of groupby keys. This can be huge when doing multi-key groupby. np.argsort(kind='mergesort') is O(count x log(count)) where count is the length of the data-frame; Both algorithms are `stable` sort and that is necessary for correctness of groupby operations. e.g. consider: df.groupby(key)[col].transform('first') """ count = len(group_index) alpha = 0.0 # taking complexities literally; there may be beta = 1.0 # some room for fine-tuning these parameters if alpha + beta * ngroups < count * np.log(count): sorter, _ = _algos.groupsort_indexer(com._ensure_int64(group_index), ngroups) return com._ensure_platform_int(sorter) else: return group_index.argsort(kind='mergesort') def _compress_group_index(group_index, sort=True): """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). """ table = _hash.Int64HashTable(min(1000000, len(group_index))) group_index = com._ensure_int64(group_index) # note, group labels come out ascending (ie, 1,2,3 etc) comp_ids, obs_group_ids = table.get_labels_groupby(group_index) if sort and len(obs_group_ids) > 0: obs_group_ids, comp_ids = _reorder_by_uniques(obs_group_ids, comp_ids) return comp_ids, obs_group_ids def _reorder_by_uniques(uniques, labels): # sorter is index where elements ought to go sorter = uniques.argsort() # reverse_indexer is where elements came from reverse_indexer = np.empty(len(sorter), dtype=np.int64) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 # move labels to right locations (ie, unsort ascending labels) labels = com.take_nd(reverse_indexer, labels, allow_fill=False) np.putmask(labels, mask, -1) # sort observed ids uniques = com.take_nd(uniques, sorter, allow_fill=False) return uniques, labels _func_table = { builtins.sum: np.sum, builtins.max: np.max, builtins.min: np.min } _cython_table = { builtins.sum: 'sum', builtins.max: 'max', builtins.min: 'min', np.sum: 'sum', np.mean: 'mean', np.prod: 'prod', np.std: 'std', np.var: 'var', np.median: 'median', np.max: 'max', np.min: 'min' } def _intercept_function(func): return _func_table.get(func, func) def _intercept_cython(func): return _cython_table.get(func) def _groupby_indices(values): return _algos.groupby_indices(_values_from_object(com._ensure_object(values))) def numpy_groupby(data, labels, axis=0): s = np.argsort(labels) keys, inv = np.unique(labels, return_inverse=True) i = inv.take(s) groups_at = np.where(i != np.concatenate(([-1], i[:-1])))[0] ordered_data = data.take(s, axis=axis) group_sums = np.add.reduceat(ordered_data, groups_at, axis=axis) return group_sums
mit
cogstat/cogstat
cogstat/cogstat_gui.py
1
45612
# -*- coding: utf-8 -*- """ GUI for CogStat. """ # Splash screen import os import sys import importlib from PyQt5 import QtGui, QtWidgets from PyQt5.QtCore import Qt app = QtWidgets.QApplication(sys.argv) pixmap = QtGui.QPixmap(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources', 'CogStat splash screen.png'), 'PNG') splash_screen = QtWidgets.QSplashScreen(pixmap) splash_screen.show() splash_screen.showMessage('', Qt.AlignBottom, Qt.white) # TODO find something else to make the splash visible # go on with regular imports, etc. from distutils.version import LooseVersion import gettext import logging import os import sys import traceback from urllib.request import urlopen import webbrowser from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport from . import cogstat from . import cogstat_dialogs from . import cogstat_config as csc csc.versions['cogstat'] = cogstat.__version__ from . import cogstat_util as cs_util cs_util.app_devicePixelRatio = app.devicePixelRatio() cs_util.get_versions() logging.root.setLevel(logging.INFO) importlib.reload(sys) # TODO why do we need this? t = gettext.translation('cogstat', os.path.dirname(os.path.abspath(__file__))+'/locale/', [csc.language], fallback=True) _ = t.gettext rtl_lang = True if csc.language in ['he', 'fa', 'ar'] else False broken_analysis = _('%s Oops, something went wrong, CogStat could not run the analysis. You may want to report it.') \ + ' ' + _('Read more about how to report an issue <a href = "%s">here</a>.') \ % 'https://github.com/cogstat/cogstat/wiki/Report-a-bug' class StatMainWindow(QtWidgets.QMainWindow): """ CogStat GUI. """ def __init__(self): super(StatMainWindow, self).__init__() # TOD do we need super()? self._init_UI() # Check if all required components are installed # TODO Maybe all these checking can be removed missing_required_components, missing_recommended_components = self._check_installed_components() if missing_required_components or missing_recommended_components: QtWidgets.QMessageBox.critical(self, 'Incomplete installation', 'Install missing component(s): ' + ''.join([x+', ' for x in missing_required_components+missing_recommended_components])[:-2] + '.<br><br>' + '<a href = "https://github.com/cogstat/cogstat/wiki/' 'Installation">Visit the installation help page</a> to see how ' 'to complete the installation.', QtWidgets.QMessageBox.Ok) if missing_required_components: sys.exit() self.analysis_results = [] # analysis_result stores list of GuiResultPackages. # It will be useful when we can rerun all the previous analysis in the GUI output # At the moment no former results can be manipulated later csc.output_type = 'gui' # For some GUI specific formatting self.check_for_update() # Only for testing # self.open_file('cogstat/test/data/example_data.csv'); #self.compare_groups() # self.open_file('cogstat/test/data/VA_test.csv') # self.open_clipboard() # self.print_data() # self.explore_variable(['X']) # self.explore_variable(['a'], freq=False) # self.explore_variable_pair(['X', 'Y']) # self.pivot([u'X'], row_names=[], col_names=[], page_names=[u'CONDITION', u'TIME3'], function='N') # self.diffusion(error_name=['Error'], RT_name=['RT_sec'], participant_name=['Name'], # condition_names=['Num1', 'Num2']) # self.compare_variables(['X', 'Y']) # self.compare_variables(['A', 'B', 'C1']) # self.compare_variables(['D', 'E', 'F']) # self.compare_variables() # self.compare_variables(['a', 'b', 'c1', 'd', 'e', 'f', 'g', 'h'], # factors=[['factor1', 2], ['factor2', 2], ['factor3', 2]]) # self.compare_variables([u'CONDITION', u'CONDITION2', u'CONDITION3']) # self.compare_groups(['slope'], ['group'], ['slope_SE'], 25) # self.compare_groups(['A'], ['G', 'H']) # self.compare_groups(['X'], ['TIME', 'CONDITION']) # self.compare_groups(['dep_nom'], ['g0', 'g1', 'g2', 'g3']) # self.save_result_as() # self.save_result_as(filename='CogStat analysis result.pdf') def check_for_update(self): """Check for update, and if update is available, display a message box with the download link. The version number is available in a plain text file, at the appropriate web address.""" try: latest_version = urlopen('http://kognitiv.elte.hu/cogstat/version', timeout=3).read().decode('utf-8') if LooseVersion(cogstat.__version__) < LooseVersion(latest_version): QtWidgets.QMessageBox.about(self, _('Update available'), _('New version is available.') + '<br><br>' + _('You can download the new version<br>from the <a href = "%s">CogStat ' 'download page</a>.') % 'http://www.cogstat.org/download.html') except: print("Couldn't check for update") def _init_UI(self): self.resize(830, 600) self.setWindowTitle('CogStat') # FIXME there could be issues if the __file__ path includes unicode chars # e.g., see pixmap = QtGui.QPixmap(os.path.join(os.path.dirname(os.path.abspath(__file__)).decode('utf-8'), # u'resources', u'CogStat splash screen.png'), 'PNG') self.setWindowIcon(QtGui.QIcon(os.path.dirname(os.path.abspath(__file__)) + '/resources/CogStat.ico')) if rtl_lang: self.setLayoutDirection(QtCore.Qt.RightToLeft) # Menus and commands # The list will be used to construct the menus # Items include the icon name, the menu name, the shortcuts and the function to call, add it to the toolbar icon_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources', 'icons') menu_commands = [ [_('&Data'), ['/icons8-folder.svg', _('&Open data file')+'...', _('Ctrl+O'), 'self.open_file', True], ['/icons8-folder-eye.svg', _('Open d&emo data file')+'...', _('Ctrl+E'), 'self.open_demo_file',True], ['/icons8-paste.svg', _('&Paste data'), _('Ctrl+V'), 'self.open_clipboard', True], ['separator'], ['/icons8-filter.svg', _('&Filter outliers')+'...', _('Ctrl+L'), 'self.filter_outlier', True], ['separator'], ['/icons8-data-sheet.svg', _('&Display data'), _('Ctrl+D'), 'self.print_data', False], ['/icons8-data-sheet-check.svg', _('Display data &briefly'), _('Ctrl+B'), 'self._print_data_brief', True], ['toolbar separator'] ], [_('&Analysis'), ['/icons8-normal-distribution-histogram.svg', _('&Explore variable')+'...', _('Ctrl+1'), 'self.explore_variable', True], ['/icons8-scatter-plot.svg', _('Explore relation of variable &pair')+'...', _('Ctrl+2'), 'self.explore_variable_pair', True], ['separator'], ['/icons8-pivot-table.svg', _('Pivot &table')+'...', 'Ctrl+T', 'self.pivot', True], ['/icons8-electrical-threshold.svg', _('Behavioral data &diffusion analysis') + '...', 'Ctrl+Shift+D', 'self.diffusion', True], ['separator'], ['/icons8-combo-chart.svg', _('Compare repeated measures va&riables')+'...', 'Ctrl+R', 'self.compare_variables', True], ['/icons8-bar-chart.svg', _('Compare &groups')+'...', 'Ctrl+G', 'self.compare_groups', True], ['toolbar separator'] ], [_('&Results'), ['/icons8-file.svg', _('&Clear results'), _('Ctrl+Del'), 'self.delete_output', True], ['/icons8-search.svg', _('&Find text'), _('Ctrl+F'), 'self.find_text', True], ['separator'], ['/icons8-zoom-in.svg', _('&Increase text size'), _('Ctrl++'), 'self.zoom_in', True], ['/icons8-zoom-out.svg', _('&Decrease text size'), _('Ctrl+-'), 'self.zoom_out', True], #['', _('Reset &zoom'), _('Ctrl+0'), _(''), 'self.zoom_reset'], # TODO how can we reset to 100%? ['/icons8-edit-file.svg', _('Text is &editable'), _('Ctrl+Shift+E'), 'self.text_editable', False], ['separator'], ['/icons8-pdf.svg', _('&Save results'), _('Ctrl+P'), 'self.save_result', False], ['/icons8-pdf-edit.svg', _('Save results &as')+'...', _('Ctrl+Shift+P'), 'self.save_result_as', False], ['toolbar separator'] ], [_('&CogStat'), ['/icons8-help.svg', _('&Help'), _('F1'), 'self._open_help_webpage', True], ['/icons8-settings.svg', _('&Preferences')+'...', _('Ctrl+Shift+R'), 'self._show_preferences', True], ['/icons8-file-add.svg', _('Request a &feature'), '', 'self._open_reqfeat_webpage', False], ['separator'], #['/icons8-toolbar.svg', _('Show the &toolbar'), '', # 'self.toolbar.toggleViewAction().trigger', False], #['separator'], ['/icons8-bug.svg', _('&Report a problem'), '', 'self._open_reportbug_webpage', False], ['/icons8-system-report.svg', _('&Diagnosis information'), '', 'self.print_versions', False], ['separator'], ['/icons8-info.svg', _('&About'), '', 'self._show_about', False], ['separator'], ['/icons8-exit.svg', _('&Exit'), _('Ctrl+Q'), 'self.close', False] ] ] # Enable these commands only when active_data is available self.analysis_commands = [_('&Save data'), _('Save data &as') + '...', _('&Display data'), _('Display data &briefly'), _('&Filter outliers') + '...', _('Pivot &table') + '...', _('&Explore variable') + '...', _('Behavioral data &diffusion analysis') + '...', _('Explore relation of variable &pair') + '...', _('Compare repeated measures va&riables') + '...', _('Compare &groups') + '...', _('&Compare groups and variables') + '...'] # Create menus and commands, create toolbar self.menubar = self.menuBar() self.menus = [] self.menu_commands = {} self.toolbar_actions = {} self.toolbar = self.addToolBar('General') for menu in menu_commands: self.menus.append(self.menubar.addMenu(menu[0])) for menu_item in menu: if isinstance(menu_item, str): # Skip the name of the main menus continue if menu_item[0] == 'separator': self.menus[-1].addSeparator() elif menu_item[0] == 'toolbar separator': self.toolbar.addSeparator() else: self.menu_commands[menu_item[1]] = QtWidgets.QAction(QtGui.QIcon(icon_path + menu_item[0]), menu_item[1], self) self.menu_commands[menu_item[1]].setShortcut(menu_item[2]) #self.menu_commands[menu_item[1]].setStatusTip(menu_item[3]) self.menu_commands[menu_item[1]].triggered.connect(eval(menu_item[3])) self.menus[-1].addAction(self.menu_commands[menu_item[1]]) if menu_item[4]: # if the menu item should be added to the toolbar self.toolbar_actions[menu_item[1]] = QtWidgets.QAction(QtGui.QIcon(icon_path + menu_item[0]), menu_item[1] + ' (' + menu_item[2] + ')', self) self.toolbar_actions[menu_item[1]].triggered.connect(eval(menu_item[3])) self.toolbar.addAction(self.toolbar_actions[menu_item[1]]) self.menus[2].actions()[5].setCheckable(True) # _('&Text is editable') menu is a checkbox # # see also text_editable() #self.toolbar.actions()[15].setCheckable(True) # TODO rewrite Text is editable switches, because the menu and # the toolbar works independently #self.menus[3].actions()[4].setCheckable(True) # Show the toolbar menu is a checkbox #self.menus[3].actions()[4].setChecked(True) # Set the default value On # TODO if the position of these menus are changed, then this setting will not work self._show_data_menus(on=False) # Prepare Output pane self.output_pane = QtWidgets.QTextBrowser() # QTextBrowser can handle links, QTextEdit cannot self.output_pane.document().setDefaultStyleSheet('body {color:black;} h2 {color:%s;} h3 ' '{color:%s} .table_cs_pd th {font-weight:normal;}' % (csc.mpl_theme_color_dark, csc.mpl_theme_color)) #self.output_pane.setLineWrapMode(QtWidgets.QTextEdit.NoWrap) welcome_message = '%s%s%s%s<br>%s<br>%s<br>' % \ ('<cs_h1>', _('Welcome to CogStat!'), '</cs_h1>', _('CogStat makes statistical analysis more simple and efficient.'), _('To start working open a data file or paste your data from a spreadsheet.'), _('Find more information about CogStat on its <a href = "https://www.cogstat.org">webpage</a> ' 'or read the <a href="https://github.com/cogstat/cogstat/wiki/Quick-Start-Tutorial">' 'quick start tutorial.</a>')) self.output_pane.setText(cs_util.convert_output([welcome_message])[0]) self.welcome_text_on = True # Used for deleting the welcome text at the first analysis self.output_pane.setReadOnly(True) self.output_pane.setOpenExternalLinks(True) self.output_pane.setStyleSheet("QTextBrowser { background-color: white; }") # Some styles use non-white background (e.g. Linux Mint 17 Mate uses gray) # Set default font #print self.output_pane.currentFont().toString() # http://stackoverflow.com/questions/2475750/using-qt-css-to-set-own-q-propertyqfont font = QtGui.QFont() font.setFamily(csc.default_font) font.setPointSizeF(csc.default_font_size) self.output_pane.setFont(font) #print self.output_pane.currentFont().toString() self.setCentralWidget(self.output_pane) self.setAcceptDrops(True) #self.statusBar().showMessage(_('Ready')) self.unsaved_output = False # Do not want to save the output with the welcome message self.output_filename = '' self.show() def _show_data_menus(self, on=True): """ Enable or disable data handling menus depending on whether data is loaded. parameters: on: True to enable menus False to disable default is True """ for menu in self.analysis_commands: try: self.menu_commands[menu].setEnabled(on) self.toolbar_actions[menu].setEnabled(on) except: pass def dragEnterEvent(self, event): if event.mimeData().hasFormat("text/uri-list"): event.accept() elif event.mimeData().hasFormat("text/plain"): event.accept() else: event.ignore() def dropEvent(self, event): if event.mimeData().hasFormat("text/uri-list"): self.open_file(filename=event.mimeData().urls()[0].toString(options=QtCore.QUrl.PreferLocalFile)) elif event.mimeData().hasFormat("text/plain"): # print 'Dropped Text: ', event.mimeData().text() self._open_data(data=str(event.mimeData().text())) def _check_installed_components(self): """ Check if all required and recommended components are installed. Return the list of missing components as strings. """ missing_required_components = [] missing_recommended_components = [] # Required components for module in ['pyqt', 'numpy', 'pandas', 'scipy', 'statsmodels']: if csc.versions[module] is None: missing_required_components.append(module) # Recommended components for module in []: # At the moment it's empty if csc.versions[module] is None: missing_recommended_components.append(module) ''' # Check R only on Linux, since Win doesn't have a working rpy at the moment if sys.platform in ['linux2', 'linux']: for module in ['r', 'rpy2', 'car']: if csc.versions[module] is None: missing_recommended_components.append(module) ''' if missing_required_components: logging.error('Missing required components: %s' % missing_required_components) if missing_recommended_components: logging.error('Missing recommended components: %s' % missing_recommended_components) return missing_required_components, missing_recommended_components def _busy_signal(self, on): """ Changes the mouse, signalling that the system is busy """ # http://qt-project.org/doc/qt-4.7/qt.html see CursorShape # http://qt-project.org/doc/qt-4.7/qapplication.html#id-19f00dae-ec43-493e-824c-ef07ce96d4c6 if on: QtWidgets.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor)) #QtGui.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.BusyCursor)) else: while QtWidgets.QApplication.overrideCursor() is not None: # TODO if for some reason (unhandled exception) the cursor was not set back formerly, # then next time set it back # FIXME exception handling should solve this problem on the long term QtWidgets.QApplication.restoreOverrideCursor() #QtGui.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) def _print_to_output_pane(self, index=-1): """Print a GuiResultPackage to GUI output pane :param index: index of the item in self.analysis_results to be printed If no index is given, the last item is printed. """ if self.welcome_text_on: self.output_pane.clear() #self.output_pane.setHtml(cs_util.convert_output(['<cs_h1>&nbsp;</cs_h1>'])[0]) self.welcome_text_on = False #self.output_pane.append('<h2>test2</h2>testt<h3>test3</h3>testt<br>testpbr') #self.output_pane.append('<h2>test2</h2>testt<h3>test3</h3>testt<br>testpbr') #print(self.output_pane.toHtml()) for output in self.analysis_results[index].output: if isinstance(output, str): self.output_pane.append(output) # insertHtml() messes up the html doc, # check it with self.output_pane.toHtml() elif isinstance(output, QtGui.QImage): self.output_pane.moveCursor(11, 0) # Moves cursor to the end self.output_pane.textCursor().insertImage(output) elif output is None: pass # We simply don't do anything with None-s else: logging.error('Unknown output type: %s' % type(output)) self.unsaved_output = True ### Data menu methods ### def open_file(self, filename=''): """Open file. :param filename: filename with path """ if filename in ['', False]: filename = cogstat_dialogs.open_data_file() #print(filename) if filename: self._open_data(str(filename)) ### Data menu methods ### def open_demo_file(self, filename=''): """Open file. :param filename: filename with path """ if filename in ['', False]: filename = cogstat_dialogs.open_demo_data_file() #print(filename) if filename: self._open_data(str(filename)) def open_clipboard(self): """Open data copied to clipboard.""" clipboard = QtWidgets.QApplication.clipboard() if clipboard.mimeData().hasFormat("text/plain"): self._open_data(str(clipboard.text())) def _open_data(self, data): """ Core of the import process. """ self._busy_signal(True) try: self.active_data = cogstat.CogStatData(data=data) if self.active_data.import_source == _('Import failed'): QtWidgets.QMessageBox.warning(self, _('Import error'), _('Data could not be loaded.'), QtWidgets.QMessageBox.Ok) self._show_data_menus(False) else: self._show_data_menus() ''' self.statusBar().showMessage((_('Data loaded from file: ') if self.active_data.import_source[:9] in ['text file', 'SPSS file'] else _('Data loaded from clipboard: ')) + _('%s variables and %s cases.') % (len(self.active_data.data_frame.columns), len(self.active_data.data_frame.index))) ''' self.print_data(brief=True, display_import_message=True) except Exception as e: self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self._open_data()') # TODO try: file_content = '<br>' + _('Data file content') + ':<br>' + open(data, 'r').read()[:1000].replace('\n', '<br>') if os.path.exists(data) else '' except: file_content = '' self.analysis_results[-1].\ add_output(cs_util.reformat_output('<cs_h1>' + _('Data') + '</cs_h1>' + _('Oops, something went wrong, CogStat could not open the ' 'data. You may want to report the issue.') + ' ' + _('Read more about how to report an issue <a href = "%s">here</a>.') % 'https://github.com/cogstat/cogstat/wiki/Report-a-bug') + '<br><br>' + _('Error code') + ': %s' %e + '<br><br>' + _('Data to be imported') + ':<br>%s<br>%s' % (data, file_content)) traceback.print_exc() self._print_to_output_pane() self._busy_signal(False) def filter_outlier(self, var_names=None): """Filter outliers. Arguments: var_names (list): variable names """ if not var_names: try: self.dial_filter except: # Only interval variables can be used for filtering names = [name for name in self.active_data.data_frame.columns if (self.active_data.data_measlevs[name] in ['int', 'unk'])] self.dial_filter = cogstat_dialogs.filter_outlier(names=names) else: # TODO is it not necessary anymore? For all dialogs # Only interval variables can be used for filtering names = [name for name in self.active_data.data_frame.columns if (self.active_data.data_measlevs[name] in ['int', 'unk'])] self.dial_filter.init_vars(names=names) if self.dial_filter.exec_(): var_names = self.dial_filter.read_parameters() else: return self._busy_signal(True) try: self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.filter_outlier()') # TODO result = self.active_data.filter_outlier(var_names) self.analysis_results[-1].add_output(result) self._print_to_output_pane() except: self.analysis_results[-1].add_output(cs_util.reformat_output(broken_analysis % _('Filter outlier.'))) traceback.print_exc() self._print_to_output_pane() self._busy_signal(False) def print_data(self, brief=False, display_import_message=False): """Print the current data to the output. :param brief (bool): print only the first 10 rows :param display_import_message (bool): """ self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.print_data') # TODO commands will be used to rerun the analysis self.analysis_results[-1].add_output(self.active_data.print_data(brief=brief)) if self.active_data.import_message and display_import_message: self.analysis_results[-1].add_output(cs_util.reformat_output(self.active_data.import_message)) self._print_to_output_pane() def _print_data_brief(self): self.print_data(brief=True) ### Analysis menu methods ### def explore_variable(self, var_names=None, freq=True, dist=True, descr=True, norm=True, loc_test=True, loc_test_value=0): """Computes various properties of variables. Arguments: var_names (list): variable names freq (bool): compute frequencies (default True) dist (bool): compute distribution (default True) descr (bool): compute descriptive statistics (default True) norm (bool): check normality (default True) loc_test (bool): test location (e.g. t-test) (default True) loc_test_value (numeric): test location against this value (default 0.0) """ if not var_names: try: self.dial_var_prop except: self.dial_var_prop = cogstat_dialogs.explore_var_dialog(names=self.active_data.data_frame.columns) else: # TODO is it not necessary anymore? For all dialogs self.dial_var_prop.init_vars(names=self.active_data.data_frame.columns) if self.dial_var_prop.exec_(): var_names, freq, loc_test_value = self.dial_var_prop.read_parameters() else: return self._busy_signal(True) try: for var_name in var_names: self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.explore_variable()') # TODO result = self.active_data.explore_variable(var_name, frequencies=freq, central_value=loc_test_value) self.analysis_results[-1].add_output(result) self._print_to_output_pane() except: self.analysis_results[-1].add_output(cs_util.reformat_output(broken_analysis % _('Explore variable.'))) traceback.print_exc() self._print_to_output_pane() self._busy_signal(False) def explore_variable_pair(self, var_names=None, xlims=[None, None], ylims=[None, None]): """Explore variable pairs. Arguments: var_names (list): variable names """ if not var_names: try: self.dial_var_pair except: self.dial_var_pair = cogstat_dialogs.explore_var_pairs_dialog(names=self.active_data.data_frame.columns) else: self.dial_var_pair.init_vars(names=self.active_data.data_frame.columns) if self.dial_var_pair.exec_(): var_names, xlims, ylims = self.dial_var_pair.read_parameters() else: return self._busy_signal(True) if len(var_names) < 2: # TODO this check should go to the appropriate dialog self.analysis_results.append(GuiResultPackage()) text_result = cs_util.reformat_output('%s %s' % (_('Explore variable pair.'), _('At least two variables should be set.'))) self.analysis_results[-1].add_output(text_result) else: try: for x in var_names: pass_diag = False for y in var_names: if pass_diag: self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.explore_variable_pair') # TODO result_list = self.active_data.explore_variable_pair(x, y, xlims, ylims) self.analysis_results[-1].add_output(result_list) self._print_to_output_pane() if x == y: pass_diag = True except: self.analysis_results[-1].add_output(cs_util.reformat_output(broken_analysis % _('Explore variable pair.'))) traceback.print_exc() self._print_to_output_pane() self._busy_signal(False) def pivot(self, depend_names=None, row_names=[], col_names=[], page_names=[], function='Mean'): """Build a pivot table. Arguments: depend_names (list of str): name of the dependent variable row_names, col_names, page_names (lists of str): name of the independent variables function (str): available functions: N,Sum, Mean, Median, Standard Deviation, Variance (default Mean) """ if not depend_names: try: self.dial_pivot except: self.dial_pivot = cogstat_dialogs.pivot_dialog(names=self.active_data.data_frame.columns) else: self.dial_pivot.init_vars(names=self.active_data.data_frame.columns) if self.dial_pivot.exec_(): row_names, col_names, page_names, depend_names, function = self.dial_pivot.read_parameters() else: return self._busy_signal(True) self.analysis_results.append(GuiResultPackage()) if not depend_names or not (row_names or col_names or page_names): # TODO this check should go to the dialog text_result = cs_util.reformat_output('%s %s' % (_('Pivot table.'), _('The dependent variable and at least one grouping ' 'variable should be given.'))) else: try: text_result = self.active_data.pivot(depend_names, row_names, col_names, page_names, function) except: text_result = cs_util.reformat_output(broken_analysis % _('Pivot table.')) traceback.print_exc() self.analysis_results[-1].add_output(text_result) self._print_to_output_pane() self._busy_signal(False) def diffusion(self, error_name=[], RT_name=[], participant_name=[], condition_names=[]): """Run a diffusion analysis on behavioral data. Arguments: RT_name, error name, participant_name (lists of str): name of the variables condition_names (lists of str): name of the condition(s) variables """ if not RT_name: try: self.dial_diffusion except: self.dial_diffusion = cogstat_dialogs.diffusion_dialog(names=self.active_data.data_frame.columns) else: self.dial_diffusion.init_vars(names=self.active_data.data_frame.columns) if self.dial_diffusion.exec_(): error_name, RT_name, participant_name, condition_names = self.dial_diffusion.read_parameters() else: return self._busy_signal(True) self.analysis_results.append(GuiResultPackage()) if (not RT_name) or (not error_name): # TODO this check should go to the dialog text_result = cs_util.reformat_output('%s %s' % ( _('Diffusion analysis.'), _('At least the reaction time and the error variables should be given.'))) else: try: text_result = self.active_data.diffusion(error_name, RT_name, participant_name, condition_names) except: text_result = cs_util.reformat_output(broken_analysis % _('Diffusion analysis.')) traceback.print_exc() self.analysis_results[-1].add_output(text_result) self._print_to_output_pane() self._busy_signal(False) def compare_variables(self, var_names=None, factors=[], ylims=[None, None]): """Compare variables. Arguments: var_names (list): variable names """ if not var_names: try: self.dial_comp_var except: self.dial_comp_var = cogstat_dialogs.compare_vars_dialog(names=self.active_data.data_frame.columns) else: self.dial_comp_var.init_vars(names=self.active_data.data_frame.columns) if self.dial_comp_var.exec_(): var_names, factors, ylims = self.dial_comp_var.read_parameters() # TODO check if settings are # appropriate else: return self._busy_signal(True) self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.compare_variables()') # TODO if len(factors) == 1: factors = [] # ignore single factor if len(var_names) < 2: text_result = cs_util.reformat_output('%s %s' % (_('Compare variables.'), _('At least two variables should be set.'))) self.analysis_results[-1].add_output(text_result) else: try: result_list = self.active_data.compare_variables(var_names, factors, ylims) for result in result_list: # TODO is this a list of lists? Can we remove the loop? self.analysis_results[-1].add_output(result) except: self.analysis_results[-1].add_output(cs_util.reformat_output(broken_analysis % _('Compare variables.'))) traceback.print_exc() self._print_to_output_pane() self._busy_signal(False) def compare_groups(self, var_names=None, groups=None, single_case_slope_SE=None, single_case_slope_trial_n=None, ylims=[None, None]): """Compare groups. Arguments: var_names (list): dependent variable names groups (list): grouping variable names """ if not var_names: try: self.dial_comp_grp except: self.dial_comp_grp = cogstat_dialogs.compare_groups_dialog(names=self.active_data.data_frame.columns) else: self.dial_comp_grp.init_vars(names=self.active_data.data_frame.columns) if self.dial_comp_grp.exec_(): var_names, groups, single_case_slope_SE, single_case_slope_trial_n, ylims = self.dial_comp_grp.\ read_parameters() # TODO check if settings are appropriate else: return self._busy_signal(True) if not var_names or not groups: self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.compare_groups()') # TODO text_result = cs_util.reformat_output('%s %s' % (_('Compare groups.'), _('Both the dependent and the grouping variables should ' 'be set.'))) self.analysis_results[-1].add_output(text_result) else: for var_name in var_names: try: self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_command('self.compare_groups()') # TODO result_list = self.active_data.compare_groups(var_name, groups, single_case_slope_SE, single_case_slope_trial_n, ylims) self.analysis_results[-1].add_output(result_list) self._print_to_output_pane() except: self.analysis_results[-1].add_output(cs_util.reformat_output(broken_analysis % _('Compare groups.'))) traceback.print_exc() self._print_to_output_pane() self._busy_signal(False) ### Result menu methods ### def delete_output(self): reply = QtWidgets.QMessageBox.question(self, _('Clear output'), _('Are you sure you want to delete the output?'), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if reply == QtWidgets.QMessageBox.Yes: self.output_pane.clear() self.analysis_results = [] self.unsaved_output = False # Not necessary to save the empty output def find_text(self): self.dial_find_text = cogstat_dialogs.find_text_dialog(output_pane=self.output_pane) self.dial_find_text.exec_() def zoom_in(self): self.output_pane.zoomIn(1) def zoom_out(self): self.output_pane.zoomOut(1) def text_editable(self): self.output_pane.setReadOnly(not(self.menus[2].actions()[5].isChecked())) # see also _init_UI #self.output_pane.setReadOnly(not(self.toolbar.actions()[15].isChecked())) # TODO if the position of this menu is changed, then this function will not work # TODO rewrite Text is editable switches, because the menu and the toolbar works independently def save_result(self): """Save the output pane to pdf file.""" if self.output_filename == '': self.save_result_as() else: pdf_printer = QtPrintSupport.QPrinter() pdf_printer.setOutputFormat(QtPrintSupport.QPrinter.PdfFormat) pdf_printer.setColorMode(QtPrintSupport.QPrinter.Color) pdf_printer.setOutputFileName(self.output_filename) self.output_pane.print_(pdf_printer) self.unsaved_output = False def save_result_as(self, filename=None): """Save the output pane to pdf file. Arguments: filename (str): name of the file to save to """ if not filename: filename = cogstat_dialogs.save_output() self.output_filename = filename if filename: pdf_printer = QtPrintSupport.QPrinter() pdf_printer.setOutputFormat(QtPrintSupport.QPrinter.PdfFormat) pdf_printer.setOutputFileName(self.output_filename) self.output_pane.print_(pdf_printer) self.unsaved_output = False ### Cogstat menu methods ### def _open_help_webpage(self): webbrowser.open('https://github.com/cogstat/cogstat/wiki') def _show_preferences(self): try: self.dial_pref except: self.dial_pref = cogstat_dialogs.preferences_dialog() self.dial_pref.exec_() def _open_reqfeat_webpage(self): webbrowser.open('https://github.com/cogstat/cogstat/wiki/Suggest-a-new-feature') def _open_reportbug_webpage(self): webbrowser.open('https://github.com/cogstat/cogstat/wiki/Report-a-bug') def _show_about(self): QtWidgets.QMessageBox.about(self, _('About CogStat ') + csc.versions['cogstat'], 'CogStat ' + csc.versions['cogstat'] + ('<br>%s<br><br>Copyright © %s-%s Attila Krajcsi<br><br>' '<a href = "http://www.cogstat.org">%s</a>' % (_('Simple automatic data analysis software'), 2012, 2021, _('Visit CogStat website')))) def print_versions(self): """Print the versions of the software components CogStat uses.""" # Intentionally not localized. self._busy_signal(True) text_output = cs_util.reformat_output(cs_util.print_versions(self)) self.analysis_results.append(GuiResultPackage()) self.analysis_results[-1].add_output(cs_util.convert_output(['<cs_h1>' + _('System components') + '</cs_h1>']) [0]) self.analysis_results[-1].add_output(text_output) self._print_to_output_pane() self._busy_signal(False) def closeEvent(self, event): # Override the close behavior, otherwise alt+F4 quits unconditionally. # http://stackoverflow.com/questions/1414781/prompt-on-exit-in-pyqt-application # Check if everything is saved tosave = True while self.unsaved_output and tosave: reply = QtWidgets.QMessageBox.question(self, _('Save output'), _('Output has unsaved results. Do you want to save it?'), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.Yes) if reply == QtWidgets.QMessageBox.Yes: self.save_result() else: tosave = False """ reply = QtGui.QMessageBox.question(self, _('Confirm exit'), _('Are you sure you want to exit the program?'), QtGui.QMessageBox.Yes, QtGui.QMessageBox.No) if reply == QtGui.QMessageBox.Yes: QtGui.qApp.quit() else: event.ignore() """ # -*- coding: utf-8 -*- class GuiResultPackage(): """ A class for storing a package of results. Result object includes: - self.command: Command to run (python code) - not used yet - self.output: - list of strings (html) or figures (QImages) - the first item is recommended to be the title line """ def __init__(self): self.command = [] self.output = [] def add_command(self, command): self.command.append(command) def add_output(self, output): """Add output to the self.output :param output: item or list of items to add """ if isinstance(output, list): for outp in output: self.output.append(outp) else: self.output.append(output) def main(): splash_screen.close() ex = StatMainWindow() sys.exit(app.exec_())
gpl-3.0
djevans071/Rebalancing-Citibike
modeling.py
1
3212
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Jun 15 07:32:49 2017 @author: psamtik071 """ # routines for further feature creation for modeling purposes from matplotlib import pyplot as plt #import seaborn as sns from workflow.data import * from workflow.features import * import pandas as pd import numpy as np from sqlalchemy import create_engine #from sqlalchemy_utils import database_exists, create_database import psycopg2 # connect to SQL database username = 'psam071' host = 'localhost' dbname = 'citibike' db = create_engine('postgres://%s%s/%s' % (username,host,dbname)) con = None con = psycopg2.connect(database = dbname, user = username, host = host) print "Querying Database..." #get stations for 2015 to work on # query_stations2015 = """ # SELECT DISTINCT a.id # FROM features a # LEFT JOIN stations b ON a.id = b.id # WHERE a.date = '2015-03-01' AND tot_docks > 0 # ORDER BY a.id; # """ stations_2015 = pd.read_pickle('websitetools/stations.pickle') def cleanup(year): # clean-up dataset further and introduce new features from new_features module df = pd.read_sql_query(bulk_query(year),con) df = strip_unused_stations(df, stations_2015.id.unique()) df = new_features(df) df.date = pd.to_datetime(df.date) return df index_col = ['date'] data_cols = ['id', 'long', 'lat', 'hour', 'dayofweek', 'month', 'is_weekday', 'is_holiday', 'precip', 'temp', 'pct_avail_bikes', 'pct_avail_docks'] df2015 = cleanup(2015) df2016 = cleanup(2016) # ------------ MODELING ------------------- print "Training predictor..." # train model from sklearn.ensemble import RandomForestRegressor # data = df[data_cols + hist_cols].sort_index() # target = df.flux_type # X_train, X_test, y_train, y_test = train_test_split(data, target, # train_size = 0.75, test_size = 0.25) target_label = 'pct_flux' X_train = df2015[data_cols] y_train = df2015[target_label] X_test = df2016[data_cols] y_test = df2016[target_label] reg = RandomForestRegressor(min_samples_leaf=16, min_samples_split=6, max_features = 0.95, n_jobs=-1) reg.fit(X_train, y_train) pred = reg.predict(X_test) print "Saving Data..." # ------------- SAVE DATA TO PICKLE -------------- import pickle PICKLE_FILENAME = "regressor.pkl" DATASET_PICKLE_FILENAME = "dataset.pkl" FEATURE_LIST_FILENAME = "feature_list.pkl" def dump_model_and_data(clf, dataset, feature_list): with open(PICKLE_FILENAME, "w") as reg_outfile: pickle.dump(reg, reg_outfile) with open(DATASET_PICKLE_FILENAME, "w") as dataset_outfile: pickle.dump(dataset, dataset_outfile) with open(FEATURE_LIST_FILENAME, "w") as featurelist_outfile: pickle.dump(feature_list, featurelist_outfile) def load_model_and_data(): with open(PICKLE_FILENAME, "r") as reg_infile: reg = pickle.load(reg_infile) with open(DATASET_PICKLE_FILENAME, "r") as dataset_infile: dataset = pickle.load(dataset_infile) with open(FEATURE_LIST_FILENAME, "r") as featurelist_infile: feature_list = pickle.load(featurelist_infile) return reg, dataset, feature_list dump_model_and_data(reg, df2015, data_cols)
mit
HarllanAndrye/nilmtk
nilmtk/elecmeter.py
5
30305
from __future__ import print_function, division from warnings import warn from collections import namedtuple from copy import deepcopy from itertools import izip import numpy as np import pandas as pd import matplotlib.pyplot as plt import random from .preprocessing import Clip from .stats import TotalEnergy, GoodSections, DropoutRate from .stats.totalenergyresults import TotalEnergyResults from .hashable import Hashable from .appliance import Appliance from .datastore import Key from .measurement import (select_best_ac_type, AC_TYPES, PHYSICAL_QUANTITIES, PHYSICAL_QUANTITIES_WITH_AC_TYPES, check_ac_type, check_physical_quantity) from .node import Node from .electric import Electric from .timeframe import TimeFrame, list_of_timeframe_dicts from nilmtk.exceptions import MeasurementError from .utils import flatten_2d_list, capitalise_first_letter from nilmtk.timeframegroup import TimeFrameGroup import nilmtk ElecMeterID = namedtuple('ElecMeterID', ['instance', 'building', 'dataset']) class ElecMeter(Hashable, Electric): """Represents a physical electricity meter. Attributes ---------- appliances : list of Appliance objects connected immediately downstream of this meter. Will be [] if no appliances are connected directly to this meter. store : nilmtk.DataStore key : string key into nilmtk.DataStore to access data. metadata : dict. See http://nilm-metadata.readthedocs.org/en/latest/dataset_metadata.html#elecmeter STATIC ATTRIBUTES ----------------- meter_devices : dict, static class attribute See http://nilm-metadata.readthedocs.org/en/latest/dataset_metadata.html#meterdevice """ meter_devices = {} def __init__(self, store=None, metadata=None, meter_id=None): # Store and check parameters self.appliances = [] self.metadata = {} if metadata is None else metadata assert isinstance(self.metadata, dict) self.store = store self.identifier = meter_id # Insert self into nilmtk.global_meter_group if self.identifier is not None: assert isinstance(self.identifier, ElecMeterID) if self not in nilmtk.global_meter_group.meters: nilmtk.global_meter_group.meters.append(self) @property def key(self): return self.metadata['data_location'] def instance(self): return self._identifier_attr('instance') def building(self): return self._identifier_attr('building') def dataset(self): return self._identifier_attr('dataset') @property def name(self): return self.metadata.get('name') @name.setter def name(self, value): self.metadata['name'] = value def _identifier_attr(self, attr): if self.identifier is None: return else: return getattr(self.identifier, attr) def get_timeframe(self): self._check_store() return self.store.get_timeframe(key=self.key) def _check_store(self): if self.store is None: raise RuntimeError("ElecMeter needs `store` attribute set to an" " instance of a `nilmtk.DataStore` subclass") def upstream_meter(self, raise_warning=True): """ Returns ------- ElecMeterID of upstream meter or None if is site meter. """ if self.is_site_meter(): if raise_warning: warn("There is no meter upstream of this meter '{}' because" " it is a site meter.".format(self.identifier)) return submeter_of = self.metadata.get('submeter_of') # Sanity checks if submeter_of is None: raise ValueError( "This meter has no 'submeter_of' metadata attribute.") if submeter_of < 0: raise ValueError("'submeter_of' must be >= 0.") upstream_meter_in_building = self.metadata.get( 'upstream_meter_in_building') if (upstream_meter_in_building is not None and upstream_meter_in_building != self.identifier.building): raise NotImplementedError( "'upstream_meter_in_building' not implemented yet.") id_of_upstream = ElecMeterID(instance=submeter_of, building=self.identifier.building, dataset=self.identifier.dataset) upstream_meter = nilmtk.global_meter_group[id_of_upstream] if upstream_meter is None: warn("No upstream meter found for '{}'.".format(self.identifier)) return upstream_meter @classmethod def load_meter_devices(cls, store): dataset_metadata = store.load_metadata('/') ElecMeter.meter_devices.update( dataset_metadata.get('meter_devices', {})) def save(self, destination, key): """ Convert all relevant attributes to a dict to be saved as metadata in destination at location specified by key """ # destination.write_metadata(key, self.metadata) # then save data raise NotImplementedError @property def device(self): """ Returns ------- dict describing the MeterDevice for this meter (sample period etc). """ device_model = self.metadata.get('device_model') if device_model: return deepcopy(ElecMeter.meter_devices[device_model]) else: return {} def sample_period(self): device = self.device if device: return device['sample_period'] def is_site_meter(self): return self.metadata.get('site_meter', False) def dominant_appliance(self): """Tries to find the most dominant appliance on this meter, and then returns that appliance object. Will return None if there are no appliances on this meter. """ n_appliances = len(self.appliances) if n_appliances == 0: return elif n_appliances == 1: return self.appliances[0] else: for app in self.appliances: if app.metadata.get('dominant_appliance'): return app warn('Multiple appliances are associated with meter {}' ' but none are marked as the dominant appliance. Hence' ' returning the first appliance in the list.', RuntimeWarning) return self.appliances[0] def label(self, pretty=True): """Returns a string describing this meter. Parameters ---------- pretty : boolean If True then just return the type name of the dominant appliance (without the instance number) or metadata['name'], with the first letter capitalised. Returns ------- string : A label listing all the appliance types. """ if pretty: return self._pretty_label() meter_names = [] if self.is_site_meter(): meter_names.append('SITE METER') elif "name" in self.metadata: meter_names.append(self.metadata["name"]) else: for appliance in self.appliances: appliance_name = appliance.label() if appliance.metadata.get('dominant_appliance'): appliance_name = appliance_name.upper() meter_names.append(appliance_name) label = ", ".join(meter_names) return label def _pretty_label(self): name = self.metadata.get("name") if name: label = name elif self.is_site_meter(): label = 'Site meter' elif self.dominant_appliance() is not None: label = self.dominant_appliance().identifier.type else: meter_names = [] for appliance in self.appliances: appliance_name = appliance.label() if appliance.metadata.get('dominant_appliance'): appliance_name = appliance_name.upper() meter_names.append(appliance_name) label = ", ".join(meter_names) return label label = capitalise_first_letter(label) return label def available_ac_types(self, physical_quantity): """Finds available alternating current types for a specific physical quantity. Parameters ---------- physical_quantity : str or list of strings Returns ------- list of strings e.g. ['apparent', 'active'] """ if isinstance(physical_quantity, list): ac_types = [self.available_ac_types(pq) for pq in physical_quantity] return list(set(flatten_2d_list(ac_types))) if physical_quantity not in PHYSICAL_QUANTITIES: raise ValueError("`physical_quantity` must by one of '{}', not '{}'" .format(PHYSICAL_QUANTITIES, physical_quantity)) measurements = self.device['measurements'] return [m['type'] for m in measurements if m['physical_quantity'] == physical_quantity and 'type' in m] def available_physical_quantities(self): """ Returns ------- list of strings e.g. ['power', 'energy'] """ measurements = self.device['measurements'] return list(set([m['physical_quantity'] for m in measurements])) def available_columns(self): """ Returns ------- list of 2-tuples of strings e.g. [('power', 'active')] """ measurements = self.device['measurements'] return list(set([(m['physical_quantity'], m.get('type', '')) for m in measurements])) def __repr__(self): string = super(ElecMeter, self).__repr__() # Now add list of appliances... string = string[:-1] # remove last bracket # Site meter if self.metadata.get('site_meter'): string += ', site_meter' # Appliances string += ', appliances={}'.format(self.appliances) # METER ROOM room = self.metadata.get('room') if room: string += ', room={}'.format(room) string += ')' return string def matches(self, key): """ Parameters ---------- key : dict Returns ------- Bool """ if not key: return True if not isinstance(key, dict): raise TypeError() match = True for k, v in key.iteritems(): if hasattr(self.identifier, k): if getattr(self.identifier, k) != v: match = False elif k in self.metadata: if self.metadata[k] != v: match = False elif k in self.device: metadata_value = self.device[k] if (isinstance(metadata_value, list) and not isinstance(v, list)): if v not in metadata_value: match = False elif metadata_value != v: match = False else: raise KeyError("'{}' not a valid key.".format(k)) return match def load(self, **kwargs): """Returns a generator of DataFrames loaded from the DataStore. By default, `load` will load all available columns from the DataStore. Specific columns can be selected in one or two mutually exclusive ways: 1. specify a list of column names using the `cols` parameter. 2. specify a `physical_quantity` and/or an `ac_type` parameter to ask `load` to automatically select columns. If 'resample' is set to 'True' then the default behaviour is for gaps shorter than max_sample_period will be forward filled. Parameters --------------- physical_quantity : string or list of strings e.g. 'power' or 'voltage' or 'energy' or ['power', 'energy']. If a single string then load columns only for that physical quantity. If a list of strings then load columns for all those physical quantities. ac_type : string or list of strings, defaults to None Where 'ac_type' is short for 'alternating current type'. e.g. 'reactive' or 'active' or 'apparent'. If set to None then will load all AC types per physical quantity. If set to 'best' then load the single best AC type per physical quantity. If set to a single AC type then load just that single AC type per physical quantity, else raise an Exception. If set to a list of AC type strings then will load all those AC types and will raise an Exception if any cannot be found. cols : list of tuples, using NILMTK's vocabulary for measurements. e.g. [('power', 'active'), ('voltage', ''), ('energy', 'reactive')] `cols` can't be used if `ac_type` and/or `physical_quantity` are set. sample_period : int, defaults to None Number of seconds to use as the new sample period for resampling. If None then will use self.sample_period() resample : boolean, defaults to False If True then will resample data using `sample_period`. Defaults to True if `sample_period` is not None. resample_kwargs : dict of key word arguments (other than 'rule') to `pass to pd.DataFrame.resample()`. Defaults to set 'limit' to `sample_period / max_sample_period` and sets 'fill_method' to ffill. preprocessing : list of Node subclass instances e.g. [Clip()]. **kwargs : any other key word arguments to pass to `self.store.load()` Returns ------- Always return a generator of DataFrames (even if it only has a single column). Raises ------ nilmtk.exceptions.MeasurementError if a measurement is specified which is not available. """ verbose = kwargs.get('verbose') if verbose: print() print("ElecMeter.load") print(self) if 'sample_period' in kwargs: kwargs['resample'] = True if kwargs.get('resample'): # Set default key word arguments for resampling. resample_kwargs = kwargs.setdefault('resample_kwargs', {}) resample_kwargs.setdefault('fill_method', 'ffill') if 'limit' not in resample_kwargs: sample_period = kwargs.get('sample_period', self.sample_period()) max_number_of_rows_to_ffill = int( np.ceil(self.device['max_sample_period'] / sample_period)) resample_kwargs.update({'limit': max_number_of_rows_to_ffill}) if verbose: print("kwargs after setting resample setting:") print(kwargs) kwargs = self._prep_kwargs_for_sample_period_and_resample(**kwargs) if verbose: print("kwargs after processing") print(kwargs) # Get source node preprocessing = kwargs.pop('preprocessing', []) last_node = self.get_source_node(**kwargs) generator = last_node.generator # Connect together all preprocessing nodes for node in preprocessing: node.upstream = last_node last_node = node generator = last_node.process() return generator def _ac_type_to_columns(self, ac_type): if ac_type is None: return [] if isinstance(ac_type, list): cols2d = [self._ac_type_to_columns(a_t) for a_t in ac_type] return list(set(flatten_2d_list(cols2d))) check_ac_type(ac_type) cols_matching = [col for col in self.available_columns() if col[1] == ac_type] return cols_matching def _physical_quantity_to_columns(self, physical_quantity): if physical_quantity is None: return [] if isinstance(physical_quantity, list): cols2d = [self._physical_quantity_to_columns(p_q) for p_q in physical_quantity] return list(set(flatten_2d_list(cols2d))) check_physical_quantity(physical_quantity) cols_matching = [col for col in self.available_columns() if col[0] == physical_quantity] return cols_matching def _get_columns_with_best_ac_type(self, physical_quantity=None): if physical_quantity is None: physical_quantity = self.available_physical_quantities() if isinstance(physical_quantity, list): columns = set() for pq in physical_quantity: best = self._get_columns_with_best_ac_type(pq) if best: columns.update(best) return list(columns) check_physical_quantity(physical_quantity) available_pqs = self.available_physical_quantities() if physical_quantity not in available_pqs: return [] ac_types = self.available_ac_types(physical_quantity) try: best_ac_type = select_best_ac_type(ac_types) except KeyError: return [] else: return [(physical_quantity, best_ac_type)] def _convert_physical_quantity_and_ac_type_to_cols( self, physical_quantity=None, ac_type=None, cols=None, **kwargs): """Returns kwargs dict with physical_quantity and ac_type removed and cols populated appropriately.""" if cols: if (ac_type or physical_quantity): raise ValueError("Cannot use `ac_type` and/or `physical_quantity`" " with `cols` parameter.") else: if set(cols).issubset(self.available_columns()): kwargs['cols'] = cols return kwargs else: msg = ("'{}' is not a subset of the available columns: '{}'" .format(cols, self.available_columns())) raise MeasurementError(msg) msg = "" if not (ac_type or physical_quantity): cols = self.available_columns() elif ac_type == 'best': cols = self._get_columns_with_best_ac_type(physical_quantity) if not cols: msg += "No AC types for physical quantity {}".format(physical_quantity) else: if ac_type: cols = self._ac_type_to_columns(ac_type) if not cols: msg += "AC type '{}' not available. ".format(ac_type) if physical_quantity: cols_matching_pq = self._physical_quantity_to_columns(physical_quantity) if not cols_matching_pq: msg += ("Physical quantity '{}' not available. " .format(physical_quantity)) if cols: cols = list(set(cols).intersection(cols_matching_pq)) if not cols: msg += ("No measurement matching ({}, {}). " .format(physical_quantity, ac_type)) else: cols = cols_matching_pq if msg: msg += "Available columns = {}. ".format(self.available_columns()) raise MeasurementError(msg) kwargs['cols'] = cols return kwargs def dry_run_metadata(self): return self.metadata def get_metadata(self): return self.metadata def get_source_node(self, **loader_kwargs): if self.store is None: raise RuntimeError( "Cannot get source node if meter.store is None!") loader_kwargs = self._convert_physical_quantity_and_ac_type_to_cols(**loader_kwargs) generator = self.store.load(key=self.key, **loader_kwargs) self.metadata['device'] = self.device return Node(self, generator=generator) def total_energy(self, **loader_kwargs): """ Parameters ---------- full_results : bool, default=False **loader_kwargs : key word arguments for DataStore.load() Returns ------- if `full_results` is True then return TotalEnergyResults object else returns a pd.Series with a row for each AC type. """ nodes = [Clip, TotalEnergy] return self._get_stat_from_cache_or_compute( nodes, TotalEnergy.results_class(), loader_kwargs) def dropout_rate(self, ignore_gaps=True, **loader_kwargs): """ Parameters ---------- ignore_gaps : bool, default=True If True then will only calculate dropout rate for good sections. full_results : bool, default=False **loader_kwargs : key word arguments for DataStore.load() Returns ------- DropoutRateResults object if `full_results` is True, else float """ nodes = [DropoutRate] if ignore_gaps: loader_kwargs['sections'] = self.good_sections(**loader_kwargs) return self._get_stat_from_cache_or_compute( nodes, DropoutRate.results_class(), loader_kwargs) def good_sections(self, **loader_kwargs): """ Parameters ---------- full_results : bool, default=False **loader_kwargs : key word arguments for DataStore.load() Returns ------- if `full_results` is True then return nilmtk.stats.GoodSectionsResults object otherwise return list of TimeFrame objects. """ loader_kwargs.setdefault('n_look_ahead_rows', 10) nodes = [GoodSections] results_obj = GoodSections.results_class(self.device['max_sample_period']) return self._get_stat_from_cache_or_compute( nodes, results_obj, loader_kwargs) def _get_stat_from_cache_or_compute(self, nodes, results_obj, loader_kwargs): """General function for computing statistics and/or loading them from cache. Cached statistics lives in the DataStore at 'building<I>/elec/cache/meter<K>/<statistic_name>' e.g. 'building1/elec/cache/meter1/total_energy'. We store the 'full' statistic... i.e we store a representation of the `Results._data` DataFrame. Some times we need to do some conversion to store `Results._data` on disk. The logic for doing this conversion lives in the `Results` class or subclass. The cache can be cleared by calling `ElecMeter.clear_cache()`. Parameters ---------- nodes : list of nilmtk.Node classes results_obj : instance of nilmtk.Results subclass loader_kwargs : dict Returns ------- if `full_results` is True then return nilmtk.Results subclass instance otherwise return nilmtk.Results.simple(). See Also -------- clear_cache _compute_stat key_for_cached_stat get_cached_stat """ full_results = loader_kwargs.pop('full_results', False) verbose = loader_kwargs.get('verbose') if 'ac_type' in loader_kwargs or 'physical_quantity' in loader_kwargs: loader_kwargs = self._convert_physical_quantity_and_ac_type_to_cols(**loader_kwargs) cols = loader_kwargs.get('cols', []) ac_types = set([m[1] for m in cols if m[1]]) results_obj_copy = deepcopy(results_obj) # Prepare `sections` list sections = loader_kwargs.get('sections') if sections is None: tf = self.get_timeframe() tf.include_end = True sections = [tf] sections = TimeFrameGroup(sections) sections = [s for s in sections if not s.empty] # Retrieve usable stats from cache key_for_cached_stat = self.key_for_cached_stat(results_obj.name) if loader_kwargs.get('preprocessing') is None: cached_stat = self.get_cached_stat(key_for_cached_stat) results_obj.import_from_cache(cached_stat, sections) def find_sections_to_compute(): # Get sections_to_compute results_obj_timeframes = results_obj.timeframes() sections_to_compute = set(sections) - set(results_obj_timeframes) sections_to_compute = list(sections_to_compute) sections_to_compute.sort() return sections_to_compute try: ac_type_keys = results_obj.simple().keys() except: sections_to_compute = find_sections_to_compute() else: if ac_types.issubset(ac_type_keys): sections_to_compute = find_sections_to_compute() else: sections_to_compute = sections results_obj = results_obj_copy else: sections_to_compute = sections if verbose and not results_obj._data.empty: print("Using cached result.") # If we get to here then we have to compute some stats if sections_to_compute: loader_kwargs['sections'] = sections_to_compute computed_result = self._compute_stat(nodes, loader_kwargs) # Merge cached results with newly computed results_obj.update(computed_result.results) # Save to disk newly computed stats stat_for_store = computed_result.results.export_to_cache() try: self.store.append(key_for_cached_stat, stat_for_store) except ValueError: # the old table probably had different columns self.store.remove(key_for_cached_stat) self.store.put(key_for_cached_stat, results_obj.export_to_cache()) if full_results: return results_obj else: res = results_obj.simple() if ac_types: try: ac_type_keys = res.keys() except: return res else: return pd.Series(res[ac_types], index=ac_types) else: return res def _compute_stat(self, nodes, loader_kwargs): """ Parameters ---------- nodes : list of nilmtk.Node subclass objects loader_kwargs : dict Returns ------- Node subclass object See Also -------- clear_cache _get_stat_from_cache_or_compute key_for_cached_stat get_cached_stat """ results = self.get_source_node(**loader_kwargs) for node in nodes: results = node(results) results.run() return results def key_for_cached_stat(self, stat_name): """ Parameters ---------- stat_name : str Returns ------- key : str See Also -------- clear_cache _compute_stat _get_stat_from_cache_or_compute get_cached_stat """ if isinstance(self.instance(), tuple): meter_str = "_".join([str(i) for i in (self.instance())]) else: meter_str = "{:d}".format(self.instance()) return ("building{:d}/elec/cache/meter{}/{:s}" .format(self.building(), meter_str, stat_name)) def clear_cache(self, verbose=False): """ See Also -------- _compute_stat _get_stat_from_cache_or_compute key_for_cached_stat get_cached_stat """ if self.store is not None: key_for_cache = self.key_for_cached_stat('') try: self.store.remove(key_for_cache) except KeyError: if verbose: print("No existing cache for", key_for_cache) else: print("Removed", key_for_cache) def get_cached_stat(self, key_for_stat): """ Parameters ---------- key_for_stat : str Returns ------- pd.DataFrame See Also -------- _compute_stat _get_stat_from_cache_or_compute key_for_cached_stat clear_cache """ if self.store is None: return pd.DataFrame() try: stat_from_cache = self.store[key_for_stat] except KeyError: return pd.DataFrame() else: return pd.DataFrame() if stat_from_cache is None else stat_from_cache # def total_on_duration(self): # """Return timedelta""" # raise NotImplementedError # def on_durations(self): # raise NotImplementedError # def activity_distribution(self, bin_size, timespan): # raise NotImplementedError # def on_off_events(self): # use self.metadata.minimum_[off|on]_duration # raise NotImplementedError # def discrete_appliance_activations(self): # """ # Return a Mask defining the start and end times of each appliance # activation. # """ # raise NotImplementedError # def contiguous_sections(self): # """retuns Mask object""" # raise NotImplementedError # def clean_and_export(self, destination_datastore): # """Apply all cleaning configured in meter.cleaning and then export. Also identifies # and records the locations of gaps. Also records metadata about exactly which # cleaning steps have been executed and some summary results (e.g. the number of # implausible values removed)""" # raise NotImplementedError
apache-2.0
fbagirov/scikit-learn
sklearn/linear_model/tests/test_logistic.py
105
26588
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg and" " lbfgs solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_))
bsd-3-clause
ndhuang/python-lib
TimeStream.py
1
5108
import datetime as dt import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates class TimeStream: """ Contains a pair of vectors: data points and the times they were collected This class provides convenient access to a data time stream. It will eventually provide support for various time standards (labview, matlab, linux, windows?). Calling the object will return the vector of data points. """ TIME_TYPES = ['matlab', 'labview', 'unix'] def __init__(self, values, t, timeType, mask = np.ma.nomask): if (not isinstance(values, np.ma.MaskedArray)): self.values = np.ma.array(values, mask = mask) else: self.values = values timeType = timeType.lower() self._CheckTimeType(timeType) if (timeType == 'matlab'): # significant hackery here: matlab defines # datenum('Jan-1-0000 00:00:00') = 1, whereas fromordinal # considers 1/1/0001 to be 1. t = [dt.datetime.fromordinal(np.floor(t[i])) - \ dt.timedelta(days = 366) + \ dt.timedelta(t[i] % 1) for i in range(len(t))] elif (timeType == 'unix'): t = [dt.datetime.fromtimestamp(t[i]) \ for i in range(len(t))] elif (timeType == 'labview'): delta = dt.datetime(1904, 1, 1, 0, 0, 0) - \ dt.datetime(1970, 1, 1, 0, 0, 0) t += delta.total_seconds() t = [dt.datetime.fromtimestamp(t[i]) \ for i in range(len(t))] self.t = np.ma.array(t, mask = self.values.mask) def derivative(self, gaps = True): """ Return the time derivative of the time stream. In units of [value units]/second """ self._check_masks() if (gaps): delta_val = diff(self.values.compressed()) delta_t = diff(self.t.compressed()) else: delta_val = diff(self.values).compressed() delta_t = diff(self.t).compressed() for i in range(len(delta_t)): delta_t[i] = delta_t[i].total_seconds() return (delta_val / delta_t) def integral(self, gaps = True): """ Return the time integral of the time stream. In units of [value units] * second """ self._check_masks() if (gaps): def get_contiguous(self, minsize = 0, maxgap = 0): """ return a list of arrays, each of which contains contiguous samples """ def get_time(self): ''' return the time as a vector of datetime objects ''' return self.t def get_unixtime(self): ''' return a vector in the unix format (seconds since the eopch) ''' epoch = dt.datetime(1970, 1, 1, 0, 0, 0, 0) t = np.zeros(np.shape(self.t)) i = 0 for tmp in self.t: delta = tmp - epoch t[i] = delta.total_seconds() i += 1 return t def get_matlabtime(self): ''' return a vector in the matlab format (days since 12/31/-0001) ''' # more hackery here, see above t = np.zeros(np.shape(self.t)) i = 0 for tmp in self.t: t[i] = tmp.toordinal() + 366 + tmp.hours / 24 + \ tmp.minutes / (60 * 24) + tmp.seconds / (60 * 60 * 24) + \ tmp.microsecond / (1e6 * 60 * 60 * 24) return t def get_labviewtime(self): ''' return a vector in the laview format (seconds since 1/1/1904 00:00:00) ''' epoch = dt.datetime(1904, 1, 1, 0, 0, 0, 0) t = np.zeros(np.shape(self.t)) i = 0 for tmp in self.t: delta = tmp - epoch t[i] = delta.total_seconds() i += 1 return t def remove(self, ind): ''' remove data points given by ind Parameters ---------- ind : array-like an array of indices to remove ''' for i in np.atleast_1d(ind): self.t[i] = np.ma.mask self.values[i] = np.ma.mask self.t = self.t[~self.t.mask] self.values = self.values[~self.values.mask] def plot(self, ax = None, locator_args = None): if (ax == None): fig = plt.figure() ax = sig.add_subplot(111) ax.plot(self.t, self.values, '.') # set tickmarks for dates loc = mdates.AutoDateLocator(**locator_args) ax.xaxis.set_major_locator(loc) ax.xaxis.set_major_formatter(mdates.AutoDateFormatter(loc)) def _check_time_type(self, timeType): if (timeType not in TIME_TYPES): raise ValueError('Time format %s is invalid' %timeType) def _check_mask(self): raise ValueError('Masks do not match') return np.any(self.values.mask ^ self.t.mask) def __call__(self): return self.values
mit
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Stress_Based_Contact_Verification/HardContact_ElPPlShear/Area/A_1e-4/Normal_Stress_Plot.py
72
2800
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; import matplotlib; import math; from matplotlib.ticker import MaxNLocator plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Normal_Stress.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(normal_strain*100,normal_stress/1000,'-r',label='Analytical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Interface Type #") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") plt.hold(True) ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain*100,normal_stress/1000,'-k',label='Numerical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Normal Strain [%]") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") ############################################################# # # # axes = plt.gca() # # # axes.set_xlim([-7,7]) # # # axes.set_ylim([-1,1]) # outfigname = "Interface_Test_Normal_Stress.pdf"; # plt.axis([0, 5.5, 90, 101]) # legend = plt.legend() # legend.get_frame().set_linewidth(0.0) # legend.get_frame().set_facecolor('none') plt.legend() plt.savefig('Normal_Stress.pdf', bbox_inches='tight') # plt.show()
cc0-1.0
PyWavelets/pywt
doc/source/pyplots/plot_mallat_2d.py
3
1471
import numpy as np import pywt from matplotlib import pyplot as plt from pywt._doc_utils import wavedec2_keys, draw_2d_wp_basis x = pywt.data.camera().astype(np.float32) shape = x.shape max_lev = 3 # how many levels of decomposition to draw label_levels = 3 # how many levels to explicitly label on the plots fig, axes = plt.subplots(2, 4, figsize=[14, 8]) for level in range(0, max_lev + 1): if level == 0: # show the original image before decomposition axes[0, 0].set_axis_off() axes[1, 0].imshow(x, cmap=plt.cm.gray) axes[1, 0].set_title('Image') axes[1, 0].set_axis_off() continue # plot subband boundaries of a standard DWT basis draw_2d_wp_basis(shape, wavedec2_keys(level), ax=axes[0, level], label_levels=label_levels) axes[0, level].set_title('{} level\ndecomposition'.format(level)) # compute the 2D DWT c = pywt.wavedec2(x, 'db2', mode='periodization', level=level) # normalize each coefficient array independently for better visibility c[0] /= np.abs(c[0]).max() for detail_level in range(level): c[detail_level + 1] = [d/np.abs(d).max() for d in c[detail_level + 1]] # show the normalized coefficients arr, slices = pywt.coeffs_to_array(c) axes[1, level].imshow(arr, cmap=plt.cm.gray) axes[1, level].set_title('Coefficients\n({} level)'.format(level)) axes[1, level].set_axis_off() plt.tight_layout() plt.show()
mit
winklerand/pandas
pandas/core/config_init.py
1
16281
""" This module is imported from the pandas package __init__.py file in order to ensure that the core.config options registered here will be available as soon as the user loads the package. if register_option is invoked inside specific modules, they will not be registered until that module is imported, which may or may not be a problem. If you need to make sure options are available even before a certain module is imported, register them here rather then in the module. """ import pandas.core.config as cf from pandas.core.config import (is_int, is_bool, is_text, is_instance_factory, is_one_of_factory, get_default_val, is_callable) from pandas.io.formats.console import detect_console_encoding # compute use_bottleneck_doc = """ : bool Use the bottleneck library to accelerate if it is installed, the default is True Valid values: False,True """ def use_bottleneck_cb(key): from pandas.core import nanops nanops.set_use_bottleneck(cf.get_option(key)) use_numexpr_doc = """ : bool Use the numexpr library to accelerate computation if it is installed, the default is True Valid values: False,True """ def use_numexpr_cb(key): from pandas.core.computation import expressions expressions.set_use_numexpr(cf.get_option(key)) with cf.config_prefix('compute'): cf.register_option('use_bottleneck', True, use_bottleneck_doc, validator=is_bool, cb=use_bottleneck_cb) cf.register_option('use_numexpr', True, use_numexpr_doc, validator=is_bool, cb=use_numexpr_cb) # # options from the "display" namespace pc_precision_doc = """ : int Floating point output precision (number of significant digits). This is only a suggestion """ pc_colspace_doc = """ : int Default space for DataFrame columns. """ pc_max_rows_doc = """ : int If max_rows is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. """ pc_max_cols_doc = """ : int If max_cols is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. """ pc_max_categories_doc = """ : int This sets the maximum number of categories pandas should output when printing out a `Categorical` or a Series of dtype "category". """ pc_max_info_cols_doc = """ : int max_info_columns is used in DataFrame.info method to decide if per column information will be printed. """ pc_nb_repr_h_doc = """ : boolean When True, IPython notebook will use html representation for pandas objects (if it is available). """ pc_date_dayfirst_doc = """ : boolean When True, prints and parses dates with the day first, eg 20/01/2005 """ pc_date_yearfirst_doc = """ : boolean When True, prints and parses dates with the year first, eg 2005/01/20 """ pc_pprint_nest_depth = """ : int Controls the number of nested levels to process when pretty-printing """ pc_multi_sparse_doc = """ : boolean "sparsify" MultiIndex display (don't display repeated elements in outer levels within groups) """ pc_encoding_doc = """ : str/unicode Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. """ float_format_doc = """ : callable The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. """ max_colwidth_doc = """ : int The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. """ colheader_justify_doc = """ : 'left'/'right' Controls the justification of column headers. used by DataFrameFormatter. """ pc_expand_repr_doc = """ : boolean Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple "pages" if its width exceeds `display.width`. """ pc_show_dimensions_doc = """ : boolean or 'truncate' Whether to print out dimensions at the end of DataFrame repr. If 'truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) """ pc_line_width_doc = """ : int Deprecated. """ pc_east_asian_width_doc = """ : boolean Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) """ pc_ambiguous_as_wide_doc = """ : boolean Whether to handle Unicode characters belong to Ambiguous as Wide (width=2) (default: False) """ pc_latex_repr_doc = """ : boolean Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) """ pc_table_schema_doc = """ : boolean Whether to publish a Table Schema representation for frontends that support it. (default: False) """ pc_html_border_doc = """ : int A ``border=value`` attribute is inserted in the ``<table>`` tag for the DataFrame HTML repr. """ pc_html_border_deprecation_warning = """\ html.border has been deprecated, use display.html.border instead (currently both are identical) """ pc_width_doc = """ : int Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. """ pc_height_doc = """ : int Deprecated. """ pc_chop_threshold_doc = """ : float or None if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. """ pc_max_seq_items = """ : int or None when pretty-printing a long sequence, no more then `max_seq_items` will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string. If set to None, the number of items to be printed is unlimited. """ pc_max_info_rows_doc = """ : int or None df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. """ pc_large_repr_doc = """ : 'truncate'/'info' For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). """ pc_memory_usage_doc = """ : bool, string or None This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,'deep' """ pc_latex_escape = """ : bool This specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False,True """ pc_latex_longtable = """ :bool This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True """ pc_latex_multicolumn = """ : bool This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True """ pc_latex_multicolumn_format = """ : string This specifies the format for multicolumn headers. Can be surrounded with '|'. Valid values: 'l', 'c', 'r', 'p{<width>}' """ pc_latex_multirow = """ : bool This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True """ style_backup = dict() def table_schema_cb(key): from pandas.io.formats.printing import _enable_data_resource_formatter _enable_data_resource_formatter(cf.get_option(key)) with cf.config_prefix('display'): cf.register_option('precision', 6, pc_precision_doc, validator=is_int) cf.register_option('float_format', None, float_format_doc, validator=is_one_of_factory([None, is_callable])) cf.register_option('column_space', 12, validator=is_int) cf.register_option('max_info_rows', 1690785, pc_max_info_rows_doc, validator=is_instance_factory((int, type(None)))) cf.register_option('max_rows', 60, pc_max_rows_doc, validator=is_instance_factory([type(None), int])) cf.register_option('max_categories', 8, pc_max_categories_doc, validator=is_int) cf.register_option('max_colwidth', 50, max_colwidth_doc, validator=is_int) cf.register_option('max_columns', 20, pc_max_cols_doc, validator=is_instance_factory([type(None), int])) cf.register_option('large_repr', 'truncate', pc_large_repr_doc, validator=is_one_of_factory(['truncate', 'info'])) cf.register_option('max_info_columns', 100, pc_max_info_cols_doc, validator=is_int) cf.register_option('colheader_justify', 'right', colheader_justify_doc, validator=is_text) cf.register_option('notebook_repr_html', True, pc_nb_repr_h_doc, validator=is_bool) cf.register_option('date_dayfirst', False, pc_date_dayfirst_doc, validator=is_bool) cf.register_option('date_yearfirst', False, pc_date_yearfirst_doc, validator=is_bool) cf.register_option('pprint_nest_depth', 3, pc_pprint_nest_depth, validator=is_int) cf.register_option('multi_sparse', True, pc_multi_sparse_doc, validator=is_bool) cf.register_option('encoding', detect_console_encoding(), pc_encoding_doc, validator=is_text) cf.register_option('expand_frame_repr', True, pc_expand_repr_doc) cf.register_option('show_dimensions', 'truncate', pc_show_dimensions_doc, validator=is_one_of_factory([True, False, 'truncate'])) cf.register_option('chop_threshold', None, pc_chop_threshold_doc) cf.register_option('max_seq_items', 100, pc_max_seq_items) cf.register_option('height', 60, pc_height_doc, validator=is_instance_factory([type(None), int])) cf.register_option('width', 80, pc_width_doc, validator=is_instance_factory([type(None), int])) # redirected to width, make defval identical cf.register_option('line_width', get_default_val('display.width'), pc_line_width_doc) cf.register_option('memory_usage', True, pc_memory_usage_doc, validator=is_one_of_factory([None, True, False, 'deep'])) cf.register_option('unicode.east_asian_width', False, pc_east_asian_width_doc, validator=is_bool) cf.register_option('unicode.ambiguous_as_wide', False, pc_east_asian_width_doc, validator=is_bool) cf.register_option('latex.repr', False, pc_latex_repr_doc, validator=is_bool) cf.register_option('latex.escape', True, pc_latex_escape, validator=is_bool) cf.register_option('latex.longtable', False, pc_latex_longtable, validator=is_bool) cf.register_option('latex.multicolumn', True, pc_latex_multicolumn, validator=is_bool) cf.register_option('latex.multicolumn_format', 'l', pc_latex_multicolumn, validator=is_text) cf.register_option('latex.multirow', False, pc_latex_multirow, validator=is_bool) cf.register_option('html.table_schema', False, pc_table_schema_doc, validator=is_bool, cb=table_schema_cb) cf.register_option('html.border', 1, pc_html_border_doc, validator=is_int) with cf.config_prefix('html'): cf.register_option('border', 1, pc_html_border_doc, validator=is_int) cf.deprecate_option('html.border', msg=pc_html_border_deprecation_warning, rkey='display.html.border') tc_sim_interactive_doc = """ : boolean Whether to simulate interactive mode for purposes of testing """ with cf.config_prefix('mode'): cf.register_option('sim_interactive', False, tc_sim_interactive_doc) use_inf_as_null_doc = """ : boolean use_inf_as_null had been deprecated and will be removed in a future version. Use `use_inf_as_na` instead. """ use_inf_as_na_doc = """ : boolean True means treat None, NaN, INF, -INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). """ # We don't want to start importing everything at the global context level # or we'll hit circular deps. def use_inf_as_na_cb(key): from pandas.core.dtypes.missing import _use_inf_as_na _use_inf_as_na(key) with cf.config_prefix('mode'): cf.register_option('use_inf_as_na', False, use_inf_as_na_doc, cb=use_inf_as_na_cb) cf.register_option('use_inf_as_null', False, use_inf_as_null_doc, cb=use_inf_as_na_cb) cf.deprecate_option('mode.use_inf_as_null', msg=use_inf_as_null_doc, rkey='mode.use_inf_as_na') # user warnings chained_assignment = """ : string Raise an exception, warn, or no action if trying to use chained assignment, The default is warn """ with cf.config_prefix('mode'): cf.register_option('chained_assignment', 'warn', chained_assignment, validator=is_one_of_factory([None, 'warn', 'raise'])) # Set up the io.excel specific configuration. writer_engine_doc = """ : string The default Excel writer engine for '{ext}' files. Available options: auto, {others}. """ _xls_options = ['xlwt'] _xlsm_options = ['openpyxl'] _xlsx_options = ['openpyxl', 'xlsxwriter'] with cf.config_prefix("io.excel.xls"): cf.register_option("writer", "auto", writer_engine_doc.format( ext='xls', others=', '.join(_xls_options)), validator=str) with cf.config_prefix("io.excel.xlsm"): cf.register_option("writer", "auto", writer_engine_doc.format( ext='xlsm', others=', '.join(_xlsm_options)), validator=str) with cf.config_prefix("io.excel.xlsx"): cf.register_option("writer", "auto", writer_engine_doc.format( ext='xlsx', others=', '.join(_xlsx_options)), validator=str) # Set up the io.parquet specific configuration. parquet_engine_doc = """ : string The default parquet reader/writer engine. Available options: 'auto', 'pyarrow', 'fastparquet', the default is 'auto' """ with cf.config_prefix('io.parquet'): cf.register_option( 'engine', 'auto', parquet_engine_doc, validator=is_one_of_factory(['auto', 'pyarrow', 'fastparquet']))
bsd-3-clause
zhangmianhongni/MyPractice
Python/MachineLearning/ud120-projects-master/naive_bayes/nb_author_id.py
1
1071
#!/usr/bin/python """ This is the code to accompany the Lesson 1 (Naive Bayes) mini-project. Use a Naive Bayes Classifier to identify emails by their authors authors and labels: Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess from sklearn.naive_bayes import GaussianNB ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() clf = GaussianNB() t0 = time() clf.fit(features_train, labels_train) print 'training time', round(time() - t0, 3) ,'s' t0 = time() print clf.score(features_test, labels_test) print 'predicting time', round(time() - t0, 3),'s' pred = clf.predict(features_test) print pred ######################################################### ### your code goes here ### #########################################################
apache-2.0
dssg/givinggraph
givinggraph/util/text2tfidf.py
3
1772
''' Convert text into tf-idf. usage: python data_loader.py TEXT_FILE File should have one document per row. E.g. this file: apple banana banana cherry results in 1:0.579739 0:0.814802 2:0.814802 1:0.579739 with a vocabulary of [(u'apple', 0), (u'banana', 1), (u'cherry', 2)] ''' import io import operator import sys from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer def text2tfidf(data_generator): """Transform text data into tf-idf vectors. This can be used in a streaming fashion, so that each line is represented sparsely as its read. data_generator .... generator of strings. This can simply be a list of strings, or a file object. >>> vocab, data = text2tfidf(['apple banana', 'banana cherry']) >>> data = data.toarray() >>> print data[0] [ 0.81480247 0.57973867 0. ] >>> print data[1] [ 0. 0.57973867 0.81480247] >>> print sorted(vocab.iteritems(), key=operator.itemgetter(1)) [(u'apple', 0), (u'banana', 1), (u'cherry', 2)] """ counter = CountVectorizer(min_df=0.) data = counter.fit_transform(data_generator) tfidf = TfidfTransformer() data = tfidf.fit_transform(data) return counter.vocabulary_, data def print_sparse_matrix(data): """Print a sparse matrix in format <index>:<value>""" for ri in range(data.get_shape()[0]): row = data.getrow(ri) print ' '.join(['%d:%g' % (i, d) for (i, d) in zip(row.indices, row.data)]) if (__name__ == '__main__'): if len(sys.argv) == 1: print 'python data_loader.py TEXT_FILE' vocab, data = text2tfidf(io.open(sys.argv[1], mode='rt', encoding='utf8')) print_sparse_matrix(data)
mit
heli522/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
arjoly/scikit-learn
sklearn/decomposition/tests/test_truncated_svd.py
73
6086
"""Test truncated SVD transformer.""" import numpy as np import scipy.sparse as sp from sklearn.decomposition import TruncatedSVD from sklearn.utils import check_random_state from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_raises, assert_greater, assert_array_less) # Make an X that looks somewhat like a small tf-idf matrix. # XXX newer versions of SciPy have scipy.sparse.rand for this. shape = 60, 55 n_samples, n_features = shape rng = check_random_state(42) X = rng.randint(-100, 20, np.product(shape)).reshape(shape) X = sp.csr_matrix(np.maximum(X, 0), dtype=np.float64) X.data[:] = 1 + np.log(X.data) Xdense = X.A def test_algorithms(): svd_a = TruncatedSVD(30, algorithm="arpack") svd_r = TruncatedSVD(30, algorithm="randomized", random_state=42) Xa = svd_a.fit_transform(X)[:, :6] Xr = svd_r.fit_transform(X)[:, :6] assert_array_almost_equal(Xa, Xr, decimal=5) comp_a = np.abs(svd_a.components_) comp_r = np.abs(svd_r.components_) # All elements are equal, but some elements are more equal than others. assert_array_almost_equal(comp_a[:9], comp_r[:9]) assert_array_almost_equal(comp_a[9:], comp_r[9:], decimal=2) def test_attributes(): for n_components in (10, 25, 41): tsvd = TruncatedSVD(n_components).fit(X) assert_equal(tsvd.n_components, n_components) assert_equal(tsvd.components_.shape, (n_components, n_features)) def test_too_many_components(): for algorithm in ["arpack", "randomized"]: for n_components in (n_features, n_features + 1): tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm) assert_raises(ValueError, tsvd.fit, X) def test_sparse_formats(): for fmt in ("array", "csr", "csc", "coo", "lil"): Xfmt = Xdense if fmt == "dense" else getattr(X, "to" + fmt)() tsvd = TruncatedSVD(n_components=11) Xtrans = tsvd.fit_transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) Xtrans = tsvd.transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) def test_inverse_transform(): for algo in ("arpack", "randomized"): # We need a lot of components for the reconstruction to be "almost # equal" in all positions. XXX Test means or sums instead? tsvd = TruncatedSVD(n_components=52, random_state=42) Xt = tsvd.fit_transform(X) Xinv = tsvd.inverse_transform(Xt) assert_array_almost_equal(Xinv, Xdense, decimal=1) def test_integers(): Xint = X.astype(np.int64) tsvd = TruncatedSVD(n_components=6) Xtrans = tsvd.fit_transform(Xint) assert_equal(Xtrans.shape, (n_samples, tsvd.n_components)) def test_explained_variance(): # Test sparse data svd_a_10_sp = TruncatedSVD(10, algorithm="arpack") svd_r_10_sp = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_sp = TruncatedSVD(20, algorithm="arpack") svd_r_20_sp = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_sp = svd_a_10_sp.fit_transform(X) X_trans_r_10_sp = svd_r_10_sp.fit_transform(X) X_trans_a_20_sp = svd_a_20_sp.fit_transform(X) X_trans_r_20_sp = svd_r_20_sp.fit_transform(X) # Test dense data svd_a_10_de = TruncatedSVD(10, algorithm="arpack") svd_r_10_de = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_de = TruncatedSVD(20, algorithm="arpack") svd_r_20_de = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_de = svd_a_10_de.fit_transform(X.toarray()) X_trans_r_10_de = svd_r_10_de.fit_transform(X.toarray()) X_trans_a_20_de = svd_a_20_de.fit_transform(X.toarray()) X_trans_r_20_de = svd_r_20_de.fit_transform(X.toarray()) # helper arrays for tests below svds = (svd_a_10_sp, svd_r_10_sp, svd_a_20_sp, svd_r_20_sp, svd_a_10_de, svd_r_10_de, svd_a_20_de, svd_r_20_de) svds_trans = ( (svd_a_10_sp, X_trans_a_10_sp), (svd_r_10_sp, X_trans_r_10_sp), (svd_a_20_sp, X_trans_a_20_sp), (svd_r_20_sp, X_trans_r_20_sp), (svd_a_10_de, X_trans_a_10_de), (svd_r_10_de, X_trans_r_10_de), (svd_a_20_de, X_trans_a_20_de), (svd_r_20_de, X_trans_r_20_de), ) svds_10_v_20 = ( (svd_a_10_sp, svd_a_20_sp), (svd_r_10_sp, svd_r_20_sp), (svd_a_10_de, svd_a_20_de), (svd_r_10_de, svd_r_20_de), ) svds_sparse_v_dense = ( (svd_a_10_sp, svd_a_10_de), (svd_a_20_sp, svd_a_20_de), (svd_r_10_sp, svd_r_10_de), (svd_r_20_sp, svd_r_20_de), ) # Assert the 1st component is equal for svd_10, svd_20 in svds_10_v_20: assert_array_almost_equal( svd_10.explained_variance_ratio_, svd_20.explained_variance_ratio_[:10], decimal=5, ) # Assert that 20 components has higher explained variance than 10 for svd_10, svd_20 in svds_10_v_20: assert_greater( svd_20.explained_variance_ratio_.sum(), svd_10.explained_variance_ratio_.sum(), ) # Assert that all the values are greater than 0 for svd in svds: assert_array_less(0.0, svd.explained_variance_ratio_) # Assert that total explained variance is less than 1 for svd in svds: assert_array_less(svd.explained_variance_ratio_.sum(), 1.0) # Compare sparse vs. dense for svd_sparse, svd_dense in svds_sparse_v_dense: assert_array_almost_equal(svd_sparse.explained_variance_ratio_, svd_dense.explained_variance_ratio_) # Test that explained_variance is correct for svd, transformed in svds_trans: total_variance = np.var(X.toarray(), axis=0).sum() variances = np.var(transformed, axis=0) true_explained_variance_ratio = variances / total_variance assert_array_almost_equal( svd.explained_variance_ratio_, true_explained_variance_ratio, )
bsd-3-clause
silky/sms-tools
lectures/06-Harmonic-model/plots-code/sines-partials-harmonics-phase.py
22
1986
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/sine-440-490.wav') w = np.hamming(3529) N = 32768 hN = N/2 t = -20 pin = 4850 x1 = x[pin:pin+w.size] mX1, pX1 = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX1, t) pmag = mX1[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX1, pX1, ploc) plt.figure(1, figsize=(9, 6)) plt.subplot(311) plt.plot(fs*np.arange(pX1.size)/float(N), pX1, 'c', lw=1.5) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([200, 1000, -2, 8]) plt.title('pX + peaks (sine-440-490.wav)') (fs, x) = UF.wavread('../../../sounds/vibraphone-C6.wav') w = np.blackman(401) N = 1024 hN = N/2 t = -80 pin = 200 x2 = x[pin:pin+w.size] mX2, pX2 = DFT.dftAnal(x2, w, N) ploc = UF.peakDetection(mX2, t) pmag = mX2[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX2, pX2, ploc) plt.subplot(3,1,2) plt.plot(fs*np.arange(pX2.size)/float(N), pX2, 'c', lw=1.5) plt.plot(fs * iploc/N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([500,10000,min(pX2), 25]) plt.title('pX + peaks (vibraphone-C6.wav)') (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') w = np.blackman(651) N = 2048 hN = N/2 t = -80 pin = 10000 x3 = x[pin:pin+w.size] mX3, pX3 = DFT.dftAnal(x3, w, N) ploc = UF.peakDetection(mX3, t) pmag = mX3[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX3, pX3, ploc) plt.subplot(3,1,3) plt.plot(fs*np.arange(pX3.size)/float(N), pX3, 'c', lw=1.5) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([0,6000,2, 24]) plt.title('pX + peaks (oboe-A4.wav)') plt.tight_layout() plt.savefig('sines-partials-harmonics-phase.png') plt.show()
agpl-3.0
ajrichards/bayesian-examples
hypothesis-testing/binomial_prob.py
2
1308
#!/usr/bin/env python """ Let's say we play a game where I keep flipping a coin until I get heads. If the first time I get heads is on the nth coin, then I pay you 2n-1 dollars. How much would you pay me to play this game? You should end up with a sequence that you need to find the closed form of. If you don't know how to do this, write some python code that sums the first 100. E(W) = sum_{n >= 1} (2n-1)/2^n = 3 """ import matplotlib.pyplot as plt import numpy as np ## simulate the number of flips before heads def coin(): tails, num_flips = True, 0 while tails: num_flips += 1 if np.random.binomial(1,0.5): tails = False return num_flips if __name__ == '__main__': ## simulate flips = [coin() for k in xrange(10000)] ## get the distribution of counts condition on the number of flips range_flips = range(1, max(flips) + 1) counts = np.array([flips.count(k)*1. for k in range_flips]) fig = plt.figure() ax = fig.add_subplot(111) ax.bar(range_flips,counts,alpha=0.4) ax.set_ylabel("counts") ax.set_xlabel("num flips to win") #print [int(i) for i in counts] winnings = sum([counts[k - 1]*(2*(k)-1)/sum(counts) for k in range_flips]) #print range_flips print winnings plt.show()
bsd-3-clause
tmhm/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
shruthiag96/ns3-dev-vns
src/flow-monitor/examples/wifi-olsr-flowmon.py
108
7439
# -*- Mode: Python; -*- # Copyright (c) 2009 INESC Porto # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Gustavo Carneiro <[email protected]> import sys import ns.applications import ns.core import ns.flow_monitor import ns.internet import ns.mobility import ns.network import ns.olsr import ns.wifi try: import ns.visualizer except ImportError: pass DISTANCE = 100 # (m) NUM_NODES_SIDE = 3 def main(argv): cmd = ns.core.CommandLine() cmd.NumNodesSide = None cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)") cmd.Results = None cmd.AddValue("Results", "Write XML results to file") cmd.Plot = None cmd.AddValue("Plot", "Plot the results using the matplotlib python module") cmd.Parse(argv) wifi = ns.wifi.WifiHelper.Default() wifiMac = ns.wifi.NqosWifiMacHelper.Default() wifiPhy = ns.wifi.YansWifiPhyHelper.Default() wifiChannel = ns.wifi.YansWifiChannelHelper.Default() wifiPhy.SetChannel(wifiChannel.Create()) ssid = ns.wifi.Ssid("wifi-default") wifi.SetRemoteStationManager("ns3::ArfWifiManager") wifiMac.SetType ("ns3::AdhocWifiMac", "Ssid", ns.wifi.SsidValue(ssid)) internet = ns.internet.InternetStackHelper() list_routing = ns.internet.Ipv4ListRoutingHelper() olsr_routing = ns.olsr.OlsrHelper() static_routing = ns.internet.Ipv4StaticRoutingHelper() list_routing.Add(static_routing, 0) list_routing.Add(olsr_routing, 100) internet.SetRoutingHelper(list_routing) ipv4Addresses = ns.internet.Ipv4AddressHelper() ipv4Addresses.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0")) port = 9 # Discard port(RFC 863) onOffHelper = ns.applications.OnOffHelper("ns3::UdpSocketFactory", ns.network.Address(ns.network.InetSocketAddress(ns.network.Ipv4Address("10.0.0.1"), port))) onOffHelper.SetAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate("100kbps"))) onOffHelper.SetAttribute("OnTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=1]")) onOffHelper.SetAttribute("OffTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=0]")) addresses = [] nodes = [] if cmd.NumNodesSide is None: num_nodes_side = NUM_NODES_SIDE else: num_nodes_side = int(cmd.NumNodesSide) for xi in range(num_nodes_side): for yi in range(num_nodes_side): node = ns.network.Node() nodes.append(node) internet.Install(ns.network.NodeContainer(node)) mobility = ns.mobility.ConstantPositionMobilityModel() mobility.SetPosition(ns.core.Vector(xi*DISTANCE, yi*DISTANCE, 0)) node.AggregateObject(mobility) devices = wifi.Install(wifiPhy, wifiMac, node) ipv4_interfaces = ipv4Addresses.Assign(devices) addresses.append(ipv4_interfaces.GetAddress(0)) for i, node in enumerate(nodes): destaddr = addresses[(len(addresses) - 1 - i) % len(addresses)] #print i, destaddr onOffHelper.SetAttribute("Remote", ns.network.AddressValue(ns.network.InetSocketAddress(destaddr, port))) app = onOffHelper.Install(ns.network.NodeContainer(node)) urv = ns.core.UniformRandomVariable() app.Start(ns.core.Seconds(urv.GetValue(20, 30))) #internet.EnablePcapAll("wifi-olsr") flowmon_helper = ns.flow_monitor.FlowMonitorHelper() #flowmon_helper.SetMonitorAttribute("StartTime", ns.core.TimeValue(ns.core.Seconds(31))) monitor = flowmon_helper.InstallAll() monitor = flowmon_helper.GetMonitor() monitor.SetAttribute("DelayBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("JitterBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("PacketSizeBinWidth", ns.core.DoubleValue(20)) ns.core.Simulator.Stop(ns.core.Seconds(44.0)) ns.core.Simulator.Run() def print_stats(os, st): print >> os, " Tx Bytes: ", st.txBytes print >> os, " Rx Bytes: ", st.rxBytes print >> os, " Tx Packets: ", st.txPackets print >> os, " Rx Packets: ", st.rxPackets print >> os, " Lost Packets: ", st.lostPackets if st.rxPackets > 0: print >> os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets) print >> os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets-1)) print >> os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1 if 0: print >> os, "Delay Histogram" for i in range(st.delayHistogram.GetNBins () ): print >> os, " ",i,"(", st.delayHistogram.GetBinStart (i), "-", \ st.delayHistogram.GetBinEnd (i), "): ", st.delayHistogram.GetBinCount (i) print >> os, "Jitter Histogram" for i in range(st.jitterHistogram.GetNBins () ): print >> os, " ",i,"(", st.jitterHistogram.GetBinStart (i), "-", \ st.jitterHistogram.GetBinEnd (i), "): ", st.jitterHistogram.GetBinCount (i) print >> os, "PacketSize Histogram" for i in range(st.packetSizeHistogram.GetNBins () ): print >> os, " ",i,"(", st.packetSizeHistogram.GetBinStart (i), "-", \ st.packetSizeHistogram.GetBinEnd (i), "): ", st.packetSizeHistogram.GetBinCount (i) for reason, drops in enumerate(st.packetsDropped): print " Packets dropped by reason %i: %i" % (reason, drops) #for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) monitor.CheckForLostPackets() classifier = flowmon_helper.GetClassifier() if cmd.Results is None: for flow_id, flow_stats in monitor.GetFlowStats(): t = classifier.FindFlow(flow_id) proto = {6: 'TCP', 17: 'UDP'} [t.protocol] print "FlowID: %i (%s %s/%s --> %s/%i)" % \ (flow_id, proto, t.sourceAddress, t.sourcePort, t.destinationAddress, t.destinationPort) print_stats(sys.stdout, flow_stats) else: print monitor.SerializeToXmlFile(cmd.Results, True, True) if cmd.Plot is not None: import pylab delays = [] for flow_id, flow_stats in monitor.GetFlowStats(): tupl = classifier.FindFlow(flow_id) if tupl.protocol == 17 and tupl.sourcePort == 698: continue delays.append(flow_stats.delaySum.GetSeconds() / flow_stats.rxPackets) pylab.hist(delays, 20) pylab.xlabel("Delay (s)") pylab.ylabel("Number of Flows") pylab.show() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
gpl-2.0
mfouesneau/pyphot
pyphot/sandbox.py
1
55913
""" Sandbox of new developments Use at your own risks Photometric package using Astropy Units ======================================= Defines a Filter class and associated functions to extract photometry. This also include functions to keep libraries up to date .. note:: integrations are done using :func:`trapz` Why not Simpsons? Simpsons principle is to take sequence of 3 points to make a quadratic interpolation. Which in the end, when filters have sharp edges, the error due to this "interpolation" are extremely large in comparison to the uncertainties induced by trapeze integration. """ from __future__ import print_function, division import os from functools import wraps import numpy as np import tables from scipy.integrate import trapz from .simpletable import SimpleTable from .vega import Vega from .config import libsdir from .licks import reduce_resolution as _reduce_resolution from .licks import LickIndex, LickLibrary # directories # __default__ = libsdir + '/filters.hd5' # __default__ = libsdir + '/filters' __default__ = libsdir + '/new_filters.hd5' __default_lick__ = libsdir + '/licks.dat' from .ezunits import unit as Unit class Constants(object): """ A namespace for constants """ # Planck's constant in erg * sec h = 6.626075540e-27 * Unit('erg * s') # Speed of light in cm/s c = Unit('c').to('AA/s') def hasUnit(val): """ Check is an object has units """ return hasattr(val, 'unit') or hasattr(val, 'units') class set_method_default_units(object): """ Decorator for classmethods that makes sure that the inputs of slamb, sflux are in given units expects the decorated method to be defined as >> def methodname(self, lamb, flux) """ def __init__(self, wavelength_unit, flux_unit, output_unit=None): self.wavelength_unit = Unit(wavelength_unit) self.flux_unit = Unit(flux_unit) self.output_unit = output_unit @classmethod def force_units(cls, value, unit): if unit is None: return value try: return value.to(unit) except AttributeError: msg = 'Warning: assuming {0:s} units to unitless object.' print(msg.format(str(unit))) return value * unit def __call__(self, func): @wraps(func) def wrapper(filter_, slamb, sflux, *args, **kwargs): _slamb = set_method_default_units.force_units(slamb, self.wavelength_unit) _sflux = set_method_default_units.force_units(sflux, self.flux_unit) output = func(filter_, _slamb, _sflux, *args, **kwargs) return set_method_default_units.force_units(output, self.output_unit) return wrapper def _drop_units(q): """ Drop the unit definition silently """ try: return q.value except AttributeError: try: return q.magnitude except AttributeError: return q class UnitFilter(object): """ Evolution of Filter that makes sure the input spectra and output fluxes have units to avoid mis-interpretation. Note the usual (non SI) units of flux definitions: flam = erg/s/cm**2/AA fnu = erg/s/cm**2/Hz photflam = photon/s/cm**2/AA photnu = photon/s/cm**2/Hz Define a filter by its name, wavelength and transmission The type of detector (energy or photon counter) can be specified for adapting calculations. (default: photon) Attributes ---------- name: str name of the filter cl: float central wavelength of the filter norm: float normalization factor of the filter lpivot: float pivot wavelength of the filter wavelength: ndarray wavelength sequence defining the filter transmission curve transmit: ndarray transmission curve of the filter dtype: str detector type, either "photon" or "energy" counter unit: str wavelength units """ def __init__(self, wavelength, transmit, name='', dtype="photon", unit=None): """Constructor""" self.name = name self.set_dtype(dtype) try: # get units from the inputs self._wavelength = wavelength.value unit = str(wavelength.unit) except AttributeError: self._wavelength = wavelength self.set_wavelength_unit(unit) # make sure input data are ordered and cleaned of weird values. idx = np.argsort(self._wavelength) self._wavelength = self._wavelength[idx] self.transmit = np.clip(transmit[idx], 0., np.nanmax(transmit)) self.norm = trapz(self.transmit, self._wavelength) self._lT = trapz(self._wavelength * self.transmit, self._wavelength) self._lpivot = self._calculate_lpivot() if self.norm > 0: self._cl = self._lT / self.norm else: self._cl = 0. def _calculate_lpivot(self): if self.transmit.max() <= 0: return 0. if 'photon' in self.dtype: lpivot2 = self._lT / trapz(self.transmit / self._wavelength, self._wavelength) else: lpivot2 = self.norm / trapz(self.transmit / self._wavelength ** 2, self._wavelength) return np.sqrt(lpivot2) def set_wavelength_unit(self, unit): """ Set the wavelength units """ try: # get units from the inputs self.wavelength_unit = str(self._wavelength.unit) except AttributeError: self.wavelength_unit = unit def set_dtype(self, dtype): """ Set the detector type (photon or energy)""" _d = dtype.lower() if "phot" in _d: self.dtype = "photon" elif "ener" in _d: self.dtype = "energy" else: raise ValueError('Unknown detector type {0}'.format(dtype)) def info(self, show_zeropoints=True): """ display information about the current filter""" msg = """Filter object information: name: {s.name:s} detector type: {s.dtype:s} wavelength units: {s.wavelength_unit} central wavelength: {s.cl:f} pivot wavelength: {s.lpivot:f} effective wavelength: {s.leff:f} photon wavelength: {s.lphot:f} minimum wavelength: {s.lmin:f} maximum wavelength: {s.lmax:f} norm: {s.norm:f} effective width: {s.width:f} fullwidth half-max: {s.fwhm:f} definition contains {s.transmit.size:d} points""" print(msg.format(s=self).replace('None', 'unknown')) # zero points only if units if (self.wavelength_unit is None) or (not show_zeropoints): return print(""" Zeropoints Vega: {s.Vega_zero_mag:f} mag, {s.Vega_zero_flux}, {s.Vega_zero_Jy} {s.Vega_zero_photons} AB: {s.AB_zero_mag:f} mag, {s.AB_zero_flux}, {s.AB_zero_Jy} ST: {s.ST_zero_mag:f} mag, {s.ST_zero_flux}, {s.ST_zero_Jy} """.format(s=self)) def __repr__(self): return "Filter: {0:s}, {1:s}".format(self.name, object.__repr__(self)) @property def wavelength(self): """ Unitwise wavelength definition """ if self.wavelength_unit is not None: return self._wavelength * Unit(self.wavelength_unit) else: return self._wavelength @property def lmax(self): """ Calculated as the last value with a transmission at least 1% of maximum transmission """ cond = (self.transmit / self.transmit.max()) > 1./100 return max(self.wavelength[cond]) @property def lmin(self): """ Calculate das the first value with a transmission at least 1% of maximum transmission """ cond = (self.transmit / self.transmit.max()) > 1./100 return min(self.wavelength[cond]) @property def width(self): """ Effective width Equivalent to the horizontal size of a rectangle with height equal to maximum transmission and with the same area that the one covered by the filter transmission curve. W = int(T dlamb) / max(T) """ return (self.norm / max(self.transmit)) * Unit(self.wavelength_unit) @property def fwhm(self): """ the difference between the two wavelengths for which filter transmission is half maximum ..note:: This calculation is not exact but rounded to the nearest passband data points """ vals = self.transmit / self.transmit.max() - 0.5 zero_crossings = np.where(np.diff(np.sign(vals)))[0] lambs = self.wavelength[zero_crossings] return np.diff(lambs)[0] @property def lpivot(self): """ Unitwise wavelength definition """ if self.wavelength_unit is not None: return self._lpivot * Unit(self.wavelength_unit) else: return self._lpivot @property def cl(self): """ Unitwise wavelength definition """ if self.wavelength_unit is not None: return self._cl * Unit(self.wavelength_unit) else: return self._cl @property def leff(self): """ Unitwise Effective wavelength leff = int (lamb * T * Vega dlamb) / int(T * Vega dlamb) """ with Vega() as v: s = self.reinterp(v.wavelength) w = s._wavelength if s.transmit.max() > 0: leff = np.trapz(w * s.transmit * v.flux.value, w, axis=-1) leff /= np.trapz(s.transmit * v.flux.value, w, axis=-1) else: leff = float('nan') if s.wavelength_unit is not None: leff = leff * Unit(s.wavelength_unit) if self.wavelength_unit is not None: return leff.to(self.wavelength_unit) return leff else: return leff @classmethod def _validate_sflux(cls, slamb, sflux): """ clean data for inf in input """ _sflux = _drop_units(sflux) _slamb = _drop_units(slamb) if True in np.isinf(sflux): indinf = np.where(np.isinf(_sflux)) indfin = np.where(np.isfinite(_sflux)) _sflux[indinf] = np.interp(_slamb[indinf], _slamb[indfin], _sflux[indfin], left=0, right=0) try: _unit = str(sflux.unit) return _sflux * Unit(_unit) except AttributeError: return _sflux @classmethod def _get_zero_like(cls, sflux, axis=-1): """return a zero value corresponding to a flux calculation on sflux""" # _sflux = _drop_units(sflux) # shape = _sflux.shape # if axis < 0: # axis = len(shape) + axis # newshape = shape[:axis] + shape[axis + 1:] # return np.zeros(newshape, _sflux.dtype) return np.zeros_like(sflux).sum(axis=axis) @property def lphot(self): """ Photon distribution based effective wavelength. Defined as lphot = int(lamb ** 2 * T * Vega dlamb) / int(lamb * T * Vega dlamb) which we calculate as lphot = get_flux(lamb * vega) / get_flux(vega) """ if self.wavelength_unit is None: raise AttributeError('Needs wavelength units') with Vega() as v: wave = v.wavelength.value # Cheating units to avoid making a new filter f_vega = self.get_flux(v.wavelength, v.flux, axis=-1) f_lamb_vega = self.get_flux(v.wavelength, wave * v.flux, axis=-1) f_lamb2_vega = self.get_flux(v.wavelength, wave ** 2 * v.flux, axis=-1) if 'photon' in self.dtype: lphot = (f_lamb_vega / f_vega) else: lphot = f_lamb2_vega / f_lamb_vega return (lphot * Unit(str(v.wavelength.unit))).to(self.wavelength_unit) def _get_filter_in_units_of(self, slamb=None): w = self.wavelength if hasUnit(slamb) & hasUnit(w): return w.to(str(slamb.unit)).value else: print("Warning: assuming units are consistent") return self._wavelength @set_method_default_units('AA', 'flam', output_unit='photon*s**-1*cm**-2*AA**-1') def get_Nphotons(self, slamb, sflux, axis=-1): """getNphot the number of photons through the filter (Ntot / width in the documentation) getflux() * leff / hc Parameters ---------- slamb: ndarray(dtype=float, ndim=1) spectrum wavelength definition domain sflux: ndarray(dtype=float, ndim=1) associated flux in erg/s/cm2/AA Returns ------- N: float Number of photons of the spectrum within the filter """ passb = self.reinterp(slamb) wave = passb._wavelength dlambda = np.diff(wave) # h = 6.626075540e-27 # erg * s # c = 2.99792458e18 # AA / s h = Constants.h.to('erg * s').value c = Constants.c.to('AA/s').value vals = sflux.value * wave * passb.transmit vals[~np.isfinite(vals)] = 0. Nphot = 0.5 * np.sum((vals[1:] + vals[:-1]) * dlambda) / (h * c) Nphot = Nphot * Unit('photon*s**-1*cm**-2') return Nphot / passb.width # photons / cm2 / s / A @property def Vega_zero_photons(self): """ Vega number of photons per wavelength unit .. note:: see `self.get_Nphotons` """ with Vega() as v: return self.get_Nphotons(v.wavelength, v.flux) @set_method_default_units('AA', 'flam', output_unit='erg*s**-1*cm**-2*AA**-1') def get_flux(self, slamb, sflux, axis=-1): """getFlux Integrate the flux within the filter and return the integrated energy If you consider applying the filter to many spectra, you might want to consider extractSEDs. Parameters ---------- slamb: ndarray(dtype=float, ndim=1) spectrum wavelength definition domain sflux: ndarray(dtype=float, ndim=1) associated flux Returns ------- flux: float Energy of the spectrum within the filter """ passb = self.reinterp(slamb) ifT = passb.transmit _slamb = _drop_units(slamb) _sflux = _drop_units(passb._validate_sflux(slamb, sflux)) _w_unit = str(slamb.unit) _f_unit = str(sflux.unit) # if the filter is null on that wavelength range flux is then 0 # ind = ifT > 0. nonzero = np.where(ifT > 0)[0] if nonzero.size <= 0: return passb._get_zero_like(sflux) # avoid calculating many zeros nonzero_start = max(0, min(nonzero) - 5) nonzero_end = min(len(ifT), max(nonzero) + 5) ind = np.zeros(len(ifT), dtype=bool) ind[nonzero_start:nonzero_end] = True if True in ind: try: _sflux = _sflux[:, ind] except Exception: _sflux = _sflux[ind] # limit integrals to where necessary if 'photon' in passb.dtype: a = np.trapz(_slamb[ind] * ifT[ind] * _sflux, _slamb[ind], axis=axis) b = np.trapz(_slamb[ind] * ifT[ind], _slamb[ind]) a = a * Unit('*'.join((_w_unit, _f_unit, _w_unit))) b = b * Unit('*'.join((_w_unit, _w_unit))) elif 'energy' in passb.dtype: a = np.trapz(ifT[ind] * _sflux, _slamb[ind], axis=axis) b = np.trapz(ifT[ind], _slamb[ind]) a = a * Unit('*'.join((_f_unit, _w_unit))) b = b * Unit(_w_unit) if (np.isinf(a.value).any() | np.isinf(b.value).any()): print(self.name, "Warn for inf value") return a / b else: return passb._get_zero_like(_sflux) def getFlux(self, slamb, sflux, axis=-1): """ Integrate the flux within the filter and return the integrated energy If you consider applying the filter to many spectra, you might want to consider extractSEDs. Parameters ---------- slamb: ndarray(dtype=float, ndim=1) spectrum wavelength definition domain sflux: ndarray(dtype=float, ndim=1) associated flux Returns ------- flux: float Energy of the spectrum within the filter """ return self.get_flux(slamb, sflux, axis=axis) def reinterp(self, lamb): """ reinterpolate filter onto a different wavelength definition """ _wavelength = self._get_filter_in_units_of(lamb) _lamb = _drop_units(lamb) try: _unit = str(lamb.unit) except Exception: _unit = self.wavelength_unit ifT = np.interp(_lamb, _wavelength, self.transmit, left=0., right=0.) return self.__class__(_lamb, ifT, name=self.name, dtype=self.dtype, unit=_unit) def __call__(self, slamb, sflux): return self.applyTo(slamb, sflux) def apply_transmission(self, slamb, sflux): """ Apply filter transmission to a spectrum (with reinterpolation of the filter) Parameters ---------- slamb: ndarray spectrum wavelength definition domain sflux: ndarray associated flux Returns ------- flux: float new spectrum values accounting for the filter """ _wavelength = self._get_filter_in_units_of(slamb) _lamb = _drop_units(slamb) ifT = np.interp(_lamb, _wavelength, self.transmit, left=0., right=0.) return ifT * sflux def applyTo(self, slamb, sflux): """ For compatibility but bad name """ return self.apply_transmission(slamb, sflux) @classmethod def from_ascii(cls, fname, dtype='csv', **kwargs): """ Load filter from ascii file """ lamb = kwargs.pop('lamb', None) name = kwargs.pop('name', None) detector = kwargs.pop('detector', 'photon') unit = kwargs.pop('unit', None) t = SimpleTable(fname, dtype=dtype, **kwargs) w = t['WAVELENGTH'].astype(float) r = t['THROUGHPUT'].astype(float) # update properties from file header detector = t.header.get('DETECTOR', detector) unit = t.header.get('WAVELENGTH_UNIT', unit) name = t.header.get('NAME', name) # try from the comments in the header first if name in (None, 'None', 'none', ''): name = [k.split()[1] for k in t.header.get('COMMENT', '').split('\n') if 'COMPNAME' in k] name = ''.join(name).replace('"', '').replace("'", '') # if that did not work try the table header directly if name in (None, 'None', 'none', ''): name = t.header['NAME'] _filter = UnitFilter(w, r, name=name, dtype=detector, unit=unit) # reinterpolate if requested if lamb is not None: _filter = _filter.reinterp(lamb) return _filter def write_to(self, fname, **kwargs): """ Export filter to a file Parameters ---------- fname: str filename Uses `SimpleTable.write` parameters """ data = self.to_Table() data.write(fname, **kwargs) def to_Table(self, **kwargs): """ Export filter to a SimpleTable object Parameters ---------- fname: str filename Uses `SimpleTable` parameters """ data = SimpleTable({'WAVELENGTH': self._wavelength, 'THROUGHPUT': self.transmit}) if self.wavelength_unit is not None: data.header['WAVELENGTH_UNIT'] = self.wavelength_unit data.header['DETECTOR'] = self.dtype data.header['COMPNAME'] = str(self.name) data.header['NAME'] = str(self.name) data.set_comment('THROUGHPUT', 'filter throughput definition') data.set_comment('WAVELENGTH', 'filter wavelength definition') data.set_comment('WAVELENGTH', self.wavelength_unit or 'AA') return data def to_dict(self): """ Return a dictionary of the filter """ data = {'WAVELENGTH': self._wavelength, 'THROUGHPUT': self.transmit} if self.wavelength_unit is not None: data['WAVELENGTH_UNIT'] = self.wavelength_unit data['DETECTOR'] = self.dtype data['NAME'] = self.name data['PIVOT'] = self._lpivot data['CENTRAL'] = self._cl data['EFFECTIVE'] = _drop_units(self.leff) data['NORM'] = self.norm return data @classmethod def make_integration_filter(cls, lmin, lmax, name='', dtype='photon', unit=None): """ Generate an heavyside filter between lmin and lmax """ dyn = lmax - lmin try: unit = str(dyn.unit) dyn = _drop_units(dyn) except Exception: pass w = np.array([lmin - 0.01 * dyn, lmin, lmax, lmax + 0.01 * dyn]) f = np.array([0., 1., 1., 0.]) return UnitFilter(w, f, name=name, dtype=dtype, unit=unit) @property def AB_zero_mag(self): """ AB magnitude zero point ABmag = -2.5 * log10(f_nu) - 48.60 = -2.5 * log10(f_lamb) - 2.5 * log10(lpivot ** 2 / c) - 48.60 = -2.5 * log10(f_lamb) - zpts """ if self.wavelength_unit is None: raise AttributeError('Needs wavelength units') C1 = (Unit(self.wavelength_unit).to('AA') ** 2 / Constants.c.to('AA/s').value) c1 = self._lpivot ** 2 * C1 m = 2.5 * np.log10(_drop_units(c1)) + 48.6 return m @property def AB_zero_flux(self): """ AB flux zero point in erg/s/cm2/AA """ return 10 ** (-0.4 * self.AB_zero_mag) * Unit('erg*s**-1*cm**-2*AA**-1') @property def AB_zero_Jy(self): """ AB flux zero point in Jansky (Jy) """ c = 1e-8 * Constants.c.to('m/s').value f = 1e5 / c * self.lpivot.to('AA').value ** 2 * self.AB_zero_flux.value return f * Unit('Jy') @property def Vega_zero_mag(self): """ vega magnitude zero point vegamag = -2.5 * log10(f_lamb) + 2.5 * log10(f_vega) vegamag = -2.5 * log10(f_lamb) - zpts """ flux = self.Vega_zero_flux.value if flux > 0: return -2.5 * np.log10(flux) else: return float('nan') @property def Vega_zero_flux(self): """ Vega flux zero point in erg/s/cm2/AA """ with Vega() as v: f_vega = self.get_flux(v.wavelength, v.flux, axis=-1) return f_vega @property def Vega_zero_Jy(self): """ Vega flux zero point in Jansky (Jy) """ c = 1e-8 * Constants.c.to('m/s').value f = 1e5 / c * (self.lpivot.to('AA').value ** 2 * self.Vega_zero_flux.to('erg*s**-1*cm**-2*AA**-1').value) return f * Unit('Jy') @property def ST_zero_mag(self): """ ST magnitude zero point STmag = -2.5 * log10(f_lamb) -21.1 """ return 21.1 @property def ST_zero_flux(self): """ ST flux zero point in erg/s/cm2/AA """ return 10 ** (-0.4 * self.ST_zero_mag) * Unit('erg*s**-1*cm**-2*AA**-1') @property def ST_zero_Jy(self): """ ST flux zero point in Jansky (Jy) """ c = 1e-8 * Constants.c.to('m/s').value f = 1e5 / c * self.lpivot.to('AA').value ** 2 * self.ST_zero_flux.value return f * Unit('Jy') class UncertainFilter(UnitFilter): """ What could be a filter with uncertainties Attributes ---------- wavelength: ndarray wavelength sequence defining the filter transmission curve mean_: Filter mean passband transmission samples_: sequence(Filter) samples from the uncertain passband transmission model name: string name of the passband dtype: str detector type, either "photon" or "energy" counter unit: str wavelength units """ def __init__(self, wavelength, mean_transmit, samples, name='', dtype='photon', unit=None): """ Constructor """ self.mean_ = UnitFilter(wavelength, mean_transmit, name=name, dtype=dtype, unit=unit) self.samples_ = [UnitFilter(wavelength, transmit_k, name=name + '_{0:d}'.format(num), dtype=dtype, unit=unit) for (num, transmit_k) in enumerate(samples)] self.name = name self.dtype = self.mean_.dtype self.model_ = None @classmethod def from_gp_model(cls, model, xprime=None, n_samples=10, **kwargs): """ Generate a filter object from a sklearn GP model Parameters ---------- model: sklearn.gaussian_process.GaussianProcessRegressor model of the passband xprime: ndarray wavelength to express the model in addition to the training points n_samples: int number of samples to generate from the model. **kwawrgs: dict UncertainFilter keywords """ if xprime is None: xpred = model.X_train_ else: xpred = np.unique(np.hstack([_drop_units(xprime), model.X_train_.ravel()])) xpred = xpred.reshape(1, -1).T unit_ = kwargs.pop('unit', None) if unit_ is None: unit_ = str(getattr(xprime, 'units', None)) mean_transmit, _ = model.predict(xpred, return_std=True) samples = model.sample_y(xpred, n_samples=n_samples) unc_filter = cls(xpred.ravel(), mean_transmit, samples.T, unit=unit_, **kwargs) unc_filter.model_ = model return unc_filter def info(self, show_zeropoints=True): """ display information about the current filter""" string = self.mean_.info(show_zeropoints) string = string.replace('Filter object information', 'Filter object mean information only') return string def set_dtype(self, dtype): """ Set the detector type (photon or energy)""" self.mean_.set_dtype(dtype) for filter_k in self.samples_: filter_k.set_dtype(dtype) self.dtype = self.mean_.dtype def set_wavelength_unit(self, unit): """ Set the wavelength units """ self.mean_.set_wavelength_unit(unit) for filter_k in self.samples_: filter_k.set_wavelength_unit(unit) @property def wavelength(self): """ Unitwise wavelength definition """ return self.mean_.wavelength @property def wavelength_unit(self): """ Unit wavelength definition """ return self.mean_.wavelength_unit @property def _wavelength(self): """ Unitless wavelength definition """ return self.mean_._wavelength @property def transmit(self): """ Transmission curves """ return self._get_mean_and_samples_attribute('transmit') def _get_samples_attribute(self, attr, *args, **kwargs): """ Returns the attribute from all samples """ try: vals = [getattr(fk, attr)(*args, **kwargs) for fk in self.samples_] except TypeError: vals = [getattr(fk, attr) for fk in self.samples_] try: unit_ = Unit(str(vals[0].unit)) return np.array([v.value for v in vals]) * unit_ except AttributeError: return np.array(vals) def _get_mean_attribute(self, attr, *args, **kwargs): """ Returns the attribute from the mean passband """ attr = getattr(self.mean_, attr) try: return attr(*args, **kwargs) except TypeError: return attr def _get_mean_and_samples_attribute(self, attr, *args, **kwargs): """ Compute / extract mean and smapled filter attributes Parameters ---------- attr: str attribute to get (can be a callable attribute) args: sequence any argument of attr kwargs: dict any keywords for attr Returns ------- mean_: object value from the mean passband samples_: sequence(object) values from each sampled passband """ return (self._get_mean_attribute(attr, *args, **kwargs), self._get_samples_attribute(attr, *args, **kwargs)) @property def lmax(self): """ Calculated as the last value with a transmission at least 1% of maximum transmission """ return self._get_mean_and_samples_attribute('lmax') @property def lmin(self): """ Calculate das the first value with a transmission at least 1% of maximum transmission """ return self._get_mean_and_samples_attribute('lmin') @property def width(self): """ Effective width Equivalent to the horizontal size of a rectangle with height equal to maximum transmission and with the same area that the one covered by the filter transmission curve. W = int(T dlamb) / max(T) """ return self._get_mean_and_samples_attribute('width') @property def fwhm(self): """ the difference between the two wavelengths for which filter transmission is half maximum ..note:: This calculation is not exact but rounded to the nearest passband data points """ return self._get_mean_and_samples_attribute('fwhm') @property def lpivot(self): """ Unitwise wavelength definition """ return self._get_mean_and_samples_attribute('lpivot') @property def cl(self): """ Unitwise wavelength definition """ return self._get_mean_and_samples_attribute('cl') @property def leff(self): """ Unitwise Effective wavelength leff = int (lamb * T * Vega dlamb) / int(T * Vega dlamb) """ return self._get_mean_and_samples_attribute('leff') @property def lphot(self): """ Photon distribution based effective wavelength. Defined as lphot = int(lamb ** 2 * T * Vega dlamb) / int(lamb * T * Vega dlamb) which we calculate as lphot = get_flux(lamb * vega) / get_flux(vega) """ return self._get_mean_and_samples_attribute('lphot') def get_Nphotons(self, slamb, sflux, axis=-1): """getNphot the number of photons through the filter (Ntot / width in the documentation) getflux() * leff / hc Parameters ---------- slamb: ndarray(dtype=float, ndim=1) spectrum wavelength definition domain sflux: ndarray(dtype=float, ndim=1) associated flux in erg/s/cm2/AA Returns ------- N: float Number of photons of the spectrum within the filter """ mean, samples = self._get_mean_and_samples_attribute('get_Nphotons', slamb, sflux, axis=axis) return mean, samples @property def Vega_zero_photons(self): """ Vega number of photons per wavelength unit .. note:: see `self.get_Nphotons` """ return self._get_mean_and_samples_attribute('Vega_zero_photons') def getFlux(self, slamb, sflux, axis=-1): """getFlux Integrate the flux within the filter and return the integrated energy If you consider applying the filter to many spectra, you might want to consider extractSEDs. Parameters ---------- slamb: ndarray(dtype=float, ndim=1) spectrum wavelength definition domain sflux: ndarray(dtype=float, ndim=1) associated flux Returns ------- flux: float Energy of the spectrum within the filter """ mean, samples = self._get_mean_and_samples_attribute('getFlux', slamb, sflux, axis=axis) return mean, samples def reinterp(self, lamb): """ reinterpolate filter onto a different wavelength definition """ mean, samples = self._get_mean_and_samples_attribute('reinterp') mean_val = mean(lamb) samp_val = [sk(mean_val.wavelength) for sk in samples] samp_transmissions = [sk.transmit for sk in samp_val] return self.__class__(mean_val.wavelength, mean_val.transmit, samp_transmissions, name=self.name, dtype=mean_val.dtype, unit=mean_val.wavelength_unit) def apply_transmission(self, slamb, sflux): """ Apply filter transmission to a spectrum (with reinterpolation of the filter) Parameters ---------- slamb: ndarray spectrum wavelength definition domain sflux: ndarray associated flux Returns ------- flux: float new spectrum values accounting for the filter """ mean, samples = self._get_mean_and_samples_attribute('apply_transmission') mean_val = mean(slamb, sflux) samp_val = [sk(slamb, sflux) for sk in samples] return mean_val, samp_val @property def AB_zero_mag(self): """ AB magnitude zero point ABmag = -2.5 * log10(f_nu) - 48.60 = -2.5 * log10(f_lamb) - 2.5 * log10(lpivot ** 2 / c) - 48.60 = -2.5 * log10(f_lamb) - zpts """ return self._get_mean_and_samples_attribute('AB_zero_mag') @property def AB_zero_flux(self): """ AB flux zero point in erg/s/cm2/AA """ return self._get_mean_and_samples_attribute('AB_zero_flux') @property def AB_zero_Jy(self): """ AB flux zero point in Jansky (Jy) """ return self._get_mean_and_samples_attribute('AB_zero_Jy') @property def Vega_zero_mag(self): """ Vega magnitude zero point Vegamag = -2.5 * log10(f_lamb) + 2.5 * log10(f_vega) Vegamag = -2.5 * log10(f_lamb) - zpts """ return self._get_mean_and_samples_attribute('Vega_zero_mag') @property def Vega_zero_flux(self): """ Vega flux zero point in erg/s/cm2/AA """ return self._get_mean_and_samples_attribute('Vega_zero_flux') @property def Vega_zero_Jy(self): """ Vega flux zero point in Jansky (Jy) """ return self._get_mean_and_samples_attribute('Vega_zero_Jy') @property def ST_zero_mag(self): """ ST magnitude zero point STmag = -2.5 * log10(f_lamb) -21.1 """ return 21.1 @property def ST_zero_flux(self): """ ST flux zero point in erg/s/cm2/AA """ return 10 ** (-0.4 * self.ST_zero_mag) * Unit('erg*s-1*cm-2*AA-1') @property def ST_zero_Jy(self): """ ST flux zero point in Jansky (Jy) """ return self._get_mean_and_samples_attribute('ST_zero_Jy') def to_Table(self, **kwargs): """ Export filter to a SimpleTable object Parameters ---------- fname: str filename Uses `SimpleTable` parameters """ mean_transmit, transmit_ = self.transmit data_ = {'WAVELENGTH': self._wavelength, 'THROUGHPUT': mean_transmit} for num, filterk in enumerate(transmit_, 1): data_['THROUGHPUT_{0:d}'.format(num)] = filterk data = SimpleTable(data_) if self.wavelength_unit is not None: data.header['WAVELENGTH_UNIT'] = self.wavelength_unit data.header['DETECTOR'] = self.dtype data.header['COMPNAME'] = self.name data.header['NAME'] = self.name data.set_comment('THROUGHPUT', 'filter throughput definition') data.set_comment('WAVELENGTH', 'filter wavelength definition') for num in range(1, len(transmit_) + 1): data.set_comment('THROUGHPUT_{0:d}'.format(num), 'filter throughput sample') data.set_comment('WAVELENGTH', self.wavelength_unit or 'AA') return data @classmethod def from_ascii(cls, fname, dtype='csv', **kwargs): """ Load filter from ascii file """ lamb = kwargs.pop('lamb', None) name = kwargs.pop('name', None) detector = kwargs.pop('detector', 'photon') unit_ = kwargs.pop('unit', None) if not isinstance(fname, SimpleTable): t = SimpleTable(fname, dtype=dtype, **kwargs) else: t = fname w = t['WAVELENGTH'].astype(float) r = t['THROUGHPUT'].astype(float) keys = [k for k in t.keys() if 'THROUGHPUT_' in k] # update properties from file header detector = t.header.get('DETECTOR', detector) unit_ = t.header.get('WAVELENGTH_UNIT', unit_) # try from the comments in the header first if name in (None, 'None', 'none', ''): name = [k.split()[1] for k in t.header.get('COMMENT', '').split('\n') if 'COMPNAME' in k] name = ''.join(name).replace('"', '').replace("'", '') # if that did not work try the table header directly if name in (None, 'None', 'none', ''): name = t.header['NAME'] if len(keys) > 0: samp = np.array([t[key] for key in keys]) _filter = cls(w, r, samp, name=name, dtype=detector, unit=unit_) else: _filter = UnitFilter(w, r, name=name, dtype=detector, unit=unit_) # reinterpolate if requested if lamb is not None: _filter = _filter.reinterp(lamb) return _filter class UnitLibrary(object): """ Common grounds for filter libraries """ def __init__(self, source=__default__, *args, **kwargs): """ Construct the library """ self.source = None def __repr__(self): msg = "Filter Library: {0}\n{1:s}" return msg.format(self.source, object.__repr__(self)) def __enter__(self): """ Enter context """ return self def __exit__(self, *exc_info): """ end context """ return False def __len__(self): """ Size of the library """ return len(self.content) def to_csv(self, directory='./', progress=True, **kwargs): """ Export each filter into a csv file with its own name Parameters ---------- directory: str directory to write into progress: bool show progress if set """ from .helpers import progress_enumerate try: os.stat(directory) except Exception: os.mkdir(directory) with self as s: for _, k in progress_enumerate(s.content, desc='export', show_progress=progress): f = s[k] if f.wavelength_unit is None: f.wavelength_unit = 'AA' f.write_to("{0:s}/{1:s}.csv".format(directory, f.name).lower(), fmt="%.6f", **kwargs) def to_hdf(self, fname='filters.hd5', progress=True, **kwargs): """ Export each filter into a csv file with its own name Parameters ---------- directory: str directory to write into progress: bool show progress if set """ from .helpers import progress_enumerate with self as s: for _, k in progress_enumerate(s.content, desc='export', show_progress=progress): f = s[k] if f.wavelength_unit is None: f.wavelength_unit = 'AA' f.write_to("{0:s}".format(fname), tablename='/filters/{0}'.format(f.name), createparents=True, append=True, silent=True, **kwargs) @classmethod def from_hd5(cls, filename, **kwargs): return UnitHDF_Library(filename, **kwargs) @classmethod def from_ascii(cls, filename, **kwargs): return UnitAscii_Library(filename, **kwargs) @property def content(self): """ Get the content list """ return self.get_library_content() def __getitem__(self, name): """ Make this object like a dictionary and load one or multiple filters """ with self as s: try: f = s._load_filter(name) except TypeError: f = [s._load_filter(k) for k in name] return f def _load_filter(self, *args, **kwargs): """ Load a given filter from the library """ raise NotImplementedError def get_library_content(self): """ get the content of the library """ raise NotImplementedError def load_all_filters(self, interp=True, lamb=None): """ load all filters from the library """ raise NotImplementedError def add_filter(self, f): """ add a filter to the library """ raise NotImplementedError def find(self, name, case_sensitive=True): r = [] if case_sensitive: _n = name.lower() for k in self.get_library_content(): if _n in k.lower(): r.append(k) else: for k in self.content: if name in k: r.append(k) return r class UnitAscii_Library(UnitLibrary): """ Interface one or multiple directory or many files as a filter library >>> lib = Ascii_Library(['ground', 'hst', 'myfilter.csv']) """ def __init__(self, source): self.source = source def _load_filter(self, fname, interp=True, lamb=None, *args, **kwargs): """ Load a given filter from the library """ try: fil = UnitFilter.from_ascii(fname, *args, **kwargs) except Exception: content = self.content r = [k for k in content if fname in k] if len(r) <= 0: # try all lower for filenames (ascii convention) r = [k for k in content if fname.lower() in k] if len(r) > 1: print("auto correction found multiple choices") print(r) raise ValueError('Refine name to one of {0}'.format(r)) elif len(r) <= 0: raise ValueError('Cannot find filter {0}'.format(fname)) else: fil = UnitFilter.from_ascii(r[0], *args, **kwargs) if (interp is True) and (lamb is not None): return fil.reinterp(lamb) else: return fil def get_library_content(self): """ get the content of the library """ from glob import glob try: os.path.isdir(self.source) lst = glob(self.source + '/*') except TypeError: lst = self.source dircheck = True while dircheck is True: dircheck = False newlst = [] for entry in lst: if os.path.isdir(entry): newlst.extend(glob(entry + '/*')) dircheck = True else: newlst.append(entry) lst = newlst return lst def load_all_filters(self, interp=True, lamb=None): """ load all filters from the library """ return [self._load_filter(k, interp=interp, lamb=lamb) for k in self.content] def load_filters(self, names, interp=True, lamb=None, filterLib=None): """ load a limited set of filters Parameters ---------- names: list[str] normalized names according to filtersLib interp: bool reinterpolate the filters over given lambda points lamb: ndarray[float, ndim=1] desired wavelength definition of the filter filterLib: path path to the filter library hd5 file Returns ------- filters: list[filter] list of filter objects """ filters = [self._load_filter(fname, interp=interp, lamb=lamb) for fname in names] return(filters) def add_filters(self, filter_object, fmt="%.6f", **kwargs): """ Add a filter to the library permanently Parameters ---------- filter_object: Filter object filter to add """ if not isinstance(filter_object, UnitFilter): msg = "Argument of type Filter expected. Got type {0}" raise TypeError(msg.format(type(filter_object))) if filter_object.wavelength_unit is None: msg = "Filter wavelength must have units for storage." raise AttributeError(msg) fname = "{0:s}/{1:s}.csv".format(self.source, filter_object.name) filter_object.write_to(fname.lower(), fmt=fmt, **kwargs) class UnitHDF_Library(UnitLibrary): """ Storage based on HDF """ def __init__(self, source=__default__, mode='r'): self.source = source self.hdf = None self.mode = mode def __enter__(self): """ Enter context """ if self.hdf is None: self.hdf = tables.open_file(self.source, self.mode) return self def __exit__(self, *exc_info): """ end context """ if self.hdf is not None: self.hdf.close() self.hdf = None return False def _load_filter(self, fname, interp=True, lamb=None): """ Load a given filter from the library Parameters ---------- fname: str normalized names according to filtersLib interp: bool, optional reinterpolate the filters over given lambda points lamb: ndarray[float, ndim=1] desired wavelength definition of the filter integrationFilter: bool, optional set True for specail integraion filter such as Qion or E_uv if set, lamb should be given Returns ------- filter: Filter instance filter object """ ftab = self.hdf if hasattr(fname, 'decode'): fnode = ftab.get_node('/filters/' + fname.decode('utf8')) else: fnode = ftab.get_node('/filters/' + fname) flamb = fnode[:]['WAVELENGTH'] transmit = fnode[:]['THROUGHPUT'] dtype = 'photon' unit = None attrs = fnode.attrs if 'DETECTOR' in attrs: dtype = attrs['DETECTOR'] if 'WAVELENGTH_UNIT' in attrs: unit = attrs['WAVELENGTH_UNIT'] fil = UnitFilter(flamb, transmit, name=fnode.name, dtype=dtype, unit=unit) if interp & (lamb is not None): fil = fil.reinterp(lamb) return fil def get_library_content(self): """ get the content of the library """ with self as s: try: filters = s.hdf.root.content.cols.TABLENAME[:] except Exception: filters = list(s.hdf.root.filters._v_children.keys()) if hasattr(filters[0], 'decode'): filters = [k.decode('utf8') for k in filters] return(filters) def load_all_filters(self, interp=True, lamb=None): """ load all filters from the library Parameters ---------- interp: bool reinterpolate the filters over given lambda points lamb: ndarray[float, ndim=1] desired wavelength definition of the filter Returns ------- filters: list[filter] list of filter objects """ with self as s: filters = [s._load_filter(fname, interp=interp, lamb=lamb) for fname in s.content] return(filters) def load_filters(self, names, interp=True, lamb=None, filterLib=None): """ load a limited set of filters Parameters ---------- names: list[str] normalized names according to filtersLib interp: bool reinterpolate the filters over given lambda points lamb: ndarray[float, ndim=1] desired wavelength definition of the filter filterLib: path path to the filter library hd5 file Returns ------- filters: list[filter] list of filter objects """ with self as s: filters = [s._load_filter(fname, interp=interp, lamb=lamb) for fname in names] return(filters) def add_filter(self, f, **kwargs): """ Add a filter to the library permanently Parameters ---------- f: Filter object filter to add """ if not isinstance(f, UnitFilter): msg = "Argument of type Filter expected. Got type {0}" raise TypeError(msg.format(type(f))) if f.wavelength_unit is None: msg = "Filter wavelength must have units for storage." raise AttributeError(msg) f.write_to("{0:s}".format(self.source), tablename='/filters/{0}'.format(f.name), createparents=True, **kwargs) def get_library(fname=__default__, **kwargs): """ Finds the appropriate class to load the library """ if os.path.isfile(fname): return UnitHDF_Library(fname, **kwargs) else: return UnitAscii_Library(fname, **kwargs) @set_method_default_units('AA', 'flam', output_unit='flam') def reduce_resolution(wi, fi, fwhm0=0.55 * Unit('AA'), sigma_floor=0.2 * Unit('AA')): """ Adapt the resolution of the spectra to match the lick definitions Lick definitions have different resolution elements as function of wavelength. These definition are hard-coded in this function Parameters --------- wi: ndarray (n, ) wavelength definition fi: ndarray (nspec, n) or (n, ) spectra to convert fwhm0: float initial broadening in the spectra `fi` sigma_floor: float minimal dispersion to consider Returns ------- flux_red: ndarray (nspec, n) or (n, ) reduced spectra """ flux_red = _reduce_resolution(wi.value, fi.value, fwhm0.to('AA').value, sigma_floor.to('AA').value) return flux_red * Unit('flam') class UnitLickIndex(LickIndex): """ Define a Lick Index similarily to a Filter object """ @set_method_default_units('AA', 'flam') def get(self, wave, flux, **kwargs): """ compute spectral index after continuum subtraction Parameters ---------- w: ndarray (nw, ) array of wavelengths in AA flux: ndarray (N, nw) array of flux values for different spectra in the series degree: int (default 1) degree of the polynomial fit to the continuum nocheck: bool set to silently pass on spectral domain mismatch. otherwise raises an error when index is not covered Returns ------- ew: ndarray (N,) equivalent width or magnitude array Raises ------ ValueError: when the spectral coverage wave does not cover the index range """ return LickIndex.get(self, wave, flux.to('flam').value, **kwargs) class UnitLickLibrary(LickLibrary): """ Collection of Lick indices """ def __init__(self, fname=__default_lick__, comment='#'): self.source = fname data, hdr = self._read_lick_list(fname, comment) self._content = data self._hdr = hdr @property def description(self): """ any comment in the input file """ return self._hdr @classmethod def _read_lick_list(cls, fname=__default__, comment='#'): """ read the list of lick indices Parameters ---------- fname: str file containing the indices' definitions comment: str character indicating comment in the file Returns ------- data: dict dictionary of indices name: (band, blue, red, unit) """ with open(fname, 'r') as f: data = {} hdr = [] for line in f: if line[0] != comment: _line = line.split() attr = dict( band=(float(_line[1]), float(_line[2])), blue=(float(_line[3]), float(_line[4])), red=(float(_line[5]), float(_line[6])), unit='mag' if int(_line[7]) > 0 else 'ew', ) name = _line[8] data[name] = attr else: hdr.append(line[1:-1]) return data, hdr def __repr__(self): return "Lick Index Library: {0}\n{1:s}".format(self.source, object.__repr__(self)) def __enter__(self): """ Enter context """ return self def __exit__(self, *exc_info): """ end context """ return False def __len__(self): """ Size of the library """ return len(self.content) def get_library_content(self): return list(self._content.keys()) def __getitem__(self, name): """ Make this object like a dictionary and load one or multiple filters """ with self as s: try: f = s._load_filter(name) except TypeError: f = [s._load_filter(k) for k in name] return f def _load_filter(self, fname, **kwargs): """ Load a given filter from the library """ with self as current_lib: return UnitLickIndex(fname, current_lib._content[fname]) @property def content(self): return self.get_library_content() def find(self, name, case_sensitive=True): r = [] if not case_sensitive: _n = name.lower() for k in self.get_library_content(): if _n in k.lower(): r.append(k) else: for k in self.content: if name in k: r.append(k) return r
mit
vasudevk/sklearn_pycon2015
notebooks/fig_code/sgd_separator.py
54
1148
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs def plot_sgd_separator(): # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' ax = plt.axes() ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) ax.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) ax.axis('tight') if __name__ == '__main__': plot_sgd_separator() plt.show()
bsd-3-clause
yask123/scikit-learn
sklearn/utils/setup.py
296
2884
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
markomanninen/gematria
gematria/html.py
1
3182
#!/usr/local/bin/python # -*- coding: utf-8 -*- # file: html.py from IPython.display import HTML import pandas as pd from remarkuple import helper as h, table from math import digital_root, digital_sum from main import to_roman, to_hebrew, gematria, unicode_gematria def _init_text(text, capitalize = None): return text.decode('utf-8') def char_table_data(text, modulo = 9): # initialize data dictionary, split text to columns: #, letter, translit, num, sum, mod, word data = dict([key, []] for key in ['letter', 'transliteration', 'gematria', 'word']) # character chart # split words for word in _init_text(text).split(): # split letters for idx, letter in enumerate(word): #data['index'].append(idx) data['letter'].append(letter) data['transliteration'].append(to_roman(letter.encode('utf-8'))) data['gematria'].append(gematria(letter.encode('utf-8'))) data['word'].append(word) data = pd.DataFrame(data) # word summary from character chart gb = data.groupby('word') data2 = gb.sum() data2['characters'] = gb['word'].apply(len) data2['digital_sum'] = data2['gematria'].apply(digital_sum) data2['digital_root'] = data2['gematria'].apply(digital_root) # phrase summary from word summary s = data2.sum() data3 = pd.DataFrame({'digital_root': [digital_root(s.gematria)], 'characters': [s.characters], 'digital_sum': [digital_sum(s.gematria)], 'gematria': [s.gematria], 'phrase': text}) return (data, data2, data3) def char_table(text, modulo = 9): # initialize html table tbl = table(Class="char-table") # add caption / table title tbl.addCaption(text) # add data rows tr1 = h.tr() # hebrew letters tr2 = h.tr() # roman letters tr3 = h.tr() # gematria number tr4 = h.tr() # summary i = 0 text = unicode(text, encoding="utf-8") for word in text.split(): if i > 0: # add empty cells for word separation tr1 += h.th("&nbsp;") tr1 += h.th("&nbsp;") tr2 += h.td() tr2 += h.td(Class="empty-cell") tr3 += h.td() tr3 += h.td(Class="empty-cell") tr4 += h.td() tr4 += h.td() num = unicode_gematria(word) tr4 += h.td("%s %s" % (num, h.sub(digital_root(num))), colspan=len(word)) i = i+1 # add each letter on own cell for letter in word: tr1 += h.th(letter.encode('utf-8')) tr2 += h.td(to_roman(letter.encode('utf-8'))) tr3 += h.td(unicode_gematria(letter)) # add rows to table tbl.addHeadRow(tr1) tbl.addBodyRow(tr2) tbl.addBodyRow(tr3) tbl.addFootRow(tr4) # add summary footer for table num = unicode_gematria(text) tbl.addFootRow(h.tr(h.td("%s %s" % (num, h.sub(digital_sum(num), " / ", digital_root(num, modulo))), colspan=len(text)+len(text.split()), style="border-top: solid 1px #ddd"))) return tbl
mit
TzivakiM/LocationFactorsCode
deposition.py
1
30850
# deposited nuclides import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os import sys import csv from cycler import cycler #Plot settings for black and white. If color is wanted, comment out! #monochrome = (cycler('color', ['k']) * cycler('marker', ['', '.']) * # cycler('linestyle', ['-', '--', ':', '-.'])) #plt.rc('axes', prop_cycle=monochrome) mark_step_num=0.1 def main(nuclide,T,timestep,graphoption,totdosetimeoption,doseratetimeoption): #def main(nuclide,T,timestep,graphoption): #define variables: #the conversion factors from Petoussi-Henss for radionuclides detected as ground contamination after the Fukushima accident #[adult, child, child4-7, infant] e_dotCs137 = [10950., 11738.4, 11738.4, 14804.4] e_dotCs134 = [30309.,32412., 32412., 40558.8] t_halfCs137 = 30.1871 #from NIST t_halfCs134 = 2.0654 #from NIST #this is the same numbers used in USNCEAR 2013, based on measurements in europe after chernobyl T1 = 1.5 T2 = 50 p1 = 0.5 p2 = 0.5 e_dot = [e_dotCs137,e_dotCs134] t_half = [t_halfCs137, t_halfCs134] nuclidename = ['Cs-137','Cs-134'] #Sets the parameters for the plotting filetype = 'png' if totdosetimeoption[0] == 1: totdoseplottype = 'log' elif totdosetimeoption[0] == 0: totdoseplottype = 'linear' else: print 'Something went wrong with the total dose plot option' if doseratetimeoption[0] == 1: doserateplottype = 'linear' elif doseratetimeoption[0] == 0: doserateplottype = 'log' else: print 'Something went wrong with the dose rate plot option' for l in range(len(nuclide)): if nuclide[l]==1: #timestep in years: the interval at which the calculations will be performed numberT = int(T/timestep) #The number of timesteps for the first 5 years of life numberT5years = int(5./timestep) #The number of timesteps for 10 years numberT10years = int(10./timestep) #the number of timesteps for the first 15 years of life numberT15years = int(15./timestep) #the number of timesteps for the first 15 years of life def e_dep(t): e_dep = e_dot[l][0] * ( (p1/((math.log(2)/t_half[l])+(math.log(2)/T1)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T1)))) + (p2/((math.log(2)/t_half[l])+(math.log(2)/T2)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T2))))) return e_dep IntegratedDose = e_dep(T) #The following two functions are helper functions for further calculations. They don't have any real application or meaning. def e_depChild(t): e_dep = e_dot[l][1] * ( (p1/((math.log(2)/t_half[l])+(math.log(2)/T1)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T1)))) + (p2/((math.log(2)/t_half[l])+(math.log(2)/T2)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T2))))) return e_dep IntegratedDoseChild = e_depChild(T) #next block to be taken out for paper def e_depChild4(t): e_dep = e_dot[l][2] * ( (p1/((math.log(2)/t_half[l])+(math.log(2)/T1)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T1)))) + (p2/((math.log(2)/t_half[l])+(math.log(2)/T2)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T2))))) return e_dep IntegratedDoseChild4 = e_depChild4(T) def e_depInfant(t): e_dep = e_dot[l][3] * ( (p1/((math.log(2)/t_half[l])+(math.log(2)/T1)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T1)))) + (p2/((math.log(2)/t_half[l])+(math.log(2)/T2)))* (1-math.exp(-t*((math.log(2)/t_half[l])+(math.log(2)/T2))))) return e_dep IntegratedDoseInfant = e_depInfant(T) #variables for f_build [wood, woodFireproof, concrete] a1 = [0.2, 0.1, 0.05] a2 = [0.2, 0.1, 0.05] T_build = [1.8, 1.8, 1.8] #occupancy factors [new, out,in,child10,child1] OFhard = [0.1, 0.2, 0.05, 0.05, 0.1] OFdirt = [0.1, 0.1, 0.05, 0.1, 0.1] OFbuild = [0.8, 0.7, 0.9, 0.85, 0.8] #define variables for lists of location factors time = [] f_hard = [] f_dirt = [] f_build = [[],[],[]] #simplified location factor TODO: need to be able to be defined! f_newOUT = 1. f_newIN = 0.1 #define dose lists eDepInt = [] eDepIntChild = [] eDepIntChild4 = [] eDepIntInfant = [] eDepStep = [] eDepStepChild = [] eDepStepChild4 = [] eDepStepInfant = [] #calculate the development of location factors over time and the stepwise dose: calculation of dose at each time and then subtraction from dose at previous timestep for i in range(numberT+1): #location factor equations hard surface and unpaved surface: time.append(i*timestep) f_hard.append(0.5 * math.exp(-(time[-1]*math.log(2)/0.9))+0.1) f_dirt.append(0.5 * math.exp(-(time[-1]*math.log(2)/2.2))+0.25) for j in range(len(f_build)): #[wood, woodFireproof, concrete] f_build[j].append(a1[j] * math.exp(-time[-1]*math.log(2)/T_build[j])+a2[j]) #integrated dose (that means for every time it is the sum from all previous doses). this is the equation given in UNSCEAR for e_dep eDepInt.append(e_dep(time[-1])) eDepIntChild.append(e_depChild(time[-1])) eDepIntChild4.append(e_depChild4(time[-1])) eDepIntInfant.append(e_depInfant(time[-1])) #Dose in every timestep: Subtract dose from previous time from the current integrated dose value if time[-1] == 0.0: eDepStep.append(eDepInt[-1]) eDepStepChild.append(eDepIntChild[-1]) eDepStepChild4.append(eDepIntChild4[-1]) eDepStepInfant.append(eDepIntInfant[-1]) else: eDepStep.append(eDepInt[-1] - eDepInt[-2]) eDepStepChild.append(eDepIntChild[-1] - eDepIntChild[-2]) eDepStepChild4.append(eDepIntChild4[-1] - eDepIntChild4[-2]) eDepStepInfant.append(eDepIntInfant[-1] - eDepIntInfant[-2]) #to test if the last element of the integrated dose is equal to the sum of the timestep doses testDoseStep = sum(eDepStep) if testDoseStep == eDepInt[-1]: print 'Integrated and stepwise dose match for '+str(nuclidename[l]) +'!' else: print 'There has been a mistake...' #Make everything into np arrays time = np.array(time) f_hard = np.array(f_hard) f_dirt = np.array(f_dirt) #Location factor for buildings: [wood, woodFireproof, concrete] f_build = np.array(f_build) eDepInt = np.array(eDepInt) eDepIntChild = np.array(eDepIntChild) eDepIntChild4 = np.array(eDepIntChild4) eDepIntInfant = np.array(eDepIntInfant) eDepStep = np.array(eDepStep) eDepStepChild = np.array(eDepStepChild) eDepStepChild4 = np.array(eDepStepChild4) eDepStepInfant = np.array(eDepStepInfant) OFhard = np.array(OFhard) OFdirt = np.array(OFdirt) OFbuild = np.array(OFbuild) TotDoseStepOLD = [] TotDoseIntOLD = [] TotDoseStepNEW = [] TotDoseIntNEW = [] #Index explanation: #n=0 : NEW #n=1 : outdoor worker #n=2 : indoor worker #n=3 : child 10 years old #n=4 : child 1 year old #m=0 : wood house 1-3 storeys #m=1 : wood house 1-3 storeys fireproof #m=2 : concrete house multi-storey #Calculate dose values taking into account location factors #for integrated dose #in the case of UNSCEAR2013 for n in range(len(OFhard)): #[new,out,in,child10,child1] if n==0: #print len(eDepStep) TotDoseStepNEW = np.array(OFhard[n]*f_newOUT*eDepStep+OFdirt[n]*f_newOUT*eDepStep+OFbuild[n]*f_newIN*eDepStep) for k in range(len(TotDoseStepNEW)): if k==0: TotDoseIntNEW.append(TotDoseStepNEW[k]) elif k>0: TotDoseIntNEW.append(TotDoseStepNEW[k]+TotDoseIntNEW[k-1]) elif n>0 and n<3: for m in range(len(f_build)): #[wood, woodFireproof, concrete] TotDoseStepOLD.append(np.array(OFhard[n]*f_hard*eDepStep+OFdirt[n]*f_dirt*eDepStep+OFbuild[n]*f_build[m]*eDepStep)) #print "Length is " + str(len(TotDoseStepOLD)) #print len(TotDoseStepOLD[0]) #print "f_hard: " + str(len(f_hard)) #print "eDepStep: " + str(len(eDepStep)) TotDoseIntOLD.append([]) for k in range(len(TotDoseStepOLD[0])): #print len(TotDoseStepOLD[0]) if k==0: TotDoseIntOLD[-1].append(TotDoseStepOLD[-1][k]) elif k>0: TotDoseIntOLD[-1].append(TotDoseStepOLD[-1][k]+TotDoseIntOLD[-1][k-1]) #Calculation for a Child elif n==3: for m in range(len(f_build)): #[wood, woodFireproof, concrete] TotDoseStepOLD.append(np.array(OFhard[n]*f_hard*eDepStepChild+OFdirt[n]*f_dirt*eDepStep+OFbuild[n]*f_build[m]*eDepStep)) TotDoseIntOLD.append([]) for k in range(0, min(numberT10years,len(TotDoseStepOLD[0]))): if k==0: TotDoseIntOLD[-1].append(TotDoseStepOLD[-1][k]) elif k>0: TotDoseIntOLD[-1].append(TotDoseStepOLD[-1][k]+TotDoseIntOLD[-1][k-1]) for k in range(numberT10years, len(TotDoseStepOLD[0])): if m==0: TotDoseIntOLD[-1].append(TotDoseStepOLD[3][k]+TotDoseIntOLD[-1][k-1]) elif m==1: TotDoseIntOLD[-1].append(TotDoseStepOLD[4][k]+TotDoseIntOLD[-1][k-1]) elif m==2: TotDoseIntOLD[-1].append(TotDoseStepOLD[5][k]+TotDoseIntOLD[-1][k-1]) else: print 'There has been a mistake when calculating child dose' #Calculation for an infant elif n==4: for m in range(len(f_build)): #[wood, woodFireproof, concrete] TotDoseStepOLD.append(np.array(OFhard[n]*f_hard*eDepStepInfant+OFdirt[n]*f_dirt*eDepStep+OFbuild[n]*f_build[m]*eDepStep)) TotDoseIntOLD.append([]) for k in range(0, min(numberT5years,len(TotDoseStepOLD[0]))): if k==0: TotDoseIntOLD[-1].append(TotDoseStepOLD[-1][k]) elif k>0: TotDoseIntOLD[-1].append(TotDoseStepOLD[-1][k]+TotDoseIntOLD[-1][k-1]) for k in range(numberT5years, min(numberT15years, len(TotDoseStepOLD[0]))): # This is for the age between 5 and 15: Use child dose if m==0: TotDoseIntOLD[-1].append(TotDoseStepOLD[6][k]+TotDoseIntOLD[-1][k-1]) elif m==1: TotDoseIntOLD[-1].append(TotDoseStepOLD[7][k]+TotDoseIntOLD[-1][k-1]) elif m==2: TotDoseIntOLD[-1].append(TotDoseStepOLD[8][k]+TotDoseIntOLD[-1][k-1]) else: print 'There has been a mistake when calculating infant dose between 5 and 15 years' for k in range(numberT15years, len(TotDoseStepOLD[0])): #This is for the age 15 and over if m==0: TotDoseIntOLD[-1].append(TotDoseStepOLD[3][k]+TotDoseIntOLD[-1][k-1]) elif m==1: TotDoseIntOLD[-1].append(TotDoseStepOLD[4][k]+TotDoseIntOLD[-1][k-1]) elif m==2: TotDoseIntOLD[-1].append(TotDoseStepOLD[5][k]+TotDoseIntOLD[-1][k-1]) else: print 'There has been a mistake when calculating infant dose over 15 years' #all raw dose values are in nSv/kBq/m^2 or 10^(-12)Sv/Bq #Make everything into numpy arrays and adjust units #in E-12 Sv/Bq/m^2 TotDoseStepNEW = np.array(TotDoseStepNEW) TotDoseStepOLD = np.array(TotDoseStepOLD) #in E-9 Sv/Bq/m^2 TotDoseIntNEW = np.array(TotDoseIntNEW) TotDoseIntNEW = 0.001 * TotDoseIntNEW TotDoseIntOLD = np.array(TotDoseIntOLD) TotDoseIntOLD = 0.001 * TotDoseIntOLD #make a directory for the graps and files script_dir = os.path.dirname(__file__) plots_dir = os.path.join(script_dir, 'plots/'+str(nuclidename[l])+str(T)) results_dir = os.path.join(script_dir, 'files/'+str(nuclidename[l])+str(T)) if not os.path.isdir(plots_dir): os.makedirs(plots_dir) if not os.path.isdir(results_dir): os.makedirs(results_dir) #Make an output file with all the data and input information: highligts #handy helper arrays and variables for plotting and output: Buildings = ["1-3 storey house, wood", "1-3 storey house, fireproof wood","multi-storey house, concrete"] OutTime = [0.2, 0.84, 1., 2.] OutTime = np.array(OutTime) OutTimeText = ['1 week', '1 month', '1 year', '2 years'] annualDoseTime = 100. annualDoseTimeStart = annualDoseTime-1. outfile = open("files/"+ str(nuclidename[l])+str(T)+"/Summary"+str(nuclidename[l])+"_"+str(T)+"years.txt",'w') outfile.write("Summary of results for doses and inputs\n") outfile.write("\ne_dep after " +str(T)+" years, before the application of reduction factors\n") outfile.write('{:} {:} {:}\n'.format('Adult','Child (10 years)','Infant (1 year)')) outfile.write('{:} {:} {:}\n'.format(IntegratedDose,IntegratedDoseChild,IntegratedDoseInfant)) outfile.write("\nEffective dose [nSv/Bq/$m^2] after " +str(T)+" years\n") outfile.write('{:}'.format('Simplified methodology')) outfile.write('\n{:}'.format(TotDoseIntNEW[-1])) outfile.write('\n{:} {:} {:} {:}'.format('Outdoor worker','Indoor worker','Child (10 years)', 'Infant (1 year)')) for a in range(len(Buildings)): outfile.write("\n"+str(Buildings[a])) outfile.write('\n{:} {:} {:} {:}'.format(TotDoseIntOLD[a][-1], TotDoseIntOLD[a+3][-1], TotDoseIntOLD[a+6][-1], TotDoseIntOLD[a+9][-1])) for c in range(len(OutTime)): if OutTime[c] <= T: outfile.write("\n\nEffective dose [nSv/Bq/$m^2] after "+str(OutTimeText[c])+"\n (actual time " +str(time[time<0.02][-1])+" years)") outfile.write('\n{:}'.format('Simplified methodology')) outfile.write('\n{:}'.format(TotDoseIntNEW[time<OutTime[c]][-1])) outfile.write('\n{:} {:} {:} {:}'.format('Outdoor worker','Indoor worker','Child (10 years)', 'Infant (1 year)')) for a in range(len(Buildings)): outfile.write("\n"+str(Buildings[a])) outfile.write('\n{:} {:} {:} {:}'.format(TotDoseIntOLD[a][time<OutTime[c]][-1], TotDoseIntOLD[a+3][time<OutTime[c]][-1], TotDoseIntOLD[a+6][time<OutTime[c]][-1], TotDoseIntOLD[a+9][time<OutTime[c]][-1])) elif OutTime[c] >= T: print "could not calculate the annual dose for " +str(OutTime[c]) + "years." for b in range(len(OutTime)): if OutTime[b] <= T: outfile.write("\n\nDose rate [nSv/Bq/$m^2/day] after "+str(OutTimeText[b])+"\n (actual time " +str(time[time<0.02][-1])+" years)") outfile.write('\n{:}'.format('Simplified methodology')) outfile.write('\n{:}'.format(TotDoseStepNEW[time<OutTime[b]][-1])) outfile.write('\n{:} {:} {:} {:}'.format('Outdoor worker','Indoor worker','Child (10 years)', 'Infant (1 year)')) for a in range(len(Buildings)): outfile.write("\n"+str(Buildings[a])) outfile.write('\n{:} {:} {:} {:}'.format(TotDoseStepOLD[a][time<OutTime[b]][-1], TotDoseStepOLD[a+3][time<OutTime[b]][-1], TotDoseStepOLD[a+6][time<OutTime[b]][-1], TotDoseStepOLD[a+9][time<OutTime[b]][-1])) elif OutTime[b] >= T: print "could not calculate the dose rate after " +str(OutTime[b]) + "years." if annualDoseTime <= T: outfile.write("\n\nEffective dose [nSv/Bq/$m^2] in year "+str(annualDoseTime)) outfile.write('\n{:}'.format('Simplified methodology')) outfile.write('\n{:}'.format(TotDoseIntNEW[time<annualDoseTime][-1]-TotDoseIntNEW[time<(annualDoseTimeStart)][-1])) outfile.write('\n{:} {:} {:} {:}'.format('Outdoor worker','Indoor worker','Child (10 years)', 'Infant (1 year)')) for a in range(len(Buildings)): outfile.write("\n"+str(Buildings[a])) outfile.write('\n{:} {:} {:} {:}'.format(TotDoseIntOLD[a][time<annualDoseTime][-1]-TotDoseIntOLD[a][time<(annualDoseTimeStart)][-1], TotDoseIntOLD[a+3][time<annualDoseTime][-1]-TotDoseIntOLD[a+3][time<(annualDoseTimeStart)][-1], TotDoseIntOLD[a+6][time<annualDoseTime][-1]-TotDoseIntOLD[a+6][time<(annualDoseTimeStart)][-1], TotDoseIntOLD[a+9][time<annualDoseTime][-1]-TotDoseIntOLD[a+9][time<(annualDoseTimeStart)][-1])) elif annualDoseTime >= T: print "could not calculate the annual dose in year " +str(annualDoseTime) outfile.close() #Make an output file with all the data and input information: Location factors over time outfile = open("files/"+ str(nuclidename[l])+str(T)+"/LocationFactors"+str(nuclidename[l])+"_"+str(T)+"years.txt",'w') outfile.write("#Output file location factors over time as used in UNSCEAR 2013\n") outfile.write('#{:} {:} {:} {:} {:} {:}\n'.format('Time [y]','f_build','f_hard','f_build(wood)','f_build(woodFireproof)','f_build(concrete)')) for i in range(len(time)): outfile.write("{:} {:} {:} {:} {:} {:}\n".format(time[i],f_hard[i],f_dirt[i],f_build[0][i],f_build[1][i],f_build[2][i])) outfile.close() #Make an output file with all the data and input information: Integrated Dose outfile = open("files/"+str(nuclidename[l])+str(T)+"/depositionTotalDoseOutput_"+str(nuclidename[l])+"_"+str(T)+"years.txt",'w') outfile.write("#Output file for comparison of UNSCEAR 2013 and UNSCEAR 2016 methodology for calculating dose due to deposition\n") #outfile.write("#List of input variables:\n") outfile.write('#Effective dose rate coefficient for {:} = {:} nSv/kBq/m^2/y\n'.format(nuclidename[l],e_dot[l][0])) outfile.write('#{:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:}\n'.format('Time [y]', 'D_tot(simplified)[nSv/Bq/$m^2]', 'D_tot(wood_outdoorW)', 'D_tot(wood_indoorW)','D_tot(wood_Child10)','D_tot(wood_Child1)','D_tot(woodFireproof_outdoorW)', 'D_tot(woodFireproof_indoorW)','D_tot(woodFireproof_Child10)','D_tot(woodFireproof_Child1)','D_tot(concrete_outdoorW)', 'D_tot(concrete_indoorW)','D_tot(concrete_Child10)','D_tot(concrete_Child1)')) for i in range(len(time)): outfile.write("{:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:}\n".format(time[i],TotDoseIntNEW[i],TotDoseIntOLD[0][i],TotDoseIntOLD[3][i],TotDoseIntOLD[6][i],TotDoseIntOLD[9][i],TotDoseIntOLD[1][i],TotDoseIntOLD[4][i],TotDoseIntOLD[7][i],TotDoseIntOLD[10][i],TotDoseIntOLD[2][i],TotDoseIntOLD[5][i],TotDoseIntOLD[8][i],TotDoseIntOLD[11][i])) outfile.close() #Make an output file with all the data and input information: Dose Rate outfile = open("files/"+str(nuclidename[l])+str(T)+"/depositionDoseRateOutput_"+str(nuclidename[l])+"_"+str(T)+"years.txt",'w') outfile.write("#Output file for comparison of UNSCEAR 2013 and UNSCEAR 2016 methodology for calculating dose due to deposition\n") #outfile.write("#List of input variables:\n") outfile.write('#Effective dose rate coefficient for {:} = {:} nSv/kBq/m^2/y\n'.format(nuclidename[l],e_dot[l][0])) outfile.write('#{:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:}\n'.format('Time [y]', 'D_rate(simplified)[nSv/Bq/$m^2/day]', 'D_rate(wood_outdoorW)', 'D_rate(wood_indoorW)','D_rate(wood_Child10)','D_rate(wood_Child1)','D_rate(woodFireproof_outdoorW)', 'D_rate(woodFireproof_indoorW)','D_rate(woodFireproof_Child10)','D_rate(woodFireproof_Child1)','D_rate(concrete_outdoorW)', 'D_rate(concrete_indoorW)','D_rate(concrete_Child10)','D_rate(concrete_Child1)')) for i in range(len(time)): outfile.write("{:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:} {:}\n".format(time[i],TotDoseStepNEW[i],TotDoseStepOLD[0][i],TotDoseStepOLD[3][i],TotDoseStepOLD[6][i],TotDoseStepOLD[9][i],TotDoseStepOLD[1][i],TotDoseStepOLD[4][i],TotDoseStepOLD[7][i],TotDoseStepOLD[10][i],TotDoseStepOLD[2][i],TotDoseStepOLD[5][i],TotDoseStepOLD[8][i],TotDoseStepOLD[11][i])) outfile.close() #Plot all graphs #location factors plt.plot(time,f_hard, label=r'$f_{hard}$') plt.plot(time,f_dirt, label=r'$f_{dirt}$') plt.plot(time, f_build[0], label=r'$f_{build, wood}$') plt.plot(time, f_build[1], label=r'$f_{builf, fireproof}$') plt.plot(time, f_build[2], label=r'$f_{build,concrete}$',markevery=mark_step_num) plt.title('Location factors') plt.ylabel('Location factor') plt.xlabel('Time [y]') plt.xscale('log') plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/LocationFactorsOverTime'+'.'+str(filetype)) #plt.show() plt.close() #make custom plots # 'Select variables to plot:' if graphoption[0]==1: #wood house plt.plot(time,TotDoseIntNEW, label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[0], label = 'Outdoor worker') plt.plot(time, TotDoseIntOLD[3], label = 'Indoor worker') plt.plot(time, TotDoseIntOLD[6], label = 'Child (10 years)') plt.plot(time, TotDoseIntOLD[9], label = 'Child (1 year)',markevery=mark_step_num) plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n 1-3 storey house, wood. ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseWood'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #wood house, fireproof plt.plot(time,TotDoseIntNEW, label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[1], label = 'Outdoor worker') plt.plot(time, TotDoseIntOLD[4], label = 'Indoor worker') plt.plot(time, TotDoseIntOLD[7], label = 'Child (10 years)') plt.plot(time, TotDoseIntOLD[10], label = 'Child (1 year)',markevery=mark_step_num) plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n 1-3 storey house, fireproof wood. ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseFireproofWood'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #concrete house, multi-storey plt.plot(time,TotDoseIntNEW, label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[2], label = 'Outdoor worker') plt.plot(time, TotDoseIntOLD[5], label = 'Indoor worker') plt.plot(time, TotDoseIntOLD[8], label = 'Child (10 years)') plt.plot(time, TotDoseIntOLD[11], label = 'Child (1 year)',markevery=mark_step_num) plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n multi-storey house, concrete. ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseConcrete'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Dose rates #wood house plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW, label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[0], label = 'Outdoor worker') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[3], label = 'Indoor worker') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[6], label = 'Child (10 years)') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[9], label = 'Child (1 year)',markevery=mark_step_num) plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n 1-3 storey house, wood. ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateWood'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #wood house, fireproof plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW, label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[1], label = 'Outdoor worker') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[4], label = 'Indoor worker') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[7], label = 'Child (10 years)') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[10], label = 'Child (1 year)',markevery=mark_step_num) plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n 1-3 storey house, fireproof wood. ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateFireproofWood'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #concrete plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW , label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[2], label = 'Outdoor worker') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[5], label = 'Indoor worker') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[8], label = 'Child (10 years)') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[11], label = 'Child (1 year)',markevery=mark_step_num) plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n multi-storey house, concrete. ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateConcrete'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() if graphoption[1]==1: #Total doses #Outdoor worker plt.plot(time,TotDoseIntNEW , label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[0], label = '1-3 storey house, wood') plt.plot(time, TotDoseIntOLD[1], label = '1-3 storey house, fireproof wood') plt.plot(time, TotDoseIntOLD[2], label = 'multi-storey house, concrete)') plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n Outdoor worker. ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseOutdoorWorker'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Indoor worker plt.plot(time,TotDoseIntNEW , label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[3], label = '1-3 storey house, wood') plt.plot(time, TotDoseIntOLD[4], label = '1-3 storey house, fireproof wood') plt.plot(time, TotDoseIntOLD[5], label = 'multi-storey house, concrete)') plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n Indoor worker. ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseIndoorWorker'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Child 10 years plt.plot(time,TotDoseIntNEW , label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[6], label = '1-3 storey house, wood') plt.plot(time, TotDoseIntOLD[7], label = '1-3 storey house, fireproof wood') plt.plot(time, TotDoseIntOLD[8], label = 'multi-storey house, concrete)') plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n Child (10 years). ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseChild10yr'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Child 1 year plt.plot(time,TotDoseIntNEW , label = 'UNSCEAR 2016') plt.plot(time, TotDoseIntOLD[9], label = '1-3 storey house, wood') plt.plot(time, TotDoseIntOLD[10], label = '1-3 storey house, fireproof wood') plt.plot(time, TotDoseIntOLD[11], label = 'multi-storey house, concrete)') plt.title(r'Effective dose ($e_{dep}$) due to ' + str(nuclidename[l]) + ' deposition, \n Child (1 year). ') plt.ylabel(r'Effective Dose [$10^{-9}$ Sv/Bq/$m^2$]') plt.xlabel('Time [y]') plt.xscale(str(totdoseplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/IntDoseChild1yr'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #dose rates #Outdoor worker plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW , label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[0], label = '1-3 storey house, wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[1], label = '1-3 storey house, fireproof wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[2], label = 'multi-storey house, concrete)') plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n Outdoor worker. ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateOutdoorWorker'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Indoor worker plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW , label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[3], label = '1-3 storey house, wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[4], label = '1-3 storey house, fireproof wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[5], label = 'multi-storey house, concrete)') plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n Indoor worker. ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateIndoorWorker'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Child 10 years plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW , label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[6], label = '1-3 storey house, wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[7], label = '1-3 storey house, fireproof wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[8], label = 'multi-storey house, concrete)') plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n Child (10 years). ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateChild10yr'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() #Child 1 year plt.plot(time,(timestep/(1/365.))*TotDoseStepNEW , label = 'UNSCEAR 2016') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[9], label = '1-3 storey house, wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[10], label = '1-3 storey house, fireproof wood') plt.plot(time, (timestep/(1/365.))*TotDoseStepOLD[11], label = 'multi-storey house, concrete)') plt.title(r'Dose rate due to ' + str(nuclidename[l]) + ' deposition, \n Child (1 year). ') plt.ylabel(r'Dose rate [$10^{-9}$ Sv/Bq/$m^2$/day]') plt.xlabel('Time [y]') plt.xscale(str(doserateplottype)) plt.legend(loc ='best') plt.savefig('plots/'+str(nuclidename[l])+str(T)+'/DoseRateChild1yr'+str(nuclidename[l]) +'.'+str(filetype)) #plt.show() plt.close() elif nuclide[l]==0: print 'Skipping ' + str(nuclidename[l]) + ' since it was not selected!' return
gpl-3.0
evgchz/scikit-learn
sklearn/pipeline.py
12
16522
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] # One round of beers on me if someone finds out why the backslash # is needed in the Attributes section so as not to upset sphinx. class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Parameters ---------- steps: list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... """ # BaseEstimator interface def __init__(self, steps): self.named_steps = dict(steps) names, estimators = zip(*steps) if len(self.named_steps) != len(steps): raise ValueError("Names provided are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(zip(names, estimators)) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps a the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps.copy() for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator.""" Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) def predict_log_proba(self, X): Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform.""" Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt def inverse_transform(self, X): if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def classes_(self): return self.steps[-1][-1].classes_ @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
sangwook236/general-development-and-testing
sw_dev/python/rnd/test/machine_learning/saliency_test.py
2
12493
#!/usr/bin/env python # -*- coding: UTF-8 -*- # REF [site] >> https://github.com/PAIR-code/saliency import os, time import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import saliency from matplotlib import pylab as plt import PIL.Image # Boilerplate methods. def ShowImage(im, title='', ax=None): if ax is None: plt.figure() plt.axis('off') im = ((im + 1) * 127.5).astype(np.uint8) plt.imshow(im) plt.title(title) def ShowGrayscaleImage(im, title='', ax=None): if ax is None: plt.figure() plt.axis('off') plt.imshow(im, cmap=plt.cm.gray, vmin=0, vmax=1) plt.title(title) def ShowHeatMap(im, title, ax=None): if ax is None: plt.figure() plt.axis('off') plt.imshow(im, cmap=plt.cm.inferno) plt.title(title) def ShowDivergingImage(grad, title='', percentile=99, ax=None): if ax is None: fig, ax = plt.subplots() else: fig = ax.figure plt.axis('off') divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) im = ax.imshow(grad, cmap=plt.cm.coolwarm, vmin=-1, vmax=1) fig.colorbar(im, cax=cax, orientation='vertical') plt.title(title) def LoadImage(file_path): im = PIL.Image.open(file_path) im = np.asarray(im) return im / 127.5 - 1.0 # REF [site] >> https://github.com/PAIR-code/saliency/blob/master/Examples.ipynb def simple_example(): #-------------------- mnist = input_data.read_data_sets('./MNIST_data', one_hot=True) #-------------------- # Define a model. num_classes = 10 input_shape = (None, 28, 28, 1) # 784 = 28 * 28. output_shape = (None, num_classes) input_ph = tf.placeholder(tf.float32, shape=input_shape, name='input_ph') output_ph = tf.placeholder(tf.float32, shape=output_shape, name='output_ph') with tf.variable_scope('conv1', reuse=tf.AUTO_REUSE): conv1 = tf.layers.conv2d(input_ph, 32, 5, activation=tf.nn.relu, name='conv') conv1 = tf.layers.max_pooling2d(conv1, 2, 2, name='maxpool') with tf.variable_scope('conv2', reuse=tf.AUTO_REUSE): conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu, name='conv') conv2 = tf.layers.max_pooling2d(conv2, 2, 2, name='maxpool') with tf.variable_scope('fc1', reuse=tf.AUTO_REUSE): fc1 = tf.layers.flatten(conv2, name='flatten') fc1 = tf.layers.dense(fc1, 1024, activation=tf.nn.relu, name='dense') with tf.variable_scope('fc2', reuse=tf.AUTO_REUSE): model_output = tf.layers.dense(fc1, num_classes, activation=tf.nn.softmax, name='dense') #-------------------- # Train. loss = tf.reduce_mean(-tf.reduce_sum(output_ph * tf.log(model_output), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) sess = tf.Session() sess.run(tf.global_variables_initializer()) print('Start training...') start_time = time.time() for _ in range(2000): batch_xs, batch_ys = mnist.train.next_batch(512) batch_xs = np.reshape(batch_xs, (-1,) + input_shape[1:]) sess.run(train_step, feed_dict={input_ph: batch_xs, output_ph: batch_ys}) if 0 == idx % 100: print('.', end='', flush=True) print() print('End training: {} secs.'.format(time.time() - start_time)) #-------------------- # Evaluate. correct_prediction = tf.equal(tf.argmax(model_output, 1), tf.argmax(output_ph, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print('Start testing...') acc = sess.run(accuracy, feed_dict={input_ph: np.reshape(mnist.test.images, (-1,) + input_shape[1:]), output_ph: mnist.test.labels}) print('Test accuracy = {}.'.format(acc)) print('End testing: {} secs.'.format(time.time() - start_time)) if acc < 0.95: print('Failed to train...') return #-------------------- # Visualize. images = np.reshape(mnist.test.images, (-1,) + input_shape[1:]) img = images[0] minval, maxval = np.min(img), np.max(img) img_scaled = np.squeeze((img - minval) / (maxval - minval), axis=-1) # Construct the scalar neuron tensor. logits = model_output neuron_selector = tf.placeholder(tf.int32) y = logits[0][neuron_selector] # Construct a tensor for predictions. prediction = tf.argmax(logits, 1) # Make a prediction. prediction_class = sess.run(prediction, feed_dict={input_ph: [img]})[0] #-------------------- start_time = time.time() saliency_obj = saliency.Occlusion(sess.graph, sess, y, input_ph) print('Occlusion: {} secs.'.format(time.time() - start_time)) # NOTE [info] >> An error exists in GetMask() of ${Saliency_HOME}/saliency/occlusion.py. # <before> # occlusion_window = np.array([size, size, x_value.shape[2]]) # occlusion_window.fill(value) # <after> # occlusion_window = np.full([size, size, x_value.shape[2]], value) mask_3d = saliency_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}) # Compute a 2D tensor for visualization. mask_gray = saliency.VisualizeImageGrayscale(mask_3d) mask_div = saliency.VisualizeImageDiverging(mask_3d) fig = plt.figure() ax = plt.subplot(1, 3, 1) ax.imshow(img_scaled, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Input') ax = plt.subplot(1, 3, 2) ax.imshow(mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Grayscale') ax = plt.subplot(1, 3, 3) ax.imshow(mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Diverging') fig.suptitle('Occlusion', fontsize=16) fig.tight_layout() #plt.savefig('./saliency_occlusion.png') plt.show() #-------------------- start_time = time.time() conv_layer = sess.graph.get_tensor_by_name('conv2/conv/BiasAdd:0') saliency_obj = saliency.GradCam(sess.graph, sess, y, input_ph, conv_layer) print('GradCam: {} secs.'.format(time.time() - start_time)) mask_3d = saliency_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}) # Compute a 2D tensor for visualization. mask_gray = saliency.VisualizeImageGrayscale(mask_3d) mask_div = saliency.VisualizeImageDiverging(mask_3d) fig = plt.figure() ax = plt.subplot(1, 3, 1) ax.imshow(img_scaled, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Input') ax = plt.subplot(1, 3, 2) ax.imshow(mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Grayscale') ax = plt.subplot(1, 3, 3) ax.imshow(mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Diverging') fig.suptitle('Grad-CAM', fontsize=16) fig.tight_layout() #plt.savefig('./saliency_gradcam.png') plt.show() #-------------------- start_time = time.time() saliency_obj = saliency.GradientSaliency(sess.graph, sess, y, input_ph) print('GradientSaliency: {} secs.'.format(time.time() - start_time)) vanilla_mask_3d = saliency_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}) smoothgrad_mask_3d = saliency_obj.GetSmoothedMask(img, feed_dict={neuron_selector: prediction_class}) # Compute a 2D tensor for visualization. vanilla_mask_gray = saliency.VisualizeImageGrayscale(vanilla_mask_3d) smoothgrad_mask_gray = saliency.VisualizeImageGrayscale(smoothgrad_mask_3d) vanilla_mask_div = saliency.VisualizeImageDiverging(vanilla_mask_3d) smoothgrad_mask_div = saliency.VisualizeImageDiverging(smoothgrad_mask_3d) fig = plt.figure() ax = plt.subplot(2, 3, 1) ax.imshow(img_scaled, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Input') ax = plt.subplot(2, 3, 2) ax.imshow(vanilla_mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Vanilla Grayscale') ax = plt.subplot(2, 3, 3) ax.imshow(smoothgrad_mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('SmoothGrad Grayscale') ax = plt.subplot(2, 3, 5) ax.imshow(vanilla_mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Vanilla Diverging') ax = plt.subplot(2, 3, 6) ax.imshow(smoothgrad_mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('SmoothGrad Diverging') fig.suptitle('Gradient Saliency', fontsize=16) fig.tight_layout() #plt.savefig('./saliency_gradientsaliency.png') plt.show() #-------------------- start_time = time.time() saliency_obj = saliency.GuidedBackprop(sess.graph, sess, y, input_ph) print('GuidedBackprop: {} secs.'.format(time.time() - start_time)) vanilla_mask_3d = saliency_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}) smoothgrad_mask_3d = saliency_obj.GetSmoothedMask(img, feed_dict={neuron_selector: prediction_class}) # Compute a 2D tensor for visualization. vanilla_mask_gray = saliency.VisualizeImageGrayscale(vanilla_mask_3d) smoothgrad_mask_gray = saliency.VisualizeImageGrayscale(smoothgrad_mask_3d) vanilla_mask_div = saliency.VisualizeImageDiverging(vanilla_mask_3d) smoothgrad_mask_div = saliency.VisualizeImageDiverging(smoothgrad_mask_3d) fig = plt.figure() ax = plt.subplot(2, 3, 1) ax.imshow(img_scaled, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Input') ax = plt.subplot(2, 3, 2) ax.imshow(vanilla_mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Vanilla Grayscale') ax = plt.subplot(2, 3, 3) ax.imshow(smoothgrad_mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('SmoothGrad Grayscale') ax = plt.subplot(2, 3, 4) ax.imshow(vanilla_mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Vanilla Diverging') ax = plt.subplot(2, 3, 5) ax.imshow(smoothgrad_mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('SmoothGrad Diverging') fig.suptitle('Guided Backprop', fontsize=16) fig.tight_layout() #plt.savefig('./saliency_guidedbackprop.png') plt.show() #-------------------- start_time = time.time() saliency_obj = saliency.IntegratedGradients(sess.graph, sess, y, input_ph) print('IntegratedGradients: {} secs.'.format(time.time() - start_time)) vanilla_mask_3d = saliency_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}) smoothgrad_mask_3d = saliency_obj.GetSmoothedMask(img, feed_dict={neuron_selector: prediction_class}) # Compute a 2D tensor for visualization. vanilla_mask_gray = saliency.VisualizeImageGrayscale(vanilla_mask_3d) smoothgrad_mask_gray = saliency.VisualizeImageGrayscale(smoothgrad_mask_3d) vanilla_mask_div = saliency.VisualizeImageDiverging(vanilla_mask_3d) smoothgrad_mask_div = saliency.VisualizeImageDiverging(smoothgrad_mask_3d) fig = plt.figure() ax = plt.subplot(2, 3, 1) ax.imshow(img_scaled, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Input') ax = plt.subplot(2, 3, 2) ax.imshow(vanilla_mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Vanilla Grayscale') ax = plt.subplot(2, 3, 3) ax.imshow(smoothgrad_mask_gray, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('SmoothGrad Grayscale') ax = plt.subplot(2, 3, 4) ax.imshow(vanilla_mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Vanilla Diverging') ax = plt.subplot(2, 3, 5) ax.imshow(smoothgrad_mask_div, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('SmoothGrad Diverging') fig.suptitle('Integrated Gradients', fontsize=16) fig.tight_layout() #plt.savefig('./saliency_integratedgradients.png') plt.show() #-------------------- start_time = time.time() xrai_obj = saliency.XRAI(sess.graph, sess, y, input_ph) print('XRAI: {} secs.'.format(time.time() - start_time)) if True: xrai_attributions = xrai_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}) else: # Create XRAIParameters and set the algorithm to fast mode which will produce an approximate result. xrai_params = saliency.XRAIParameters() xrai_params.algorithm = 'fast' xrai_attributions_fast = xrai_obj.GetMask(img, feed_dict={neuron_selector: prediction_class}, extra_parameters=xrai_params) # Show most salient 30% of the image. mask = xrai_attributions > np.percentile(xrai_attributions, 70) img_masked = img_scaled.copy() img_masked[~mask] = 0 fig = plt.figure() ax = plt.subplot(1, 3, 1) ax.imshow(img_scaled, cmap=plt.cm.gray, vmin=0, vmax=1) ax.axis('off') ax.set_title('Input') ax = plt.subplot(1, 3, 2) ax.imshow(xrai_attributions, cmap=plt.cm.inferno) ax.axis('off') ax.set_title('XRAI Attributions') ax = plt.subplot(1, 3, 3) ax.imshow(img_masked, cmap=plt.cm.gray) ax.axis('off') ax.set_title('Masked Input') fig.suptitle('XRAI', fontsize=16) fig.tight_layout() #plt.savefig('./saliency_xrai.png') plt.show() def main(): simple_example() #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-2.0
bmorris3/numpy
numpy/lib/polynomial.py
82
37957
""" Functions to operate on polynomials. """ from __future__ import division, absolute_import, print_function __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import (isscalar, abs, finfo, atleast_1d, hstack, dot, array, ones) from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag, mintypecode from numpy.linalg import eigvals, lstsq, inv class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Evaluate a polynomial at a point. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: dt = seq_of_zeros.dtype # Let object arrays slip through, e.g. for arbitrary precision if dt != object: seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char)) else: raise ValueError("input must be 1d or non-empty square 2d array.") if len(seq_of_zeros) == 0: return 1.0 dt = seq_of_zeros.dtype a = ones((1,), dtype=dt) for k in range(len(seq_of_zeros)): a = NX.convolve(a, array([1, -seq_of_zeros[k]], dtype=dt), mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0, roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by:: p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like Rank-1 array of polynomial coefficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError("Input must be a rank-1 array.") # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0,:] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : array_like or poly1d Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : list of `m` scalars or scalar, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError("Order of integral must be positive (see polyder)") if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError( "k must be a scalar or a rank-1 array of length 1 or >m.") truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) if m < 0: raise ValueError("Order of derivative must be positive (see polyint)") truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (M,), optional weights to apply to the y-coordinates of the sample points. cov : bool, optional Return the estimate and the covariance matrix of the estimate If full is True, then cov is not returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : Present only if `full` = True. Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. V : ndarray, shape (M,M) or (M,M,K) Present only if `full` = False and `cov`=True. The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for the `k`-th data set are in ``V[:,:,k]`` Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Computes polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] ... x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: raise TypeError("expected 1D vector for x") if x.size == 0: raise TypeError("expected non-empty vector for x") if y.ndim < 1 or y.ndim > 2: raise TypeError("expected 1D or 2D array for y") if x.shape[0] != y.shape[0]: raise TypeError("expected x and y to have same length") # set rcond if rcond is None: rcond = len(x)*finfo(x.dtype).eps # set up least squares equation for powers of x lhs = vander(x, order) rhs = y # apply weighting if w is not None: w = NX.asarray(w) + 0.0 if w.ndim != 1: raise TypeError("expected a 1-d array for weights") if w.shape[0] != y.shape[0]: raise TypeError("expected w and y to have the same length") lhs *= w[:, NX.newaxis] if rhs.ndim == 2: rhs *= w[:, NX.newaxis] else: rhs *= w # scale lhs to improve condition number and solve scale = NX.sqrt((lhs*lhs).sum(axis=0)) lhs /= scale c, resids, rank, s = lstsq(lhs, rhs, rcond) c = (c.T/scale).T # broadcast scale coefficients # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) if full: return c, resids, rank, s, rcond elif cov: Vbase = inv(dot(lhs.T, lhs)) Vbase /= NX.outer(scale, scale) # Some literature ignores the extra -2.0 factor in the denominator, but # it is included here because the covariance of Multivariate Student-T # (which is implied by a Bayesian uncertainty analysis) includes it. # Plus, it gives a slightly more conservative estimate of uncertainty. fac = resids / (len(x) - order - 2.0) if y.ndim == 1: return c, Vbase * fac else: return c, Vbase[:,:, NX.newaxis] * fac else: return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, a 1D array of numbers, or an instance of poly1d, "at" which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = y * x + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print p1 1 x + 2 >>> print p2 2 9 x + 5 x + 4 >>> print np.polyadd(p1, p2) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval convolve : Array convolution. Same output as polymul, but has parameter for overlap mode. Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print p1 2 1 x + 2 x + 3 >>> print p2 2 9 x + 5 x + 1 >>> print np.polymul(p1, p2) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1, a2 = poly1d(a1), poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while True: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2) + len(toadd2) > wrap) or (len(line1) + len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None __hash__ = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError("Polynomial must be 1d only.") c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError("Power to non-negative integers only.") res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): if self.coeffs.shape != other.coeffs.shape: return False return (self.coeffs == other.coeffs).all() def __ne__(self, other): return not self.__eq__(other) def __setattr__(self, key, val): raise ValueError("Attributes cannot be changed this way.") def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c', 'coef', 'coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError( "'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError("Does not support negative powers.") if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always', RankWarning)
bsd-3-clause
eclee25/flu-SDI-exploratory-age
scripts/ORincid_allweeks.py
1
4225
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 9/15/13 ###Function: OR by week and child & adult incidence by week with two axes #### Allow us to compare the OR values by the magnitude of infection in children and adults ###Import data: OR_allweeks.csv ###Command Line: python ############################################## ### notes ### ### packages/modules ### import csv import numpy as np import matplotlib.pyplot as plt import sys ## local modules ## import ORgenerator as od ### data structures ### # ilidict[(week, age marker)] = ILI # wkdict[week] = seasonnum # weeks = list of unique weeks in the data # ORdict[week] = OR # ageARdict[week] = (child attack rate per 100,000, adult attack rate per 100,000) ### parameters ### USchild = 20348657 + 20677194 + 22040343 #US child popn from 2010 Census USadult = 21585999 + 21101849 + 19962099 + 20179642 + 20890964 + 22708591 + 22298125 + 19664805 #US adult popn from 2010 Census seasons = range(2,11) #seasons for which ORs will be generated ### plotting settings ### xlabels = range(40,54) xlabels.extend(range(1,40)) ORmarker = 'o' incidmarker = '^' ORcol = 'black' chcol = 'red' adcol = 'blue' ### functions ### ### import data ### datain=open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks.csv','r') data=csv.reader(datain, delimiter=',') ilidict, wkdict, weeks = od.import_dwk(data, 0, 1, 2, 3) ORdict, ageARdict = od.ORincid_wk(ilidict, weeks) # OR and attack rate chart (two axes) for each season for s in seasons: # wkdummy will represent list of weeks for chart in season to use as key for OR dict wkdummy = [key for key in sorted(weeks) if wkdict[key] == int(s)] wkdummy = set(wkdummy) # wkdummy needs to be sorted bc dict values don't have order when pulling dict values in list comprehension # create two y-axes fig, yax_OR = plt.subplots() yax_AR = yax_OR.twinx() # for seasons with 53 weeks (season 5 only) if len(wkdummy) == 53: ## OR y-axis chartORs = [ORdict[wk] for wk in sorted(wkdummy)] chartwks = xrange(len(sorted(wkdummy))) OR, = yax_OR.plot(chartwks, chartORs, marker = ORmarker, color = ORcol, label = "Odds Ratio", lw = 4, ms = 8) ## incidence y-axis (one line each for child and adult AR) c_AR = [ageARdict[wk][0] for wk in sorted(wkdummy)] a_AR = [ageARdict[wk][1] for wk in sorted(wkdummy)] child, = yax_AR.plot(chartwks, c_AR, marker = incidmarker, color = chcol, label = 'Child Attack Rate', lw = 3, ms = 8) adult, = yax_AR.plot(chartwks, a_AR, marker = incidmarker, color = adcol, label = 'Adult Attack Rate', lw = 3, ms = 8) ## designate legend labels lines = [OR, child, adult] yax_OR.legend(lines, [l.get_label() for l in lines], loc = 'upper right') # for seasons with 52 weeks else: ## OR y-axis chartORs = [ORdict[wk] for wk in sorted(wkdummy)] avg53 = (chartORs[12] + chartORs[13])/2 chartORs.insert(13, avg53) chartwks = xrange(len(sorted(wkdummy)) + 1) OR, = yax_OR.plot(chartwks, chartORs, marker = ORmarker, color = ORcol, label = "Odds Ratio", lw = 4, ms = 8) ## incidence y-axis c_AR = [ageARdict[wk][0] for wk in sorted(wkdummy)] a_AR = [ageARdict[wk][1] for wk in sorted(wkdummy)] avgc = (c_AR[12] + c_AR[13])/2 avga = (a_AR[12] + a_AR[13])/2 c_AR.insert(13, avgc) a_AR.insert(13, avga) child, = yax_AR.plot(chartwks, c_AR, marker = incidmarker, color = chcol, label = 'Child Incidence Rate', lw = 3, ms = 8) adult, = yax_AR.plot(chartwks, a_AR, marker = incidmarker, color = adcol, label = 'Adult Incidence Rate', lw = 3, ms = 8) ## designate legend labels lines = [OR, child, adult] yax_OR.legend(lines, [l.get_label() for l in lines], loc = 'upper right') ## separate flu and off seasons plt.plot([33, 33], [0, 100], color = 'k', linewidth = 1) ## plot settings yax_OR.set_xlabel('Week Number, Season ' + str(s), fontsize=24) yax_OR.set_ylim([0, 10]) yax_OR.set_ylabel('OR, child:adult', fontsize=24) yax_AR.set_ylim([0, 100]) yax_AR.set_yticks(xrange(0,110,10)) yax_AR.set_ylabel('Incidence Rate per 100,000', fontsize=24) plt.xlim([0, 33]) plt.xticks(xrange(33), xlabels[:33]) plt.show()
mit
logpai/logparser
logparser/SLCT/SLCT.py
1
7250
""" Description: This file implements a wrapper around the original SLCT code in C Author: LogPAI team License: MIT """ import sys sys.path.append('../') import hashlib import pandas as pd import re from datetime import datetime from ..logmatch import regexmatch import subprocess import os class LogParser(object): def __init__(self, indir, outdir, log_format, support, para_j=True, saveLog=False, rex=[]): self.outdir = outdir self.log_format = log_format self.rex = rex self.para = {} self.para['dataPath'] = indir self.para['para_j'] = para_j self.para['savePath'] = outdir self.para['support'] = support self.para['saveLog'] = saveLog def parse(self, logname): self.para['dataName'] = logname SLCT(self.para, self.log_format, self.rex) def SLCT(para, log_format, rex): startTime = datetime.now() # start timing logname = os.path.join(para['dataPath'], para['dataName']) print("Parsing file: {}".format(logname)) # SLCT compilation if not os.path.isfile('../SLCT/slct'): try: print('Compile SLCT...\n>> gcc -o ../logparser/SLCT/slct -O2 ../logparser/SLCT/cslct.c') subprocess.check_output('gcc -o ../logparser/SLCT/slct -O2 ../logparser/SLCT/cslct.c', stderr=subprocess.STDOUT, shell=True) except: print("Compile error! Please check GCC installed.\n") raise headers, regex = generate_logformat_regex(log_format) df_log = log_to_dataframe(logname, regex, headers, log_format) # Generate input file with open('slct_input.log', 'w') as fw: for line in df_log['Content']: if rex: for currentRex in rex: line = re.sub(currentRex, '<*>', line) fw.write(line + '\n') # Run SLCT command SLCT_command = extract_command(para, "slct_input.log") try: print ("Run SLCT...\n>> {}".format(SLCT_command)) subprocess.check_call(SLCT_command, shell=True) except: print("SLCT executable is invalid! Please compile it using GCC.\n") raise # Collect and dump templates tempParameter = TempPara(path = "./", savePath=para['savePath'], logname="slct_input.log") tempProcess(tempParameter) matcher = regexmatch.PatternMatch(outdir=para['savePath'], logformat=log_format) matched_df = matcher.match(logname, "temp_templates.csv") # sys.exit() os.remove("slct_input.log") os.remove("slct_outliers.log") os.remove("slct_templates.txt") os.remove("temp_templates.csv") for idx, line in matched_df.iterrows(): if line['EventTemplate'] == "None": content = line['Content'] matched_df.loc[idx, "EventTemplate"] = content matched_df.loc[idx, "EventId"] = hashlib.md5(content.encode('utf-8')).hexdigest()[0:8] occ_dict = dict(matched_df['EventTemplate'].value_counts()) df_event = pd.DataFrame() df_event['EventTemplate'] = matched_df['EventTemplate'].unique() df_event['EventId'] = df_event['EventTemplate'].map(lambda x: hashlib.md5(x.encode('utf-8')).hexdigest()[0:8]) df_event['Occurrences'] = df_event['EventTemplate'].map(occ_dict) df_event.to_csv(os.path.join(para['savePath'], para['dataName'] + "_templates.csv"), index=False, columns=["EventId", "EventTemplate", "Occurrences"]) matched_df.to_csv(os.path.join(para['savePath'], para['dataName'] + "_structured.csv"), index=False) print('Parsing done. [Time: {!s}]'.format(datetime.now() - startTime)) def extract_command(para, logname): support = para['support'] parajTF = para['para_j'] input = '' if parajTF: input = '../logparser/SLCT/slct -j -o ' + 'slct_outliers.log -r -s ' + str(support) + ' ' + logname else: input = '../logparser/SLCT/slct -o ' + 'slct_outliers.log -r -s ' + str(support) + ' ' + logname return input def log_to_dataframe(log_file, regex, headers, logformat): ''' Function to transform log file to dataframe ''' log_messages = [] linecount = 0 with open(log_file, 'r') as fin: for line in fin.readlines(): try: match = regex.search(line.strip()) message = [match.group(header) for header in headers] log_messages.append(message) linecount += 1 except Exception as e: pass logdf = pd.DataFrame(log_messages, columns=headers) logdf.insert(0, 'LineId', None) logdf['LineId'] = [i + 1 for i in range(linecount)] return logdf def generate_logformat_regex(logformat): ''' Function to generate regular expression to split log messages ''' headers = [] splitters = re.split(r'(<[^<>]+>)', logformat) regex = '' for k in range(len(splitters)): if k % 2 == 0: splitter = re.sub(' +', '\s+', splitters[k]) regex += splitter else: header = splitters[k].strip('<').strip('>') regex += '(?P<%s>.*?)' % header headers.append(header) regex = re.compile('^' + regex + '$') return headers, regex class TempPara: def __init__(self, path='./', logname='rawlog.log', savePath='./', templateName='slct_templates.txt', outlierName='slct_outliers.log'): self.path = path self.logname = logname self.savePath = savePath self.templateName = templateName self.outlierName = outlierName def tempProcess(tempPara): print('Dumping event templates...') if not os.path.exists(tempPara.savePath): os.makedirs(tempPara.savePath) #read the templates templates = [] with open('./' + tempPara.templateName) as tl: for line in tl: templates.append([0, line.strip(), 0]) pd.DataFrame(templates, columns=["EventId","EventTemplate","Occurrences"]).to_csv("temp_templates.csv", index=False) def matchTempLog(templates, logs): len_temp = {} for tidx, temp in enumerate(templates): tempL = temp.split() templen = len(tempL) if templen not in len_temp: len_temp[templen] = [(tidx, tempL)] else: len_temp[templen].append((tidx, tempL)) logid_groupid = [] for idx, log in enumerate(logs): logL = log.split() logid = idx+1 if len(logL) in len_temp: logid_groupid.append([idx + 1, get_groupid(logL, len_temp[len(logL)])]) else: logid_groupid.append([idx+1, -1]) return logid_groupid def get_groupid(logL, tempLs): maxvalue = -1 for templ in tempLs: starnum = 0 shot = 0 for idx, token in enumerate(logL): if token == templ[1][idx] or templ[1][idx].count("*"): shot += 1 if templ[1][idx].count("*"): starnum += 1 shot = shot - starnum if shot > maxvalue: maxvalue = shot groupid = templ[0] return groupid
mit