repo_name
stringlengths
6
96
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
762
753k
license
stringclasses
15 values
Myasuka/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
drericstrong/tinsul
tinsul/core.py
1
6979
# -*- coding: utf-8 -*- """ tinsul.core ~~~~~~~~~~ A module to simulate condition-monitoring data for Transformer INSULation prognostics models. :copyright: (c) 2017 by Eric Strong. :license: Refer to LICENSE.txt for more information. """ import numpy as np import pandas as pd from numba import jit from numpy.random import randn @jit # Transformer INSULation SIMulator def tinsul_sim(temps, start_month=1.0, dp_initial=1000, fail_loc=175.0, fail_scale=10.0, o=1.0, t0=35.0, tc=30.0, n=1.0, n0=0.8, nc=1.0, l=1.0, a=(3.7*10**7)): """ tinsul_sim is a function to simulate condition-monitoring data for Transformer INSULation prognostics models. :param temps: 12x3 array, containing monthly low, average, and high temps supplying "default" will use the temperatures for DC :param start_month: first week of January=1, second week=1.25, etc. :param dp_initial: starting degree of polymerization (DP) of the paper :param fail_loc: "location" parameter of the logistic failure distribution :param fail_scale: "scale" parameter of the logistic failure distribution :param o: overload_ratio, typically between 0.75 and 1.1 [Montsinger] if a list is supplied, simulation will iterate through the list as if it were a repeating pattern :param t0: temperature rise of oil over ambient [Montsinger] :param tc: temperature rise of the windings over the oil [Montsinger] :param n: ratio of copper to iron loss at rated load [Montsinger] :param n0: 0.8 for self-cooled transformers, 0.5 water-cooled [Montsinger] :param nc: 1.0 for vertical windings, 0.8 for horizontal [Montsinger] :param l: if hot spot is constant, l=1.0 [Montsinger] :param a: a constant based on the type of paper insulation [Emsley] :return: A DataFrame of condition indicators per week: co, co2, furan, furfural, and paper water content (in order) """ if type(o) is float: o_list = [o] else: o_list = o if temps == "default": temps = _use_default_temps() # Stores the accumulated condition indicator values in a dict acc = {} # Variables to store some "state" values per iteration cur_month = start_month cur_dp = dp_initial cur_week = 0 cur_o = 0 # dp_failed determines the DP at which the paper insulation will # fail, drawn from a logistic distribution centered at 200 fail_dp = np.random.logistic(loc=fail_loc, scale=fail_scale) while cur_week < 5000: # transformers don't live longer than 5000 weeks # Simulate 6 hours at low, 12 hours at avg, and 6 hours at high temps # The first index is temp, the second index is hours at that temp ambient_low = [temps[int(cur_month)-1][0], 6] ambient_avg = [temps[int(cur_month)-1][1], 12] ambient_high = [temps[int(cur_month)-1][2], 6] # Update DP based on the heat stresses from the core hot spot for ambient, time in [ambient_low, ambient_avg, ambient_high]: chs = _core_hot_spot(ambient, o_list[cur_o], t0, tc, n, n0, nc, l) cur_dp = _calculate_dp(chs, time, cur_dp, a) # Calculate the condition indicators based on DP acc[cur_week] = _oil_contamination(cur_dp) # Check for transformer failure (less than 150 DP is instant failure) if (cur_dp <= fail_dp) | (cur_dp < 150): break # Add the value (Months/Weeks) to get proportion of month per week cur_month += 0.230769 cur_week += 1 cur_o += 1 # Rollover to the next year, if necessary if cur_month >= 13.0: cur_month = 1 if cur_o > (len(o_list) - 1): cur_o = 0 # Convert the dict to a pandas DataFrame df = pd.DataFrame.from_dict(acc, orient='index') df.columns = ['CO', 'CO2', 'Furan', 'Furfural', 'Water Content'] return df # Uses the monthly temperatures from Washington, DC def _use_default_temps(): return [[-2, 1, 6], # January [-1, 3, 8], # February [3, 7, 13], # March [8, 13, 19], # April [14, 18, 24], # May [19, 24, 29], # June [22, 28, 31], # July [21, 27, 30], # August [17, 22, 26], # September [10, 15, 20], # October [5, 10, 14], # November [0, 4, 8]] # December @jit # Calculates the core hot spot temperature of the transformer def _core_hot_spot(amb, o=1.0, t0=35.0, tc=30.0, n=1.0, n0=0.8, nc=1.0, l=1.0): # ---Refer to Montsinger's paper for more information--- # amb is ambient temperature in Celsius # o is overload ratio in decimal form (e.g. 0.75 not 75%) # t0 is the temperature rise of oil over ambient # tc is the temperature rise of the windings over the oil # n = ratio of copper to iron loss at rated load (1 for simplification) # n0 = 0.8 for self-cooled transformers, 0.5 for water-cooled # nc = 1.0 for vertical windings, 0.8 for horizontal windings # l = hot spot is constant, kva varies with the ambient -> l=1.0 t_chs = t0*((n*o**2+1)**n0) + tc*l*o**(2*nc) + amb return t_chs @jit def _calculate_dp(core_hot_spot, time, dp_initial, a=(3.7*10**7)): # ---Refer to Emsley's paper for more information--- # core_hot_spot is from the _core_hot_spot function (in Celsius) # time is measured in hours # dp_initial is the initial degree of polymerization # a is a constant based on the type of paper insulation: # -upgraded paper: 3.7*10**7 # -dry Kraft paper: 1.1*10**8 # -Kraft paper + 1% water: 3.5*10**8 # -Kraft paper + 2% water: 7.8*10**8 # -Kraft paper + 4% water: 3.5*10**9 k = a * np.exp(-(117000 / (8.314 * (core_hot_spot + 273.15)))) dp_final = 1 / ((k * 24 * 7 * time) + (1 / dp_initial)) return dp_final @jit def _oil_contamination(dp): # dp is the degree of polymerization # ------------------------------------------------------------------------ # This section contains estimates of dissolved gases and other features # based on regression of empirical data in academic papers # ---Refer to Pradhan and Ramu's paper for more information--- # CO and CO2 are the TOTAL accumulation of the gas, not the rate co = (-0.0028*dp + 6.28) + (0.13*randn()) co2 = (-0.0026*dp + 8.08) + (0.66*randn()) # ---Refer to "On the Estimation of Elapsed Life" for more information--- furan = (-0.0038*dp + 7.93) + (0.13*randn()) # ---Refer to "Study on the Aging Characteristics and Bond-Breaking # Process of Oil - Paper Insulation" for more information--- furfural = (-0.0025*dp + 4.72) + (0.11*randn()) # ---Refer to Emsley's paper for more information--- water_content = (0.5 * np.log(1000 / dp)) / (np.log(2)) + (0.03*randn()) return co, co2, furan, furfural, water_content
agpl-3.0
TimBizeps/BachelorAP
V206_Wärmepumpe/auswertung3.py
1
1126
import matplotlib as mpl mpl.use('pgf') import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from uncertainties import ufloat import uncertainties.unumpy as unp from uncertainties.unumpy import (nominal_values as noms, std_devs as stds) mpl.rcParams.update({ 'font.family': 'serif', 'text.usetex': True, 'pgf.rcfonts': False, 'pgf.texsystem': 'lualatex', 'pgf.preamble': r'\usepackage{unicode-math}\usepackage{siunitx}' }) v, x, n, o = np.genfromtxt('daten2.txt', unpack=True) n = n + 273.15 o = o + 273.15 p0 = 1.013 x = x/p0 def R(o, h, i): return h * o + i params3, covariance3 = curve_fit(R, 1/o, np.log(x)) errors3 = np.sqrt(np.diag(covariance3)) print('a =', params3[0], '±', errors3[0]) print('b =', params3[1], '±', errors3[1]) x_plot = np.linspace(0.00335, 0.0037) plt.plot(1/o, np.log(x), 'rx', label="Messwerte") plt.plot(x_plot, R(x_plot, *params3), 'b-', label='Ausgleichsgerade', linewidth=1) plt.legend(loc="best") plt.xlabel(r'$\frac{1}{T} \,\,/\,\, \frac{1}{K}$') plt.ylabel(r'$ln(\frac{p}{p_0})$') plt.tight_layout() plt.savefig("Plot3.pdf")
gpl-3.0
jfinkels/networkx
examples/graph/atlas.py
4
2761
#!/usr/bin/env python """ Atlas of all graphs of 6 nodes or less. """ # Author: Aric Hagberg ([email protected]) # Copyright (C) 2004-2016 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx from networkx.generators.atlas import * from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic import random def atlas6(): """ Return the atlas of all connected graphs of 6 nodes or less. Attempt to check for isomorphisms and remove. """ Atlas = graph_atlas_g()[0:208] # 208 # remove isolated nodes, only connected graphs are left U = nx.Graph() # graph for union of all graphs in atlas for G in Atlas: zerodegree = [n for n in G if G.degree(n)==0] for n in zerodegree: G.remove_node(n) U = nx.disjoint_union(U, G) # list of graphs of all connected components C = nx.connected_component_subgraphs(U) UU = nx.Graph() # do quick isomorphic-like check, not a true isomorphism checker nlist = [] # list of nonisomorphic graphs for G in C: # check against all nonisomorphic graphs so far if not iso(G, nlist): nlist.append(G) UU = nx.disjoint_union(UU, G) # union the nonisomorphic graphs return UU def iso(G1, glist): """Quick and dirty nonisomorphism checker used to check isomorphisms.""" for G2 in glist: if isomorphic(G1, G2): return True return False if __name__ == '__main__': G=atlas6() print("graph has %d nodes with %d edges"\ %(nx.number_of_nodes(G), nx.number_of_edges(G))) print(nx.number_connected_components(G), "connected components") try: import pygraphviz from networkx.drawing.nx_agraph import graphviz_layout except ImportError: try: import pydot from networkx.drawing.nx_pydot import graphviz_layout except ImportError: raise ImportError("This example needs Graphviz and either " "PyGraphviz or pydot") import matplotlib.pyplot as plt plt.figure(1, figsize=(8, 8)) # layout graphs with positions using graphviz neato pos = graphviz_layout(G, prog="neato") # color nodes the same in each connected subgraph C = nx.connected_component_subgraphs(G) for g in C: c = [random.random()] * nx.number_of_nodes(g) # random color... nx.draw(g, pos, node_size=40, node_color=c, vmin=0.0, vmax=1.0, with_labels=False ) plt.savefig("atlas.png", dpi=75)
bsd-3-clause
IshankGulati/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
46
3387
import numpy as np from sklearn.utils import testing from sklearn.preprocessing import FunctionTransformer from sklearn.utils.testing import assert_equal, assert_array_equal def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X): def _func(X, *args, **kwargs): args_store.append(X) args_store.extend(args) kwargs_store.update(kwargs) return func(X) return _func def test_delegate_to_func(): # (args|kwargs)_store will hold the positional and keyword arguments # passed to the function inside the FunctionTransformer. args_store = [] kwargs_store = {} X = np.arange(10).reshape((5, 2)) assert_array_equal( FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X), X, 'transform should have returned X unchanged', ) # The function should only have received X. assert_equal( args_store, [X], 'Incorrect positional arguments passed to func: {args}'.format( args=args_store, ), ) assert_equal( kwargs_store, {}, 'Unexpected keyword arguments passed to func: {args}'.format( args=kwargs_store, ), ) # reset the argument stores. args_store[:] = [] # python2 compatible inplace list clear. kwargs_store.clear() y = object() assert_array_equal( FunctionTransformer( _make_func(args_store, kwargs_store), pass_y=True, ).transform(X, y), X, 'transform should have returned X unchanged', ) # The function should have received X and y. assert_equal( args_store, [X, y], 'Incorrect positional arguments passed to func: {args}'.format( args=args_store, ), ) assert_equal( kwargs_store, {}, 'Unexpected keyword arguments passed to func: {args}'.format( args=kwargs_store, ), ) def test_np_log(): X = np.arange(10).reshape((5, 2)) # Test that the numpy.log example still works. assert_array_equal( FunctionTransformer(np.log1p).transform(X), np.log1p(X), ) def test_kw_arg(): X = np.linspace(0, 1, num=10).reshape((5, 2)) F = FunctionTransformer(np.around, kw_args=dict(decimals=3)) # Test that rounding is correct assert_array_equal(F.transform(X), np.around(X, decimals=3)) def test_kw_arg_update(): X = np.linspace(0, 1, num=10).reshape((5, 2)) F = FunctionTransformer(np.around, kw_args=dict(decimals=3)) F.kw_args['decimals'] = 1 # Test that rounding is correct assert_array_equal(F.transform(X), np.around(X, decimals=1)) def test_kw_arg_reset(): X = np.linspace(0, 1, num=10).reshape((5, 2)) F = FunctionTransformer(np.around, kw_args=dict(decimals=3)) F.kw_args = dict(decimals=1) # Test that rounding is correct assert_array_equal(F.transform(X), np.around(X, decimals=1)) def test_inverse_transform(): X = np.array([1, 4, 9, 16]).reshape((2, 2)) # Test that inverse_transform works correctly F = FunctionTransformer( func=np.sqrt, inverse_func=np.around, inv_kw_args=dict(decimals=3), ) assert_array_equal( F.inverse_transform(F.transform(X)), np.around(np.sqrt(X), decimals=3), )
bsd-3-clause
WaveBlocks/libwaveblocks
scripts/plotHarmonic_2D.py
2
2853
from numpy import * from numpy.linalg import det from matplotlib.pyplot import * from matplotlib import gridspec import h5py as hdf import sys sys.path.insert(0, 'IMPORTANT/WaveBlocksND/src/WaveBlocksND') from Plot import stemcf F = hdf.File("harmonic_2D.hdf5", "r") dt = 0.01 T = 12 time = linspace(0, T, T/dt+1) f = lambda x: ('%f' % x).rstrip('0').rstrip('.') def read_data(base, time): L = [F[base + "@" + f(t)][:] for t in time] return array(L) q = read_data("q", time) p = read_data("p", time) Q = read_data("Q", time) P = read_data("P", time) EPot = read_data("Epot",time) EKin = read_data("Ekin",time) Etot = EPot + EKin figure() Etot = squeeze(Etot); semilogy(time, abs(Etot - Etot[0]), 'm-', label='$|E_{kin}(0) - E_{kin}(t)|$') xlabel('time') legend(loc="upper left", bbox_to_anchor=(1,1)) grid(True) fig = figure() gs = gridspec.GridSpec(2,2) ax1 = fig.add_subplot(gs[0,0]) ax1.plot(q[:,0,:],q[:,1,:], 'b-', label = '$(q_x,q_y)$') legend() grid(True) ax2 = fig.add_subplot(gs[0,1]) ax2.plot(p[:,0,:],p[:,1,:], 'r-', label= '$(p_x,p_y)$') legend() grid(True) # In[13]: detQ = det(Q) detP = det(P) # In[14]: fig.add_subplot(gs[1,0]) plot(time, abs(detQ), 'b-', label= '$abs(det(Q))$') xlabel('time') legend() grid(True) fig.add_subplot(gs[1,1]) plot(time, abs(detP), 'r-', label = '$abs(det(P))$') xlabel('time') legend() grid(True) # In[15]: Ekin = read_data("Ekin", time) Epot = read_data("Epot", time) Etot = read_data("Etot", time) # In[16]: Ekin.shape # In[17]: figure() plot(time, squeeze(Ekin), 'r-', label='$E_{kin}$') plot(time, squeeze(Epot), 'b-', label='$E_{pot}$' ) plot(time, squeeze(Etot), 'm-', label='$E_{pot}$') xlabel('time') legend(loc="upper left", bbox_to_anchor=(1,1)) grid(True) # In[18]: C = read_data("coefficients", time) # In[19]: C.shape #~ # In[28]: K = len(C[0,:,0]); figure() subplot(2,3,1) title('$t=0$') c = C[0, :,0]; stemcf(arange(K), angle(c), abs(c)) grid(True) xlim(-1, K + 1) ylim(-0.1, 1.1) # In[29]: subplot(2,3,2) title('$t=4$') c = C[400, :,0]; stemcf(arange(K), angle(c), abs(c)) grid(True) xlim(-1, K + 1) ylim(-0.1, 1.1) # In[30]: subplot(2,3,3) title('$t=6$') c = C[600, :,0]; stemcf(arange(K), angle(c), abs(c)) grid(True) xlim(-1, K + 1) ylim(-0.1, 1.1) # In[31]: subplot(2,3,4) title('$t=8$') c = C[800, :,0]; stemcf(arange(K), angle(c), abs(c)) grid(True) xlim(-1, K + 1) ylim(-0.1, 1.1) # In[27]: subplot(2,3,5) title('$t=10$') c = C[1000, :,0]; stemcf(arange(K), angle(c), abs(c)) grid(True) xlim(-1, K + 1) ylim(-0.1, 1.1) subplot(2,3,6) title('$t=12$') c = C[1200, :,0]; stemcf(arange(K), angle(c), abs(c)) grid(True) xlim(-1, K + 1) ylim(-0.1, 1.1) show()
gpl-2.0
EnergieID/entsoe-py
tests.py
1
4305
import unittest import pandas as pd from bs4 import BeautifulSoup from entsoe import EntsoeRawClient, EntsoePandasClient from entsoe.exceptions import NoMatchingDataError from settings import * class EntsoeRawClientTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.client = EntsoeRawClient(api_key=api_key) cls.start = pd.Timestamp('20180101', tz='Europe/Brussels') cls.end = pd.Timestamp('20180107', tz='Europe/Brussels') cls.country_code = 'BE' def test_datetime_to_str(self): start_str = self.client._datetime_to_str(dtm=self.start) self.assertIsInstance(start_str, str) self.assertEqual(start_str, '201712312300') def test_basic_queries(self): queries = [ self.client.query_day_ahead_prices, self.client.query_load, self.client.query_wind_and_solar_forecast, self.client.query_load_forecast, self.client.query_generation, self.client.query_generation_forecast, self.client.query_installed_generation_capacity, # this one gives back a zip so disabled for testing right now #self.client.query_imbalance_prices, self.client.query_net_position_dayahead ] for query in queries: text = query(country_code=self.country_code, start=self.start, end=self.end) self.assertIsInstance(text, str) try: BeautifulSoup(text, 'html.parser') except Exception as e: self.fail(f'Parsing of response failed with exception: {e}') def query_crossborder_flows(self): text = self.client.query_crossborder_flows( country_code_from='BE', country_code_to='NL', start=self.start, end=self.end) self.assertIsInstance(text, str) try: BeautifulSoup(text, 'html.parser') except Exception as e: self.fail(f'Parsing of response failed with exception: {e}') def test_query_unavailability_of_generation_units(self): text = self.client.query_unavailability_of_generation_units( country_code='BE', start=self.start, end=self.end) self.assertIsInstance(text, bytes) def test_query_withdrawn_unavailability_of_generation_units(self): with self.assertRaises(NoMatchingDataError): self.client.query_withdrawn_unavailability_of_generation_units( country_code='BE', start=self.start, end=self.end) class EntsoePandasClientTest(EntsoeRawClientTest): @classmethod def setUpClass(cls): cls.client = EntsoePandasClient(api_key=api_key) cls.start = pd.Timestamp('20180101', tz='Europe/Brussels') cls.end = pd.Timestamp('20180107', tz='Europe/Brussels') cls.country_code = 'BE' def test_basic_queries(self): pass def test_basic_series(self): queries = [ self.client.query_day_ahead_prices, self.client.query_load, self.client.query_load_forecast, self.client.query_generation_forecast, self.client.query_net_position_dayahead ] for query in queries: ts = query(country_code=self.country_code, start=self.start, end=self.end) self.assertIsInstance(ts, pd.Series) def query_crossborder_flows(self): ts = self.client.query_crossborder_flows( country_code_from='BE', country_code_to='NL', start=self.start, end=self.end) self.assertIsInstance(ts, pd.Series) def test_basic_dataframes(self): queries = [ self.client.query_wind_and_solar_forecast, self.client.query_generation, self.client.query_installed_generation_capacity, self.client.query_imbalance_prices, self.client.query_unavailability_of_generation_units ] for query in queries: ts = query(country_code=self.country_code, start=self.start, end=self.end) self.assertIsInstance(ts, pd.DataFrame) def test_query_unavailability_of_generation_units(self): pass if __name__ == '__main__': unittest.main()
mit
masasin/latexipy
docs/conf.py
1
8725
#!/usr/bin/env python # -*- coding: utf-8 -*- # # latexipy documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import latexipy # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode'] napoleon_use_admonition_for_examples = True napoleon_use_admonition_for_notes = True napoleon_use_admonition_for_references = True napoleon_include_special_with_doc = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'LaTeXiPy' copyright = u"2017, Jean Nassar" author = u'Jean Nassar' # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = latexipy.__version__ # The full version, including alpha/beta/rc tags. release = latexipy.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'latexipydoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'latexipy.tex', u'LaTeXiPy Documentation', u'Jean Nassar', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'latexipy', u'LaTeXiPy Documentation', [u'Jean Nassar'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'latexipy', u'LaTeXiPy Documentation', u'Jean Nassar', 'latexipy', 'Generate beatiful plots for LaTeX using your existing matplotlib-based code.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Suppress warnings. suppress_warnings = ['image.nonlocal_uri']
mit
lazywei/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
nsalomonis/AltAnalyze
stats_scripts/MutationEnrichment_adj.py
1
10611
#!/usr/bin/env python import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import numpy as np import pylab as pl import os.path from collections import defaultdict from sklearn.cluster import KMeans try:from stats_scripts import statistics except Exception: import statistics import random import UI import export; reload(export) import re from stats_scripts import fishers_exact_test import traceback import warnings import math import export def FishersExactTest(r,n,R,N): z=0.0 """ N is the total number of genes measured (Ensembl linked from denom) (total number of ) (number of exons evaluated) R is the total number of genes meeting the criterion (Ensembl linked from input) (number of exonic/intronic regions overlaping with any CLIP peeks) n is the total number of genes in this specific MAPP (Ensembl denom in MAPP) (number of exonic/intronic regions associated with the SF) r is the number of genes meeting the criterion in this MAPP (Ensembl input in MAPP) (number of exonic/intronic regions with peeks overlapping with the SF) With these values, we must create a 2x2 contingency table for a Fisher's Exact Test that reports: +---+---+ a is the # of IDs in the term regulated | a | b | b is the # of IDs in the term not-regulated +---+---+ c is the # of IDs not-in-term and regulated | c | d | d is the # of IDs not-in-term and not-regulated +---+---+ If we know r=20, R=80, n=437 and N=14480 +----+-----+ | 20 | 417 | 437 +----+-----+ | 65 |13978| 14043 +----+-----+ 85 14395 14480 """ if (R-N) == 0: return 0 elif r==0 and n == 0: return 0 else: try: #try: z = (r - n*(R/N))/math.sqrt(n*(R/N)*(1-(R/N))*(1-((n-1)/(N-1)))) #except ZeroDivisionError: print 'r,_n,R,N: ', r,_n,R,N;kill except Exception: print (r - n*(R/N)), n*(R/N),(1-(R/N)),(1-((n-1)/(N-1))),r,n,N,R;kill a = r; b = n-r; c=R-r; d=N-R-b table = [[int(a),int(b)], [int(c),int(d)]] """ print a,b; print c,d import fishers_exact_test; table = [[a,b], [c,d]] ft = fishers_exact_test.FishersExactTest(table) print ft.probability_of_table(table); print ft.two_tail_p() print ft.right_tail_p(); print ft.left_tail_p() """ try: ### Scipy version - cuts down rutime by ~1/3rd the time with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=RuntimeWarning) ### hides import warnings oddsratio, pvalue = stats.fisher_exact(table) # print pvalue return pvalue,z except Exception: ft = fishers_exact_test.FishersExactTest(table) # print ft.two_tail_p() return ft.two_tail_p(),z def header_file(fname, delimiter=None,Expand="no"): head=0 header=[] newheader=[] with open(fname, 'rU') as fin: for line in fin: #print line line = line.rstrip(os.linesep) header=string.split(line,'\t') if Expand=="yes": if head==0: for i in range(1,len(header)): iq=header[i] #iq=string.split(header[i],".")[0] newheader.append(iq) head=1 else:break else: if len(header)<3 or Expand=="no": if header[0] not in newheader: newheader.append(header[0]) #print len(newheader) return newheader def Enrichment(Inputfile,mutdict,mutfile,Expand,header): import collections import mappfinder X=defaultdict(list) prev="" head=0 group=defaultdict(list) enrichdict=defaultdict(float) mut=export.findFilename(mutfile) dire=export.findParentDir(Inputfile) output_dir = dire+'MutationEnrichment' export.createExportFolder(output_dir) exportnam=output_dir+'/Enrichment_Results.txt' export_enrich=open(exportnam,"w") exportnam=output_dir+'/Enrichment_tophits.txt' export_hit=open(exportnam,"w") export_enrich.write("Mutations"+"\t"+"Cluster"+"\t"+"r"+"\t"+"R"+"\t"+"n"+"\t"+"Sensitivity"+"\t"+"Specificity"+"\t"+"z-score"+"\t"+"Fisher exact test"+"\t"+"adjp value"+"\n") if Expand=="yes": header2=header_file(Inputfile,Expand="yes") for line in open(Inputfile,'rU').xreadlines(): if head >0: line=line.rstrip('\r\n') q= string.split(line,'\t') for i in range(1,len(q)): if q[i]==str(1): #group[q[0]].append(header2[i-1]) group[header2[i-1]].append(q[0]) else: head+=1 continue else: for line in open(Inputfile,'rU').xreadlines(): line=line.rstrip('\r\n') line=string.split(line,'\t') #for i in range(1,len(line)): group[line[2]].append(line[0]) total_Scores={} for kiy in mutdict: if kiy =="MDP": print mutdict[kiy] groupdict={} remaining=[] remaining=list(set(header) - set(mutdict[kiy])) groupdict[1]=mutdict[kiy] groupdict[2]=remaining # export_enrich1.write(kiy) for key2 in group: r=float(len(list(set(group[key2])))-len(list(set(group[key2]) - set(mutdict[kiy])))) n=float(len(group[key2])) R=float(len(set(mutdict[kiy]))) N=float(len(header)) if r==0 or R==1.0: print kiy,key2,r,n,R,N pval=float(1) z=float(0) null_z = 0.000 zsd = mappfinder.ZScoreData(key2,r,R,z,null_z,n) zsd.SetP(pval) else: try: z = Zscore(r,n,N,R) except : z = 0.0000 ### Calculate a Z-score assuming zero matching entries try: null_z = Zscore(0,n,N,R) except Exception: null_z = 0.000 try: pval = mappfinder.FishersExactTest(r,n,R,N) zsd = mappfinder.ZScoreData(key2,r,R,z,null_z,n) zsd.SetP(pval) except Exception: pval=1.0 zsd = mappfinder.ZScoreData(key2,r,R,z,null_z,n) zsd.SetP(pval) #pass if kiy in total_Scores: signature_db = total_Scores[kiy] signature_db[key2]=zsd ### Necessary format for the permutation function else: signature_db={key2:zsd} total_Scores[kiy] = signature_db sorted_results=[] mutlabels={} for kiy in total_Scores: signature_db = total_Scores[kiy] ### Updates the adjusted p-value instances mappfinder.adjustPermuteStats(signature_db) for signature in signature_db: zsd = signature_db[signature] results = [kiy,signature,zsd.Changed(),zsd.Measured(),zsd.InPathway(),str(float(zsd.PercentChanged())/100.0),str(float(float(zsd.Changed())/float(zsd.InPathway()))), zsd.ZScore(), zsd.PermuteP(), zsd.AdjP()] #string.join(zsd.AssociatedIDs(),'|') sorted_results.append([signature,float(zsd.PermuteP()),results]) sorted_results.sort() ### Sort by p-value prev="" for (sig,p,values) in sorted_results: if sig!=prev: flag=True export_hit.write(string.join(values,'\t')+'\n') if flag: if (float(values[5])>=0.5 and float(values[6])>=0.5) or float(values[5])>=0.6 : mutlabels[values[1]]=values[0] flag=False export_hit.write(string.join(values,'\t')+'\n') export_enrich.write(string.join(values,'\t')+'\n') prev=sig if len(sorted_results)==0: export_enrich.write(string.join([splicing_factor,'NONE','NONE','NONE','NONE','NONE','NONE'],'\t')+'\n') export_enrich.close() #print mutlabels return mutlabels def findsiggenepermut(mutfile): samplelist=[] mutdict=defaultdict(list) head=0 #File with all the sample names for exp1 in open(mutfile,"rU").xreadlines(): #print exp1 lin=exp1.rstrip('\r\n') lin=string.split(lin,"\t") if len(lin)>3: if head==0: for i in lin[1:]: samplelist.append(i) head=1 continue else: for j in range(1,len(lin)): if lin[j]==str(1): mutdict[lin[0]].append(samplelist[j-1]) else: mutdict[lin[2]].append(lin[0]) return mutdict def Zscore(r,n,N,R): """where N is the total number of events measured: R is the total number of events meeting the criterion: n is the total number of events in this specific reference gene-set: r is the number of events meeting the criterion in the examined reference gene-set: """ N=float(N) ### This bring all other values into float space z = (r - n*(R/N))/math.sqrt(n*(R/N)*(1-(R/N))*(1-((n-1)/(N-1)))) return z if __name__ == '__main__': import getopt mutdict=defaultdict(list) ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Insufficient command line flags supplied." sys.exit() else: analysisType = [] options, remainder = getopt.getopt(sys.argv[1:],'', ['Inputfile=','Reference=','Expand=']) for opt, arg in options: if opt == '--Inputfile': Inputfile=arg elif opt == '--Reference':Reference=arg elif opt =='--Expand': Expand=arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() mutfile=Reference header=header_file(mutfile) mutdict=findsiggenepermut(mutfile) Enrichment(Inputfile,mutdict,mutfile,Expand,header)
apache-2.0
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/lib/mpl_examples/pylab_examples/legend_auto.py
7
2267
""" This file was written to test matplotlib's autolegend placement algorithm, but shows lots of different ways to create legends so is useful as a general examples Thanks to John Gill and Phil ?? for help at the matplotlib sprint at pycon 2005 where the auto-legend support was written. """ from pylab import * import sys rcParams['legend.loc'] = 'best' N = 100 x = arange(N) def fig_1(): figure(1) t = arange(0, 40.0 * pi, 0.1) l, = plot(t, 100*sin(t), 'r', label='sine') legend() def fig_2(): figure(2) plot(x, 'o', label='x=y') legend() def fig_3(): figure(3) plot(x, -x, 'o', label='x= -y') legend() def fig_4(): figure(4) plot(x, ones(len(x)), 'o', label='y=1') plot(x, -ones(len(x)), 'o', label='y=-1') legend() def fig_5(): figure(5) n, bins, patches = hist(randn(1000), 40, normed=1) l, = plot(bins, normpdf(bins, 0.0, 1.0), 'r--', label='fit', linewidth=3) legend([l, patches[0]], ['fit', 'hist']) def fig_6(): figure(6) plot(x, 50-x, 'o', label='y=1') plot(x, x-50, 'o', label='y=-1') legend() def fig_7(): figure(7) xx = x - (N/2.0) plot(xx, (xx*xx)-1225, 'bo', label='$y=x^2$') plot(xx, 25*xx, 'go', label='$y=25x$') plot(xx, -25*xx, 'mo', label='$y=-25x$') legend() def fig_8(): figure(8) b1 = bar(x, x, color='m') b2 = bar(x, x[::-1], color='g') legend([b1[0], b2[0]], ['up', 'down']) def fig_9(): figure(9) b1 = bar(x, -x) b2 = bar(x, -x[::-1], color='r') legend([b1[0], b2[0]], ['down', 'up']) def fig_10(): figure(10) b1 = bar(x, x, bottom=-100, color='m') b2 = bar(x, x[::-1], bottom=-100, color='g') b3 = bar(x, -x, bottom=100) b4 = bar(x, -x[::-1], bottom=100, color='r') legend([b1[0], b2[0], b3[0], b4[0]], ['bottom right', 'bottom left', 'top left', 'top right']) if __name__ == '__main__': nfigs = 10 figures = [] for f in sys.argv[1:]: try: figures.append(int(f)) except ValueError: pass if len(figures) == 0: figures = range(1, nfigs+1) for fig in figures: fn_name = "fig_%d" % fig fn = globals()[fn_name] fn() show()
mit
MJuddBooth/pandas
pandas/tests/test_sorting.py
1
17450
from collections import defaultdict from datetime import datetime from itertools import product import warnings import numpy as np from numpy import nan import pytest from pandas.compat import PY2 from pandas import DataFrame, MultiIndex, Series, compat, concat, merge from pandas.core import common as com from pandas.core.sorting import ( decons_group_index, get_group_index, is_int64_overflow_possible, lexsort_indexer, nargsort, safe_sort) from pandas.util import testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestSorting(object): @pytest.mark.slow def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': A, 'F': B, 'G': A, 'H': B, 'values': np.random.randn(2500)}) lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']) left = lg.sum()['values'] right = rg.sum()['values'] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ]].values)) tups = com.asarray_tuplesafe(tups) expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right) def test_int64_overflow_moar(self): # GH9096 values = range(55109) data = DataFrame.from_dict( {'a': values, 'b': values, 'c': values, 'd': values}) grouped = data.groupby(['a', 'b', 'c', 'd']) assert len(grouped) == len(values) arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5)) i = np.random.choice(len(arr), len(arr) * 4) arr = np.vstack((arr, arr[i])) # add sume duplicate rows i = np.random.permutation(len(arr)) arr = arr[i] # shuffle rows df = DataFrame(arr, columns=list('abcde')) df['jim'], df['joe'] = np.random.randn(2, len(df)) * 10 gr = df.groupby(list('abcde')) # verify this is testing what it is supposed to test! assert is_int64_overflow_possible(gr.grouper.shape) # manually compute groupings jim, joe = defaultdict(list), defaultdict(list) for key, a, b in zip(map(tuple, arr), df['jim'], df['joe']): jim[key].append(a) joe[key].append(b) assert len(gr) == len(jim) mi = MultiIndex.from_tuples(jim.keys(), names=list('abcde')) def aggr(func): f = lambda a: np.fromiter(map(func, a), dtype='f8') arr = np.vstack((f(jim.values()), f(joe.values()))).T res = DataFrame(arr, columns=['jim', 'joe'], index=mi) return res.sort_index() assert_frame_equal(gr.mean(), aggr(np.mean)) assert_frame_equal(gr.median(), aggr(np.median)) def test_lexsort_indexer(self): keys = [[nan] * 5 + list(range(100)) + [nan] * 5] # orders=True, na_position='last' result = lexsort_indexer(keys, orders=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=True, na_position='first' result = lexsort_indexer(keys, orders=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='last' result = lexsort_indexer(keys, orders=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='first' result = lexsort_indexer(keys, orders=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) def test_nargsort(self): # np.argsort(items) places NaNs last items = [nan] * 5 + list(range(100)) + [nan] * 5 # np.argsort(items2) may not place NaNs first items2 = np.array(items, dtype='O') # mergesort is the most difficult to get right because we want it to be # stable. # According to numpy/core/tests/test_multiarray, """The number of # sorted items must be greater than ~50 to check the actual algorithm # because quick and merge sort fall over to insertion sort for small # arrays.""" # mergesort, ascending=True, na_position='last' result = nargsort(items, kind='mergesort', ascending=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items, kind='mergesort', ascending=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items, kind='mergesort', ascending=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items, kind='mergesort', ascending=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='last' result = nargsort(items2, kind='mergesort', ascending=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items2, kind='mergesort', ascending=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items2, kind='mergesort', ascending=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items2, kind='mergesort', ascending=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) class TestMerge(object): @pytest.mark.slow def test_int64_overflow_issues(self): # #2690, combinatorial explosion df1 = DataFrame(np.random.randn(1000, 7), columns=list('ABCDEF') + ['G1']) df2 = DataFrame(np.random.randn(1000, 7), columns=list('ABCDEF') + ['G2']) # it works! result = merge(df1, df2, how='outer') assert len(result) == 2000 low, high, n = -1 << 10, 1 << 10, 1 << 20 left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list('ABCDEFG')) left['left'] = left.sum(axis=1) # one-2-one match i = np.random.permutation(len(left)) right = left.iloc[i].copy() right.columns = right.columns[:-1].tolist() + ['right'] right.index = np.arange(len(right)) right['right'] *= -1 out = merge(left, right, how='outer') assert len(out) == len(left) assert_series_equal(out['left'], - out['right'], check_names=False) result = out.iloc[:, :-2].sum(axis=1) assert_series_equal(out['left'], result, check_names=False) assert result.name is None out.sort_values(out.columns.tolist(), inplace=True) out.index = np.arange(len(out)) for how in ['left', 'right', 'outer', 'inner']: assert_frame_equal(out, merge(left, right, how=how, sort=True)) # check that left merge w/ sort=False maintains left frame order out = merge(left, right, how='left', sort=False) assert_frame_equal(left, out[left.columns.tolist()]) out = merge(right, left, how='left', sort=False) assert_frame_equal(right, out[right.columns.tolist()]) # one-2-many/none match n = 1 << 11 left = DataFrame(np.random.randint(low, high, (n, 7)).astype('int64'), columns=list('ABCDEFG')) # confirm that this is checking what it is supposed to check shape = left.apply(Series.nunique).values assert is_int64_overflow_possible(shape) # add duplicates to left frame left = concat([left, left], ignore_index=True) right = DataFrame(np.random.randint(low, high, (n // 2, 7)) .astype('int64'), columns=list('ABCDEFG')) # add duplicates & overlap with left to the right frame i = np.random.choice(len(left), n) right = concat([right, right, left.iloc[i]], ignore_index=True) left['left'] = np.random.randn(len(left)) right['right'] = np.random.randn(len(right)) # shuffle left & right frames i = np.random.permutation(len(left)) left = left.iloc[i].copy() left.index = np.arange(len(left)) i = np.random.permutation(len(right)) right = right.iloc[i].copy() right.index = np.arange(len(right)) # manually compute outer merge ldict, rdict = defaultdict(list), defaultdict(list) for idx, row in left.set_index(list('ABCDEFG')).iterrows(): ldict[idx].append(row['left']) for idx, row in right.set_index(list('ABCDEFG')).iterrows(): rdict[idx].append(row['right']) vals = [] for k, lval in ldict.items(): rval = rdict.get(k, [np.nan]) for lv, rv in product(lval, rval): vals.append(k + tuple([lv, rv])) for k, rval in rdict.items(): if k not in ldict: for rv in rval: vals.append(k + tuple([np.nan, rv])) def align(df): df = df.sort_values(df.columns.tolist()) df.index = np.arange(len(df)) return df def verify_order(df): kcols = list('ABCDEFG') assert_frame_equal(df[kcols].copy(), df[kcols].sort_values(kcols, kind='mergesort')) out = DataFrame(vals, columns=list('ABCDEFG') + ['left', 'right']) out = align(out) jmask = {'left': out['left'].notna(), 'right': out['right'].notna(), 'inner': out['left'].notna() & out['right'].notna(), 'outer': np.ones(len(out), dtype='bool')} for how in 'left', 'right', 'outer', 'inner': mask = jmask[how] frame = align(out[mask].copy()) assert mask.all() ^ mask.any() or how == 'outer' for sort in [False, True]: res = merge(left, right, how=how, sort=sort) if sort: verify_order(res) # as in GH9092 dtypes break with outer/right join assert_frame_equal(frame, align(res), check_dtype=how not in ('right', 'outer')) def test_decons(): def testit(label_list, shape): group_index = get_group_index(label_list, shape, sort=True, xnull=True) label_list2 = decons_group_index(group_index, shape) for a, b in zip(label_list, label_list2): tm.assert_numpy_array_equal(a, b) shape = (4, 5, 6) label_list = [np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64)] testit(label_list, shape) shape = (10000, 10000) label_list = [np.tile(np.arange(10000, dtype=np.int64), 5), np.tile(np.arange(10000, dtype=np.int64), 5)] testit(label_list, shape) class TestSafeSort(object): def test_basic_sort(self): values = [3, 1, 2, 0, 4] result = safe_sort(values) expected = np.array([0, 1, 2, 3, 4]) tm.assert_numpy_array_equal(result, expected) values = list("baaacb") result = safe_sort(values) expected = np.array(list("aaabbc"), dtype='object') tm.assert_numpy_array_equal(result, expected) values = [] result = safe_sort(values) expected = np.array([]) tm.assert_numpy_array_equal(result, expected) def test_labels(self): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) labels = [0, 1, 1, 2, 3, 0, -1, 4] result, result_labels = safe_sort(values, labels) expected_labels = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # na_sentinel labels = [0, 1, 1, 2, 3, 0, 99, 4] result, result_labels = safe_sort(values, labels, na_sentinel=99) expected_labels = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # out of bound indices labels = [0, 101, 102, 2, 3, 0, 99, 4] result, result_labels = safe_sort(values, labels) expected_labels = np.array([3, -1, -1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) labels = [] result, result_labels = safe_sort(values, labels) expected_labels = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer(self): values = np.array(['b', 1, 0, 'a', 0, 'b'], dtype=object) result = safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) values = np.array(['b', 1, 0, 'a'], dtype=object) labels = [0, 1, 2, 3, 0, -1, 1] result, result_labels = safe_sort(values, labels) expected = np.array([0, 1, 'a', 'b'], dtype=object) expected_labels = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer_from_list(self): values = ['b', 1, 0, 'a', 0, 'b'] result = safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) @pytest.mark.skipif(PY2, reason="pytest.raises match regex fails") def test_unsortable(self): # GH 13714 arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object) msg = (r"'(<|>)' not supported between instances of ('" r"datetime\.datetime' and 'int'|'int' and 'datetime\.datetime" r"')|" r"unorderable types: int\(\) > datetime\.datetime\(\)") if compat.PY2: # RuntimeWarning: tp_compare didn't return -1 or -2 for exception with warnings.catch_warnings(): with pytest.raises(TypeError, match=msg): safe_sort(arr) else: with pytest.raises(TypeError, match=msg): safe_sort(arr) def test_exceptions(self): with pytest.raises(TypeError, match="Only list-like objects are allowed"): safe_sort(values=1) with pytest.raises(TypeError, match="Only list-like objects or None"): safe_sort(values=[0, 1, 2], labels=1) with pytest.raises(ValueError, match="values should be unique"): safe_sort(values=[0, 1, 2, 1], labels=[0, 1])
bsd-3-clause
iproduct/course-social-robotics
11-dnn-keras/venv/Lib/site-packages/pandas/io/json/_table_schema.py
3
10308
""" Table Schema builders https://specs.frictionlessdata.io/json-table-schema/ """ from typing import TYPE_CHECKING, Any, Dict, Optional, cast import warnings import pandas._libs.json as json from pandas._typing import DtypeObj, FrameOrSeries, JSONSerializable from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_integer_dtype, is_numeric_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas import DataFrame import pandas.core.common as com if TYPE_CHECKING: from pandas.core.indexes.multi import MultiIndex loads = json.loads def as_json_table_type(x: DtypeObj) -> str: """ Convert a NumPy / pandas type to its corresponding json_table. Parameters ---------- x : np.dtype or ExtensionDtype Returns ------- str the Table Schema data types Notes ----- This table shows the relationship between NumPy / pandas dtypes, and Table Schema dtypes. ============== ================= Pandas type Table Schema type ============== ================= int64 integer float64 number bool boolean datetime64[ns] datetime timedelta64[ns] duration object str categorical any =============== ================= """ if is_integer_dtype(x): return "integer" elif is_bool_dtype(x): return "boolean" elif is_numeric_dtype(x): return "number" elif is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x): return "datetime" elif is_timedelta64_dtype(x): return "duration" elif is_categorical_dtype(x): return "any" elif is_string_dtype(x): return "string" else: return "any" def set_default_names(data): """Sets index names to 'index' for regular, or 'level_x' for Multi""" if com.all_not_none(*data.index.names): nms = data.index.names if len(nms) == 1 and data.index.name == "index": warnings.warn("Index name of 'index' is not round-trippable") elif len(nms) > 1 and any(x.startswith("level_") for x in nms): warnings.warn("Index names beginning with 'level_' are not round-trippable") return data data = data.copy() if data.index.nlevels > 1: names = [ name if name is not None else f"level_{i}" for i, name in enumerate(data.index.names) ] data.index.names = names else: data.index.name = data.index.name or "index" return data def convert_pandas_type_to_json_field(arr): dtype = arr.dtype if arr.name is None: name = "values" else: name = arr.name field: Dict[str, JSONSerializable] = { "name": name, "type": as_json_table_type(dtype), } if is_categorical_dtype(dtype): cats = dtype.categories ordered = dtype.ordered field["constraints"] = {"enum": list(cats)} field["ordered"] = ordered elif is_period_dtype(dtype): field["freq"] = dtype.freq.freqstr elif is_datetime64tz_dtype(dtype): field["tz"] = dtype.tz.zone return field def convert_json_field_to_pandas_type(field): """ Converts a JSON field descriptor into its corresponding NumPy / pandas type Parameters ---------- field A JSON field descriptor Returns ------- dtype Raises ------ ValueError If the type of the provided field is unknown or currently unsupported Examples -------- >>> convert_json_field_to_pandas_type({'name': 'an_int', 'type': 'integer'}) 'int64' >>> convert_json_field_to_pandas_type({'name': 'a_categorical', 'type': 'any', 'constraints': {'enum': [ 'a', 'b', 'c']}, 'ordered': True}) 'CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)' >>> convert_json_field_to_pandas_type({'name': 'a_datetime', 'type': 'datetime'}) 'datetime64[ns]' >>> convert_json_field_to_pandas_type({'name': 'a_datetime_with_tz', 'type': 'datetime', 'tz': 'US/Central'}) 'datetime64[ns, US/Central]' """ typ = field["type"] if typ == "string": return "object" elif typ == "integer": return "int64" elif typ == "number": return "float64" elif typ == "boolean": return "bool" elif typ == "duration": return "timedelta64" elif typ == "datetime": if field.get("tz"): return f"datetime64[ns, {field['tz']}]" else: return "datetime64[ns]" elif typ == "any": if "constraints" in field and "ordered" in field: return CategoricalDtype( categories=field["constraints"]["enum"], ordered=field["ordered"] ) else: return "object" raise ValueError(f"Unsupported or invalid field type: {typ}") def build_table_schema( data: FrameOrSeries, index: bool = True, primary_key: Optional[bool] = None, version: bool = True, ) -> Dict[str, JSONSerializable]: """ Create a Table schema from ``data``. Parameters ---------- data : Series, DataFrame index : bool, default True Whether to include ``data.index`` in the schema. primary_key : bool or None, default True Column names to designate as the primary key. The default `None` will set `'primaryKey'` to the index level or levels if the index is unique. version : bool, default True Whether to include a field `pandas_version` with the version of pandas that generated the schema. Returns ------- schema : dict Notes ----- See `Table Schema <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision. Categoricals are converted to the `any` dtype, and use the `enum` field constraint to list the allowed values. The `ordered` attribute is included in an `ordered` field. Examples -------- >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'pandas_version': '0.20.0', 'primaryKey': ['idx']} """ if index is True: data = set_default_names(data) schema: Dict[str, Any] = {} fields = [] if index: if data.index.nlevels > 1: data.index = cast("MultiIndex", data.index) for level, name in zip(data.index.levels, data.index.names): new_field = convert_pandas_type_to_json_field(level) new_field["name"] = name fields.append(new_field) else: fields.append(convert_pandas_type_to_json_field(data.index)) if data.ndim > 1: for column, s in data.items(): fields.append(convert_pandas_type_to_json_field(s)) else: fields.append(convert_pandas_type_to_json_field(data)) schema["fields"] = fields if index and data.index.is_unique and primary_key is None: if data.index.nlevels == 1: schema["primaryKey"] = [data.index.name] else: schema["primaryKey"] = data.index.names elif primary_key is not None: schema["primaryKey"] = primary_key if version: schema["pandas_version"] = "0.20.0" return schema def parse_table_schema(json, precise_float): """ Builds a DataFrame from a given schema Parameters ---------- json : A JSON table schema precise_float : boolean Flag controlling precision when decoding string to double values, as dictated by ``read_json`` Returns ------- df : DataFrame Raises ------ NotImplementedError If the JSON table schema contains either timezone or timedelta data Notes ----- Because :func:`DataFrame.to_json` uses the string 'index' to denote a name-less :class:`Index`, this function sets the name of the returned :class:`DataFrame` to ``None`` when said string is encountered with a normal :class:`Index`. For a :class:`MultiIndex`, the same limitation applies to any strings beginning with 'level_'. Therefore, an :class:`Index` name of 'index' and :class:`MultiIndex` names starting with 'level_' are not supported. See Also -------- build_table_schema : Inverse function. pandas.read_json """ table = loads(json, precise_float=precise_float) col_order = [field["name"] for field in table["schema"]["fields"]] df = DataFrame(table["data"], columns=col_order)[col_order] dtypes = { field["name"]: convert_json_field_to_pandas_type(field) for field in table["schema"]["fields"] } # No ISO constructor for Timedelta as of yet, so need to raise if "timedelta64" in dtypes.values(): raise NotImplementedError( 'table="orient" can not yet read ISO-formatted Timedelta data' ) df = df.astype(dtypes) if "primaryKey" in table["schema"]: df = df.set_index(table["schema"]["primaryKey"]) if len(df.index.names) == 1: if df.index.name == "index": df.index.name = None else: df.index.names = [ None if x.startswith("level_") else x for x in df.index.names ] return df
gpl-2.0
Achuth17/scikit-learn
sklearn/linear_model/tests/test_ransac.py
16
12745
import numpy as np from numpy.testing import assert_equal, assert_raises from numpy.testing import assert_array_almost_equal from scipy import sparse from sklearn.utils.testing import assert_less from sklearn.linear_model import LinearRegression, RANSACRegressor from sklearn.linear_model.ransac import _dynamic_max_trials # Generate coordinates of line X = np.arange(-200, 200) y = 0.2 * X + 20 data = np.column_stack([X, y]) # Add some faulty data outliers = np.array((10, 30, 200)) data[outliers[0], :] = (1000, 1000) data[outliers[1], :] = (-1000, -1000) data[outliers[2], :] = (-100, -50) X = data[:, 0][:, np.newaxis] y = data[:, 1] def test_ransac_inliers_outliers(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_is_data_valid(): def is_data_valid(X, y): assert_equal(X.shape[0], 2) assert_equal(y.shape[0], 2) return False X = np.random.rand(10, 2) y = np.random.rand(10, 1) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, is_data_valid=is_data_valid, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_is_model_valid(): def is_model_valid(estimator, X, y): assert_equal(X.shape[0], 2) assert_equal(y.shape[0], 2) return False base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, is_model_valid=is_model_valid, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_max_trials(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, max_trials=0, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, max_trials=11, random_state=0) assert getattr(ransac_estimator, 'n_trials_', None) is None ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 2) def test_ransac_stop_n_inliers(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, stop_n_inliers=2, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 1) def test_ransac_stop_score(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, stop_score=0, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 1) def test_ransac_score(): X = np.arange(100)[:, None] y = np.zeros((100, )) y[0] = 1 y[1] = 100 base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.5, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.score(X[2:], y[2:]), 1) assert_less(ransac_estimator.score(X[:2], y[:2]), 1) def test_ransac_predict(): X = np.arange(100)[:, None] y = np.zeros((100, )) y[0] = 1 y[1] = 100 base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.5, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.predict(X), np.zeros(100)) def test_ransac_sparse_coo(): X_sparse = sparse.coo_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csr(): X_sparse = sparse.csr_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csc(): X_sparse = sparse.csc_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_none_estimator(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_none_estimator = RANSACRegressor(None, 2, 5, random_state=0) ransac_estimator.fit(X, y) ransac_none_estimator.fit(X, y) assert_array_almost_equal(ransac_estimator.predict(X), ransac_none_estimator.predict(X)) def test_ransac_min_n_samples(): base_estimator = LinearRegression() ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2. / X.shape[0], residual_threshold=5, random_state=0) ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=-1, residual_threshold=5, random_state=0) ransac_estimator4 = RANSACRegressor(base_estimator, min_samples=5.2, residual_threshold=5, random_state=0) ransac_estimator5 = RANSACRegressor(base_estimator, min_samples=2.0, residual_threshold=5, random_state=0) ransac_estimator6 = RANSACRegressor(base_estimator, residual_threshold=5, random_state=0) ransac_estimator7 = RANSACRegressor(base_estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0) ransac_estimator1.fit(X, y) ransac_estimator2.fit(X, y) ransac_estimator5.fit(X, y) ransac_estimator6.fit(X, y) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator2.predict(X)) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator5.predict(X)) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator6.predict(X)) assert_raises(ValueError, ransac_estimator3.fit, X, y) assert_raises(ValueError, ransac_estimator4.fit, X, y) assert_raises(ValueError, ransac_estimator7.fit, X, y) def test_ransac_multi_dimensional_targets(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) # 3-D target values yyy = np.column_stack([y, y, y]) # Estimate parameters of corrupted data ransac_estimator.fit(X, yyy) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_residual_metric(): residual_metric1 = lambda dy: np.sum(np.abs(dy), axis=1) residual_metric2 = lambda dy: np.sum(dy ** 2, axis=1) yyy = np.column_stack([y, y, y]) base_estimator = LinearRegression() ransac_estimator0 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, residual_metric=residual_metric1) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, residual_metric=residual_metric2) # multi-dimensional ransac_estimator0.fit(X, yyy) ransac_estimator1.fit(X, yyy) ransac_estimator2.fit(X, yyy) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator1.predict(X)) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) # one-dimensional ransac_estimator0.fit(X, y) ransac_estimator2.fit(X, y) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) def test_ransac_default_residual_threshold(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_dynamic_max_trials(): # Numbers hand-calculated and confirmed on page 119 (Table 4.3) in # Hartley, R.~I. and Zisserman, A., 2004, # Multiple View Geometry in Computer Vision, Second Edition, # Cambridge University Press, ISBN: 0521540518 # e = 0%, min_samples = X assert_equal(_dynamic_max_trials(100, 100, 2, 0.99), 1) # e = 5%, min_samples = 2 assert_equal(_dynamic_max_trials(95, 100, 2, 0.99), 2) # e = 10%, min_samples = 2 assert_equal(_dynamic_max_trials(90, 100, 2, 0.99), 3) # e = 30%, min_samples = 2 assert_equal(_dynamic_max_trials(70, 100, 2, 0.99), 7) # e = 50%, min_samples = 2 assert_equal(_dynamic_max_trials(50, 100, 2, 0.99), 17) # e = 5%, min_samples = 8 assert_equal(_dynamic_max_trials(95, 100, 8, 0.99), 5) # e = 10%, min_samples = 8 assert_equal(_dynamic_max_trials(90, 100, 8, 0.99), 9) # e = 30%, min_samples = 8 assert_equal(_dynamic_max_trials(70, 100, 8, 0.99), 78) # e = 50%, min_samples = 8 assert_equal(_dynamic_max_trials(50, 100, 8, 0.99), 1177) # e = 0%, min_samples = 10 assert_equal(_dynamic_max_trials(1, 100, 10, 0), 0) assert_equal(_dynamic_max_trials(1, 100, 10, 1), float('inf')) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, stop_probability=-0.1) assert_raises(ValueError, ransac_estimator.fit, X, y) ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, stop_probability=1.1) assert_raises(ValueError, ransac_estimator.fit, X, y)
bsd-3-clause
chenhh/PySPPortfolio
PySPPortfolio/pysp_portfolio/utils.py
1
2140
# -*- coding: utf-8 -*- """ Authors: Hung-Hsin Chen <[email protected]> License: GPL v2 """ import numpy as np import pandas as pd def sharpe(series): """ Sharpe ratio note: the numpy std() function is the population estimator Parameters: --------------- series: list or numpy.array, ROI series """ s = np.asarray(series) try: val = s.mean() / s.std() except FloatingPointError: # set 0 when standard deviation is zero val = 0 return val def sortino_full(series, mar=0): """ Sortino ratio, using all periods of the series Parameters: --------------- series: list or numpy.array, ROI series mar: float, minimum acceptable return, usually set to 0 """ s = np.asarray(series) mean = s.mean() semi_std = np.sqrt(((s * ((s - mar) < 0)) ** 2).mean()) try: val = mean / semi_std except FloatingPointError: # set 0 when semi-standard deviation is zero val = 0 return val, semi_std def sortino_partial(series, mar=0): """ Sortino ratio, using only negative roi periods of the series Parameters: --------------- series: list or numpy.array, ROI series mar: float, minimum acceptable return, usually set to 0 """ s = np.asarray(series) mean = s.mean() n_neg_period = ((s - mar) < 0).sum() try: semi_std = np.sqrt(((s * ((s - mar) < 0)) ** 2).sum() / n_neg_period) val = mean / semi_std except FloatingPointError: # set 0 when semi-standard deviation or negative period is zero val, semi_std = 0, 0 return val, semi_std def maximum_drawdown(series): """ https://en.wikipedia.org/wiki/Drawdown_(economics) the peak may be zero e.g. s= [0, -0.4, -0.2, 0.2] peak = [0, 0, 0, 0.2] therefore we don't provide relative percentage of mdd Parameters: --------------- series: list or numpy.array, ROI series """ s = np.asarray(series) peak = pd.expanding_max(s) # absolute drawdown ad = np.maximum(peak - s, 0) mad = np.max(ad) return mad
gpl-3.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/numpy/lib/twodim_base.py
1
27642
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function import functools from numpy.core.numeric import ( absolute, asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, nonzero ) from numpy.core.overrides import set_module from numpy.core import overrides from numpy.core import iinfo, transpose __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def _flip_dispatcher(m): return (m,) @array_function_dispatch(_flip_dispatcher) def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.fliplr(A) array([[0., 0., 1.], [0., 2., 0.], [3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] @array_function_dispatch(_flip_dispatcher) def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.flipud(A) array([[0., 0., 3.], [0., 2., 0.], [1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] @set_module('numpy') def eye(N, M=None, k=0, dtype=float, order='C'): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. order : {'C', 'F'}, optional Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory. .. versionadded:: 1.14.0 Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def _diag_dispatcher(v, k=None): return (v,) @array_function_dispatch(_diag_dispatcher) def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") @array_function_dispatch(_diag_dispatcher) def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) @set_module('numpy') def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def _trilu_dispatcher(m, k=None): return (m,) @array_function_dispatch(_trilu_dispatcher) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) @array_function_dispatch(_trilu_dispatcher) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) def _vander_dispatcher(x, N=None, increasing=None): return (x,) # Originally borrowed from John Hunter and matplotlib @array_function_dispatch(_vander_dispatcher) def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 # may vary >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, weights=None, density=None): yield x yield y # This terrible logic is adapted from the checks in histogram2d try: N = len(bins) except TypeError: N = 1 if N == 2: yield from bins # bins=[x, y] else: yield bins yield weights @array_function_dispatch(_histogram2d_dispatcher) def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. density : bool, optional If False, the default, returns the number of samples in each bin. If True, returns the probability *density* function at the bin, ``bin_count / sample_count / bin_area``. normed : bool, optional An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to `histogram`, `density` should be preferred. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx+1,) The bin edges along the first dimension. yedges : ndarray, shape(ny+1,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> from matplotlib.image import NonUniformImage >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> H = H.T # Let each row list bins with common y range. :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='low', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) <matplotlib.image.AxesImage object at 0x...> :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) <matplotlib.collections.QuadMesh object at 0x...> :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to display actual bin edges with interpolation: >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights, density) return hist, edges[0], edges[1] @set_module('numpy') def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return nonzero(a != 0) @set_module('numpy') def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, ..., 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return nonzero(tri(n, m, k=k, dtype=bool)) def _trilu_indices_form_dispatcher(arr, k=None): return (arr,) @array_function_dispatch(_trilu_indices_form_dispatcher) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) @set_module('numpy') def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, ..., 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return nonzero(~tri(n, m, k=k-1, dtype=bool)) @array_function_dispatch(_trilu_indices_form_dispatcher) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
apache-2.0
nick-monto/SpeechRecog_CNN
model_keras.py
1
5924
import os import fnmatch import pandas as pd import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.callbacks import ModelCheckpoint img_height, img_width = 120, 200 num_epochs = 10 def find(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result[0] def load_image(path): img = Image.open(path).convert('L') # read in as grayscale img = img.resize((img_width, img_height)) img.load() # loads the image into memory img_data = np.asarray(img, dtype="float") return img_data stim_train = pd.read_table('img_set.txt', delim_whitespace=True, names=['stimulus', 'language']) stim = stim_train['stimulus'] labels = pd.get_dummies(stim_train['language']) # generate a train and validate set X_train, X_val, y_train, y_val = train_test_split(stim, labels, test_size=0.2) labels_train = y_train.values labels_val = y_val.values training_data_dir = 'Input_spectrogram/Training' # directory for training data # test_data_dir = 'Input_spectrogram/Test' # directory for test data print("Preparing the input and labels...") specs_train_input = [] for i in range(len(X_train)): specs_train_input.append(load_image(find(X_train.iloc[i], training_data_dir))) specs_train_input = np.asarray(specs_train_input) specs_train_input = specs_train_input.reshape((len(X_train), img_height, img_width, 1)) print('There are a total of {} training stimuli!'.format(specs_train_input.shape[0])) specs_val_input = [] for i in range(len(X_val)): specs_val_input.append(load_image(find(X_val.iloc[i], training_data_dir))) specs_val_input = np.asarray(specs_val_input) specs_val_input = specs_val_input.reshape((len(X_val), img_height, img_width, 1)) print('There are a total of {} validation stimuli!'.format(specs_val_input.shape[0])) print("Done!") # set of augments that will be applied to the training data datagen = ImageDataGenerator(rescale=1./255) checkpoint = ModelCheckpoint('./weights.best.hdf5', monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] # # set up checkpoints for weights # filepath="weights-improvement-{epoch:02d}-{accuracy:.2f}.hdf5" # checkpoint = ModelCheckpoint(filepath, # monitor='accuracy', # verbose=1, # save_best_only=True, # mode='max') # callbacks_list = [checkpoint] # Define the model: 4 convolutional layers, 4 max pools model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=(img_height, img_width, 1))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(256, (3, 3), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) # converts 3D feature mapes to 1D feature vectors model.add(Dense(256)) model.add(Activation('relu')) model.add(Dropout(0.5)) # reset half of the weights to zero model.add(Dense(8)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # compute quantities required for featurewise normalization datagen.fit(specs_train_input) datagen.fit(specs_val_input) print("Initializing the model...") # fits the model on batches with real-time data augmentation: model.fit_generator(datagen.flow(specs_train_input, labels_train, batch_size=8), steps_per_epoch=len(X_train) / 8, epochs=num_epochs, verbose=1, callbacks=callbacks_list, validation_data=datagen.flow(specs_val_input, labels_val, batch_size=8), validation_steps=len(X_val) / 8) # # this generator will read pictures found in a sub folder # # it will indefinitely generate batches of augmented image data # train_generator = train_datagen.flow_from_directory( # training_data_dir, # target_size=(img_width, img_height), # batch_size=32, # class_mode='categorical') # need categorical labels # # validation_generator = test_datagen.flow_from_directory( # test_data_dir, # target_size=(img_width, img_height), # batch_size=32, # class_mode='categorical') # model.fit_generator( # train_generator, # samples_per_epoch=num_train_samples, # nb_epoch=num_epoch, # validation_data=validation_generator, # nb_val_samples=num_val_samples, # verbose=1, # callbacks=callbacks_list # ) # model.save_weights("model_trainingWeights_final.h5") # print("Saved model weights to disk") # # model.predict_generator( # test_generator, # val_samples=nb_test_samples)
mit
pnedunuri/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
amninder/crypto
fabfile/crypto/plots.py
1
2689
# -*- coding: utf-8 -*- import RSA import miller_rabin from gmpy2 import * import gmpy2 import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.backends.backend_pdf import PdfPages import numpy as np import time from random import randint param = 1 previous = 0 def plotGraphMiller(): fig = plt.figure() ax1 = fig.add_subplot(1,1,1) plt.suptitle("Bytes VS Time") plt.xlabel('Bytes') plt.ylabel('NanoSeconds') xar = [] yar = [] def animate(i): global param global previous n = plotMillerTime(param) if n[1]>previous: previous = n[1] xar.append(n[1]/8) yar.append(n[0]) print ("Time: %d"%n[0]) print ("Bytes: %d"%int(n[1]/8)) ax1.clear() plt.xlabel('Bytes') plt.ylabel('NanoSeconds') ax1.plot(xar, yar) param += 1 ani = animation.FuncAnimation(fig, animate) plt.show() def plotGraphMillerDigits(): fig = plt.figure() ax1 = fig.add_subplot(1,1,1) plt.suptitle("Digits VS Time") plt.xlabel('Digits') plt.ylabel('NanoSeconds') xar = [] yar = [] def animate(i): global param global previous n = plotMillerTime(param) if n[1]>previous: previous = n[1] xar.append(n[2]) yar.append(n[0]) print ("Time: %d"%n[0]) print ("Digits: %d"%int(n[2])) ax1.clear() plt.xlabel('Digits') plt.ylabel('NanoSeconds') ax1.plot(xar, yar) param += 1 ani = animation.FuncAnimation(fig, animate) plt.show() def plotPrimeRange(): r = primeRange(1000000) plt.plot(r[0], r[1]) # plt.xticks(np.arange(min(r[0], max(r[0]), 1.0))) plt.ylabel('percent of primes') plt.xlabel('Number Range') pp = PdfPages('multipage.pdf') plt.savefig(pp, format='pdf') pp.close() # plt.show() # ______PLOT FUNCTIONS_______ def plotMillerTime(p): multiVar = 1000000000 mills = int(round(time.time()*multiVar)) n = (gmpy2.xmpz(RSA.getRandom())**gmpy2.xmpz(p))+(gmpy2.xmpz(RSA.getRandom())**gmpy2.xmpz(p)-1) while not miller_rabin.millerRabin(n, 2): n = (gmpy2.xmpz(RSA.getRandom())**gmpy2.xmpz(p))+(gmpy2.xmpz(RSA.getRandom())**gmpy2.xmpz(p)-1) mills = int(round(time.time()*multiVar)) - mills print mills return (mills, bit_length(n), totalDigits(n)) def totalDigits(num): i = 0 while num>0: i += 1 num /= 10 return i total_primes = [] nextP = 1 def nextPrime(p): power = 100 global total_primes global nextP while nextP <= p: nextP = next_prime(nextP) total_primes.append(nextP) return len(total_primes)-1 def primeRange(j): x = 1 ran = [] tot_primes = [] while x <=j: ran.append(x) tot_primes.append(float(nextPrime(x))/float(x)) print ("%.10f in %d"%(float(nextPrime(x))/float(x), x)) x += 1 return (ran, tot_primes) # primeRange(10000)
mit
lsst-dm/great3-public
metrics/evaluate.py
2
61024
# Copyright (c) 2014, the GREAT3 executive committee (http://www.great3challenge.info/?q=contacts) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted # provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions # and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # conditions and the following disclaimer in the documentation and/or other materials provided with # the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """@file evaluate.py Module containing functions for the evaluation of the constant and variable shear-type branches of the GREAT3 Challenge. For the functions used to directly evaluate the GREAT3 metrics, see q_constant() and q_variable(). This code requires the GREAT3 metric evaluation truth data to have been unpacked into the directory specified by the path in TRUTH_DIR, set below. Please update TRUTH_DIR to match the location of the truth data on your system. For information about getting this data, please see the following page on the great3-public wiki: https://github.com/barnabytprowe/great3-public/wiki/Metric-evaluation-scripts-and-truth-data Constant shear branches ----------------------- Each submission file (one per branch) should take the format of a 3-column ASCII catalog, e.g.: # SUBFIELD_INDEX G1 G2 0 -.26664 0.11230 1 -.13004 0.48103 ... or similar. The hashed header/comment can be omitted, and almost all formats for the numbers are fine. The main criterion to be satisfied is that after >>> data = np.loadtxt(submission_file) the `data` object must be a NumPy array with shape `(NSUBFIELDS, 3)`, where `NSUBFIELDS` is the total number of subfields in the branch (currently fixed at 200). In addition, the array slice `data[:, 0]` must be the subfield number in ascending order from `0` to `NSUBFIELDS - 1`. The array slices `data[:, 1]` and `data[:, 2]` must be the corresponding estimates of mean shear g1 and g2 in each subfield. In these details the submission should match the output of the helper script `presubmission.py` available at https://github.com/barnabytprowe/great3-public . Variable shear branches ----------------------- Each submission file (one per branch) should take the format of an ASCII catalog with a minimum of 3 columns as in the following example: # FIELD_INDEX THETA [degrees] MAP_E 0 0.0246 2.5650e-06 0 0.0372 4.1300e-06 ... The `FIELD_INDEX` will be an integer between 0 and 9. `THETA` should be a sequence of floats giving the annular bin centres in degrees; these are logarithmically spaced between the minimum separation considered (0.01 degrees) and the maximum (10.0 degrees). `MAP_E` is the E-mode aperture mass dispersion. `FIELD`, `THETA` (and the thus corresponding `MAP_E` entries) must be ordered as in the output of `presubmission.py`. The hashed header/comment can be omitted. Additional columns can be present provided that the location and order of the three described above Additional columns can be present provided that the location and order of the three described above. An example of this is the output of `presubmission.py` for variable shear branches, which also append columns for the B-mode aperture mass dispersion and a (shot noise only) error estimate. After >>> data = np.loadtxt(submission_file) the `data` object must be a NumPy array with shape `(NFIELDS * NBINS_THETA, n)`, where `NFIELDS` is the total number of fields in the branch (currently fixed at 10), `NBINS_THETA` is the number of annular bins in angle used to estimate Map_E in each field (currently fixed at 15), and `n >= 3`. As mentioned, in these details the submission should match the output of the helper script `presubmission.py` available at https://github.com/barnabytprowe/great3-public . """ import os import sys import logging import numpy as np try: import great3sims import great3sims.mapper except ImportError: path, module = os.path.split(__file__) sys.path.append(os.path.join(path, "..")) # Appends the folder great3-public/ to sys.path import great3sims import great3sims.mapper try: import g3metrics except ImportError: path, module = os.path.split(__file__) sys.path.append(os.path.join(path, "..", "metrics")) # Appends the great3-private/metrics # folder to path import g3metrics TRUTH_DIR = "/great3/beta/truth" # Root folder in which the truth values are upacked NFIELDS = 10 # Total number of fields NSUBFIELDS = 200 # Total number of subfields, not necessarily equal to the number of subfields made # in mass_produce as that script also generates the deep fields NSUBFIELDS_PER_FIELD = NSUBFIELDS / NFIELDS NGALS_PER_SUBFIELD = 10000 # 100x100 galaxies per subfield CFID = 2.e-4 MFID = 2.e-3 XMAX_GRID_DEG = 10.0 # Maximum image spatial extent in degrees DX_GRID_DEG = 0.1 # Grid spacing in degrees THETA_MIN_DEG = 0.02 # Minimum and maximum angular scales for logarithmic bins used to calculate the THETA_MAX_DEG = 10.0 # aperture mass disp. - MUST match specs given to participants - in degrees NBINS_THETA = 15 # Number of logarithmic bins theta for the aperture mass dispersion EXPECTED_THETA = np.array([ # Array of theta values expected in submissions, good to 3 d.p. 0.0246, 0.0372, 0.0563, 0.0853, 0.1290, 0.1953, 0.2955, 0.4472, 0.6768, 1.0242, 1.5499, 2.3455, 3.5495, 5.3716, 8.1289] * NFIELDS) USEBINS = np.array([ # Which of the theta bins above to actually use in calculating the metric? False, False, False, True, True, True, True, True, True, True, True, True, True, False, False] * NFIELDS) # Note the *NFIELDS to match per-field theta layout STORAGE_DIR = "./metric_calculation_products" # Folder into which to store useful intermediate # outputs of metric calculations (e.g. rotation files, # dicts, mapE tables) which need be calculated only # once SUBFIELD_DICT_FILE_PREFIX = "subfield_dict_" GTRUTH_FILE_PREFIX = "gtruth_" ROTATIONS_FILE_PREFIX = "rotations_" OFFSETS_FILE_PREFIX = "offsets_" MAPESHEAR_FILE_PREFIX = "mapEshear_" MAPEINT_FILE_PREFIX = "mapEint_" MAPEOBS_FILE_PREFIX = "mapEobs_" # These constant normalization factors come from a run of ~1000 sims done on 6 Jan 2014, modified on # 30 Jan 2014 to bring space and ground into agreement at high bias NORMALIZATION_CONSTANT_SPACE = 1.232 NORMALIZATION_CONSTANT_GROUND = NORMALIZATION_CONSTANT_SPACE NORMALIZATION_VARIABLE_SPACE = 0.0001837 # Factor comes from tests with # tabulate_variable_shear_metric_rev1.py on 1000 runs and # NOISE_SIGMA = 0.10, 6 Jan 2015, with sigma2_min = 4.e-8 NORMALIZATION_VARIABLE_GROUND = NORMALIZATION_VARIABLE_SPACE # Bring space=ground at high bias # Values of sigma2_min to adopt as the defaults for the Q_c and Q_v metrics, as of 30 Dec 2013. # These parameters add a damping SIGMA2_MIN_CONSTANT_GROUND = 4. # 2**2 SIGMA2_MIN_CONSTANT_SPACE = 1. # 1**2 SIGMA2_MIN_VARIABLE_GROUND = 9.e-8 # [2 * 1.e-3]**2 SIGMA2_MIN_VARIABLE_SPACE = 4.e-8 # [3 * 1.e-3]**2 def get_generate_const_truth(experiment, obs_type, truth_dir=TRUTH_DIR, storage_dir=STORAGE_DIR, logger=None): """Get or generate arrays of subfield_index, g1true, g2true, each of length `NSUBFIELDS`. If the gtruth file has already been built for this constant shear branch, loads and returns the saved copies. If the array of truth values has not been built, or is older than the first entry in the set of shear_params files, the arrays are built first, saved to file, then returned. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth information for the challenge is stored @param logger Python logging.Logger instance, for message logging @return subfield_index, g1true, g2true """ gtruefile = os.path.join(storage_dir, GTRUTH_FILE_PREFIX+experiment[0]+obs_type[0]+"c.asc") mapper = great3sims.mapper.Mapper(truth_dir, experiment, obs_type, "constant") use_stored = True if not os.path.isfile(gtruefile): use_stored = False if logger is not None: logger.info( "First build of shear truth tables using values from "+ os.path.join(mapper.full_dir, "shear_params-*.yaml")) else: # Compare timestamps for the gtruefile and the first shear_params file # (subfield = 000) for this branch. If the former is older than the latter, or this file, # force rebuild... gtruemtime = os.path.getmtime(gtruefile) shear_params_file = os.path.join(mapper.full_dir, "shear_params-000.yaml") shear_params_mtime = os.path.getmtime(shear_params_file) if gtruemtime < shear_params_mtime or gtruemtime < os.path.getmtime(__file__): use_stored = False if logger is not None: logger.info( "Updating out-of-date shear truth tables using newer values from "+ os.path.join(mapper.full_dir, "shear_params-*.yaml")) # Then load or build (and save) the array of truth values per subfield if use_stored: if logger is not None: logger.info("Loading shear truth tables from "+gtruefile) gtruedata = np.loadtxt(gtruefile) else: params_prefix = os.path.join(mapper.full_dir, "shear_params-") import yaml # Check to see if this is a variable_psf or full branch, in which case we only need the # first entry from each set of subfields if experiment in ("variable_psf", "full"): gtruedata = np.empty((NFIELDS, 3)) gtruedata[:, 0] = np.arange(NFIELDS) subfield_index_targets = range(0, NSUBFIELDS, NSUBFIELDS_PER_FIELD) else: gtruedata = np.empty((NSUBFIELDS, 3)) gtruedata[:, 0] = np.arange(NSUBFIELDS) subfield_index_targets = range(NSUBFIELDS) # Then loop over the required subfields reading in the shears for i, subfield_index in enumerate(subfield_index_targets): params_file = params_prefix+("%03d" % subfield_index)+".yaml" with open(params_file, "rb") as funit: gdict = yaml.load(funit) gtruedata[i, 1] = gdict["g1"] gtruedata[i, 2] = gdict["g2"] if logger is not None: logger.info("Saving shear truth table to "+gtruefile) if not os.path.isdir(storage_dir): os.mkdir(storage_dir) with open(gtruefile, "wb") as fout: fout.write("# True shears for "+experiment+"-"+obs_type+"-constant\n") fout.write("# subfield_index g1true g2true\n") np.savetxt(fout, gtruedata, fmt=" %4d %+.18e %+.18e") return (gtruedata[:, 0]).astype(int), gtruedata[:, 1], gtruedata[:, 2] def get_generate_const_rotations(experiment, obs_type, storage_dir=STORAGE_DIR, truth_dir=TRUTH_DIR, logger=None): """Get or generate an array of rotation angles for Q_const calculation. If the rotation file has already been built for this constant shear branch, loads and returns an array of rotation angles to align with the PSF. This array is of shape `(NSUBFIELDS,)`, having averaged over the `n_epochs` epochs in the case of multi-epoch branches. If the rotation file has not been built, or is older than the first entry in the set of starshape_parameters files, the array of rotations is built, saved to file, then returned. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth information for the challenge is stored @param logger Python logging.Logger instance, for message logging @return rotations An array containing all the rotation angles, in radians """ import great3sims rotfile = os.path.join(storage_dir, ROTATIONS_FILE_PREFIX+experiment[0]+obs_type[0]+"c.asc") mapper = great3sims.mapper.Mapper(truth_dir, experiment, obs_type, "constant") use_stored = True if not os.path.isfile(rotfile): use_stored = False if logger is not None: logger.info( "First build of rotations file using starshape_parameters from "+ mapper.full_dir) else: # Then compare timestamps for the rotation file and the first starshape_parameters file # (subfield = 000, epoch =0) for this branch. If the former is older than the latter, or # this file, force rebuild... rotmtime = os.path.getmtime(rotfile) starshape_file_template, _ ,_ = mapper.mappings['starshape_parameters'] starshape_file = os.path.join( mapper.full_dir, starshape_file_template % {"epoch_index": 0, "subfield_index": 0}) starshapemtime = os.path.getmtime(starshape_file+".yaml") if rotmtime < starshapemtime or rotmtime < os.path.getmtime(__file__): use_stored = False if logger is not None: logger.info( "Updating out-of-date rotations file using newer starshape_parameters from "+ mapper.full_dir) # Then load / build as required if use_stored is True: if logger is not None: logger.info("Loading rotations from "+rotfile) rotations = np.loadtxt(rotfile)[:, 1] # First column is just subfield indices else: # To build we must loop over all the subfields and epochs # First work out if the experiment is multi-exposure and has multiple epochs if experiment in ("multiepoch", "full"): import great3sims.constants n_epochs = great3sims.constants.n_epochs else: n_epochs = 1 # Setup the array for storing the PSF values from which rotations are calculated psf_g1 = np.empty((NSUBFIELDS, n_epochs)) psf_g2 = np.empty((NSUBFIELDS, n_epochs)) mean_psf_g1 = np.empty(NSUBFIELDS) mean_psf_g2 = np.empty(NSUBFIELDS) for subfield_index in range(NSUBFIELDS): n_ignore = 0 # Counter for how many epochs had flagged, bad PSF g1/g2 values for epoch_index in range(n_epochs): starshape_parameters = mapper.read( "starshape_parameters", data_id={"epoch_index": epoch_index, "subfield_index": subfield_index}) star_g1 = starshape_parameters["psf_g1"] star_g2 = starshape_parameters["psf_g2"] # Test for flagged failures (these do happen rarely and are given the value # psf_g1=psf_g2=-10.0, see writeStarParameters in great3sims/builders.py) # If the psf ellipticities are failed, we just ignore these for the (m, c) calcs if star_g1 > -9.9 and star_g2 > -9.9: psf_g1[subfield_index, epoch_index] = star_g1 psf_g2[subfield_index, epoch_index] = star_g2 else: n_ignore += 1 psf_g1[subfield_index, epoch_index] = 0. psf_g2[subfield_index, epoch_index] = 0. # Calculate the mean across the epochs in this subfield taking any flagged values into # account n_eff = n_epochs - n_ignore if n_eff > 0: mean_psf_g1[subfield_index] = (psf_g1[subfield_index, :]).sum() / float(n_eff) mean_psf_g2[subfield_index] = (psf_g2[subfield_index, :]).sum() / float(n_eff) else: mean_psf_g1[subfield_index] = 0. # This is safe in np.arctan2() -> 0. mean_psf_g2[subfield_index] = 0. if experiment in ("variable_psf", "full"): # Average over all subfields per field final_psf_g1 = np.empty(NFIELDS) final_psf_g2 = np.empty(NFIELDS) for i in range(NFIELDS): final_psf_g1[i] = np.mean( mean_psf_g1[i * NSUBFIELDS_PER_FIELD: (i + 1) * NSUBFIELDS_PER_FIELD]) final_psf_g2[i] = np.mean( mean_psf_g2[i * NSUBFIELDS_PER_FIELD: (i + 1) * NSUBFIELDS_PER_FIELD]) else: final_psf_g1 = mean_psf_g1 final_psf_g2 = mean_psf_g2 rotations = .5 * np.arctan2(final_psf_g2, final_psf_g1) # We have built rotations, but then save this file as ascii for use next time if logger is not None: logger.info("Saving rotations to "+rotfile) if not os.path.isdir(storage_dir): os.mkdir(storage_dir) with open(rotfile, "wb") as fout: fout.write("# Rotations for "+experiment+"-"+obs_type+"-constant\n") fout.write("# subfield_index rotation [radians]\n") np.savetxt(fout, np.array((np.arange(len(rotations)), rotations)).T, fmt=" %4d %+.18f") return rotations def get_generate_variable_offsets(experiment, obs_type, storage_dir=STORAGE_DIR, truth_dir=TRUTH_DIR, logger=None): """Get or generate arrays of subfield_index, offset_deg_x, offset_deg_y, each of length `NSUBFIELDS`. If the offsets file has already been built for this variable shear branch, loads and returns the saved arrays. If the arrays of offset values have not been built, or are older than the first entry in the set of subfield_offset files, the arrays are built first, saved to file, then returned. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth information for the challenge is stored @param logger Python logging.Logger instance, for message logging @return subfield_index, offset_deg_x, offset_deg_y """ offsetfile = os.path.join(storage_dir, OFFSETS_FILE_PREFIX+experiment[0]+obs_type[0]+"v.asc") mapper = great3sims.mapper.Mapper(truth_dir, experiment, obs_type, "variable") use_stored = True if not os.path.isfile(offsetfile): use_stored = False if logger is not None: logger.info( "First build of offsets file using subfield_offset files from "+ mapper.full_dir) else: # Then compare timestamps for the offsets file and the first file # (subfield = 000) for this branch. If the former is older than the latter, or # this file, force rebuild... offsetmtime = os.path.getmtime(offsetfile) subfield_offset_file = os.path.join(mapper.full_dir, "subfield_offset-000.yaml") subfield_offset_mtime = os.path.getmtime(subfield_offset_file) if offsetmtime < subfield_offset_mtime or offsetmtime < os.path.getmtime(__file__): use_stored = False if logger is not None: logger.info( "Updating out-of-date offset file using newer values from "+ os.path.join(mapper.full_dir, "subfield_offset-*.yaml")) # Then load / build as required if use_stored is True: if logger is not None: logger.info("Loading offsets from "+offsetfile) offsets = np.loadtxt(offsetfile) else: offsets_prefix = os.path.join(mapper.full_dir, "subfield_offset-") offsets = np.empty((NSUBFIELDS, 3)) import yaml offsets[:, 0] = np.arange(NSUBFIELDS) for i in range(NSUBFIELDS): offsets_file = offsets_prefix+("%03d" % i)+".yaml" with open(offsets_file, "rb") as funit: offsetdict = yaml.load(funit) offsets[i, 1] = offsetdict["offset_deg_x"] offsets[i, 2] = offsetdict["offset_deg_y"] if logger is not None: logger.info("Saving offset file to "+offsetfile) if not os.path.isdir(storage_dir): os.mkdir(storage_dir) with open(offsetfile, "wb") as fout: fout.write("# Subfield offsets for "+experiment+"-"+obs_type+"-variable\n") fout.write("# subfield_index offset_deg_x offset_deg_y\n") np.savetxt(fout, offsets, fmt=" %4d %.18e %.18e") return (offsets[:, 0]).astype(int), offsets[:, 1], offsets[:, 2] def run_corr2(x, y, e1, e2, w, min_sep=THETA_MIN_DEG, max_sep=THETA_MAX_DEG, nbins=NBINS_THETA, cat_file_suffix='_temp.fits', params_file_suffix='_corr2.params', m2_file_suffix='_temp.m2', xy_units='degrees', sep_units='degrees', corr2_executable='corr2'): """Copied from presubmission.py """ import pyfits import subprocess import tempfile # Create temporary, unique files for I/O catfile = tempfile.mktemp(suffix=cat_file_suffix) paramsfile = tempfile.mktemp(suffix=params_file_suffix) m2file = tempfile.mktemp(suffix=m2_file_suffix) # Write the basic corr2.params to temp location print_basic_corr2_params(paramsfile, min_sep=min_sep, max_sep=max_sep, nbins=nbins, xy_units=xy_units, sep_units=sep_units, fits_columns=True) # Use fits binary table for faster I/O. (Converting to/from strings is slow.) # First, make the data into np arrays x_array = np.asarray(x).flatten() y_array = np.asarray(y).flatten() g1_array = np.asarray(e1).flatten() g2_array = np.asarray(e2).flatten() w_array = np.asarray(w).flatten() # Then, mask out the >= 10 values use_mask = np.logical_and.reduce([g1_array<10.,g2_array<10.]) # And finally make the FITS file x_col = pyfits.Column(name='x', format='1D', array=x_array[use_mask]) y_col = pyfits.Column(name='y', format='1D', array=y_array[use_mask]) g1_col = pyfits.Column(name='g1', format='1D', array=g1_array[use_mask]) g2_col = pyfits.Column(name='g2', format='1D', array=g2_array[use_mask]) w_col = pyfits.Column(name='w', format='1D', array=w_array[use_mask]) cols = pyfits.ColDefs([x_col, y_col, g1_col, g2_col, w_col]) table = pyfits.new_table(cols) phdu = pyfits.PrimaryHDU() hdus = pyfits.HDUList([phdu, table]) hdus.writeto(catfile, clobber=True) subprocess.Popen([ corr2_executable, str(paramsfile), 'file_name='+str(catfile), 'm2_file_name='+str(m2file) ]).wait() results = np.loadtxt(m2file) os.remove(paramsfile) os.remove(catfile) os.remove(m2file) return results def print_basic_corr2_params(outfile, min_sep=THETA_MIN_DEG, max_sep=THETA_MAX_DEG, nbins=NBINS_THETA, xy_units='degrees', sep_units='degrees', fits_columns=False): """Write a bare-bones corr2.params file (used by corr2) to the file named outfile. """ with open(outfile, 'wb') as fout: if fits_columns: fout.write("# Column description\n") fout.write("x_col = x\n") fout.write("y_col = y\n") fout.write("g1_col = g1\n") fout.write("g2_col = g2\n") fout.write("w_col = w\n") fout.write("\n") fout.write("# File info\n") fout.write("file_type=FITS") else: fout.write("# Column description\n") fout.write("x_col = 1\n") fout.write("y_col = 2\n") fout.write("g1_col = 3\n") fout.write("g2_col = 4\n") fout.write("w_col = 5\n") fout.write("\n") fout.write( "# Assume sign conventions for gamma were correct in the catalog passed to "+ "presubmission.py\n") fout.write("flip_g1 = false\n") fout.write("flip_g2 = false\n") fout.write("\n") fout.write("# Describe the parameters of the requested correlation function\n") fout.write('min_sep=%f\n'%min_sep) fout.write('max_sep=%f\n'%max_sep) fout.write('nbins=%f\n'%nbins) fout.write('x_units='+str(xy_units)+'\n') fout.write('y_units='+str(xy_units)+'\n') fout.write('sep_units='+str(sep_units)+'\n') fout.write('\n') fout.write("# verbose specifies how much progress output the code should emit.\n") fout.write("verbose = 0\n") fout.write("\n") def get_generate_variable_truth(experiment, obs_type, storage_dir=STORAGE_DIR, truth_dir=TRUTH_DIR, logger=None, corr2_exec="corr2", make_plots=False, file_prefixes=("galaxy_catalog",), suffixes=("",), mape_file_prefix=MAPESHEAR_FILE_PREFIX, output_xy_prefix=None): """Get or generate an array of truth map_E vectors for all the fields in this branch. If the map_E truth file has already been built for this variable shear branch, loads and returns the saved copies. If the array of truth values has not been built, or is older than the first entry in the set of galaxy_catalog files, the arrays are built first, saved to file, then returned. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth info for the challenge is stored @param logger Python logging.Logger instance, for message logging @param corr2_exec Path to Mike Jarvis' corr2 exectuable @param make_plots Generate plotting output @param file_prefixes Tuple containing one or more prefixes for file type in which to load up shears, summing shears when `len(file_prefixes) >= 2` [default = `("galaxy_catalog",)`] @param suffixes Load up shear from entries "g1"+suffixes[0] and "g2"+suffixes[0] in the `file_prefixes[0]`-type files, then add "g1"+suffixes[1] from `file_prefixes[1]`-type files, etc. Must be same length as `file_prefixes` tuple [default = `("",)`] @param mape_file_prefix Prefix for output filename @param output_xy_prefix Filename prefix (and switch if not None) for x-y position debug output @return field, theta, map_E, map_B, maperr """ # Sanity check on suffixes & prefixes if len(suffixes) != len(file_prefixes): raise ValueError("Input file_prefixes and suffixes kwargs must be same length.") # Build basic x and y grids to use for coord positions: note we do this here rather than as # needed later so as to check the dimensions (meshgrid is very quick anyway) xgrid_deg, ygrid_deg = np.meshgrid( np.arange(0., XMAX_GRID_DEG, DX_GRID_DEG), np.arange(0., XMAX_GRID_DEG, DX_GRID_DEG)) xgrid_deg = xgrid_deg.flatten() # Flatten these - the default C ordering corresponds to the way ygrid_deg = ygrid_deg.flatten() # the true shears are ordered too, which is handy if len(xgrid_deg) != NGALS_PER_SUBFIELD: raise ValueError( "Dimensions of xgrid_deg and ygrid_deg do not match NGALS_PER_SUBFIELD. Please check "+ "the values of XMAX_GRID_DEG and DX_GRID_DEG in evaluate.py.") # Define storage file and check for its existence and/or age mapEtruefile = os.path.join( storage_dir, mape_file_prefix+experiment[0]+obs_type[0]+"v.asc") mapper = great3sims.mapper.Mapper(truth_dir, experiment, obs_type, "variable") use_stored = True if not os.path.isfile(mapEtruefile): use_stored = False if logger is not None: logger.info( "First build of map_E truth file using "+str(file_prefixes)+" files from "+ mapper.full_dir) else: # Then compare timestamps for the mapE file and the newest file_prefixes[:]-000.fits file # (subfield = 000) for this branch. If the former is older than the latter, or # this file, force rebuild... mapEmtime = os.path.getmtime(mapEtruefile) catalogmtime = 0 # Set earliest possible T for prefix in file_prefixes: catalog_file = os.path.join(mapper.full_dir, prefix+"-000.fits") tmpmtime = os.path.getmtime(catalog_file) if tmpmtime > catalogmtime: catalogmtime = tmpmtime if mapEmtime < catalogmtime or mapEmtime < os.path.getmtime(__file__): use_stored = False if logger is not None: logger.info( "Updating out-of-date map_E file using newer "+str(file_prefixes)+" files "+ "from "+mapper.full_dir) # Then load / build as required if use_stored is True: if logger is not None: logger.info("Loading truth map_E from "+mapEtruefile) data = np.loadtxt(mapEtruefile) field, theta, map_E, map_B, maperr = ( data[:, 0].astype(int), data[:, 1], data[:, 2], data[:, 3], data[:, 4]) else: # Define the field array, then theta and map arrays in which we'll store the results field = np.arange(NBINS_THETA * NFIELDS) / NBINS_THETA theta = np.empty(NBINS_THETA * NFIELDS) map_E = np.empty(NBINS_THETA * NFIELDS) map_B = np.empty(NBINS_THETA * NFIELDS) maperr = np.empty(NBINS_THETA * NFIELDS) # Load the offsets subfield_indices, offset_deg_x, offset_deg_y = get_generate_variable_offsets( experiment, obs_type, storage_dir=storage_dir, truth_dir=truth_dir, logger=logger) # Setup some storage arrays into which we'll write xfield = np.empty((NGALS_PER_SUBFIELD, NSUBFIELDS_PER_FIELD)) yfield = np.empty((NGALS_PER_SUBFIELD, NSUBFIELDS_PER_FIELD)) # Loop over fields import pyfits for ifield in range(NFIELDS): # Read in all the shears in this field and store g1 = np.zeros((NGALS_PER_SUBFIELD, NSUBFIELDS_PER_FIELD)) g2 = np.zeros((NGALS_PER_SUBFIELD, NSUBFIELDS_PER_FIELD)) for jsub in range(NSUBFIELDS_PER_FIELD): # Build the x,y grid using the subfield offsets isubfield_index = jsub + ifield * NSUBFIELDS_PER_FIELD xfield[:, jsub] = xgrid_deg + offset_deg_x[isubfield_index] yfield[:, jsub] = ygrid_deg + offset_deg_y[isubfield_index] # If requested (by setting output_xy_prefix) then write these xy out for diagnostic if output_xy_prefix is not None: output_xy_filename = output_xy_prefix+("-sub%03d" % isubfield_index)+".asc" print "Writing "+output_xy_filename+" as requested..." with open(output_xy_filename, 'wb') as fout: fout.write("# x y\n") np.savetxt(fout, np.array((xfield[:, jsub], yfield[:, jsub])).T) # Then loop over the supplied file_prefixes and g1/g2 suffixes, summing shears for prefix, suffix in zip(file_prefixes, suffixes): galcatfile = os.path.join( mapper.full_dir, (prefix+"-%03d.fits" % isubfield_index)) truedata = pyfits.getdata(galcatfile) if len(truedata) != NGALS_PER_SUBFIELD: raise ValueError( "Number of records in "+galcatfile+" (="+str(len(truedata))+") is not "+ "equal to NGALS_PER_SUBFIELD (="+str(NGALS_PER_SUBFIELD)+")") # Use the correct rule for shear addition, best (most safely) evaluated using # arrays of complex numbers, see Schneider 2006 eq 12 gtoaddc = truedata["g1"+suffix] + truedata["g2"+suffix]*1j gpriorc = g1[:, jsub] + g2[:, jsub]*1j gfinalc = (gpriorc + gtoaddc) / (1. + gtoaddc.conj() * gpriorc) g1[:, jsub] = gfinalc.real g2[:, jsub] = gfinalc.imag # If requested (by setting output_xy_prefix) then write these xy out for diagnostic if output_xy_prefix is not None: output_xy_filename = output_xy_prefix+("-%03d" % ifield)+".asc" with open(output_xy_filename, 'wb') as fout: fout.write("# x y\n") np.savetxt(fout, np.array((xfield.flatten(), yfield.flatten())).T) # Having got the x,y and g1, g2 for all the subfields in this field, flatten and use # to calculate the map_E map_results = run_corr2( xfield.flatten(), yfield.flatten(), g1.flatten(), g2.flatten(), np.ones(NGALS_PER_SUBFIELD * NSUBFIELDS_PER_FIELD), min_sep=THETA_MIN_DEG, max_sep=THETA_MAX_DEG, nbins=NBINS_THETA, corr2_executable=corr2_exec, xy_units="degrees", sep_units="degrees") theta[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA] = map_results[:, 0] map_E[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA] = map_results[:, 1] map_B[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA] = map_results[:, 2] maperr[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA] = map_results[:, 5] # Save these in ASCII format if logger is not None: logger.info("Saving truth map_E file to "+mapEtruefile) with open(mapEtruefile, "wb") as fout: fout.write("# True aperture mass statistics for "+experiment+"-"+obs_type+"-variable\n") fout.write("# field_index theta [deg] map_E map_B maperr\n") np.savetxt( fout, np.array((field, theta, map_E, map_B, maperr)).T, fmt=" %2d %.18e %.18e %.18e %.18e") if make_plots and not use_stored: # No point plotting if already built! import matplotlib.pyplot as plt plt.figure(figsize=(10, 8)) plt.subplot(211) for ifield in range(NFIELDS): plt.semilogx( theta[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA], map_E[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA], label="Field "+str(ifield)) plt.ylim(-2.e-5, 2.e-5) plt.title(mapEtruefile+" E-mode") plt.ylabel("Ap. Mass Dispersion") plt.axhline(ls="--", color="k") plt.legend() plt.subplot(212) for ifield in range(NFIELDS): plt.semilogx( theta[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA], map_B[ifield * NBINS_THETA: (ifield + 1) * NBINS_THETA], label="Field "+str(ifield)) plt.ylim(-2.e-5, 2.e-5) plt.title(mapEtruefile+" B-mode") plt.xlabel("Theta [degrees]") plt.ylabel("Ap. Mass Dispersion") plt.axhline(ls="--", color="k") plt.legend() plotfile = mapEtruefile.rstrip("asc")+"png" if logger is not None: logger.info("Saving plot output to "+plotfile) plt.savefig(plotfile) # Then return return field, theta, map_E, map_B, maperr def q_constant(submission_file, experiment, obs_type, storage_dir=STORAGE_DIR, truth_dir=TRUTH_DIR, logger=None, normalization=None, sigma2_min=None, just_q=False, cfid=CFID, mfid=MFID, pretty_print=False, flip_g1=False, flip_g2=False, plot=False, ignore_fields=None): """Calculate the Q_c for a constant shear branch submission. @param submission_file File containing the user submission. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth information for the challenge is stored @param logger Python logging.Logger instance, for message logging @param normalization Normalization factor for the metric (default `None` uses either `NORMALIZATION_CONSTANT_GROUND` or `NORMALIZATION_CONSTANT_SPACE` depending on `obs_type`) @param sigma2_min Damping term to put into the denominator of QZ1 metric (default `None` uses either `SIGMA2_MIN_CONSTANT_GROUND` or `SIGMA2_MIN_CONSTANT_SPACE` depending on `obs_type`) @param just_q Set `just_q = True` (default is `False`) to only return Q_c rather than the default behaviour of returning a tuple including best fitting c+, m+, cx, mx, etc. @param cfid Fiducial, target c value @param mfid Fiducial, target m value @param ignore_fields List or tuple of fields to ignore. If None, use all fields. @return The metric Q_c, & optionally best fitting c+, m+, cx, mx, sigc+, sigcm+, sigcx, sigmx. """ if not os.path.isfile(submission_file): raise ValueError("Supplied submission_file '"+submission_file+"' does not exist.") # If the sigma2_min is not changed from None, set using defaults based on obs_type if sigma2_min is None: if obs_type == "ground": sigma2_min = SIGMA2_MIN_CONSTANT_GROUND elif obs_type == "space": sigma2_min = SIGMA2_MIN_CONSTANT_SPACE else: raise ValueError("Default sigma2_min cannot be set as obs_type not recognised") # If the normalization is not changed from None, set using defaults based on obs_type if normalization is None: if obs_type == "ground": normalization = NORMALIZATION_CONSTANT_GROUND elif obs_type == "space": normalization = NORMALIZATION_CONSTANT_SPACE else: raise ValueError("Default sigma2_min cannot be set as obs_type not recognised") # Load the submission and label the slices we're interested in if logger is not None: logger.info("Calculating Q_c metric for "+submission_file) data = np.loadtxt(submission_file) subfield = data[:, 0] g1sub = data[:, 1] g2sub = data[:, 2] if flip_g1: g1sub = -g1sub if flip_g2: g2sub = -g2sub # Load up the rotations, then rotate g1 & g2 in the correct sense. # NOTE THE MINUS SIGNS! This is because we need to rotate the coordinates *back* into a frame # in which the primary direction of the PSF is g1, and the orthogonal is g2 try: # Put this in a try except block to handle funky submissions better rotations = get_generate_const_rotations( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger) g1srot = g1sub * np.cos(-2. * rotations) - g2sub * np.sin(-2. * rotations) g2srot = g1sub * np.sin(-2. * rotations) + g2sub * np.cos(-2. * rotations) # Load the truth _, g1truth, g2truth = get_generate_const_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger) # Rotate the truth in the same sense, then use the g3metrics.fitline routine to # perform simple linear regression g1trot = g1truth * np.cos(-2. * rotations) - g2truth * np.sin(-2. * rotations) g2trot = g1truth * np.sin(-2. * rotations) + g2truth * np.cos(-2. * rotations) # Decide which subfields to use / ignore use = np.ones_like(g1srot, dtype=bool) if ignore_fields is not None: for field_index in ignore_fields: use[field_index] = False Q_c, c1, m1, c2, m2, sigc1, sigm1, sigc2, sigm2 = g3metrics.metricQZ1_const_shear( g1srot[use], g2srot[use], g1trot[use], g2trot[use], cfid=cfid, mfid=mfid, sigma2_min=sigma2_min) Q_c *= normalization if plot: import matplotlib.pyplot as plt plt.subplot(211) plt.plot(g1trot, g1srot - g1trot, 'k+') plt.plot( [min(g1trot), max(g1trot)], [m1 * min(g1trot) + c1, m1 * max(g1trot) + c1], 'b-', label="c+ = %+.5f +/- %.5f \nm+ = %+.5f +/- %.5f" % (c1, sigc1, m1, sigm1)) plt.xlim() plt.xlabel("gtrue_+") plt.ylabel("(gsub - gtrue)_+") plt.ylim(-0.015, 0.015) plt.title(os.path.split(submission_file)[-1]) plt.axhline(ls='--', color='k') plt.legend() plt.subplot(212) plt.plot(g2trot, g2srot - g2trot, 'k+') plt.plot( [min(g2trot), max(g2trot)], [m2 * min(g2trot) + c2, m2 * max(g2trot) + c2], 'r-', label="cx = %+.5f +/- %.5f \nmx = %+.5f +/- %.5f" % (c2, sigc2, m2, sigm2)) plt.xlabel("gtrue_x") plt.ylabel("(gsub - gtrue)_x") plt.ylim(-0.015, 0.015) plt.axhline(ls='--', color='k') plt.legend() if type(plot) == str: print "Saving plot to "+plot plt.savefig(plot) plt.show() except Exception as err: # Something went wrong... We'll handle this silently setting all outputs to zero but warn # the user via any supplied logger; else raise Q_c, c1, m1, c2, m2, sigc1, sigm1, sigc2, sigm2 = 0, 0, 0, 0, 0, 0, 0, 0, 0 print err if logger is not None: logger.warn(err.message) else: raise err # ...Raise exception if there is no logger # Then return if just_q: ret = Q_c else: if pretty_print: print print "Evaluated results for submission "+str(submission_file) print "Using sigma2_min = "+str(sigma2_min) print print "Q_c = %.4f" % Q_c print "c+ = %+.5f +/- %.5f" % (c1, sigc1) print "cx = %+.5f +/- %.5f" % (c2, sigc2) print "m+ = %+.5f +/- %.5f" % (m1, sigm1) print "mx = %+.5f +/- %.5f" % (m2, sigm2) print ret = (Q_c, c1, m1, c2, m2, sigc1, sigm1, sigc2, sigm2) return ret def q_variable(submission_file, experiment, obs_type, normalization=None, truth_dir=TRUTH_DIR, storage_dir=STORAGE_DIR, logger=None, corr2_exec="corr2", poisson_weight=False, usebins=USEBINS, fractional_diff=False, squared_diff=False, sigma2_min=None): """Calculate the Q_v for a variable shear branch submission. @param submission_file File containing the user submission. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param normalization Normalization factor for the metric, default will be set differently for obs_type='space' and obs_type='ground' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth information for the challenge is stored @param logger Python logging.Logger instance, for message logging @param corr2_exec Path to Mike Jarvis' corr2 exectuable @param poisson_weight If `True`, use the relative Poisson errors in each bin of map_E to form an inverse variance weight for the difference metric [default = `False`] @param usebins An array the same shape as EXPECTED_THETA specifying which bins to use in the calculation of Q_v [default = `USEBINS`]. If set to `None`, uses all bins @param fractional_diff Use a |fractional|, rather than absolute difference in metric @param squared_diff Use the squared, rather than the absolute difference in metric @param sigma2_min Damping term to put into the denominator of metric (default `None` uses either `SIGMA2_MIN_VARIABLE_GROUND` or `SIGMA2_MIN_VARIABLE_SPACE` depending on `obs_type`) @return The metric Q_v """ if not os.path.isfile(submission_file): raise ValueError("Supplied submission_file '"+submission_file+"' does not exist.") # Set the default normalization based on whether ground or space data if normalization is None: if obs_type == "ground": normalization = NORMALIZATION_VARIABLE_GROUND elif obs_type == "space": normalization = NORMALIZATION_VARIABLE_SPACE else: raise ValueError("Default normalization cannot be set as obs_type not recognised") # If the sigma2_min is not changed from `None`, set using defaults based on `obs_type` if sigma2_min is None: if obs_type == "ground": sigma2_min = SIGMA2_MIN_VARIABLE_GROUND elif obs_type == "space": sigma2_min = SIGMA2_MIN_VARIABLE_SPACE else: raise ValueError("Default sigma2_min cannot be set as obs_type not recognised") # Load the submission and label the slices we're interested in if logger is not None: logger.info("Calculating Q_v metric for "+submission_file) data = np.loadtxt(submission_file) # We are stating that we want at least 4 and up to 5 columns, so check for this if data.shape not in ((NBINS_THETA * NFIELDS, 4), (NBINS_THETA * NFIELDS, 5)): raise ValueError("Submission "+str(submission_file)+" is not the correct shape!") # Extract the salient parts of the submission from data field_sub = data[:, 0].astype(int) theta_sub = data[:, 1] map_E_sub = data[:, 2] # Load/generate the truth shear signal field_shear, theta_shear, map_E_shear, _, maperr_shear = get_generate_variable_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger, corr2_exec=corr2_exec, mape_file_prefix=MAPESHEAR_FILE_PREFIX, suffixes=("",), make_plots=False) # Then generate the intrinsic only map_E, useful for examinging plots, including the maperr # (a good estimate of the relative Poisson errors per bin) which we will use to provide a weight field_int, theta_int, map_E_int, _, maperr_int = get_generate_variable_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger, corr2_exec=corr2_exec, mape_file_prefix=MAPEINT_FILE_PREFIX, suffixes=("_intrinsic",), make_plots=False) # Then generate the theory observed = int + shear combined map signals - these are our reference # Note this uses the new functionality of get_generate_variable_truth for adding shears field_ref, theta_ref, map_E_ref, _, maperr_ref = get_generate_variable_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger, corr2_exec=corr2_exec, mape_file_prefix=MAPEOBS_FILE_PREFIX, file_prefixes=("galaxy_catalog", "galaxy_catalog"), suffixes=("_intrinsic", ""), make_plots=False) # Set up the weight if poisson_weight: weight = max(maperr_int**2) / maperr_int**2 # Inverse variance weight else: weight = np.ones_like(map_E_ref) # Set up the usebins to use if `usebins == None` (use all bins) if usebins is None: usebins = np.repeat(True, NBINS_THETA * NFIELDS) # Get the total number of active bins per field nactive = sum(usebins) / NFIELDS try: # Put this in a try except block to handle funky submissions better np.testing.assert_array_almost_equal( # Sanity check out truth / expected theta bins theta_shear, EXPECTED_THETA, decimal=3, err_msg="BIG SNAFU! Truth theta does not match the EXPECTED_THETA, failing...") np.testing.assert_array_equal( field_sub, field_ref, err_msg="User field array does not match truth.") np.testing.assert_array_almost_equal( theta_sub, theta_ref, decimal=3, err_msg="User theta array does not match truth.") # The definition of Q_v is so simple there is no need to use the g3metrics version # NOTE WE ARE TRYING A NEW DEFINITION OF Q_v THAT IS NOT SO SIMPLE Q_v_fields = np.zeros(nactive) # To store diffs averaged over fields, per bin if not fractional_diff: for i in range(nactive): # Sum over all fields for each bin, nactive being the stride Q_v_fields[i] = np.sum(((weight * (map_E_sub - map_E_ref))[usebins])[i::nactive]) else: for i in range(nactive): # Sum over all fields for each bin, nactive being the stride Q_v_fields[i] = np.sum( ((weight * (map_E_sub - map_E_ref) / map_E_ref)[usebins])[i::nactive]) # Then take the weighted average abs(Q_v_fields) if not squared_diff: Q_v = normalization / ( sigma2_min + (np.sum(np.abs(Q_v_fields)) / np.sum(weight[usebins]))) else: Q_v = normalization / ( sigma2_min + (np.sum(Q_v_fields**2) / np.sum(weight[usebins]))) except Exception as err: Q_v = 0. # If the theta or field do not match, let's be strict and force Q_v... if logger is not None: logger.warn(err.message) # ...But let's warn if there's a logger! else: # ...And raise the exception if not raise err # Then return Q_v return Q_v def map_diff_func(cm_array, mapEsub, maperrsub, mapEref, mapEunitc): """Difference between an m,c model of a biased aperture mass statistic submission and the submission itself, as a vector corresponding to the theta vector. The model of the biased submission is simply: mapEmodel = mapEunitc * c^2 + mapEref * (1 + 2 * m + m^2) where c, m = cm_array[0], cm_array[1]. This code returns (mapEmodel - mapEsub) / maperrsub for the use of scipy.optimize.leastsq() within q_variable_by_mc(). """ ret = ( mapEunitc * cm_array[0]**2 + mapEref * (1. + 2. * cm_array[1] + cm_array[1]**2) - mapEsub) / maperrsub return ret def q_variable_by_mc(submission_file, experiment, obs_type, map_E_unitc, normalization=None, truth_dir=TRUTH_DIR, storage_dir=STORAGE_DIR, logger=None, usebins=None, corr2_exec="corr2", sigma2_min=None, cfid=CFID, mfid=MFID, just_q=False, pretty_print=False): """Calculate the Q_v for a variable shear branch submission, using a best-fitting m and c model of submission biases to evaluate the score. Experimental metric, not used in the GREAT3 challenge due to the difficulty of reliably modelling m & c in simulation tests. @param submission_file File containing the user submission. @param experiment Experiment for this branch, one of 'control', 'real_galaxy', 'variable_psf', 'multiepoch', 'full' @param obs_type Observation type for this branch, one of 'ground' or 'space' @param normalization Normalization factor for the metric, default will be set differently for obs_type='space' and obs_type='ground' @param storage_dir Directory from/into which to load/store rotation files @param truth_dir Root directory in which the truth information for the challenge is stored @param logger Python logging.Logger instance, for message logging @param usebins An array the same shape as EXPECTED_THETA specifying which bins to use in the calculation of Q_v [default = `USEBINS`]. If set to `None`, uses all bins @param corr2_exec Path to Mike Jarvis' corr2 exectuable @param sigma2_min Damping term to put into the denominator of metric (default `None` uses either `SIGMA2_MIN_VARIABLE_GROUND` or `SIGMA2_MIN_VARIABLE_SPACE` depending on `obs_type`) @param cfid Fiducial, target c value @param mfid Fiducial, target m value @param just_q Set `just_q = True` (default is `False`) to only return Q_v rather than the default behaviour of returning a tuple including best fitting |c|, m, uncertainties etc. @return The metric Q_v """ if not os.path.isfile(submission_file): raise ValueError("Supplied submission_file '"+submission_file+"' does not exist.") # Set the default normalization based on whether ground or space data if normalization is None: if obs_type == "ground": normalization = NORMALIZATION_CONSTANT_GROUND elif obs_type == "space": normalization = NORMALIZATION_CONSTANT_SPACE else: raise ValueError("Default normalization cannot be set as obs_type not recognised") # If the sigma2_min is not changed from `None`, set using defaults based on `obs_type` if sigma2_min is None: if obs_type == "ground": sigma2_min = SIGMA2_MIN_VARIABLE_GROUND elif obs_type == "space": sigma2_min = SIGMA2_MIN_VARIABLE_SPACE else: raise ValueError("Default sigma2_min cannot be set as obs_type not recognised") # Load the submission and label the slices we're interested in if logger is not None: logger.info("Calculating Q_v metric (by m & c) for "+submission_file) data = np.loadtxt(submission_file) # We are stating that we want at least 4 and up to 5 columns, so check for this if data.shape not in ((NBINS_THETA * NFIELDS, 4), (NBINS_THETA * NFIELDS, 5)): raise ValueError("Submission "+str(submission_file)+" is not the correct shape!") # Extract the salient parts of the submission from data field_sub = data[:, 0].astype(int) theta_sub = data[:, 1] map_E_sub = data[:, 2] # Load/generate the truth shear signal field_shear, theta_shear, map_E_shear, _, maperr_shear = get_generate_variable_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger, corr2_exec=corr2_exec, mape_file_prefix=MAPESHEAR_FILE_PREFIX, suffixes=("",), make_plots=False) # Then generate the intrinsic only map_E, useful for examinging plots, including the maperr # (a good estimate of the relative Poisson errors per bin) which we will use to provide a weight field_int, theta_int, map_E_int, _, maperr_int = get_generate_variable_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger, corr2_exec=corr2_exec, mape_file_prefix=MAPEINT_FILE_PREFIX, suffixes=("_intrinsic",), make_plots=False) # Then generate the theory observed = int + shear combined map signals - these are our reference # Note this uses the new functionality of get_generate_variable_truth for adding shears field_ref, theta_ref, map_E_ref, _, maperr_ref = get_generate_variable_truth( experiment, obs_type, truth_dir=truth_dir, storage_dir=storage_dir, logger=logger, corr2_exec=corr2_exec, mape_file_prefix=MAPEOBS_FILE_PREFIX, file_prefixes=("galaxy_catalog", "galaxy_catalog"), suffixes=("_intrinsic", ""), make_plots=False) # Set up the usebins to use if `usebins == None` (use all bins) if usebins is None: usebins = np.repeat(True, NBINS_THETA * NFIELDS) # Get the total number of active bins per field nactive = sum(usebins) / NFIELDS if True: # Put this in a try except block to handle funky submissions better np.testing.assert_array_almost_equal( # Sanity check out truth / expected theta bins theta_shear, EXPECTED_THETA, decimal=3, err_msg="BIG SNAFU! Truth theta does not match the EXPECTED_THETA, failing...") np.testing.assert_array_equal( field_sub, field_ref, err_msg="User field array does not match truth.") np.testing.assert_array_almost_equal( theta_sub, theta_ref, decimal=3, err_msg="User theta array does not match truth.") # Use optimize.leastsq to find the best fitting linear bias model params, and covariances import scipy.optimize optimize_results = scipy.optimize.leastsq( map_diff_func, np.array([0., 0.]), args=( map_E_sub[usebins], maperr_ref[usebins], map_E_ref[usebins], # Note use of ref errors: this will appropriately # weight different bins and is not itself noisy map_E_unitc[usebins]), full_output=True) csub = optimize_results[0][0] msub = optimize_results[0][1] map_E_model = map_E_unitc * csub**2 + map_E_ref * (1. + 2. * msub + msub**2) residual_variance = np.var( ((map_E_sub - map_E_model) / maperr_ref)[usebins], ddof=1) if optimize_results[1] is not None: covcm = optimize_results[1] * residual_variance sigcsub = np.sqrt(covcm[0, 0]) sigmsub = np.sqrt(covcm[1, 1]) covcm = covcm[0, 1] else: sigcsub = 0. sigmsub = 0. covcm = 0. # Then we define the Q_v Q_v = 2449. * normalization / np.sqrt( (csub / cfid)**2 + (msub / mfid)**2 + sigma2_min) try: pass except Exception as err: Q_v = 0. # If the theta or field do not match, let's be strict and force Q_v... if logger is not None: logger.warn(err.message) # ...But let's warn if there's a logger! else: # ...And raise the exception if not raise err # Then return # Then return if just_q: ret = Q_v else: if pretty_print: print "Evaluated results for submission "+str(submission_file) print "Using sigma2_min = "+str(sigma2_min) print "Q_v = %.4f" % Q_v print "|c| = %+.5f +/- %.5f" % (csub, sigcsub) print " m = %+.5f +/- %.5f" % (msub, sigmsub) print "Cov(0, 0) = %+.4e" % sigcsub**2 print "Cov(0, 1) = %+.4e" % covcm print "Cov(1, 1) = %+.4e" % sigmsub**2 ret = (Q_v, csub, msub, sigcsub, sigmsub, covcm) return ret
bsd-3-clause
tdhopper/scikit-learn
sklearn/linear_model/ransac.py
191
14261
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <RansacRegression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] http://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state def fit(self, X, y): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is None: residual_metric = lambda dy: np.sum(np.abs(dy), axis=1) else: residual_metric = self.residual_metric random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set base_estimator.fit(X_subset, y_subset) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = residual_metric(diff) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue if n_inliers_subset == 0: raise ValueError("No inliers found, possible cause is " "setting residual_threshold ({0}) too low.".format( self.residual_threshold)) # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
dhermes/bezier
src/python/bezier/_plot_helpers.py
1
3607
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plotting utilities.""" import numpy as np from bezier import _helpers def new_axis(): """Get a new matplotlib axis. Returns: matplotlib.artist.Artist: A newly created axis. """ # NOTE: We import the plotting library at runtime to # avoid the cost for users that only want to compute. # The ``matplotlib`` import is a tad expensive. import matplotlib.pyplot as plt # pylint: disable=import-outside-toplevel figure = plt.figure() return figure.gca() def add_plot_boundary(ax, padding=0.125): """Add a buffer of empty space around a plot boundary. .. note:: This only uses ``line`` data from the axis. It **could** use ``patch`` data, but doesn't at this time. Args: ax (matplotlib.artist.Artist): A matplotlib axis. padding (Optional[float]): Amount (as a fraction of width and height) of padding to add around data. Defaults to ``0.125``. """ nodes = np.asfortranarray( np.vstack([line.get_xydata() for line in ax.lines]).T ) left, right, bottom, top = _helpers.bbox(nodes) center_x = 0.5 * (right + left) delta_x = right - left center_y = 0.5 * (top + bottom) delta_y = top - bottom multiplier = (1.0 + padding) * 0.5 ax.set_xlim( center_x - multiplier * delta_x, center_x + multiplier * delta_x ) ax.set_ylim( center_y - multiplier * delta_y, center_y + multiplier * delta_y ) def add_patch(ax, color, pts_per_edge, *edges): """Add a polygonal surface patch to a plot. Args: ax (matplotlib.artist.Artist): A matplotlib axis. color (Tuple[float, float, float]): Color as RGB profile. pts_per_edge (int): Number of points to use in polygonal approximation of edge. edges (Tuple[~bezier.curve.Curve, ...]): Curved edges defining a boundary. """ # pylint: disable=import-outside-toplevel from matplotlib import patches from matplotlib import path as _path_mod # pylint: enable=import-outside-toplevel s_vals = np.linspace(0.0, 1.0, pts_per_edge) # Evaluate points on each edge. all_points = [] for edge in edges: points = edge.evaluate_multi(s_vals) # We assume the edges overlap and leave out the first point # in each. all_points.append(points[:, 1:]) # Add first point as last point (polygon is closed). first_edge = all_points[0] all_points.append(first_edge[:, [0]]) # Add boundary first. polygon = np.asfortranarray(np.hstack(all_points)) (line,) = ax.plot(polygon[0, :], polygon[1, :], color=color) # Reset ``color`` in case it was ``None`` and set from color wheel. color = line.get_color() # ``polygon`` is stored Fortran-contiguous with ``x-y`` points in each # column but ``Path()`` wants ``x-y`` points in each row. path = _path_mod.Path(polygon.T) patch = patches.PathPatch( path, facecolor=color, edgecolor=color, alpha=0.625 ) ax.add_patch(patch)
apache-2.0
tridesclous/tridesclous
tridesclous/gui/silhouette.py
1
4432
""" This view is from taken from sklearn examples. See http://scikit-learn.org: plot-kmeans-silhouette-analysis-py """ from .myqt import QT import pyqtgraph as pg import numpy as np import matplotlib.cm import matplotlib.colors from .base import WidgetBase from .tools import ParamDialog class MyViewBox(pg.ViewBox): doubleclicked = QT.pyqtSignal() def mouseDoubleClickEvent(self, ev): self.doubleclicked.emit() ev.accept() def raiseContextMenu(self, ev): #for some reasons enableMenu=False is not taken (bug ????) pass class Silhouette(WidgetBase): """ **Silhouette** display the silhouette score. Implemented with sklearn. Must compute metrics first. See: * `Silhouette wikipedia <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ * `Silhouette sklearn <http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py>`_ """ _params = [ ] def __init__(self, controller=None, parent=None): WidgetBase.__init__(self, parent=parent, controller=controller) self.layout = QT.QVBoxLayout() self.setLayout(self.layout) h = QT.QHBoxLayout() self.layout.addLayout(h) h.addWidget(QT.QLabel('<b>Silhouette</b>') ) but = QT.QPushButton('settings') but.clicked.connect(self.open_settings) h.addWidget(but) self.graphicsview = pg.GraphicsView() self.layout.addWidget(self.graphicsview) self.alpha = 60 self.initialize_plot() self.refresh() def on_params_changed(self): self.compute_slihouette() self.refresh() def initialize_plot(self): self.viewBox = MyViewBox() self.viewBox.doubleclicked.connect(self.open_settings) self.viewBox.disableAutoRange() self.plot = pg.PlotItem(viewBox=self.viewBox) self.graphicsview.setCentralItem(self.plot) self.plot.hideButtons() def refresh(self): self.plot.clear() silhouette_values = self.controller.spike_silhouette if silhouette_values is None: return if silhouette_values.shape != self.controller.spike_label.shape: return silhouette_avg = np.mean(silhouette_values) silhouette_by_labels = {} labels = self.controller.spike_label labels_list = np.unique(labels) for k in labels_list: v = silhouette_values[k==labels] v.sort() silhouette_by_labels[k] = v self.vline = pg.InfiniteLine(pos=silhouette_avg, angle = 90, movable = False, pen = '#FF0000') self.plot.addItem(self.vline) y_lower = 10 cluster_visible = self.controller.cluster_visible visibles = [c for c, v in self.controller.cluster_visible.items() if v and c>=0] for k in visibles: if k not in silhouette_by_labels: continue v = silhouette_by_labels[k] color = self.controller.qcolors[k] color2 = QT.QColor(color) color2.setAlpha(self.alpha) y_upper = y_lower + v.size y_vect = np.arange(y_lower, y_upper) curve1 = pg.PlotCurveItem(np.zeros(v.size), y_vect, pen=color) curve2 = pg.PlotCurveItem(v, y_vect, pen=color) self.plot.addItem(curve1) self.plot.addItem(curve2) fill = pg.FillBetweenItem(curve1=curve1, curve2=curve2, brush=color2) self.plot.addItem(fill) txt = pg.TextItem( text='{}'.format(k), color='#FFFFFF', anchor=(0, 0.5), border=None)#, fill=pg.mkColor((128,128,128, 180))) self.plot.addItem(txt) txt.setPos(0, (y_upper+y_lower)/2.) y_lower = y_upper + 10 self.plot.setXRange(-.5, 1.) self.plot.setYRange(0,y_lower) def on_spike_selection_changed(self): pass def on_spike_label_changed(self): #~ self.compute_slihouette() self.refresh() def on_colors_changed(self): self.refresh() def on_cluster_visibility_changed(self): self.refresh()
mit
nwjs/chromium.src
tools/perf/cli_tools/soundwave/tables/timeseries_test.py
10
9331
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import unittest from cli_tools.soundwave import pandas_sqlite from cli_tools.soundwave import tables from core.external_modules import pandas def SamplePoint(point_id, value, timestamp=None, missing_commit_pos=False): """Build a sample point as returned by timeseries2 API.""" revisions = { 'r_commit_pos': str(point_id), 'r_chromium': 'chromium@%d' % point_id, } annotations = { 'a_tracing_uri': 'http://example.com/trace/%d' % point_id } if timestamp is None: timestamp = datetime.datetime.utcfromtimestamp( 1234567890 + 60 * point_id).isoformat() if missing_commit_pos: # Some data points have a missing commit position. revisions['r_commit_pos'] = None return [ point_id, revisions, value, timestamp, annotations, ] class TestKey(unittest.TestCase): def testKeyFromDict_typical(self): key1 = tables.timeseries.Key.FromDict({ 'test_suite': 'loading.mobile', 'bot': 'ChromiumPerf:android-nexus5', 'measurement': 'timeToFirstInteractive', 'test_case': 'Wikipedia'}) key2 = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='Wikipedia') self.assertEqual(key1, key2) def testKeyFromDict_defaultTestCase(self): key1 = tables.timeseries.Key.FromDict({ 'test_suite': 'loading.mobile', 'bot': 'ChromiumPerf:android-nexus5', 'measurement': 'timeToFirstInteractive'}) key2 = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='') self.assertEqual(key1, key2) def testKeyFromDict_invalidArgsRaises(self): with self.assertRaises(TypeError): tables.timeseries.Key.FromDict({ 'test_suite': 'loading.mobile', 'bot': 'ChromiumPerf:android-nexus5'}) @unittest.skipIf(pandas is None, 'pandas not available') class TestTimeSeries(unittest.TestCase): def testDataFrameFromJsonV1(self): test_path = ('ChromiumPerf/android-nexus5/loading.mobile' '/timeToFirstInteractive/PageSet/Google') data = { 'test_path': test_path, 'improvement_direction': 1, 'timeseries': [ ['revision', 'value', 'timestamp', 'r_commit_pos', 'r_chromium'], [547397, 2300.3, '2018-04-01T14:16:32.000', '547397', 'adb123'], [547398, 2750.9, '2018-04-01T18:24:04.000', '547398', 'cde456'], [547423, 2342.2, '2018-04-02T02:19:00.000', '547423', 'fab789'], # Some timeseries have a missing commit position. [547836, 2402.5, '2018-04-02T02:20:00.000', None, 'acf147'], ] } timeseries = tables.timeseries.DataFrameFromJson(test_path, data) # Check the integrity of the index: there should be no duplicates. self.assertFalse(timeseries.index.duplicated().any()) self.assertEqual(len(timeseries), 4) # Check values on the first point of the series. point = timeseries.reset_index().iloc[0] self.assertEqual(point['test_suite'], 'loading.mobile') self.assertEqual(point['measurement'], 'timeToFirstInteractive') self.assertEqual(point['bot'], 'ChromiumPerf/android-nexus5') self.assertEqual(point['test_case'], 'PageSet/Google') self.assertEqual(point['improvement_direction'], 'down') self.assertEqual(point['point_id'], 547397) self.assertEqual(point['value'], 2300.3) self.assertEqual(point['timestamp'], datetime.datetime( year=2018, month=4, day=1, hour=14, minute=16, second=32)) self.assertEqual(point['commit_pos'], 547397) self.assertEqual(point['chromium_rev'], 'adb123') self.assertEqual(point['clank_rev'], None) def testDataFrameFromJsonV2(self): test_path = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='Wikipedia') data = { 'improvement_direction': 'down', 'units': 'ms', 'data': [ SamplePoint(547397, 2300.3, timestamp='2018-04-01T14:16:32.000'), SamplePoint(547398, 2750.9), SamplePoint(547423, 2342.2), SamplePoint(547836, 2402.5, missing_commit_pos=True), ] } timeseries = tables.timeseries.DataFrameFromJson(test_path, data) # Check the integrity of the index: there should be no duplicates. self.assertFalse(timeseries.index.duplicated().any()) self.assertEqual(len(timeseries), 4) # Check values on the first point of the series. point = timeseries.reset_index().iloc[0] self.assertEqual(point['test_suite'], 'loading.mobile') self.assertEqual(point['measurement'], 'timeToFirstInteractive') self.assertEqual(point['bot'], 'ChromiumPerf:android-nexus5') self.assertEqual(point['test_case'], 'Wikipedia') self.assertEqual(point['improvement_direction'], 'down') self.assertEqual(point['units'], 'ms') self.assertEqual(point['point_id'], 547397) self.assertEqual(point['value'], 2300.3) self.assertEqual(point['timestamp'], datetime.datetime( year=2018, month=4, day=1, hour=14, minute=16, second=32)) self.assertEqual(point['commit_pos'], 547397) self.assertEqual(point['chromium_rev'], 'chromium@547397') self.assertEqual(point['clank_rev'], None) def testDataFrameFromJson_withSummaryMetric(self): test_path = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='') data = { 'improvement_direction': 'down', 'units': 'ms', 'data': [ SamplePoint(547397, 2300.3), SamplePoint(547398, 2750.9), ], } timeseries = tables.timeseries.DataFrameFromJson( test_path, data).reset_index() self.assertTrue((timeseries['test_case'] == '').all()) def testGetTimeSeries(self): test_path = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='Wikipedia') data = { 'improvement_direction': 'down', 'units': 'ms', 'data': [ SamplePoint(547397, 2300.3), SamplePoint(547398, 2750.9), SamplePoint(547423, 2342.2), ] } timeseries_in = tables.timeseries.DataFrameFromJson(test_path, data) with tables.DbSession(':memory:') as con: pandas_sqlite.InsertOrReplaceRecords(con, 'timeseries', timeseries_in) timeseries_out = tables.timeseries.GetTimeSeries(con, test_path) # Both DataFrame's should be equal, except the one we get out of the db # does not have an index defined. timeseries_in = timeseries_in.reset_index() self.assertTrue(timeseries_in.equals(timeseries_out)) def testGetTimeSeries_withSummaryMetric(self): test_path = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='') data = { 'improvement_direction': 'down', 'units': 'ms', 'data': [ SamplePoint(547397, 2300.3), SamplePoint(547398, 2750.9), SamplePoint(547423, 2342.2), ] } timeseries_in = tables.timeseries.DataFrameFromJson(test_path, data) with tables.DbSession(':memory:') as con: pandas_sqlite.InsertOrReplaceRecords(con, 'timeseries', timeseries_in) timeseries_out = tables.timeseries.GetTimeSeries(con, test_path) # Both DataFrame's should be equal, except the one we get out of the db # does not have an index defined. timeseries_in = timeseries_in.reset_index() self.assertTrue(timeseries_in.equals(timeseries_out)) def testGetMostRecentPoint_success(self): test_path = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='Wikipedia') data = { 'improvement_direction': 'down', 'units': 'ms', 'data': [ SamplePoint(547397, 2300.3), SamplePoint(547398, 2750.9), SamplePoint(547423, 2342.2), ] } timeseries = tables.timeseries.DataFrameFromJson(test_path, data) with tables.DbSession(':memory:') as con: pandas_sqlite.InsertOrReplaceRecords(con, 'timeseries', timeseries) point = tables.timeseries.GetMostRecentPoint(con, test_path) self.assertEqual(point['point_id'], 547423) def testGetMostRecentPoint_empty(self): test_path = tables.timeseries.Key( test_suite='loading.mobile', measurement='timeToFirstInteractive', bot='ChromiumPerf:android-nexus5', test_case='Wikipedia') with tables.DbSession(':memory:') as con: point = tables.timeseries.GetMostRecentPoint(con, test_path) self.assertIsNone(point)
bsd-3-clause
sanjayankur31/nest-simulator
pynest/examples/gif_population.py
8
5045
# -*- coding: utf-8 -*- # # gif_population.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Population of GIF neuron model with oscillatory behavior -------------------------------------------------------- This script simulates a population of generalized integrate-and-fire (GIF) model neurons driven by noise from a group of Poisson generators. Due to spike-frequency adaptation, the GIF neurons tend to show oscillatory behavior on the time scale comparable with the time constant of adaptation elements (stc and sfa). Population dynamics are visualized by raster plot and as average firing rate. References ~~~~~~~~~~ .. [1] Schwalger T, Degert M, Gerstner W (2017). Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1005507 .. [2] Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC and Gerstner W (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology. 107(6), pp.1756-1775. """ ############################################################################### # Import all necessary modules for simulation and plotting. import nest import nest.raster_plot import matplotlib.pyplot as plt nest.ResetKernel() ############################################################################### # Assigning the simulation parameters to variables. dt = 0.1 simtime = 2000.0 ############################################################################### # Definition of neural parameters for the GIF model. These parameters are # extracted by fitting the model to experimental data [2]_. neuron_params = {"C_m": 83.1, "g_L": 3.7, "E_L": -67.0, "Delta_V": 1.4, "V_T_star": -39.6, "t_ref": 4.0, "V_reset": -36.7, "lambda_0": 1.0, "q_stc": [56.7, -6.9], "tau_stc": [57.8, 218.2], "q_sfa": [11.7, 1.8], "tau_sfa": [53.8, 640.0], "tau_syn_ex": 10.0, } ############################################################################### # Definition of the parameters for the population of GIF neurons. N_ex = 100 # size of the population p_ex = 0.3 # connection probability inside the population w_ex = 30.0 # synaptic weights inside the population (pA) ############################################################################### # Definition of the parameters for the Poisson group and its connection with # GIF neurons population. N_noise = 50 # size of Poisson group rate_noise = 10.0 # firing rate of Poisson neurons (Hz) w_noise = 20.0 # synaptic weights from Poisson to population neurons (pA) ############################################################################### # Configuration of the simulation kernel with the previously defined time # resolution. nest.SetKernelStatus({"resolution": dt}) ############################################################################### # Building a population of GIF neurons, a group of Poisson neurons and a # spike recorder device for capturing spike times of the population. population = nest.Create("gif_psc_exp", N_ex, params=neuron_params) noise = nest.Create("poisson_generator", N_noise, params={'rate': rate_noise}) spike_det = nest.Create("spike_recorder") ############################################################################### # Build connections inside the population of GIF neurons population, between # Poisson group and the population, and also connecting spike recorder to # the population. nest.Connect( population, population, {'rule': 'pairwise_bernoulli', 'p': p_ex}, syn_spec={"weight": w_ex} ) nest.Connect(noise, population, 'all_to_all', syn_spec={"weight": w_noise}) nest.Connect(population, spike_det) ############################################################################### # Simulation of the network. nest.Simulate(simtime) ############################################################################### # Plotting the results of simulation including raster plot and histogram of # population activity. nest.raster_plot.from_device(spike_det, hist=True) plt.title('Population dynamics') plt.show()
gpl-2.0
beepee14/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
hjoliver/cylc
cylc/flow/main_loop/log_memory.py
1
4691
# THIS FILE IS PART OF THE CYLC WORKFLOW ENGINE. # Copyright (C) NIWA & British Crown (Met Office) & Contributors. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """Log the memory usage of a running scheduler over time. .. note:: This plugin is for Cylc developers debugging cylc memory usage. For general interest memory measurement try ``/usr/bin/time -v cylc play`` or ``cylc play --profile``. .. note:: Pympler associates memory with the first object which references it. In Cylc we have some objects (e.g. the configuration) which are references from multiple places. This can result in a certain amount of "jitter" in the results where pympler has swapper from associating memory with one object to another. Watch out for matching increase/decrease in reported memory in different objects. .. warning:: This plugin can slow down a workflow significantly due to the complexity of memory calculations. Set a sensible interval before running workflows. If ``matplotlib`` is installed this plugin will plot results as a PDF in the run directory when the workflow is shut down (cleanly). """ import json from pathlib import Path from time import time from cylc.flow.main_loop import (startup, shutdown, periodic) try: import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt PLT = True except ModuleNotFoundError: PLT = False from pympler.asizeof import asized # TODO: make this configurable in the global config MIN_SIZE = 10000 @startup async def init(scheduler, state): """Take an initial memory snapshot.""" state['data'] = [] await take_snapshot(scheduler, state) @periodic async def take_snapshot(scheduler, state): """Take a memory snapshot""" state['data'].append(( time(), _compute_sizes(scheduler, min_size=MIN_SIZE) )) @shutdown async def report(scheduler, state): """Take a final memory snapshot and dump the results.""" await take_snapshot(scheduler, state) _dump(state['data'], scheduler.workflow_run_dir) fields, times = _transpose(state['data']) _plot( fields, times, scheduler.workflow_run_dir, f'cylc.flow.scheduler.Scheduler attrs > {MIN_SIZE / 1000}kb' ) def _compute_sizes(obj, min_size=10000): """Return the sizes of the attributes of an object.""" size = asized(obj, detail=2) for ref in size.refs: if ref.name == '__dict__': break else: raise Exception('Cannot find __dict__ reference') return { item.name.split(':')[0][4:]: item.size for item in ref.refs if item.size > min_size } def _transpose(data): """Pivot data from snapshot to series oriented.""" all_keys = set() for _, datum in data: all_keys.update(datum.keys()) # sort keys by the size of the last checkpoint so that the fields # get plotted from largest to smallest all_keys = list(all_keys) all_keys.sort(key=lambda x: data[-1][1].get(x, 0), reverse=True) # extract data for each field, if not present fields = {} for key in all_keys: fields[key] = [ datum.get(key, -1) for _, datum in data ] start_time = data[0][0] times = [ timestamp - start_time for timestamp, _ in data ] return fields, times def _dump(data, path): json.dump( data, Path(path, f'{__name__}.json').open('w+') ) return True def _plot(fields, times, path, title='Objects'): if ( not PLT or len(times) < 2 ): return False fig, ax1 = plt.subplots(figsize=(10, 7.5)) fig.suptitle(title) ax1.set_xlabel('Time (s)') ax1.set_ylabel('Memory (kb)') for key, sizes in fields.items(): ax1.plot(times, [x / 1000 for x in sizes], label=key) ax1.legend(loc=0) # start both axis at 0 ax1.set_xlim(0, ax1.get_xlim()[1]) ax1.set_ylim(0, ax1.get_ylim()[1]) plt.savefig( Path(path, f'{__name__}.pdf') ) return True
gpl-3.0
DonBeo/statsmodels
statsmodels/tsa/statespace/tests/test_representation.py
6
19651
""" Tests for representation module Author: Chad Fulton License: Simplified-BSD References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os from statsmodels.tsa.statespace.representation import Representation from statsmodels.tsa.statespace.model import Model from .results import results_kalman_filter from numpy.testing import assert_equal, assert_almost_equal, assert_raises, assert_allclose from nose.exc import SkipTest current_path = os.path.dirname(os.path.abspath(__file__)) class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = Model(data['lgdp'], k_states=k_states, **kwargs) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( self.true['parameters'] ) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[self.true['start']:].sum(), self.true['loglike'], 5 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:], self.true_states.iloc[:, 2], 4 ) class TestClark1987Single(Clark1987): """ Basic single precision test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987Single, self).__init__( dtype=np.float32, conserve_memory=0 ) self.run_filter() class TestClark1987Double(Clark1987): """ Basic double precision test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Double, self).__init__( dtype=float, conserve_memory=0 ) self.run_filter() class TestClark1987SingleComplex(Clark1987): """ Basic single precision complex test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987SingleComplex, self).__init__( dtype=np.complex64, conserve_memory=0 ) self.run_filter() class TestClark1987DoubleComplex(Clark1987): """ Basic double precision complex test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987DoubleComplex, self).__init__( dtype=complex, conserve_memory=0 ) self.run_filter() class TestClark1987Conserve(Clark1987): """ Memory conservation test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class Clark1987Forecast(Clark1987): """ Forecasting test for the loglikelihood and filtered states. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1987Forecast, self).__init__( dtype=dtype, conserve_memory=conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self.model.endog = np.array( np.r_[self.model.endog[0, :], [np.nan]*nforecast], ndmin=2, dtype=dtype, order="F" ) self.model.nobs = self.model.endog.shape[1] def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) class TestClark1987ForecastDouble(Clark1987Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDouble, self).__init__() self.run_filter() class TestClark1987ForecastDoubleComplex(Clark1987Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDoubleComplex, self).__init__( dtype=complex ) self.run_filter() class TestClark1987ForecastConserve(Clark1987Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class TestClark1987ConserveAll(Clark1987): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) self.model.loglikelihood_burn = self.true['start'] self.run_filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[0], self.true['loglike'], 5 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.results.filtered_state[0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][-1], self.true_states.iloc[end-1, 1], 4 ) class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) k_states = 6 self.model = Model(data, k_states=k_states, **kwargs) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[ ([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0]) ] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: self.modelification initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( # self.results.llf_obs[self.true['start']:].sum(), self.results.llf_obs[0:].sum(), self.true['loglike'], 2 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:], self.true_states.iloc[:, 3], 4 ) class TestClark1989(Clark1989): """ Basic double precision test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989, self).__init__(dtype=float, conserve_memory=0) self.run_filter() class TestClark1989Conserve(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class Clark1989Forecast(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, self).__init__( dtype=dtype, conserve_memory=conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self.model.endog = np.array( np.c_[ self.model.endog, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) self.model.nobs = self.model.endog.shape[1] self.run_filter() def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:-self.nforecast], self.true_states.iloc[:, 3], 4 ) class TestClark1989ForecastDouble(Clark1989Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDouble, self).__init__() self.run_filter() class TestClark1989ForecastDoubleComplex(Clark1989Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDoubleComplex, self).__init__( dtype=complex ) self.run_filter() class TestClark1989ForecastConserve(Clark1989Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class TestClark1989ConserveAll(Clark1989): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) # self.model.loglikelihood_burn = self.true['start'] self.model.loglikelihood_burn = 0 self.run_filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[0], self.true['loglike'], 2 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.results.filtered_state[0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][-1], self.true_states.iloc[end-1, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][-1], self.true_states.iloc[end-1, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][-1], self.true_states.iloc[end-1, 3], 4 ) # Miscellaneous coverage-related tests def test_slice_notation(): endog = np.arange(10)*1.0 mod = Model(endog, k_states=2) # Test invalid __setitem__ def set_designs(): mod['designs'] = 1 def set_designs2(): mod['designs',0,0] = 1 def set_designs3(): mod[0] = 1 assert_raises(IndexError, set_designs) assert_raises(IndexError, set_designs2) assert_raises(IndexError, set_designs3) # Test invalid __getitem__ assert_raises(IndexError, lambda: mod['designs']) assert_raises(IndexError, lambda: mod['designs',0,0,0]) assert_raises(IndexError, lambda: mod[0]) # Test valid __setitem__, __getitem__ assert_equal(mod.design[0,0,0], 0) mod['design',0,0,0] = 1 assert_equal(mod['design'].sum(), 1) assert_equal(mod.design[0,0,0], 1) assert_equal(mod['design',0,0,0], 1) # Test valid __setitem__, __getitem__ with unspecified time index mod['design'] = np.zeros(mod['design'].shape) assert_equal(mod.design[0,0], 0) mod['design',0,0] = 1 assert_equal(mod.design[0,0], 1) assert_equal(mod['design',0,0], 1) def test_representation(): # Test an invalid number of states def zero_kstates(): mod = Representation(1, 0) assert_raises(ValueError, zero_kstates) # Test an invalid endogenous array def empty_endog(): endog = np.zeros((0,0)) mod = Representation(endog, k_states=2) assert_raises(ValueError, empty_endog) # Test a Fortran-ordered endogenous array (which will be assumed to be in # wide format: k_endog x nobs) nobs = 10 k_endog = 2 endog = np.asfortranarray(np.arange(nobs*k_endog).reshape(k_endog,nobs)*1.) mod = Representation(endog, k_states=2) assert_equal(mod.nobs, nobs) assert_equal(mod.k_endog, k_endog) # Test a C-ordered endogenous array (which will be assumed to be in # tall format: nobs x k_endog) nobs = 10 k_endog = 2 endog = np.arange(nobs*k_endog).reshape(nobs,k_endog)*1. mod = Representation(endog, k_states=2) assert_equal(mod.nobs, nobs) assert_equal(mod.k_endog, k_endog) # Test getting the statespace representation assert_equal(mod._statespace, None) mod._initialize_representation() assert(mod._statespace is not None) def test_bind(): mod = Representation(1, k_states=2) # Test invalid endogenous array (it must be ndarray) assert_raises(ValueError, lambda: mod.bind([1,2,3,4])) # Test valid (nobs x 1) endogenous array mod.bind(np.arange(10)*1.) assert_equal(mod.nobs, 10) # Test valid (k_endog x 0) endogenous array mod.bind(np.zeros(0,dtype=np.float64)) # Test invalid (3-dim) endogenous array assert_raises(ValueError, lambda: mod.bind(np.arange(12).reshape(2,2,3)*1.)) # Test valid F-contiguous mod.bind(np.asfortranarray(np.arange(10).reshape(1,10))) assert_equal(mod.nobs, 10) # Test valid C-contiguous mod.bind(np.arange(10).reshape(10,1)) assert_equal(mod.nobs, 10) # Test invalid F-contiguous assert_raises(ValueError, lambda: mod.bind(np.asfortranarray(np.arange(10).reshape(10,1)))) # Test invalid C-contiguous assert_raises(ValueError, lambda: mod.bind(np.arange(10).reshape(1,10))) def test_initialization(): mod = Representation(1, k_states=2) # Test invalid state initialization assert_raises(RuntimeError, lambda: mod._initialize_state()) # Test valid initialization initial_state = np.zeros(2,) + 1.5 initial_state_cov = np.eye(2) * 3. mod.initialize_known(initial_state, initial_state_cov) assert_equal(mod._initial_state.sum(), 3) assert_equal(mod._initial_state_cov.diagonal().sum(), 6) # Test invalid initial_state initial_state = np.zeros(10,) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) initial_state = np.zeros((10,10)) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) # Test invalid initial_state_cov initial_state = np.zeros(2,) + 1.5 initial_state_cov = np.eye(3) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov))
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e417.py
2
6371
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter, CentralOutputPlotter, Plotter from neuralnilm.updates import clipped_nesterov_momentum from lasagne.nonlinearities import sigmoid, rectify, tanh, identity from lasagne.objectives import mse, binary_crossentropy from lasagne.init import Uniform, Normal, Identity from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.layers.batch_norm import BatchNormLayer from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T import gc """ e400 'learn_init': False independently_centre_inputs : True e401 input is in range [0,1] """ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] #PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" PATH = "/data/dk3810/figures" SAVE_PLOT_INTERVAL = 500 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], # max_input_power=100, max_diff = 100, on_power_thresholds=[5] * 5, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=512, # random_window=64, output_one_appliance=True, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.75, skip_probability_for_first_appliance=0, one_target_per_seq=False, n_seq_per_batch=64, # subsample_target=4, include_diff=True, include_power=False, clip_appliance_power=True, target_is_prediction=False, # independently_center_inputs=True, # standardise_input=True, # standardise_targets=True, # unit_variance_targets=False, # input_padding=2, lag=0, clip_input=False # classification=True # reshape_target_to_2D=True # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), loss_function=lambda x, t: mse(x, t).mean(), # loss_function=lambda x, t: binary_crossentropy(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, # loss_function=partial(scaled_cost3, ignore_inactive=False), # updates_func=momentum, updates_func=clipped_nesterov_momentum, updates_kwargs={'clip_range': (0, 10)}, learning_rate=1e-6, learning_rate_changes_by_iteration={ # 1000: 1e-4, # 4000: 1e-5 # 800: 1e-4 # 500: 1e-3 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True, # auto_reshape=False, # plotter=CentralOutputPlotter plotter=Plotter(n_seq_to_plot=10) ) def exp_a(name): # ReLU hidden layers # linear output # output one appliance # 0% skip prob for first appliance # 100% skip prob for other appliances # input is diff global source source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) net_dict_copy['layers_config']= [ { 'type': BidirectionalRecurrentLayer, 'num_units': 50, 'W_in_to_hid': Normal(std=1), 'W_hid_to_hid': Identity(scale=0.9), 'nonlinearity': rectify, 'learn_init': False, 'precompute_input': True }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=1/sqrt(50)) } ] net = Net(**net_dict_copy) net.load_params(5000) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') # EXPERIMENTS = list('abcdefghi') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") # raise else: del net.source.train_activations gc.collect() finally: logging.shutdown() if __name__ == "__main__": main()
mit
h2educ/scikit-learn
sklearn/cluster/dbscan_.py
92
12380
# -*- coding: utf-8 -*- """ DBSCAN: Density-Based Spatial Clustering of Applications with Noise """ # Author: Robert Layton <[email protected]> # Joel Nothman <[email protected]> # Lars Buitinck # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, ClusterMixin from ..metrics import pairwise_distances from ..utils import check_array, check_consistent_length from ..utils.fixes import astype from ..neighbors import NearestNeighbors from ._dbscan_inner import dbscan_inner def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', algorithm='auto', leaf_size=30, p=2, sample_weight=None, random_state=None): """Perform DBSCAN clustering from vector array or distance matrix. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, optional The power of the Minkowski metric to be used to calculate distance between points. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. random_state: numpy.RandomState, optional Deprecated and ignored as of version 0.16, will be removed in version 0.18. DBSCAN does not use random initialization. Returns ------- core_samples : array [n_core_samples] Indices of core samples. labels : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ if not eps > 0.0: raise ValueError("eps must be positive.") if random_state is not None: warnings.warn("The parameter random_state is deprecated in 0.16 " "and will be removed in version 0.18. " "DBSCAN is deterministic except for rare border cases.", category=DeprecationWarning) X = check_array(X, accept_sparse='csr') if sample_weight is not None: sample_weight = np.asarray(sample_weight) check_consistent_length(X, sample_weight) # Calculate neighborhood for all samples. This leaves the original point # in, which needs to be considered later (i.e. point i is in the # neighborhood of point i. While True, its useless information) if metric == 'precomputed' and sparse.issparse(X): neighborhoods = np.empty(X.shape[0], dtype=object) X.sum_duplicates() # XXX: modifies X's internals in-place X_mask = X.data <= eps masked_indices = astype(X.indices, np.intp, copy=False)[X_mask] masked_indptr = np.cumsum(X_mask)[X.indptr[1:] - 1] # insert the diagonal: a point is its own neighbor, but 0 distance # means absence from sparse matrix data masked_indices = np.insert(masked_indices, masked_indptr, np.arange(X.shape[0])) masked_indptr = masked_indptr[:-1] + np.arange(1, X.shape[0]) # split into rows neighborhoods[:] = np.split(masked_indices, masked_indptr) else: neighbors_model = NearestNeighbors(radius=eps, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p) neighbors_model.fit(X) # This has worst case O(n^2) memory complexity neighborhoods = neighbors_model.radius_neighbors(X, eps, return_distance=False) if sample_weight is None: n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods]) else: n_neighbors = np.array([np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]) # Initially, all samples are noise. labels = -np.ones(X.shape[0], dtype=np.intp) # A list of all core samples found. core_samples = np.asarray(n_neighbors >= min_samples, dtype=np.uint8) dbscan_inner(core_samples, neighborhoods, labels) return np.where(core_samples)[0], labels class DBSCAN(BaseEstimator, ClusterMixin): """Perform DBSCAN clustering from vector array or distance matrix. DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.calculate_distance for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. random_state: numpy.RandomState, optional Deprecated and ignored as of version 0.16, will be removed in version 0.18. DBSCAN does not use random initialization. Attributes ---------- core_sample_indices_ : array, shape = [n_core_samples] Indices of core samples. components_ : array, shape = [n_core_samples, n_features] Copy of each core sample found by training. labels_ : array, shape = [n_samples] Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ def __init__(self, eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, random_state=None): self.eps = eps self.min_samples = min_samples self.metric = metric self.algorithm = algorithm self.leaf_size = leaf_size self.p = p self.random_state = random_state def fit(self, X, y=None, sample_weight=None): """Perform DBSCAN clustering from features or distance matrix. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. """ X = check_array(X, accept_sparse='csr') clust = dbscan(X, sample_weight=sample_weight, **self.get_params()) self.core_sample_indices_, self.labels_ = clust if len(self.core_sample_indices_): # fix for scipy sparse indexing issue self.components_ = X[self.core_sample_indices_].copy() else: # no core samples self.components_ = np.empty((0, X.shape[1])) return self def fit_predict(self, X, y=None, sample_weight=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ self.fit(X, sample_weight=sample_weight) return self.labels_
bsd-3-clause
nitin-cherian/LifeLongLearning
Python/PythonProgrammingLanguage/Encapsulation/encap_env/lib/python3.5/site-packages/jupyter_core/tests/dotipython/profile_default/ipython_console_config.py
24
21691
# Configuration file for ipython-console. c = get_config() #------------------------------------------------------------------------------ # ZMQTerminalIPythonApp configuration #------------------------------------------------------------------------------ # ZMQTerminalIPythonApp will inherit config from: TerminalIPythonApp, # BaseIPythonApplication, Application, InteractiveShellApp, IPythonConsoleApp, # ConnectionFileMixin # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.ZMQTerminalIPythonApp.hide_initial_ns = True # set the heartbeat port [default: random] # c.ZMQTerminalIPythonApp.hb_port = 0 # A list of dotted module names of IPython extensions to load. # c.ZMQTerminalIPythonApp.extensions = [] # Execute the given command string. # c.ZMQTerminalIPythonApp.code_to_run = '' # Path to the ssh key to use for logging in to the ssh server. # c.ZMQTerminalIPythonApp.sshkey = '' # The date format used by logging formatters for %(asctime)s # c.ZMQTerminalIPythonApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # set the control (ROUTER) port [default: random] # c.ZMQTerminalIPythonApp.control_port = 0 # Reraise exceptions encountered loading IPython extensions? # c.ZMQTerminalIPythonApp.reraise_ipython_extension_failures = False # Set the log level by value or name. # c.ZMQTerminalIPythonApp.log_level = 30 # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.ZMQTerminalIPythonApp.exec_PYTHONSTARTUP = True # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.ZMQTerminalIPythonApp.pylab = None # Run the module as a script. # c.ZMQTerminalIPythonApp.module_to_run = '' # Whether to display a banner upon starting IPython. # c.ZMQTerminalIPythonApp.display_banner = True # dotted module name of an IPython extension to load. # c.ZMQTerminalIPythonApp.extra_extension = '' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.ZMQTerminalIPythonApp.verbose_crash = False # Whether to overwrite existing config files when copying # c.ZMQTerminalIPythonApp.overwrite = False # The IPython profile to use. # c.ZMQTerminalIPythonApp.profile = 'default' # If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. # c.ZMQTerminalIPythonApp.force_interact = False # List of files to run at IPython startup. # c.ZMQTerminalIPythonApp.exec_files = [] # Start IPython quickly by skipping the loading of config files. # c.ZMQTerminalIPythonApp.quick = False # The Logging format template # c.ZMQTerminalIPythonApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.ZMQTerminalIPythonApp.copy_config_files = False # set the stdin (ROUTER) port [default: random] # c.ZMQTerminalIPythonApp.stdin_port = 0 # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.ZMQTerminalIPythonApp.extra_config_file = '' # lines of code to run at IPython startup. # c.ZMQTerminalIPythonApp.exec_lines = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'osx', # 'pyglet', 'qt', 'qt5', 'tk', 'wx'). # c.ZMQTerminalIPythonApp.gui = None # A file to be run # c.ZMQTerminalIPythonApp.file_to_run = '' # Configure matplotlib for interactive use with the default matplotlib backend. # c.ZMQTerminalIPythonApp.matplotlib = None # Suppress warning messages about legacy config files # c.ZMQTerminalIPythonApp.ignore_old_config = False # set the iopub (PUB) port [default: random] # c.ZMQTerminalIPythonApp.iopub_port = 0 # # c.ZMQTerminalIPythonApp.transport = 'tcp' # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.ZMQTerminalIPythonApp.connection_file = '' # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. # c.ZMQTerminalIPythonApp.ipython_dir = '' # The SSH server to use to connect to the kernel. # c.ZMQTerminalIPythonApp.sshserver = '' # Set to display confirmation dialog on exit. You can always use 'exit' or # 'quit', to force a direct exit without any confirmation. # c.ZMQTerminalIPythonApp.confirm_exit = True # set the shell (ROUTER) port [default: random] # c.ZMQTerminalIPythonApp.shell_port = 0 # The name of the default kernel to start. # c.ZMQTerminalIPythonApp.kernel_name = 'python' # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.ZMQTerminalIPythonApp.pylab_import_all = True # Connect to an already running kernel # c.ZMQTerminalIPythonApp.existing = '' # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.ZMQTerminalIPythonApp.ip = '' #------------------------------------------------------------------------------ # ZMQTerminalInteractiveShell configuration #------------------------------------------------------------------------------ # A subclass of TerminalInteractiveShell that uses the 0MQ kernel # ZMQTerminalInteractiveShell will inherit config from: # TerminalInteractiveShell, InteractiveShell # # c.ZMQTerminalInteractiveShell.history_length = 10000 # auto editing of files with syntax errors. # c.ZMQTerminalInteractiveShell.autoedit_syntax = False # If True, anything that would be passed to the pager will be displayed as # regular output instead. # c.ZMQTerminalInteractiveShell.display_page = False # # c.ZMQTerminalInteractiveShell.debug = False # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.ZMQTerminalInteractiveShell.ast_node_interactivity = 'last_expr' # Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. # c.ZMQTerminalInteractiveShell.logstart = False # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.ZMQTerminalInteractiveShell.cache_size = 1000 # The shell program to be used for paging. # c.ZMQTerminalInteractiveShell.pager = 'less' # The name of the logfile to use. # c.ZMQTerminalInteractiveShell.logfile = '' # Save multi-line entries as one entry in readline history # c.ZMQTerminalInteractiveShell.multiline_history = True # # c.ZMQTerminalInteractiveShell.readline_remove_delims = '-/~' # Enable magic commands to be called without the leading %. # c.ZMQTerminalInteractiveShell.automagic = True # Prefix to add to outputs coming from clients other than this one. # # Only relevant if include_other_output is True. # c.ZMQTerminalInteractiveShell.other_output_prefix = '[remote] ' # # c.ZMQTerminalInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.ZMQTerminalInteractiveShell.color_info = True # Callable object called via 'callable' image handler with one argument, `data`, # which is `msg["content"]["data"]` where `msg` is the message from iopub # channel. For exmaple, you can find base64 encoded PNG data as # `data['image/png']`. # c.ZMQTerminalInteractiveShell.callable_image_handler = None # Command to invoke an image viewer program when you are using 'stream' image # handler. This option is a list of string where the first element is the # command itself and reminders are the options for the command. Raw image data # is given as STDIN to the program. # c.ZMQTerminalInteractiveShell.stream_image_handler = [] # # c.ZMQTerminalInteractiveShell.separate_out2 = '' # Autoindent IPython code entered interactively. # c.ZMQTerminalInteractiveShell.autoindent = True # The part of the banner to be printed after the profile # c.ZMQTerminalInteractiveShell.banner2 = '' # Don't call post-execute functions that have failed in the past. # c.ZMQTerminalInteractiveShell.disable_failing_post_execute = False # Deprecated, use PromptManager.out_template # c.ZMQTerminalInteractiveShell.prompt_out = 'Out[\\#]: ' # # c.ZMQTerminalInteractiveShell.object_info_string_level = 0 # # c.ZMQTerminalInteractiveShell.separate_out = '' # Automatically call the pdb debugger after every exception. # c.ZMQTerminalInteractiveShell.pdb = False # Deprecated, use PromptManager.in_template # c.ZMQTerminalInteractiveShell.prompt_in1 = 'In [\\#]: ' # # c.ZMQTerminalInteractiveShell.separate_in = '\n' # # c.ZMQTerminalInteractiveShell.wildcards_case_sensitive = True # Enable auto setting the terminal title. # c.ZMQTerminalInteractiveShell.term_title = False # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.ZMQTerminalInteractiveShell.deep_reload = False # Deprecated, use PromptManager.in2_template # c.ZMQTerminalInteractiveShell.prompt_in2 = ' .\\D.: ' # Whether to include output from clients other than this one sharing the same # kernel. # # Outputs are not displayed until enter is pressed. # c.ZMQTerminalInteractiveShell.include_other_output = False # Preferred object representation MIME type in order. First matched MIME type # will be used. # c.ZMQTerminalInteractiveShell.mime_preference = ['image/png', 'image/jpeg', 'image/svg+xml'] # # c.ZMQTerminalInteractiveShell.readline_use = True # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.ZMQTerminalInteractiveShell.autocall = 0 # The part of the banner to be printed before the profile # c.ZMQTerminalInteractiveShell.banner1 = 'Python 3.4.3 |Continuum Analytics, Inc.| (default, Mar 6 2015, 12:07:41) \nType "copyright", "credits" or "license" for more information.\n\nIPython 3.1.0 -- An enhanced Interactive Python.\nAnaconda is brought to you by Continuum Analytics.\nPlease check out: http://continuum.io/thanks and https://binstar.org\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # Handler for image type output. This is useful, for example, when connecting # to the kernel in which pylab inline backend is activated. There are four # handlers defined. 'PIL': Use Python Imaging Library to popup image; 'stream': # Use an external program to show the image. Image will be fed into the STDIN # of the program. You will need to configure `stream_image_handler`; # 'tempfile': Use an external program to show the image. Image will be saved in # a temporally file and the program is called with the temporally file. You # will need to configure `tempfile_image_handler`; 'callable': You can set any # Python callable which is called with the image data. You will need to # configure `callable_image_handler`. # c.ZMQTerminalInteractiveShell.image_handler = None # Set the color scheme (NoColor, Linux, or LightBG). # c.ZMQTerminalInteractiveShell.colors = 'LightBG' # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.ZMQTerminalInteractiveShell.editor = 'mate -w' # Show rewritten input, e.g. for autocall. # c.ZMQTerminalInteractiveShell.show_rewritten_input = True # # c.ZMQTerminalInteractiveShell.xmode = 'Context' # # c.ZMQTerminalInteractiveShell.quiet = False # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.ZMQTerminalInteractiveShell.ast_transformers = [] # # c.ZMQTerminalInteractiveShell.ipython_dir = '' # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.ZMQTerminalInteractiveShell.confirm_exit = True # Deprecated, use PromptManager.justify # c.ZMQTerminalInteractiveShell.prompts_pad_left = True # Timeout for giving up on a kernel (in seconds). # # On first connect and restart, the console tests whether the kernel is running # and responsive by sending kernel_info_requests. This sets the timeout in # seconds for how long the kernel can take before being presumed dead. # c.ZMQTerminalInteractiveShell.kernel_timeout = 60 # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.ZMQTerminalInteractiveShell.screen_length = 0 # Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. # c.ZMQTerminalInteractiveShell.logappend = '' # Command to invoke an image viewer program when you are using 'tempfile' image # handler. This option is a list of string where the first element is the # command itself and reminders are the options for the command. You can use # {file} and {format} in the string to represent the location of the generated # image file and image format. # c.ZMQTerminalInteractiveShell.tempfile_image_handler = [] #------------------------------------------------------------------------------ # KernelManager configuration #------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. # KernelManager will inherit config from: ConnectionFileMixin # set the heartbeat port [default: random] # c.KernelManager.hb_port = 0 # set the stdin (ROUTER) port [default: random] # c.KernelManager.stdin_port = 0 # # c.KernelManager.transport = 'tcp' # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.KernelManager.connection_file = '' # set the control (ROUTER) port [default: random] # c.KernelManager.control_port = 0 # set the shell (ROUTER) port [default: random] # c.KernelManager.shell_port = 0 # Should we autorestart the kernel if it dies. # c.KernelManager.autorestart = False # DEPRECATED: Use kernel_name instead. # # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, IPython does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the IPython command # line. # c.KernelManager.kernel_cmd = [] # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.KernelManager.ip = '' # set the iopub (PUB) port [default: random] # c.KernelManager.iopub_port = 0 #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = '' #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. # c.Session.signature_scheme = 'hmac-sha256' # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = 'json' # The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. # c.Session.packer = 'json' # Username for the Session. Default is your system username. # c.Session.username = 'minrk' # Debug output in the Session # c.Session.debug = False # path to file containing execution key. # c.Session.keyfile = '' # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # The UUID identifying this session. # c.Session.session = '' # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # execution key, for signing messages. # c.Session.key = b'' # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {}
mit
moschlar/SAUCE
sauce/controllers/similarity.py
1
5600
# -*- coding: utf-8 -*- """Similarity controller module """ # ## SAUCE - System for AUtomated Code Evaluation ## Copyright (C) 2013 Moritz Schlarb ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU Affero General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU Affero General Public License for more details. ## ## You should have received a copy of the GNU Affero General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. # import logging import matplotlib matplotlib.use('Agg') # Only backend available in server environments import pylab from ripoff import all_pairs, dendrogram, distances from itertools import combinations from functools import partial # turbogears imports from tg import expose, abort, cache, tmpl_context as c, redirect #from tg import redirect, validate, flash # third party imports #from tg.i18n import ugettext as _ #from repoze.what import predicates import status from repoze.what.predicates import Any, has_permission from tw2.pygmentize import Pygmentize # project specific imports from sauce.lib.base import BaseController from sauce.model import Submission from sauce.lib.helpers import udiff from sauce.lib.authz import user_is_in from sauce.lib.menu import menu from sauce.widgets import SourceDisplay from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound log = logging.getLogger(__name__) similarity_combined = lambda a, b: distances.combined(a or u'', b or u'') def rgb(v, cmap_name='RdYlGn'): '''Get CSS rgb representation from color map with name''' cmap = pylab.get_cmap(cmap_name) (r, g, b, _) = cmap(v) return 'rgb(' + ','.join('%d' % int(x * 255) for x in (r, g, b)) + ')' class SimilarityController(BaseController): def __init__(self, assignment): self.assignment = assignment self.submissions = sorted((s for s in self.assignment.submissions if s.source), key=lambda s: s.id) self.key = str(self.assignment.id) if self.submissions: self.key += '_' + '-'.join(str(s.id) for s in self.submissions) self.key += '_' + (max(self.submissions, key=lambda s: s.modified) .modified.strftime('%Y-%m-%d-%H-%M-%S')) self.allow_only = Any( user_is_in('teachers', self.assignment.sheet.event), user_is_in('tutors', self.assignment.sheet.event), has_permission('manage'), msg=u'You are not allowed to access this page.' ) def _before(self, *args, **kwargs): '''Prepare tmpl_context with navigation menus''' c.sub_menu = menu(self.assignment) c.source_display = SourceDisplay(mode='diff') def get_similarity(self): def calc(): log.debug('Calculating similarity matrix for key %s...', self.key) return all_pairs([s.source for s in self.submissions]) simcache = cache.get_cache('similarity') matrix = simcache.get_value(key=self.key, createfunc=calc, expiretime=7 * 24 * 60 * 60) # 7 days return matrix @expose() def index(self, *args, **kwargs): redirect(self.assignment.url + '/similarity/table', *args, **kwargs) @expose('sauce.templates.similarity') def table(self, cmap_name='RdYlGn', *args, **kwargs): c.rgb = partial(rgb, cmap_name=cmap_name) c.url = self.assignment.url + '/similarity' matrix = self.get_similarity() return dict(page='assignment', view='table', assignment=self.assignment, matrix=matrix, submissions=self.submissions) @expose('sauce.templates.similarity') def list(self, cmap_name='RdYlGn', *args, **kwargs): c.rgb = partial(rgb, cmap_name=cmap_name) c.url = self.assignment.url + '/similarity' matrix = self.get_similarity() l = sorted((((a, b), matrix[i, j]) for (i, a), (j, b) in combinations(enumerate(self.submissions), 2)), key=lambda x: x[1]) return dict(page='assignment', view='list', assignment=self.assignment, submissions=self.submissions, l=l) @expose(content_type="image/png") def dendrogram(self, *args, **kwargs): return dendrogram(self.get_similarity(), leaf_label_func=lambda i: unicode(self.submissions[i].id), leaf_rotation=45) @expose('sauce.templates.similarity_diff') def diff(self, *args, **kwargs): c.rgb = rgb try: a = Submission.query.filter_by(id=int(args[0])).one() b = Submission.query.filter_by(id=int(args[1])).one() except ValueError: abort(status.HTTP_400_BAD_REQUEST) except IndexError: abort(status.HTTP_400_BAD_REQUEST) except NoResultFound: abort(status.HTTP_404_NOT_FOUND) except MultipleResultsFound: # pragma: no cover log.warn('Database inconsistency', exc_info=True) abort(status.HTTP_500_INTERNAL_SERVER_ERROR) else: return dict(page='assignment', view='diff', assignment=self.assignment, x=distances.combined(a.source or u'', b.source or u''), a=a, b=b, source=udiff(a.source, b.source, unicode(a), unicode(b)))
agpl-3.0
soylentdeen/BlurryApple
Alignment/kmirror.py
1
10308
import scipy import numpy import matplotlib.pyplot as pyplot class Derotator( object ): def __init__(self): self.Z = 10.0 # mm self.Y = 17.3 # mm self.origin = Point(0.0, 0.0, 0.0) self.theta = numpy.arctan2(self.Z, self.Y) self.beta = numpy.pi/4.0 + self.theta/2.0 #print numpy.rad2deg(self.beta) self.m1Point = Point(0.0, 0.0, self.Z) self.m2Point = Point(0.0, self.Y, 0.0) self.m3Point = Point(0.0, 0.0, -self.Z) self.m1Normal = numpy.array([0.0, numpy.sin(self.beta), numpy.cos(self.beta)]) self.m2Normal = numpy.array([0.0, -1.0, 0.0]) self.m3Normal = numpy.array([0.0, numpy.sin(self.beta), -numpy.cos(self.beta)]) self.makeMirrors() def makeMirrors(self): self.mirror1 = Plane(self.m1Point, self.m1Normal) self.mirror2 = Plane(self.m2Point, self.m2Normal) self.mirror3 = Plane(self.m3Point, self.m3Normal) def rotate(self, angle): self.mirror1.rotate(self.origin, angle, numpy.array([0.0, 0.0, 1.0])) self.mirror2.rotate(self.origin, angle, numpy.array([0.0, 0.0, 1.0])) self.mirror3.rotate(self.origin, angle, numpy.array([0.0, 0.0, 1.0])) def propogate(self, line): r1 = self.mirror1.reflection(line) r2 = self.mirror2.reflection(r1) r3 = self.mirror3.reflection(r2) return r3 def translate(self, dx, dy, dz): shift = Point(dx, dy, dz) self.origin = self.origin+shift self.m1Point = self.m1Point+shift self.m2Point = self.m2Point+shift self.m3Point = self.m3Point+shift self.makeMirrors() def tiptilt(self, angle, axis): ux = axis[0] uy = axis[1] uz = axis[2] rotation_matrix = numpy.array([ [numpy.cos(angle) + ux**2*(1.0-numpy.cos(angle)), ux*uy*(1.0-numpy.cos(angle)) - uz*numpy.sin(angle), ux*uz*(1.0-numpy.cos(angle)) + uy*numpy.sin(angle)], [ux*uy*(1.0-numpy.cos(angle))+uz*numpy.sin(angle), numpy.cos(angle)+uy**2*(1.0-numpy.cos(angle)), uy*uz*(1.0-numpy.cos(angle))-ux*numpy.sin(angle)], [uz*ux*(1.0-numpy.cos(angle))-uy*numpy.sin(angle), uz*uy*(1.0-numpy.cos(angle))+ux*numpy.sin(angle), numpy.cos(angle)+uz**2*(1.0-numpy.cos(angle))]]) v1 = self.origin- self.m1Point v1 = numpy.array([v1.x, v1.y, v1.z]) new_vector = numpy.dot(rotation_matrix, v1) self.m1Normal = numpy.dot(rotation_matrix, self.m1Normal) v1 = Point(new_vector[0], new_vector[1], new_vector[2]) self.m1Point = self.origin + v1 v2 = self.origin- self.m2Point v2 = numpy.array([v2.x, v2.y, v2.z]) new_vector = numpy.dot(rotation_matrix, v2) self.m2Normal = numpy.dot(rotation_matrix, self.m2Normal) v2 = Point(new_vector[0], new_vector[1], new_vector[2]) self.m2Point = self.origin + v2 v3 = self.origin- self.m3Point v3 = numpy.array([v3.x, v3.y, v3.z]) new_vector = numpy.dot(rotation_matrix, v3) self.m3Normal = numpy.dot(rotation_matrix, self.m3Normal) v3 = Point(new_vector[0], new_vector[1], new_vector[2]) self.m3Point = self.origin + v3 self.makeMirrors() class Point( object ): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __add__(self, other): return Point(self.x+other.x, self.y+other.y, self.z+other.z) def __sub__(self, other): return Point(self.x-other.x, self.y-other.y, self.z-other.z) def __repr__(self): return "x: "+str(self.x)+" y: "+str(self.y)+" z: "+str(self.z) def __str__(self): return "x: "+str(self.x)+" y: "+str(self.y)+" z: "+str(self.z) class Line( object): def __init__(self, p, slope): norm = numpy.sqrt(slope[0]**2.0 + slope[1]**2.0 + slope[2]**2.0) self.slope = slope/norm self.a = slope[0]/norm self.b = slope[1]/norm self.c = slope[2]/norm self.p = p def traverse(self, t): newx = self.p.x + self.a*t newy = self.p.y + self.b*t newz = self.p.z + self.c*t newpoint = Point(newx, newy, newz) return newpoint class Plane( object ): def __init__(self, p, normal): self.p = p self.normal = normal/numpy.sqrt(numpy.sum(numpy.square(normal))) self.calculatePlaneEqn() def rotate(self, p, angle, axis): vector = numpy.array([p.x-self.p.x, p.y-self.p.y, p.z-self.p.z]) ux = axis[0] uy = axis[1] uz = axis[2] rotation_matrix = numpy.array([ [numpy.cos(angle) + ux**2*(1.0-numpy.cos(angle)), ux*uy*(1.0-numpy.cos(angle)) - uz*numpy.sin(angle), ux*uz*(1.0-numpy.cos(angle)) + uy*numpy.sin(angle)], [ux*uy*(1.0-numpy.cos(angle))+uz*numpy.sin(angle), numpy.cos(angle)+uy**2*(1.0-numpy.cos(angle)), uy*uz*(1.0-numpy.cos(angle))-ux*numpy.sin(angle)], [uz*ux*(1.0-numpy.cos(angle))-uy*numpy.sin(angle), uz*uy*(1.0-numpy.cos(angle))+ux*numpy.sin(angle), numpy.cos(angle)+uz**2*(1.0-numpy.cos(angle))]]) new_vector = numpy.dot(rotation_matrix, vector) self.p = Point(p.x-new_vector[0], p.y-new_vector[1], p.z-new_vector[2]) self.normal = numpy.dot(rotation_matrix, self.normal) self.calculatePlaneEqn() def calculatePlaneEqn(self): Ax = self.normal[0] Ay = self.normal[1] Az = self.normal[2] if (numpy.abs(Ax) < 1e-5) & (numpy.abs(Ay) < 1e-5): self.coeffs = numpy.array([0.0, 0.0, 1.0/self.p.z]) elif (numpy.abs(Ax) < 1e-5) & (numpy.abs(Az) < 1e-5 ): self.coeffs = numpy.array([0.0, 1.0/self.p.y, 0.0]) elif (numpy.abs(Ay) < 1e-5) & (numpy.abs(Az) < 1e-5): self.coeffs = numpy.array([1.0/self.p.x, 0.0, 0.0]) elif (numpy.abs(Ax) < 1e-5): p2 = Point(self.p.x, self.p.y+1.0, self.p.z-Ay/Az) X = numpy.array([ [self.p.y, self.p.z], [p2.y, p2.z]]) Y = numpy.array([1.0, 1.0]) BC = numpy.linalg.solve(X, Y) self.coeffs = numpy.array([0.0, BC[0], BC[1]]) elif (numpy.abs(Ay) < 1e-5): p2 = Point(self.p.x+1.0, self.p.y, self.p.z-Ax/Az) X = numpy.array([ [self.p.x, self.p.z], [p2.x, p2.z]]) Y = numpy.array([1.0, 1.0]) AC = numpy.linalg.solve(X, Y) self.coeffs = numpy.array([AC[0], 0.0, AC[1]]) elif (numpy.abs(Az) < 1e-5): p2 = Point(self.p.x-Ay/Ax, self.p.y+1.0, self.p.z) X = numpy.array([ [self.p.x, self.p.y], [p2.x, p2.y]]) Y = numpy.array([1.0, 1.0]) AB = numpy.linalg.solve(X,Y) self.coeffs = numpy.array([AB[0], AB[1], 0.0]) else: p2 = Point(self.p.x, self.p.y+1.0, self.p.z-Ay/Az) p3 = Point(self.p.x+1.0, self.p.y, self.p.z-Ax/Az) p4 = Point(self.p.x-Ay/Ax, self.p.y+1.0, self.p.z) X = numpy.array([ [p2.x, p2.y, p2.z], [p3.x, p3.y, p3.z], [p4.x, p4.y, p4.z]]) Y = numpy.array([1.0, 1.0, 1.0]) self.coeffs = numpy.linalg.solve(X, Y) def intersection(self, line): dotproduct = numpy.dot(self.normal, line.slope) if dotproduct == 0.0: return False else: D = (self.coeffs[0]*line.p.x + self.coeffs[1]*line.p.y + self.coeffs[2]*line.p.z) t = (1.0-D)/(self.coeffs[0]*line.a + self.coeffs[1]*line.b + self.coeffs[2]*line.c) return line.traverse(t) def reflection(self, line): reflection = self.intersection(line) if reflection: dot = numpy.dot(self.normal, line.slope) newx = line.a - 2*dot*self.normal[0] newy = line.b - 2*dot*self.normal[1] newz = line.c - 2*dot*self.normal[2] newLine = Line(reflection, [newx, newy, newz]) return newLine else: print "Error! Line does not intersect plane!" return False origin = Point(0.0, 0.0, 0.0) p1 = Point(-0.002, 0.0, 0.0) p2 = Point(0.00, 0.5, 0.0) p3 = Point(1.0, 1.0, 0.0) derot = Derotator() l0 = Line(origin, [0.0, 0.0, -1.0]) l1 = Line(p1, [0.0, 0.0, -1.0]) l2 = Line(p3, [0.0, 0.0, -1.0]) l3 = Line(p3, [0.0, 0.00028, -1.0]) l4 = Line(origin, [0.00028, 0.0, -1.0]) detectorPlane = Plane(Point(0.0, 0.0, -1000.0), numpy.array([0.0, 0.0, 1.0])) pupilPlane = Plane(Point(0.0, 0.0, -500.0), numpy.array([0.0, 0.0, 1.0])) nsteps = 51 dangle = 2.0*numpy.pi/nsteps angle = [] a = [] b = [] c = [] d = [] e = [] theta = 0.0 derot.tiptilt(0.000278, numpy.array([0.0, 1.0, 0.0])) #derot.rotate(numpy.deg2rad(45.0)) #spot = detectorPlane.intersection(derot.propogate(l2)) #print asdf for i in range(nsteps): angle.append(theta) spot = detectorPlane.intersection(derot.propogate(l0)) a.append([spot.x, spot.y]) spot = detectorPlane.intersection(derot.propogate(l1)) b.append([spot.x, spot.y]) spot = detectorPlane.intersection(derot.propogate(l2)) c.append([spot.x, spot.y]) spot = detectorPlane.intersection(derot.propogate(l3)) d.append([spot.x, spot.y]) spot = detectorPlane.intersection(derot.propogate(l4)) e.append([spot.x, spot.y]) derot.rotate(dangle) theta += dangle a = numpy.array(a) b = numpy.array(b) c = numpy.array(c) d = numpy.array(d) e = numpy.array(e) pyplot.ion() fig = pyplot.figure(0) fig.clear() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) fig.show() #for image in zip(angle, a, b, c): # print("Angle : %.2f" % numpy.rad2deg(image[0])) # line = numpy.array(image[1:]) # ax.plot(line[:,0], line[:,1], marker= 'x') # pyplot.draw() # raw_input() ax.plot(a[:,0], a[:,1], c='r', marker='o') ax.plot(b[:,0], b[:,1], c='b', marker='x') #ax.plot(c[:,0], c[:,1], c='g', marker='+') #ax.plot(d[:,0], d[:,1], c='k', marker='.') #ax.plot(e[:,0], e[:,1], c='m', marker='x')
gpl-2.0
almarklein/scikit-image
doc/examples/plot_denoise.py
1
2065
""" ============================= Denoising the picture of Lena ============================= In this example, we denoise a noisy version of the picture of Lena using the total variation and bilateral denoising filter. These algorithms typically produce "posterized" images with flat domains separated by sharp edges. It is possible to change the degree of posterization by controlling the tradeoff between denoising and faithfulness to the original image. Total variation filter ---------------------- The result of this filter is an image that has a minimal total variation norm, while being as close to the initial image as possible. The total variation is the L1 norm of the gradient of the image. Bilateral filter ---------------- A bilateral filter is an edge-preserving and noise reducing filter. It averages pixels based on their spatial closeness and radiometric similarity. """ import numpy as np import matplotlib.pyplot as plt from skimage import data, img_as_float from skimage.filter import denoise_tv_chambolle, denoise_bilateral lena = img_as_float(data.lena()) lena = lena[220:300, 220:320] noisy = lena + 0.6 * lena.std() * np.random.random(lena.shape) noisy = np.clip(noisy, 0, 1) fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 5)) plt.gray() ax[0, 0].imshow(noisy) ax[0, 0].axis('off') ax[0, 0].set_title('noisy') ax[0, 1].imshow(denoise_tv_chambolle(noisy, weight=0.1, multichannel=True)) ax[0, 1].axis('off') ax[0, 1].set_title('TV') ax[0, 2].imshow(denoise_bilateral(noisy, sigma_range=0.05, sigma_spatial=15)) ax[0, 2].axis('off') ax[0, 2].set_title('Bilateral') ax[1, 0].imshow(denoise_tv_chambolle(noisy, weight=0.2, multichannel=True)) ax[1, 0].axis('off') ax[1, 0].set_title('(more) TV') ax[1, 1].imshow(denoise_bilateral(noisy, sigma_range=0.1, sigma_spatial=15)) ax[1, 1].axis('off') ax[1, 1].set_title('(more) Bilateral') ax[1, 2].imshow(lena) ax[1, 2].axis('off') ax[1, 2].set_title('original') fig.subplots_adjust(wspace=0.02, hspace=0.2, top=0.9, bottom=0.05, left=0, right=1) plt.show()
bsd-3-clause
wazeerzulfikar/scikit-learn
sklearn/setup.py
69
3201
import os from os.path import join import warnings from sklearn._build_utils import maybe_cythonize_extensions def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) # submodules with build utilities config.add_subpackage('__check_build') config.add_subpackage('_build_utils') # submodules which do not have their own setup.py # we must manually add sub-submodules & tests config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('cross_decomposition/tests') config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('model_selection') config.add_subpackage('model_selection/tests') config.add_subpackage('neural_network') config.add_subpackage('neural_network/tests') config.add_subpackage('preprocessing') config.add_subpackage('preprocessing/tests') config.add_subpackage('semi_supervised') config.add_subpackage('semi_supervised/tests') # submodules which have their own setup.py # leave out "linear_model" and "utils" for now; add them after cblas below config.add_subpackage('cluster') config.add_subpackage('datasets') config.add_subpackage('decomposition') config.add_subpackage('ensemble') config.add_subpackage('externals') config.add_subpackage('feature_extraction') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('metrics/cluster') config.add_subpackage('neighbors') config.add_subpackage('tree') config.add_subpackage('svm') # add cython extension module for isotonic regression config.add_extension('_isotonic', sources=['_isotonic.pyx'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') maybe_cythonize_extensions(top_path, config) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
markneville/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/fontconfig_pattern.py
72
6429
""" A module for parsing and generating fontconfig patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ # Author : Michael Droettboom <[email protected]> # License : matplotlib license (PSF compatible) # This class is defined here because it must be available in: # - The old-style config framework (:file:`rcsetup.py`) # - The traits-based config framework (:file:`mpltraits.py`) # - The font manager (:file:`font_manager.py`) # It probably logically belongs in :file:`font_manager.py`, but # placing it in any of these places would have created cyclical # dependency problems, or an undesired dependency on traits even # when the traits-based config framework is not used. import re from matplotlib.pyparsing import Literal, ZeroOrMore, \ Optional, Regex, StringEnd, ParseException, Suppress family_punc = r'\\\-:,' family_unescape = re.compile(r'\\([%s])' % family_punc).sub family_escape = re.compile(r'([%s])' % family_punc).sub value_punc = r'\\=_:,' value_unescape = re.compile(r'\\([%s])' % value_punc).sub value_escape = re.compile(r'([%s])' % value_punc).sub class FontconfigPatternParser: """A simple pyparsing-based parser for fontconfig-style patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ _constants = { 'thin' : ('weight', 'light'), 'extralight' : ('weight', 'light'), 'ultralight' : ('weight', 'light'), 'light' : ('weight', 'light'), 'book' : ('weight', 'book'), 'regular' : ('weight', 'regular'), 'normal' : ('weight', 'normal'), 'medium' : ('weight', 'medium'), 'demibold' : ('weight', 'demibold'), 'semibold' : ('weight', 'semibold'), 'bold' : ('weight', 'bold'), 'extrabold' : ('weight', 'extra bold'), 'black' : ('weight', 'black'), 'heavy' : ('weight', 'heavy'), 'roman' : ('slant', 'normal'), 'italic' : ('slant', 'italic'), 'oblique' : ('slant', 'oblique'), 'ultracondensed' : ('width', 'ultra-condensed'), 'extracondensed' : ('width', 'extra-condensed'), 'condensed' : ('width', 'condensed'), 'semicondensed' : ('width', 'semi-condensed'), 'expanded' : ('width', 'expanded'), 'extraexpanded' : ('width', 'extra-expanded'), 'ultraexpanded' : ('width', 'ultra-expanded') } def __init__(self): family = Regex(r'([^%s]|(\\[%s]))*' % (family_punc, family_punc)) \ .setParseAction(self._family) size = Regex(r"([0-9]+\.?[0-9]*|\.[0-9]+)") \ .setParseAction(self._size) name = Regex(r'[a-z]+') \ .setParseAction(self._name) value = Regex(r'([^%s]|(\\[%s]))*' % (value_punc, value_punc)) \ .setParseAction(self._value) families =(family + ZeroOrMore( Literal(',') + family) ).setParseAction(self._families) point_sizes =(size + ZeroOrMore( Literal(',') + size) ).setParseAction(self._point_sizes) property =( (name + Suppress(Literal('=')) + value + ZeroOrMore( Suppress(Literal(',')) + value) ) | name ).setParseAction(self._property) pattern =(Optional( families) + Optional( Literal('-') + point_sizes) + ZeroOrMore( Literal(':') + property) + StringEnd() ) self._parser = pattern self.ParseException = ParseException def parse(self, pattern): """ Parse the given fontconfig *pattern* and return a dictionary of key/value pairs useful for initializing a :class:`font_manager.FontProperties` object. """ props = self._properties = {} try: self._parser.parseString(pattern) except self.ParseException, e: raise ValueError("Could not parse font string: '%s'\n%s" % (pattern, e)) self._properties = None return props def _family(self, s, loc, tokens): return [family_unescape(r'\1', str(tokens[0]))] def _size(self, s, loc, tokens): return [float(tokens[0])] def _name(self, s, loc, tokens): return [str(tokens[0])] def _value(self, s, loc, tokens): return [value_unescape(r'\1', str(tokens[0]))] def _families(self, s, loc, tokens): self._properties['family'] = [str(x) for x in tokens] return [] def _point_sizes(self, s, loc, tokens): self._properties['size'] = [str(x) for x in tokens] return [] def _property(self, s, loc, tokens): if len(tokens) == 1: if tokens[0] in self._constants: key, val = self._constants[tokens[0]] self._properties.setdefault(key, []).append(val) else: key = tokens[0] val = tokens[1:] self._properties.setdefault(key, []).extend(val) return [] parse_fontconfig_pattern = FontconfigPatternParser().parse def generate_fontconfig_pattern(d): """ Given a dictionary of key/value pairs, generates a fontconfig pattern string. """ props = [] families = '' size = '' for key in 'family style variant weight stretch file size'.split(): val = getattr(d, 'get_' + key)() if val is not None and val != []: if type(val) == list: val = [value_escape(r'\\\1', str(x)) for x in val if x is not None] if val != []: val = ','.join(val) props.append(":%s=%s" % (key, val)) return ''.join(props)
agpl-3.0
jcornford/pyecog
pyecog/ndf/make_pdfs.py
1
5148
''' This module is not currently being used ''' from __future__ import print_function import pickle import os import matplotlib.pyplot as plt import numpy as np import matplotlib.font_manager as fm dir = os.path.dirname(__file__) filename = os.path.join(dir, '../HelveticaNeue-Light.otf') prop = fm.FontProperties(fname=filename) def plot_traces(to_plot, start = 0, labels = None, savepath = None, filename = None, format_string = ".pdf", prob_thresholds = None, verbose = False): ''' Args: to_plot: expecting this with start: labels: if None, traces are all assigned with 1's savestring: format_string: prob_thresholds: if not None, used to color code the index (0-sure- "k", 1-unsure "r") Returns: ''' if labels is None: labels = np.ones(to_plot.shape[0]) if prob_thresholds is None: prob_thresholds = np.zeros(to_plot.shape[0]).astype(int) colors = ['b','r','g','k'] colors = ['k','r','g','b','purple'] print('Plotting traces...') for section in range(int(np.ceil(to_plot.shape[0]/40.0))): fig = plt.figure(figsize=(8.27, 11.69), dpi=20) plt.axis('off') plt.title('Traces '+ str((section+start)*40)+ ':' + str(((section+start)+1)*40)+' 1:black 2:red 3:green 4:blue', fontproperties=prop, fontsize = 14) time = np.linspace(1,10,to_plot.shape[1]) annotation_colors = ['k','r'] if section == to_plot.shape[0]/40: n_plots = to_plot.shape[0]%40 if verbose: print(str(section*40)+ ' : ' + str(((section)*40)+n_plots)) else: n_plots = 40 if verbose: print(str(section*40)+ ' : ' + str((section+1)*40)+',') for i in [ii + (section)*40 for ii in range(n_plots)]: ax = fig.add_subplot(20,2,(i%40)+1) ax.plot(time,to_plot[i,:], color = colors[int(labels[i])-1], linewidth = 0.5) ax.annotate(str(i+start), xy = (0,0.3), fontsize = 10, color = annotation_colors[prob_thresholds[i]], fontproperties=prop) ax.axis('off') ax.set_xlim((0,10)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_yaxis().tick_left() ax.get_xaxis().tick_bottom() if savepath: plt.savefig(os.path.join(savepath,filename+'_'+str(section+ (start+1)/40)+format_string)) #plt.savefig(os.path.join(savepath,filename+'_'+str(section)+format_string)) else: plt.show() plt.close('all') def plot_traces_hdf5(to_plot, labels = None, savepath = None, filename = None, format_string = ".pdf", prob_thresholds = None, trace_len_sec = 5, verbose = False): if not format_string.startswith('.'): format_string = '.'+format_string if labels is None: labels = np.ones(to_plot.shape[0]) if prob_thresholds is None: prob_thresholds = np.zeros(to_plot.shape[0]).astype(int) colors = ['k','r','g','b','purple'] print('Plotting traces...') for section in range(int(np.ceil(to_plot.shape[0]/40.0))): fig = plt.figure(figsize=(8.27, 11.69), dpi=20) plt.axis('off') plt.title('Seconds '+ str(section*40*trace_len_sec)+ ':' + str((section+1)*40*trace_len_sec), fontsize = 14,fontproperties=prop) time = np.linspace(1,10,to_plot.shape[1]) annotation_colors = ['k','r'] if section == to_plot.shape[0]/40: n_plots = to_plot.shape[0]%40 if verbose: print(str(section*40)+ ' : ' + str(((section)*40)+n_plots)) else: n_plots = 40 if verbose: print(str(section*40)+ ' : ' + str((section+1)*40)+',') for i in [ii + (section)*40 for ii in range(n_plots)]: ax = fig.add_subplot(20,2,(i%40)+1) ax.annotate(str(i), xy = (0,0.5), fontsize = 10,color = 'black', fontproperties=prop) ax.plot(time, to_plot[i,:], color = colors[int(labels[i])], linewidth = 0.5) ax.set_title(str(i*trace_len_sec), fontsize = 8, fontproperties=prop) ax.axis('off') ax.set_xlim((0,10)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_yaxis().tick_left() ax.get_xaxis().tick_bottom() if savepath: plt.savefig(os.path.join(savepath,filename+'_'+str(section)+format_string)) plt.close('all') print('Done') if __name__ == "__main__": training_tuple = pickle.load(open('../training_label_traces_tuple','rb')) training_tuple = pickle.load(open('../validation_label_traces_tuple','rb')) labels = training_tuple[0] data = training_tuple[1] print('plotting '+ str(data.shape[0])+ 'traces') plot_traces(data,labels,savestring='../validation ',format_string='.pdf')
mit
giumas/python-acoustics
tests/test_imaging.py
3
1189
import numpy as np import pytest has_matplotlib = pytest.importorskip("matplotlib") if has_matplotlib: from acoustics.bands import octave, third from acoustics.imaging import plot_octave, plot_third, plot_bands def setup_module(imaging): imaging.octaves = octave(16, 16000) imaging.thirds = third(63, 8000) imaging.tl_oct = np.array([3, 4, 5, 12, 15, 24, 28, 23, 35, 45, 55]) imaging.tl_third = np.array([0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 32, 41, 47, 46, 44, 58, 77, 61, 75, 56, 54]) imaging.title = 'Title' imaging.label = 'Label' def test_plot_octave(): plot_octave(tl_oct, octaves) def test_plot_octave_kHz(): plot_octave(tl_oct, octaves, kHz=True, xlabel=label, ylabel=label, title=title, separator='.') def test_plot_third_octave(): plot_third(tl_third, thirds, marker='s', separator=',') def test_plot_third_octave_kHz(): plot_third(tl_third, thirds, marker='s', kHz=True, xlabel=label, ylabel=label, title=title) def test_plot_band_oct(): plot_bands(tl_oct, octaves, axes=None, band_type='octave') def teardown_module(imaging): pass
bsd-3-clause
semio/zipline
zipline/protocol.py
15
17562
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import copy from six import iteritems, iterkeys import pandas as pd from pandas.tseries.tools import normalize_date import numpy as np from . utils.protocol_utils import Enum from . utils.math_utils import nanstd, nanmean, nansum from zipline.finance.trading import with_environment from zipline.utils.algo_instance import get_algo_instance from zipline.utils.serialization_utils import ( VERSION_LABEL ) # Datasource type should completely determine the other fields of a # message with its type. DATASOURCE_TYPE = Enum( 'AS_TRADED_EQUITY', 'MERGER', 'SPLIT', 'DIVIDEND', 'TRADE', 'TRANSACTION', 'ORDER', 'EMPTY', 'DONE', 'CUSTOM', 'BENCHMARK', 'COMMISSION', 'CLOSE_POSITION' ) # Expected fields/index values for a dividend Series. DIVIDEND_FIELDS = [ 'declared_date', 'ex_date', 'gross_amount', 'net_amount', 'pay_date', 'payment_sid', 'ratio', 'sid', ] # Expected fields/index values for a dividend payment Series. DIVIDEND_PAYMENT_FIELDS = [ 'id', 'payment_sid', 'cash_amount', 'share_count', ] def dividend_payment(data=None): """ Take a dictionary whose values are in DIVIDEND_PAYMENT_FIELDS and return a series representing the payment of a dividend. Ids are assigned to each historical dividend in PerformanceTracker.update_dividends. They are guaranteed to be unique integers with the context of a single simulation. If @data is non-empty, a id is required to identify the historical dividend associated with this payment. Additionally, if @data is non-empty, either data['cash_amount'] should be nonzero or data['payment_sid'] should be an asset identifier and data['share_count'] should be nonzero. The returned Series is given its id value as a name so that concatenating payments results in a DataFrame indexed by id. (Note, however, that the name value is not used to construct an index when this series is returned by function passed to `DataFrame.apply`. In such a case, pandas preserves the index of the DataFrame on which `apply` is being called.) """ return pd.Series( data=data, name=data['id'] if data is not None else None, index=DIVIDEND_PAYMENT_FIELDS, dtype=object, ) class Event(object): def __init__(self, initial_values=None): if initial_values: self.__dict__ = initial_values def __getitem__(self, name): return getattr(self, name) def __setitem__(self, name, value): setattr(self, name, value) def __delitem__(self, name): delattr(self, name) def keys(self): return self.__dict__.keys() def __eq__(self, other): return hasattr(other, '__dict__') and self.__dict__ == other.__dict__ def __contains__(self, name): return name in self.__dict__ def __repr__(self): return "Event({0})".format(self.__dict__) def to_series(self, index=None): return pd.Series(self.__dict__, index=index) class Order(Event): pass class Portfolio(object): def __init__(self): self.capital_used = 0.0 self.starting_cash = 0.0 self.portfolio_value = 0.0 self.pnl = 0.0 self.returns = 0.0 self.cash = 0.0 self.positions = Positions() self.start_date = None self.positions_value = 0.0 def __getitem__(self, key): return self.__dict__[key] def __repr__(self): return "Portfolio({0})".format(self.__dict__) def __getstate__(self): state_dict = copy(self.__dict__) # Have to convert to primitive dict state_dict['positions'] = dict(self.positions) STATE_VERSION = 1 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 1 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("Portfolio saved state is too old.") self.positions = Positions() self.positions.update(state.pop('positions')) self.__dict__.update(state) class Account(object): ''' The account object tracks information about the trading account. The values are updated as the algorithm runs and its keys remain unchanged. If connected to a broker, one can update these values with the trading account values as reported by the broker. ''' def __init__(self): self.settled_cash = 0.0 self.accrued_interest = 0.0 self.buying_power = float('inf') self.equity_with_loan = 0.0 self.total_positions_value = 0.0 self.regt_equity = 0.0 self.regt_margin = float('inf') self.initial_margin_requirement = 0.0 self.maintenance_margin_requirement = 0.0 self.available_funds = 0.0 self.excess_liquidity = 0.0 self.cushion = 0.0 self.day_trades_remaining = float('inf') self.leverage = 0.0 self.net_leverage = 0.0 self.net_liquidation = 0.0 def __getitem__(self, key): return self.__dict__[key] def __repr__(self): return "Account({0})".format(self.__dict__) def __getstate__(self): state_dict = copy(self.__dict__) STATE_VERSION = 1 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 1 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("Account saved state is too old.") self.__dict__.update(state) class Position(object): def __init__(self, sid): self.sid = sid self.amount = 0 self.cost_basis = 0.0 # per share self.last_sale_price = 0.0 def __getitem__(self, key): return self.__dict__[key] def __repr__(self): return "Position({0})".format(self.__dict__) def __getstate__(self): state_dict = copy(self.__dict__) STATE_VERSION = 1 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 1 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("Protocol Position saved state is too old.") self.__dict__.update(state) class Positions(dict): def __missing__(self, key): pos = Position(key) self[key] = pos return pos class SIDData(object): # Cache some data on the class so that this is shared for all instances of # siddata. # The dt where we cached the history. _history_cache_dt = None # _history_cache is a a dict mapping fields to pd.DataFrames. This is the # most data we have for a given field for the _history_cache_dt. _history_cache = {} # This is the cache that is used for returns. This will have a different # structure than the other history cache as this is always daily. _returns_cache_dt = None _returns_cache = None # The last dt that we needed to cache the number of minutes. _minute_bar_cache_dt = None # If we are in minute mode, there is some cost associated with computing # the number of minutes that we need to pass to the bar count of history. # This will remain constant for a given bar and day count. # This maps days to number of minutes. _minute_bar_cache = {} def __init__(self, sid, initial_values=None): self._sid = sid self._freqstr = None # To check if we have data, we use the __len__ which depends on the # __dict__. Because we are foward defining the attributes needed, we # need to account for their entrys in the __dict__. # We will add 1 because we need to account for the _initial_len entry # itself. self._initial_len = len(self.__dict__) + 1 if initial_values: self.__dict__.update(initial_values) @property def datetime(self): """ Provides an alias from data['foo'].datetime -> data['foo'].dt `datetime` was previously provided by adding a seperate `datetime` member of the SIDData object via a generator that wrapped the incoming data feed and added the field to each equity event. This alias is intended to be temporary, to provide backwards compatibility with existing algorithms, but should be considered deprecated, and may be removed in the future. """ return self.dt def get(self, name, default=None): return self.__dict__.get(name, default) def __getitem__(self, name): return self.__dict__[name] def __setitem__(self, name, value): self.__dict__[name] = value def __len__(self): return len(self.__dict__) - self._initial_len def __contains__(self, name): return name in self.__dict__ def __repr__(self): return "SIDData({0})".format(self.__dict__) def _get_buffer(self, bars, field='price', raw=False): """ Gets the result of history for the given number of bars and field. This will cache the results internally. """ cls = self.__class__ algo = get_algo_instance() now = algo.datetime if now != cls._history_cache_dt: # For a given dt, the history call for this field will not change. # We have a new dt, so we should reset the cache. cls._history_cache_dt = now cls._history_cache = {} if field not in self._history_cache \ or bars > len(cls._history_cache[field][0].index): # If we have never cached this field OR the amount of bars that we # need for this field is greater than the amount we have cached, # then we need to get more history. hst = algo.history( bars, self._freqstr, field, ffill=True, ) # Assert that the column holds ints, not security objects. if not isinstance(self._sid, str): hst.columns = hst.columns.astype(int) self._history_cache[field] = (hst, hst.values, hst.columns) # Slice of only the bars needed. This is because we strore the LARGEST # amount of history for the field, and we might request less than the # largest from the cache. buffer_, values, columns = cls._history_cache[field] if raw: sid_index = columns.get_loc(self._sid) return values[-bars:, sid_index] else: return buffer_[self._sid][-bars:] def _get_bars(self, days): """ Gets the number of bars needed for the current number of days. Figures this out based on the algo datafrequency and caches the result. This caches the result by replacing this function on the object. This means that after the first call to _get_bars, this method will point to a new function object. """ def daily_get_max_bars(days): return days def minute_get_max_bars(days): # max number of minute. regardless of current days or short # sessions return days * 390 def daily_get_bars(days): return days @with_environment() def minute_get_bars(days, env=None): cls = self.__class__ now = get_algo_instance().datetime if now != cls._minute_bar_cache_dt: cls._minute_bar_cache_dt = now cls._minute_bar_cache = {} if days not in cls._minute_bar_cache: # Cache this calculation to happen once per bar, even if we # use another transform with the same number of days. prev = env.previous_trading_day(now) ds = env.days_in_range( env.add_trading_days(-days + 2, prev), prev, ) # compute the number of minutes in the (days - 1) days before # today. # 210 minutes in a an early close and 390 in a full day. ms = sum(210 if d in env.early_closes else 390 for d in ds) # Add the number of minutes for today. ms += int( (now - env.get_open_and_close(now)[0]).total_seconds() / 60 ) cls._minute_bar_cache[days] = ms + 1 # Account for this minute return cls._minute_bar_cache[days] if get_algo_instance().sim_params.data_frequency == 'daily': self._freqstr = '1d' # update this method to point to the daily variant. self._get_bars = daily_get_bars self._get_max_bars = daily_get_max_bars else: self._freqstr = '1m' # update this method to point to the minute variant. self._get_bars = minute_get_bars self._get_max_bars = minute_get_max_bars # Not actually recursive because we have already cached the new method. return self._get_bars(days) def mavg(self, days): bars = self._get_bars(days) max_bars = self._get_max_bars(days) prices = self._get_buffer(max_bars, raw=True)[-bars:] return nanmean(prices) def stddev(self, days): bars = self._get_bars(days) max_bars = self._get_max_bars(days) prices = self._get_buffer(max_bars, raw=True)[-bars:] return nanstd(prices, ddof=1) def vwap(self, days): bars = self._get_bars(days) max_bars = self._get_max_bars(days) prices = self._get_buffer(max_bars, raw=True)[-bars:] vols = self._get_buffer(max_bars, field='volume', raw=True)[-bars:] vol_sum = nansum(vols) try: ret = nansum(prices * vols) / vol_sum except ZeroDivisionError: ret = np.nan return ret def returns(self): algo = get_algo_instance() now = algo.datetime if now != self._returns_cache_dt: self._returns_cache_dt = now self._returns_cache = algo.history(2, '1d', 'price', ffill=True) hst = self._returns_cache[self._sid] return (hst.iloc[-1] - hst.iloc[0]) / hst.iloc[0] class BarData(object): """ Holds the event data for all sids for a given dt. This is what is passed as `data` to the `handle_data` function. Note: Many methods are analogues of dictionary because of historical usage of what this replaced as a dictionary subclass. """ def __init__(self, data=None): self._data = data or {} self._contains_override = None self._factor_matrix = None self._factor_matrix_expires = pd.Timestamp(0, tz='UTC') @property def factors(self): algo = get_algo_instance() today = normalize_date(algo.get_datetime()) if today > self._factor_matrix_expires: self._factor_matrix, self._factor_matrix_expires = \ algo.compute_factor_matrix(today) return self._factor_matrix.loc[today] def __contains__(self, name): if self._contains_override: if self._contains_override(name): return name in self._data else: return False else: return name in self._data def has_key(self, name): """ DEPRECATED: __contains__ is preferred, but this method is for compatibility with existing algorithms. """ return name in self def __setitem__(self, name, value): self._data[name] = value def __getitem__(self, name): return self._data[name] def __delitem__(self, name): del self._data[name] def __iter__(self): for sid, data in iteritems(self._data): # Allow contains override to filter out sids. if sid in self: if len(data): yield sid def iterkeys(self): # Allow contains override to filter out sids. return (sid for sid in iterkeys(self._data) if sid in self) def keys(self): # Allow contains override to filter out sids. return list(self.iterkeys()) def itervalues(self): return (value for _sid, value in self.iteritems()) def values(self): return list(self.itervalues()) def iteritems(self): return ((sid, value) for sid, value in iteritems(self._data) if sid in self) def items(self): return list(self.iteritems()) def __len__(self): return len(self.keys()) def __repr__(self): return '{0}({1})'.format(self.__class__.__name__, self._data)
apache-2.0
tdhopper/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
421
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
boland1992/seissuite_iran
bin/combination_stack.py
2
26624
#!/usr/bin/python -u """ This script reads seismic waveform data from a set of stations, and calculates the cross-correlations between all pairs of stations. The data (in miniseed format) must be located in folder *MSEED_DIR*. The stations information (coordinates, instrument response) can be read from dataless seed files (if *USE_DATALESSPAZ* = True) located in folder *DATALESS_DIR*, and/or stationXML files (if *USE_STATIONXML* = True) located in folder *STATIONXML_DIR*. Note that two different stations MUST HAVE DIFFERENT NAMES, even if they do not belong to the same network. Also, one given station cannot have several sets of coordinates: if so, it will be skipped. In the current version of the program, miniseed files MUST be organized inside their directory as: <year>-<month>/<network>.<station>.<channel>.mseed, e.g.: 1988-10/BL.JFOB.BHZ.mseed So, there is one sub-directory per month, and inside it, one miniseed file per month and per station. The implemented algorithm follows the lines of Bensen et al., "Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements", Geophys. J. Int. (2007). The procedure consists in stacking daily cross-correlations between pairs of stations, from *FIRSTDAY* to *LASTDAY* and, in each given day, rejecting stations whose data fill is < *MINFILL*. Define a subset of stations to cross-correlate in *CROSSCORR_STATIONS_SUBSET* (or let it empty to cross-correlate all stations). Define a list of locations to skip in *CROSSCORR_SKIPLOCS*, if any. The cross-correlations are calculated between -/+ *CROSSCORR_TMAX* seconds. Several pre-processing steps are applied to the daily seismic waveform data, before the daily cross-correlation is calculated and stacked: (1) removal of the instrument response, the mean and the trend; (2) band-pass filter between *PERIODMIN* and *PERIODMAX* sec (3) down-sampling to sampling step = *PERIOD_RESAMPLE* sec (4) time-normalization: - if *ONEBIT_NORM* = False, normalization of the signal by its (smoothed) absolute amplitude in the earthquake period band, defined as *PERIODMIN_EARTHQUAKE* - *PERIODMIN_EARTHQUAKE* sec. The smoothing window is *PERIODMAX_EARTHQUAKE* / 2; - if *ONEBIT_NORM* = False, one-bit normalization, wherein only the sign of the signal is kept (+1 or -1); (5) spectral whitening of the Fourier amplitude spectrum: the Fourier amplitude spectrum of the signal is divided by a smoothed version of itself. The smoonthing window is *WINDOW_FREQ*. Note that all the parameters mentioned above are defined in the configuration file. When all the cross-correlations are calculated, the script exports several files in dir *CROSS* """ import os import warnings import datetime as dt import itertools as it import pickle import obspy.signal.cross_correlation import time import glob import sqlite3 as lite import shutil import numpy as np import matplotlib.pyplot as plt # set epoch timestamp epoch = dt.datetime(1970, 1, 1) total_verbose = True psd = False # DECLUSTER STATIONS! # remove stations that are too close to one another (set by degree radius!) #from seissuite.spacing.search_station import Coordinates #import matplotlib.pyplot as plt #import numpy as np # turn on multiprocessing to get one merged trace per station? # to preprocess trace? to stack cross-correlations? MULTIPROCESSING = {'merge trace': False, 'process trace': False, 'cross-corr': False} # how many concurrent processes? (set None to let multiprocessing module decide) NB_PROCESSES = None if any(MULTIPROCESSING.values()): import multiprocessing as mp # create a list of configuration files that will be iterated over! # must be 1 or more from seissuite.ant.psconfig import (create_config_list, run_config, remove_config) config_list = create_config_list() total_time0 = dt.datetime.now() for config_file in config_list: # global variables MUST be defined # with the function in the seissuite.ant.psconfig module run_config(config_file) from seissuite.ant import (pscrosscorr, psstation, pspreprocess, pserrors, psstationSQL) # import CONFIG class initalised in ./configs/tmp_config.pickle config_pickle = 'configs/tmp_config.pickle' f = open(name=config_pickle, mode='rb') CONFIG = pickle.load(f) f.close() # import variables from initialised CONFIG class. MSEED_DIR = CONFIG.MSEED_DIR DATABASE_DIR = CONFIG.DATABASE_DIR DATALESS_DIR = CONFIG.DATALESS_DIR STATIONXML_DIR = CONFIG.STATIONXML_DIR CROSSCORR_DIR = CONFIG.CROSSCORR_DIR USE_DATALESSPAZ = CONFIG.USE_DATALESSPAZ USE_STATIONXML = CONFIG.USE_STATIONXML CROSSCORR_STATIONS_SUBSET = CONFIG.CROSSCORR_STATIONS_SUBSET CROSSCORR_SKIPLOCS = CONFIG.CROSSCORR_SKIPLOCS FIRSTDAY = CONFIG.FIRSTDAY LASTDAY = CONFIG.LASTDAY MINFILL = CONFIG.MINFILL FREQMIN = CONFIG.FREQMIN FREQMAX = CONFIG.FREQMAX CORNERS = CONFIG.CORNERS ZEROPHASE = CONFIG.ZEROPHASE PERIOD_RESAMPLE = CONFIG.PERIOD_RESAMPLE ONEBIT_NORM = CONFIG.ONEBIT_NORM FREQMIN_EARTHQUAKE = CONFIG.FREQMIN_EARTHQUAKE FREQMAX_EARTHQUAKE = CONFIG.FREQMAX_EARTHQUAKE WINDOW_TIME = CONFIG.WINDOW_TIME WINDOW_FREQ = CONFIG.WINDOW_FREQ XCORR_INTERVAL = CONFIG.XCORR_INTERVAL CROSSCORR_TMAX = CONFIG.CROSSCORR_TMAX PLOT_CLASSIC = CONFIG.PLOT_CLASSIC PLOT_DISTANCE = CONFIG.PLOT_DISTANCE MAX_DISTANCE = CONFIG.MAX_DISTANCE RESP_REMOVE = CONFIG.RESP_REMOVE FULL_COMB = CONFIG.FULL_COMB # initialise the required databases if they haven't already been. #if no two SQL databases exist, then create them! TIMELINE_DB = os.path.join(DATABASE_DIR, 'timeline.db') RESP_DB = os.path.join(DATABASE_DIR, 'response.db') # RESP_DB = os.path.join(DATABASE_DIR, 'response.db') # if not os.path.exists(RESP_DB): # initialise response database for use with automated data selection! # lite.connect(RESP_DB) # from seissuite.database import response_database print TIMELINE_DB if not os.path.exists(RESP_DB): lite.connect(RESP_DB) print "\nCreating response database. Please be patient ... " from seissuite.database import response_database if not os.path.exists(TIMELINE_DB): # initialise timeline database to help the application find files! lite.connect(TIMELINE_DB) print "\nCreating timeline database. Please be patient ... " from seissuite.database import create_database if psd: import powerdensity print "\nProcessing parameters:" print "- dir of miniseed data: " + MSEED_DIR print "- dir of dataless seed data: " + DATALESS_DIR print "- dir of stationXML data: " + STATIONXML_DIR print "- output dir: " + CROSSCORR_DIR print "- cross-correlation length (mins): " + str(XCORR_INTERVAL) print "- cross-correlation maximum time interval (s): " + str(CROSSCORR_TMAX) print "- band-pass: {:.1f}-{:.1f} s".format(1.0 / FREQMAX, 1.0 / FREQMIN) if ONEBIT_NORM: print "- normalization in time-domain: one-bit normalization" else: s = ("- normalisation in time-domain: " "running normalisation in earthquake band ({:.1f}-{:.1f} s)") print s.format(1.0 / FREQMAX_EARTHQUAKE, 1.0 / FREQMIN_EARTHQUAKE) fmt = '%d/%m/%Y' s = "- cross-correlation will be stacked between {}-{}" print s.format(FIRSTDAY.strftime(fmt), LASTDAY.strftime(fmt)) subset = CROSSCORR_STATIONS_SUBSET if subset: print " for stations: {}".format(', '.join(subset)) print # Initializing collection of cross-correlations xc = pscrosscorr.CrossCorrelationCollection() #create a metadata list, may need dictionary based on how much info required metadata = [] #ask if system has crashed or stopped before another process was finished? print "\nScanning for partial pickle cross-correlation files ... " #maybe create pause statement for interesting load menu. # loading cross-correlations (looking for *.part.pickle files in folders in #in dir *CROSSCORR_DIR*) folder_list = sorted(glob.glob(os.path.join(CROSSCORR_DIR, '*'))) pickle_list = [] index = 0 #creating index for call for folder in folder_list: #check to see if there are any pickle files in the xcorr time folder if len(glob.glob(os.path.join(folder, '*.part.pickle'))) < 1: #print("There are no .pickle files in this folder. Skipping ...") continue else: #append name of pickle file path location string to pickle_list pickle_list.append(glob.glob(os.path.join(folder, \ '*.part.pickle'))[0]) if len(pickle_list) < 1: print("\nThere are no partial pickle files to begin again from.") print("\nThe program will start from the beginning") res = "" else: print "\nPlease choose a file to begin again from, or a combination thereof." print "Else hit enter to continue anew" #print combinations of partial pickle files available print '\n0 - All except backups (*~)' print '\n'.join('{} - {}'.format(i + 1, f.split('/')[-2]) for i, f in enumerate(pickle_list)) #change folder_list to pickle_list if this gives problems #res = False#raw_input('\n') res = raw_input('\n') #IF LIST INDEX OUT OF RANGE START PROGRAM ALSO #if beginning again, reset time-series intervals to the where the selected # .part.pickle file left off! if not res: # ======================================== #set output file name as normal # ======================================== time_string = str(time.strftime("%d.%m.%Y") + "-" + time.strftime("%X")) responsefrom = [] if USE_DATALESSPAZ: responsefrom.append('datalesspaz') if USE_STATIONXML: responsefrom.append('xmlresponse') OUTBASENAME_PARTS = [ 'XCORR-STACK', '-'.join(s for s in CROSSCORR_STATIONS_SUBSET) \ if CROSSCORR_STATIONS_SUBSET else None, '{}-{}'.format(FIRSTDAY.strftime("%d.%m.%Y"), LASTDAY.strftime("%d.%m.%Y")), '1bitnorm' if ONEBIT_NORM else None, '+'.join(responsefrom) ] OUTFILESNAME = '_'.join(p for p in OUTBASENAME_PARTS if p) OUTFILESPATH = os.path.join(CROSSCORR_DIR, time_string, OUTFILESNAME) OUTFOLDERS = os.path.join(CROSSCORR_DIR, time_string, 'XCORR_PLOTS') OUT_SNR = os.path.join(CROSSCORR_DIR, time_string, 'SNR_PLOTS') #create unique folder in CROSS output folder named by the present time. if not os.path.exists(OUTFOLDERS):\ os.makedirs(OUTFOLDERS) if not os.path.exists(OUT_SNR):\ os.makedirs(OUT_SNR) # copy configuration file to output so parameters are known for each run OUTCONFIG = os.path.join(CROSSCORR_DIR, time_string, os.path.basename(config_file)) print 'Copying configuration file to output directory ... ' shutil.copy(config_file, OUTCONFIG) METADATA_PATH = '{}metadata.pickle'.format(OUTFILESPATH.\ replace(os.path.basename(OUTFILESPATH), "")) else: # ======================================== #reset time as previous time, reset output paths as previous path name #reset cross-correlation dictionaries # ======================================== print PART_PICKLE = pickle_list[int(res)-1] OUTFILESPATH = PART_PICKLE[:-12] out_basename = os.path.basename(OUTFILESPATH) print "Opening {} partial file for restart ... ".format(out_basename) # re-initialising .part.pickle collection of cross-correlations xc = pscrosscorr.load_pickled_xcorr(PART_PICKLE) for key in xc.keys(): for key2 in xc[key].keys(): #help(xc[key][key2]) #print xc[key][key2].endday a=5 #most recent day last endday of list #read in metadata to find latest time slot. Then assign this to FIRSTDAY METADATA_PATH = '{}metadata.pickle'.format(OUTFILESPATH.\ replace(os.path.basename(OUTFILESPATH), "")) metadata = pscrosscorr.load_pickled_xcorr(METADATA_PATH) #print "metadata: ", metadata[-5:] #re-assign FIRSTDAY variable to where the data was cut off #del metadata[-1] FIRSTDAY = metadata[len(metadata) - 1] #+ \ #dt.timedelta(minutes=XCORR_INTERVAL) # FIND RESTART DATE FROM PARTIAL PICKLE FILE, NOT THE METADATA PICKLE # ============ # Main program # ============ # Reading inventories in dataless seed and/or StationXML files dataless_inventories = [] if USE_DATALESSPAZ: with warnings.catch_warnings(): warnings.simplefilter('ignore') dataless_inventories = psstationSQL.get_dataless_inventories(DATALESS_DIR, verbose=False) xml_inventories = [] if USE_STATIONXML: xml_inventories = psstationSQL.get_stationxml_inventories(STATIONXML_DIR, verbose=False) # Getting list of stations #stations, subdir_len = psstation.get_stations(mseed_dir=MSEED_DIR, # xml_inventories=xml_inventories, # dataless_inventories=dataless_inventories, # startday=FIRSTDAY, # endday=LASTDAY, # verbose=False) #connect SQL database SQL_db = os.path.join(DATABASE_DIR, 'timeline.db') stations, subdir_len = psstationSQL.get_stationsSQL(SQL_db, xml_inventories=xml_inventories, dataless_inventories=dataless_inventories, startday=FIRSTDAY, endday=LASTDAY, verbose=False) stat_coords = np.asarray([station.coord for station in stations]) DECLUSTER = False #if DECLUSTER: # stat_coords = np.asarray([station.coord for station in stations]) # COORDS = Coordinates(input_list=stat_coords) # declustered_coords = COORDS.decluster(degree_dist=0.1) # stations = [station for station in stations if # station.coord in declustered_coords] # Loop on time interval #number of time steps N = int(((LASTDAY - FIRSTDAY).days + 1)*60*24 / XCORR_INTERVAL) dates = [FIRSTDAY + dt.timedelta(minutes=i) for i in \ [j*XCORR_INTERVAL for j in range(N)]] #begin = raw_input("\nPress enter to begin the program ") # initialise preprocess class: METHOD - Bensen et al. (2007) Preprocess = pspreprocess.Preprocess(FREQMIN, FREQMAX, FREQMIN_EARTHQUAKE, FREQMAX_EARTHQUAKE, CORNERS, ZEROPHASE, PERIOD_RESAMPLE, WINDOW_TIME, WINDOW_FREQ, ONEBIT_NORM) #loop on time-series. Date now represents XCORR_INTERVAL long time intervals counter = 0 # loop_time0 = dt.datetime.now() # print "\nProcessing data for date {} with a {} minute cross-correlation\ # time-interval between times: {} and {}".format(date.date(), \ # int(XCORR_INTERVAL) , date.time(), \ # (date + dt.timedelta(minutes=XCORR_INTERVAL)).time()) iterate_stations = sorted(sta for sta in stations) # ===================================================================== # check iterate stations have a file in the SQL database # ===================================================================== # connect the database # conn = lite.connect(SQL_db) # create cursor object # c = conn.cursor() # convert to UTC timestamp to search in SQL database # search_start = (date - dt.timedelta(minutes=1) - epoch).total_seconds() # search_end = (date + dt.timedelta(minutes=XCORR_INTERVAL+1) - epoch).total_seconds() # check if files have data within the time frame search_end-search_start # populated_stations = c.execute('SELECT station FROM file_extrema WHERE \ #starttime <= ? AND endtime >= ?', (search_start, search_end)) # populated_stations = list(it.chain(*list(populated_stations.fetchall()))) # filter stations with no data for the given time period of this loop! # for stat in iterate_stations: # stat_code = unicode('{}.{}.{}'.format(stat.network, # stat.name, # stat.channel)) # if stat_code not in populated_stations: # iterate_stations.remove(stat) # close timeline.db database # conn.close() iterate_stations = iterate_stations[1:] stat_pairs = list(it.combinations(iterate_stations, 2)) for stat_pair in stat_pairs: for station in stat_pair: # ================= # processing traces # ================= # ============================================================= # preparing functions that get one merged trace per station # and pre-process trace, ready to be parallelized (if required) # ============================================================= def get_merged_trace(date): """ Preparing func that returns one trace from selected station, at current date. Function is ready to be parallelized. """ try: trace = Preprocess.get_merged_trace(station=station, date=date, xcorr_interval=XCORR_INTERVAL, skiplocs=CROSSCORR_SKIPLOCS, minfill=MINFILL) #plt.figure() #plt.plot(trace.data) #plt.show() #plt.clf() if total_verbose: msg = 'merged' print '{}.{} [{}] '.format(trace.stats.network, trace.stats.station, msg), errmsg = None except pserrors.CannotPreprocess as err: # cannot preprocess if no trace or daily fill < *minfill* trace = None errmsg = '{}: skipping'.format(err) except Exception as err: # unhandled exception! trace = None errmsg = 'Unhandled error: {}'.format(err) if errmsg: # printing error message if total_verbose: print '{}.{} [{}] '.format(station.network, station.name, errmsg), return trace def preprocessed_trace((trace, response)): """ Preparing func that returns processed trace: processing includes removal of instrumental response, band-pass filtering, demeaning, detrending, downsampling, time-normalization and spectral whitening (see pscrosscorr.preprocess_trace()'s doc) Function is ready to be parallelized. """ if not trace or response is False: return try: Preprocess.preprocess_trace(trace=trace, paz=response, verbose=True) msg = 'ok' if total_verbose: print '{}.{} [{}] '.format(trace.stats.network, trace.stats.station, msg), except pserrors.CannotPreprocess as err: # cannot preprocess if no instrument response was found, # trace data are not consistent etc. (see function's doc) trace = None print(err) print 'skipping' except Exception as err: # unhandled exception! trace = None print(err) print 'skipping' # printing output (error or ok) message # although processing is performed in-place, trace is returned # in order to get it back after multi-processing return trace # ==================================== # getting one merged trace per station # ==================================== merge_t0 = dt.datetime.now() print '\nMerging traces ... ' if MULTIPROCESSING['merge trace']: # multiprocessing turned on: one process per station pool = mp.Pool(None) traces = pool.map(get_merged_trace, dates) pool.close() pool.join() else: # multiprocessing turned off: processing stations one after another traces = [get_merged_trace(date) for date in dates] # ===================================================== # getting or attaching instrumental response # (parallelization is difficult because of inventories) # ===================================================== print "traces: ", traces responses = [] for tr in traces: if not tr: responses.append(None) continue # responses elements can be (1) dict of PAZ if response found in # dataless inventory, (2) None if response found in StationXML # inventory (directly attached to trace) or (3) False if no # response found if RESP_REMOVE: try: response = Preprocess.get_or_attach_response( trace=tr, dataless_inventories=dataless_inventories, xml_inventories=xml_inventories) errmsg = None except pserrors.CannotPreprocess as err: # response not found response = False errmsg = '{}: skipping'.format(err) except Exception as err: # unhandled exception! response = False errmsg = 'Unhandled error: {}'.format(err) responses.append(response) if errmsg: # printing error message if total_verbose: print '{}.{} [{}] '.format(tr.stats.network, tr.stats.station, errmsg), else: responses.append(None) print '\nTraces merged and responses removed in {:.1f} seconds'\ .format((dt.datetime.now() - merge_t0).total_seconds()) # ================= # processing traces # ================= print '\nPre-processing traces ... ' t0 = dt.datetime.now() # must have more than one trace for cross-correlations! traces = np.array(traces) traces_check = traces[traces != np.array(None)] if len(traces_check) > 1: if MULTIPROCESSING['process trace']: # multiprocessing turned on: one process per station pool = mp.Pool(NB_PROCESSES) traces = pool.map(preprocessed_trace, zip(traces, responses)) pool.close() pool.join() else: # multiprocessing turned off: processing stations one after another try: traces = [preprocessed_trace((tr, resp)) for tr, resp in zip(traces, responses)] except: continue # setting up dict of current date's traces, {station: trace} tracedict = {s.name: trace for s, trace in zip(iterate_stations, traces) if trace} pairs = list(it.combinations(sorted(tracedict.items()), 2)) print pairs
gpl-3.0
sserrot/champion_relationships
venv/Lib/site-packages/IPython/testing/iptest.py
1
16957
# -*- coding: utf-8 -*- """IPython Test Suite Runner. This module provides a main entry point to a user script to test IPython itself from the command line. There are two ways of running this script: 1. With the syntax `iptest all`. This runs our entire test suite by calling this script (with different arguments) recursively. This causes modules and package to be tested in different processes, using nose or trial where appropriate. 2. With the regular nose syntax, like `iptest IPython -- -vvs`. In this form the script simply calls nose, but with special command line flags and plugins loaded. Options after `--` are passed to nose. """ # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import glob from io import BytesIO import os import os.path as path import sys from threading import Thread, Lock, Event import warnings import nose.plugins.builtin from nose.plugins.xunit import Xunit from nose import SkipTest from nose.core import TestProgram from nose.plugins import Plugin from nose.util import safe_str from IPython import version_info from IPython.utils.py3compat import decode from IPython.utils.importstring import import_item from IPython.testing.plugin.ipdoctest import IPythonDoctest from IPython.external.decorators import KnownFailure, knownfailureif pjoin = path.join # Enable printing all warnings raise by IPython's modules warnings.filterwarnings('ignore', message='.*Matplotlib is building the font cache.*', category=UserWarning, module='.*') warnings.filterwarnings('error', message='.*', category=ResourceWarning, module='.*') warnings.filterwarnings('error', message=".*{'config': True}.*", category=DeprecationWarning, module='IPy.*') warnings.filterwarnings('default', message='.*', category=Warning, module='IPy.*') warnings.filterwarnings('error', message='.*apply_wrapper.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*make_label_dec', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*decorated_dummy.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*skip_file_no_x11.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*onlyif_any_cmd_exists.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*disable_gui.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*ExceptionColors global is deprecated.*', category=DeprecationWarning, module='.*') # Jedi older versions warnings.filterwarnings( 'error', message='.*elementwise != comparison failed and.*', category=FutureWarning, module='.*') if version_info < (6,): # nose.tools renames all things from `camelCase` to `snake_case` which raise an # warning with the runner they also import from standard import library. (as of Dec 2015) # Ignore, let's revisit that in a couple of years for IPython 6. warnings.filterwarnings( 'ignore', message='.*Please use assertEqual instead', category=Warning, module='IPython.*') if version_info < (8,): warnings.filterwarnings('ignore', message='.*Completer.complete.*', category=PendingDeprecationWarning, module='.*') else: warnings.warn( 'Completer.complete was pending deprecation and should be changed to Deprecated', FutureWarning) # ------------------------------------------------------------------------------ # Monkeypatch Xunit to count known failures as skipped. # ------------------------------------------------------------------------------ def monkeypatch_xunit(): try: dec.knownfailureif(True)(lambda: None)() except Exception as e: KnownFailureTest = type(e) def addError(self, test, err, capt=None): if issubclass(err[0], KnownFailureTest): err = (SkipTest,) + err[1:] return self.orig_addError(test, err, capt) Xunit.orig_addError = Xunit.addError Xunit.addError = addError #----------------------------------------------------------------------------- # Check which dependencies are installed and greater than minimum version. #----------------------------------------------------------------------------- def extract_version(mod): return mod.__version__ def test_for(item, min_version=None, callback=extract_version): """Test to see if item is importable, and optionally check against a minimum version. If min_version is given, the default behavior is to check against the `__version__` attribute of the item, but specifying `callback` allows you to extract the value you are interested in. e.g:: In [1]: import sys In [2]: from IPython.testing.iptest import test_for In [3]: test_for('sys', (2,6), callback=lambda sys: sys.version_info) Out[3]: True """ try: check = import_item(item) except (ImportError, RuntimeError): # GTK reports Runtime error if it can't be initialized even if it's # importable. return False else: if min_version: if callback: # extra processing step to get version to compare check = callback(check) return check >= min_version else: return True # Global dict where we can store information on what we have and what we don't # have available at test run time have = {'matplotlib': test_for('matplotlib'), 'pygments': test_for('pygments'), 'sqlite3': test_for('sqlite3')} #----------------------------------------------------------------------------- # Test suite definitions #----------------------------------------------------------------------------- test_group_names = ['core', 'extensions', 'lib', 'terminal', 'testing', 'utils', ] class TestSection(object): def __init__(self, name, includes): self.name = name self.includes = includes self.excludes = [] self.dependencies = [] self.enabled = True def exclude(self, module): if not module.startswith('IPython'): module = self.includes[0] + "." + module self.excludes.append(module.replace('.', os.sep)) def requires(self, *packages): self.dependencies.extend(packages) @property def will_run(self): return self.enabled and all(have[p] for p in self.dependencies) # Name -> (include, exclude, dependencies_met) test_sections = {n:TestSection(n, ['IPython.%s' % n]) for n in test_group_names} # Exclusions and dependencies # --------------------------- # core: sec = test_sections['core'] if not have['sqlite3']: sec.exclude('tests.test_history') sec.exclude('history') if not have['matplotlib']: sec.exclude('pylabtools'), sec.exclude('tests.test_pylabtools') # lib: sec = test_sections['lib'] sec.exclude('kernel') if not have['pygments']: sec.exclude('tests.test_lexers') # We do this unconditionally, so that the test suite doesn't import # gtk, changing the default encoding and masking some unicode bugs. sec.exclude('inputhookgtk') # We also do this unconditionally, because wx can interfere with Unix signals. # There are currently no tests for it anyway. sec.exclude('inputhookwx') # Testing inputhook will need a lot of thought, to figure out # how to have tests that don't lock up with the gui event # loops in the picture sec.exclude('inputhook') # testing: sec = test_sections['testing'] # These have to be skipped on win32 because they use echo, rm, cd, etc. # See ticket https://github.com/ipython/ipython/issues/87 if sys.platform == 'win32': sec.exclude('plugin.test_exampleip') sec.exclude('plugin.dtexample') # don't run jupyter_console tests found via shim test_sections['terminal'].exclude('console') # extensions: sec = test_sections['extensions'] # This is deprecated in favour of rpy2 sec.exclude('rmagic') # autoreload does some strange stuff, so move it to its own test section sec.exclude('autoreload') sec.exclude('tests.test_autoreload') test_sections['autoreload'] = TestSection('autoreload', ['IPython.extensions.autoreload', 'IPython.extensions.tests.test_autoreload']) test_group_names.append('autoreload') #----------------------------------------------------------------------------- # Functions and classes #----------------------------------------------------------------------------- def check_exclusions_exist(): from IPython.paths import get_ipython_package_dir from warnings import warn parent = os.path.dirname(get_ipython_package_dir()) for sec in test_sections: for pattern in sec.exclusions: fullpath = pjoin(parent, pattern) if not os.path.exists(fullpath) and not glob.glob(fullpath + '.*'): warn("Excluding nonexistent file: %r" % pattern) class ExclusionPlugin(Plugin): """A nose plugin to effect our exclusions of files and directories. """ name = 'exclusions' score = 3000 # Should come before any other plugins def __init__(self, exclude_patterns=None): """ Parameters ---------- exclude_patterns : sequence of strings, optional Filenames containing these patterns (as raw strings, not as regular expressions) are excluded from the tests. """ self.exclude_patterns = exclude_patterns or [] super(ExclusionPlugin, self).__init__() def options(self, parser, env=os.environ): Plugin.options(self, parser, env) def configure(self, options, config): Plugin.configure(self, options, config) # Override nose trying to disable plugin. self.enabled = True def wantFile(self, filename): """Return whether the given filename should be scanned for tests. """ if any(pat in filename for pat in self.exclude_patterns): return False return None def wantDirectory(self, directory): """Return whether the given directory should be scanned for tests. """ if any(pat in directory for pat in self.exclude_patterns): return False return None class StreamCapturer(Thread): daemon = True # Don't hang if main thread crashes started = False def __init__(self, echo=False): super(StreamCapturer, self).__init__() self.echo = echo self.streams = [] self.buffer = BytesIO() self.readfd, self.writefd = os.pipe() self.buffer_lock = Lock() self.stop = Event() def run(self): self.started = True while not self.stop.is_set(): chunk = os.read(self.readfd, 1024) with self.buffer_lock: self.buffer.write(chunk) if self.echo: sys.stdout.write(decode(chunk)) os.close(self.readfd) os.close(self.writefd) def reset_buffer(self): with self.buffer_lock: self.buffer.truncate(0) self.buffer.seek(0) def get_buffer(self): with self.buffer_lock: return self.buffer.getvalue() def ensure_started(self): if not self.started: self.start() def halt(self): """Safely stop the thread.""" if not self.started: return self.stop.set() os.write(self.writefd, b'\0') # Ensure we're not locked in a read() self.join() class SubprocessStreamCapturePlugin(Plugin): name='subprocstreams' def __init__(self): Plugin.__init__(self) self.stream_capturer = StreamCapturer() self.destination = os.environ.get('IPTEST_SUBPROC_STREAMS', 'capture') # This is ugly, but distant parts of the test machinery need to be able # to redirect streams, so we make the object globally accessible. nose.iptest_stdstreams_fileno = self.get_write_fileno def get_write_fileno(self): if self.destination == 'capture': self.stream_capturer.ensure_started() return self.stream_capturer.writefd elif self.destination == 'discard': return os.open(os.devnull, os.O_WRONLY) else: return sys.__stdout__.fileno() def configure(self, options, config): Plugin.configure(self, options, config) # Override nose trying to disable plugin. if self.destination == 'capture': self.enabled = True def startTest(self, test): # Reset log capture self.stream_capturer.reset_buffer() def formatFailure(self, test, err): # Show output ec, ev, tb = err captured = self.stream_capturer.get_buffer().decode('utf-8', 'replace') if captured.strip(): ev = safe_str(ev) out = [ev, '>> begin captured subprocess output <<', captured, '>> end captured subprocess output <<'] return ec, '\n'.join(out), tb return err formatError = formatFailure def finalize(self, result): self.stream_capturer.halt() def run_iptest(): """Run the IPython test suite using nose. This function is called when this script is **not** called with the form `iptest all`. It simply calls nose with appropriate command line flags and accepts all of the standard nose arguments. """ # Apply our monkeypatch to Xunit if '--with-xunit' in sys.argv and not hasattr(Xunit, 'orig_addError'): monkeypatch_xunit() arg1 = sys.argv[1] if arg1.startswith('IPython/'): if arg1.endswith('.py'): arg1 = arg1[:-3] sys.argv[1] = arg1.replace('/', '.') arg1 = sys.argv[1] if arg1 in test_sections: section = test_sections[arg1] sys.argv[1:2] = section.includes elif arg1.startswith('IPython.') and arg1[8:] in test_sections: section = test_sections[arg1[8:]] sys.argv[1:2] = section.includes else: section = TestSection(arg1, includes=[arg1]) argv = sys.argv + [ '--detailed-errors', # extra info in tracebacks # We add --exe because of setuptools' imbecility (it # blindly does chmod +x on ALL files). Nose does the # right thing and it tries to avoid executables, # setuptools unfortunately forces our hand here. This # has been discussed on the distutils list and the # setuptools devs refuse to fix this problem! '--exe', ] if '-a' not in argv and '-A' not in argv: argv = argv + ['-a', '!crash'] if nose.__version__ >= '0.11': # I don't fully understand why we need this one, but depending on what # directory the test suite is run from, if we don't give it, 0 tests # get run. Specifically, if the test suite is run from the source dir # with an argument (like 'iptest.py IPython.core', 0 tests are run, # even if the same call done in this directory works fine). It appears # that if the requested package is in the current dir, nose bails early # by default. Since it's otherwise harmless, leave it in by default # for nose >= 0.11, though unfortunately nose 0.10 doesn't support it. argv.append('--traverse-namespace') plugins = [ ExclusionPlugin(section.excludes), KnownFailure(), SubprocessStreamCapturePlugin() ] # we still have some vestigial doctests in core if (section.name.startswith(('core', 'IPython.core', 'IPython.utils'))): plugins.append(IPythonDoctest()) argv.extend([ '--with-ipdoctest', '--ipdoctest-tests', '--ipdoctest-extension=txt', ]) # Use working directory set by parent process (see iptestcontroller) if 'IPTEST_WORKING_DIR' in os.environ: os.chdir(os.environ['IPTEST_WORKING_DIR']) # We need a global ipython running in this process, but the special # in-process group spawns its own IPython kernels, so for *that* group we # must avoid also opening the global one (otherwise there's a conflict of # singletons). Ultimately the solution to this problem is to refactor our # assumptions about what needs to be a singleton and what doesn't (app # objects should, individual shells shouldn't). But for now, this # workaround allows the test suite for the inprocess module to complete. if 'kernel.inprocess' not in section.name: from IPython.testing import globalipapp globalipapp.start_ipython() # Now nose can run TestProgram(argv=argv, addplugins=plugins) if __name__ == '__main__': run_iptest()
mit
jjcc/trading-with-python
lib/bats.py
78
3458
#------------------------------------------------------------------------------- # Name: BATS # Purpose: get data from BATS exchange # # Author: jev # # Created: 17/08/2013 # Copyright: (c) Jev Kuznetsov 2013 # Licence: BSD #------------------------------------------------------------------------------- import urllib import re import pandas as pd import datetime as dt import zipfile import StringIO from extra import ProgressBar import os import yahooFinance as yf from string import Template import numpy as np def fileName2date( fName): '''convert filename to date''' name = os.path.splitext(fName)[0] m = re.findall('\d+',name)[0] return dt.datetime.strptime(m,'%Y%m%d').date() def date2fileName(date): return 'BATSshvol%s.txt.zip' % date.strftime('%Y%m%d') def downloadUrl(date): s = Template('http://www.batstrading.com/market_data/shortsales/$year/$month/$fName-dl?mkt=bzx') url = s.substitute(fName=date2fileName(date), year=date.year, month='%02d' % date.month) return url class BATS_Data(object): def __init__(self, dataDir): ''' create class. dataDir: directory to which files are downloaded ''' self.dataDir = dataDir self.shortRatio = None self._checkDates() def _checkDates(self): ''' update list of available dataset dates''' self.dates = [] for fName in os.listdir(self.dataDir): self.dates.append(fileName2date(fName)) def _missingDates(self): ''' check for missing dates based on spy data''' print 'Getting yahoo data to determine business dates... ', spy = yf.getHistoricData('SPY',sDate = (2010,1,1)) busDates = [d.date() for d in spy.index ] print 'Date range: ', busDates[0] ,'-', busDates[-1] missing = [] for d in busDates: if d not in self.dates: missing.append(d) return missing def updateDb(self): print 'Updating database' missing = self._missingDates() for i, date in enumerate(missing): source = downloadUrl(date) dest = os.path.join(self.dataDir,date2fileName(date)) if not os.path.exists(dest): print 'Downloading [%i/%i]' %(i,len(missing)), source urllib.urlretrieve(source, dest) else: print 'x', print 'Update done.' self._checkDates() def loadDate(self,date): fName = os.path.join(self.dataDir, date2fileName(date)) zipped = zipfile.ZipFile(fName) # open zip file lines = zipped.read(zipped.namelist()[0]) # read first file from to lines buf = StringIO.StringIO(lines) # create buffer df = pd.read_csv(buf,sep='|',index_col=1,parse_dates=False,dtype={'Date':object,'Short Volume':np.float32,'Total Volume':np.float32}) s = df['Short Volume']/df['Total Volume'] s.name = dt.datetime.strptime(df['Date'][-1],'%Y%m%d') return s def loadData(self): ''' load data from zip files ''' data = [] pb = ProgressBar(len(self.dates)-1) for idx, date in enumerate(self.dates): data.append(self.loadDate(date)) pb.animate(idx) self.shortRatio = pd.DataFrame(data) return self.shortRatio
bsd-3-clause
virneo/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_gtkcairo.py
69
2207
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print 'backend_gtkcairo.%s()' % fn_name() FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGTKCairo(thisFig) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.ctx = pixmap.cairo_create() self.ctx.save() # restore, save - when call new_gc() else: def set_pixmap (self, pixmap): self.ctx = cairo.gtk.gdk_cairo_create (pixmap) self.ctx.save() # restore, save - when call new_gc() class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbar (canvas, self.window) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig)
agpl-3.0
Alex-Ian-Hamilton/solarbextrapolation
solarbextrapolation/example_data_generator.py
3
7504
# -*- coding: utf-8 -*- """ Created on Mon Jul 27 15:38:51 2015 Function for creating dummy boundary map datas for use with extrapolator routines. @author: alex_ """ import numpy as np import math import matplotlib.pyplot as plt import random import sunpy.map as mp import re from astropy import units as u from datetime import datetime # Function to generate the grid with Gaussian points. # Arguments are: # - in_arr_area: 2 tuple for the x and y dimensions. # - *argv: manual parameters for all the spots. Optional: defaults to 2 random spots. def generate_example_data(shape, xrange, yrange, *argv): """ A function to generate a 2D numpy.array of example data for testing extrapolation code. The result is a mid-value region with a number of gausian spots with positive/negative values. The gausians can be specifially defined, or randomly generated. Parameters ---------- shape : list A list of the axis grid sizes, (nx,ny). xrange : astropy.units.Quantity The xrange for the returned dataset. yrange : astropy.units.Quantity The yrange for the returned dataset. *argv : int or list, optional Either given the integer number of the number of poles to randomly generate, which defaults to 2. Otherwise, the user can put in lists of parameters that define a pole. Each list contains: position : astropy.units.Quantity both x and y coordinates as physical or percentage units sigma : astropy.units.Quantity spot size as physical or percentage units max : astropy.units.Quantity the maximum spot intensity """ # If the list is empty then create random data. arr_args = [] if not argv: # If no particle parameters or numbers were given. arr_args = [2] # [ random.randrange(1, 6) ] else: arr_args = list(argv) arr_poles = [] # If we are only given the number, then generate randomly. if isinstance( arr_args[0], ( int, long ) ): for pole in range(0, arr_args[0]): # random parameters in percentage sigma = random.uniform(2, 15) * u.percent x_pos = random.uniform(2.0 * sigma.value, 100.0 - 2.0 * sigma.value) y_pos = random.uniform(2.0 * sigma.value, 100.0 - 2.0 * sigma.value) An_max = random.uniform(0.1, 0.2) * ((float(pole % 2) * 2.0) - 1) * u.T # Alternate pos/neg arrPole = [ u.Quantity([x_pos, y_pos] * u.percent), sigma, An_max ] arr_poles.append(arrPole) else: # We are given the hard-coded parameters, so use them. arr_poles = arr_args # Build the empty data array arr_data = np.zeros((shape[1], shape[0])) # Grid pixel shape qua_pixel = u.Quantity([ ( xrange[1] - xrange[0] ) / shape[0], ( yrange[1] - yrange[0] ) / shape[1] ]) # Convert percentage positions/sigmas to physical units (units from ranges) for pole in range(0, len(arr_poles)): if arr_poles[pole][0].unit is u.percent: position = u.Quantity([ (arr_poles[pole][0][0].value / 100.0) * (xrange[1] - xrange[0]) + xrange[0], (arr_poles[pole][0][1].value / 100.0) * (yrange[1] - yrange[0]) + yrange[0] ]) arr_poles[pole] = [ position, arr_poles[pole][1], arr_poles[pole][2] ] if arr_poles[pole][1].unit is u.percent: sigma = (arr_poles[pole][1].value / 100.0) * (xrange[1] - xrange[0]) arr_poles[pole] = [ arr_poles[pole][0], sigma, arr_poles[pole][2] ] # Iterate through the 2D array/matrix. for i in range(0,shape[0]): # Row/Y for j in range(0,shape[1]): # Column/X # The current position floXPrime = i * qua_pixel[0] floYPrime = j * qua_pixel[1] # A variable to store the sum of the magnetic fields for this point. flo_value = 0.0 # Add all the contributions. for tupPole in arr_poles: # A0 (positive) and A1 (negative) parameters An_max = tupPole[2].value An_x = tupPole[0][0] An_y = tupPole[0][1] An_Dx = floXPrime - An_x + xrange[0] An_Dy = floYPrime - An_y + yrange[0] An_DxSqu = np.power(An_Dx.value, 2.0) An_DySqu = np.power(An_Dy.value, 2.0) An_Sigma = tupPole[1].value # So this contibution is calculated and added. flo_An_cont = An_max * math.exp( - ( (An_DxSqu + An_DySqu) / (2 * np.power(An_Sigma, 2.0)) )) flo_value += flo_An_cont # Now add this to the data array. arr_data[j][i] = flo_value # Now return the 2D numpy array. return arr_data # A function that creates a dummy header and saves the input as a fits file. def dummyDataToMap(data, xrange, yrange, **kwargs): """ Basic function for taking generated data and returning a valid sunpy.map. """ # The kwargs dic_user_def_meta = kwargs.get('meta', {}) # Create a header dictionary. dicHeader = { 't_obs': datetime.now().isoformat(), 'bunit': 'Tesla', #'Gauss', 'bitpix': 64, #re.search('\\d+', 'float64')[0],#64, # Automatic 'naxis': 2, # Automatic 'naxis1': data.shape[1], # Automatic 'naxis2': data.shape[0], # Automatic 'cdelt1': (xrange[1].value - xrange[0].value) / data.shape[1], # 0.504295, 'cdelt2': (yrange[1].value - yrange[0].value) / data.shape[0], 'cunit1': str(xrange.unit), #'arcsec', 'cunit2': str(yrange.unit), #'arcsec', 'crpix1': data.shape[1] / 2.0 + 0.5, # central x-pixel. 'crpix2': data.shape[0] / 2.0 + 0.5, # cnetral y-pixel. 'rsun_ref': 696000000, 'dsun_ref': 149597870691, 'datamax': data.max(), 'datamin': data.min(), 'datavals': data.shape[0] * data.shape[1], 'CRVAL1': (xrange[0].value + xrange[1].value)/2.0, #0.000000, 'CRVAL2': (yrange[0].value + yrange[1].value)/2.0 } # Add the user defined meta entries for key, value in dic_user_def_meta.iteritems(): dicHeader[key] = value #print str(key) + ': ' + str(value) # Create and return a sunpy map from the data return mp.Map((data, dicHeader)) if __name__ == '__main__': # Generate an example map # The input parameters: arr_grid_shape = [ 20, 22 ] # [ y-size, x-size ] qua_xrange = u.Quantity([ -10.0, 10.0 ] * u.arcsec) qua_yrange = u.Quantity([ -11.0, 11.0 ] * u.arcsec) # Manual Pole Details #arrA0 = [ u.Quantity([ 1.0, 1.0 ] * u.arcsec), 2.0 * u.arcsec, 0.2 * u.T ] arrA0 = [ u.Quantity([ 25, 25 ] * u.percent), 10.0 * u.percent, 0.2 * u.T ] arrA1 = [ u.Quantity([ 75, 75 ] * u.percent), 10.0 * u.percent, -0.2 * u.T ] # Generate the data and save to a map arr_Data = generate_example_data(arr_grid_shape, qua_xrange, qua_yrange, arrA0, arrA1)#, arrA0, arrA1) #arr_Data = generate_example_data(arr_grid_shape, qua_xrange, qua_yrange)#, arrA0, arrA1) aMap = dummyDataToMap(arr_Data, qua_xrange, qua_yrange) aMap.save('C://fits//temp6.fits')
mit
alanmarazzi/mepcheck
tests/test_package.py
1
1374
import pytest from mepcheck import EUvotes, get_meps from mepcheck.savemeps import save_meps import requests from bs4 import BeautifulSoup import pickle import os from datetime import date, timedelta import json import pandas as pd def test_save_meps(): save_meps() assert os.path.isfile(os.path.expanduser("~/.meps")) def test_EUvotes(): eu = EUvotes(1, limit=10) assert eu.limit == 10 def test_mep_name(): assert EUvotes(1, limit=1).name == EUvotes(1, limit=1)._mep_name(1) def test_get_votes(): assert len(EUvotes(1, limit=10).absent) == 10 def test_to_date(): assert isinstance(EUvotes(1, limit=1)._to_date("2017-01-01"), date) def test_last_vote_period(): votes = EUvotes(1, limit=1) dates = [date.today(), date.today() - timedelta(weeks=1), date.today() - timedelta(weeks=4), date.today() - timedelta(weeks=52)] assert votes._last_vote_period(dates) == [ "This week", "This month", "More than one month", "More than one month" ] def test_change_limit(): lim = EUvotes(1, 1) lim_before = lim.limit lim.change_limit(5) assert lim_before != lim.limit def test_data_(): data = EUvotes(1, 2) assert isinstance(data.data_("json"), str) and isinstance(data.data_("list"), list) and isinstance(data.data_("df"), pd.DataFrame)
mit
waterponey/scikit-learn
doc/sphinxext/sphinx_gallery/notebook.py
14
4867
# -*- coding: utf-8 -*- r""" ============================ Parser for Jupyter notebooks ============================ Class that holds the Jupyter notebook information """ # Author: Óscar Nájera # License: 3-clause BSD from __future__ import division, absolute_import, print_function from functools import partial import json import os import re import sys def ipy_notebook_skeleton(): """Returns a dictionary with the elements of a Jupyter notebook""" py_version = sys.version_info notebook_skeleton = { "cells": [], "metadata": { "kernelspec": { "display_name": "Python " + str(py_version[0]), "language": "python", "name": "python" + str(py_version[0]) }, "language_info": { "codemirror_mode": { "name": "ipython", "version": py_version[0] }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython" + str(py_version[0]), "version": '{0}.{1}.{2}'.format(*sys.version_info[:3]) } }, "nbformat": 4, "nbformat_minor": 0 } return notebook_skeleton def directive_fun(match, directive): """Helper to fill in directives""" directive_to_alert = dict(note="info", warning="danger") return ('<div class="alert alert-{0}"><h4>{1}</h4><p>{2}</p></div>' .format(directive_to_alert[directive], directive.capitalize(), match.group(1).strip())) def rst2md(text): """Converts the RST text from the examples docstrigs and comments into markdown text for the Jupyter notebooks""" top_heading = re.compile(r'^=+$\s^([\w\s-]+)^=+$', flags=re.M) text = re.sub(top_heading, r'# \1', text) math_eq = re.compile(r'^\.\. math::((?:.+)?(?:\n+^ .+)*)', flags=re.M) text = re.sub(math_eq, lambda match: r'\begin{{align}}{0}\end{{align}}'.format( match.group(1).strip()), text) inline_math = re.compile(r':math:`(.+?)`', re.DOTALL) text = re.sub(inline_math, r'$\1$', text) directives = ('warning', 'note') for directive in directives: directive_re = re.compile(r'^\.\. %s::((?:.+)?(?:\n+^ .+)*)' % directive, flags=re.M) text = re.sub(directive_re, partial(directive_fun, directive=directive), text) links = re.compile(r'^ *\.\. _.*:.*$\n', flags=re.M) text = re.sub(links, '', text) refs = re.compile(r':ref:`') text = re.sub(refs, '`', text) contents = re.compile(r'^\s*\.\. contents::.*$(\n +:\S+: *$)*\n', flags=re.M) text = re.sub(contents, '', text) images = re.compile( r'^\.\. image::(.*$)(?:\n *:alt:(.*$)\n)?(?: +:\S+:.*$\n)*', flags=re.M) text = re.sub( images, lambda match: '![{1}]({0})\n'.format( match.group(1).strip(), (match.group(2) or '').strip()), text) return text class Notebook(object): """Jupyter notebook object Constructs the file cell-by-cell and writes it at the end""" def __init__(self, file_name, target_dir): """Declare the skeleton of the notebook Parameters ---------- file_name : str original script file name, .py extension will be renamed target_dir: str directory where notebook file is to be saved """ self.file_name = file_name.replace('.py', '.ipynb') self.write_file = os.path.join(target_dir, self.file_name) self.work_notebook = ipy_notebook_skeleton() self.add_code_cell("%matplotlib inline") def add_code_cell(self, code): """Add a code cell to the notebook Parameters ---------- code : str Cell content """ code_cell = { "cell_type": "code", "execution_count": None, "metadata": {"collapsed": False}, "outputs": [], "source": [code.strip()] } self.work_notebook["cells"].append(code_cell) def add_markdown_cell(self, text): """Add a markdown cell to the notebook Parameters ---------- code : str Cell content """ markdown_cell = { "cell_type": "markdown", "metadata": {}, "source": [rst2md(text)] } self.work_notebook["cells"].append(markdown_cell) def save_file(self): """Saves the notebook to a file""" with open(self.write_file, 'w') as out_nb: json.dump(self.work_notebook, out_nb, indent=2)
bsd-3-clause
hainm/statsmodels
statsmodels/datasets/strikes/data.py
25
1951
#! /usr/bin/env python """U.S. Strike Duration Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain.""" TITLE = __doc__ SOURCE = """ This is a subset of the data used in Kennan (1985). It was originally published by the Bureau of Labor Statistics. :: Kennan, J. 1985. "The duration of contract strikes in US manufacturing. `Journal of Econometrics` 28.1, 5-28. """ DESCRSHORT = """Contains data on the length of strikes in US manufacturing and unanticipated industrial production.""" DESCRLONG = """Contains data on the length of strikes in US manufacturing and unanticipated industrial production. The data is a subset of the data originally used by Kennan. The data here is data for the months of June only to avoid seasonal issues.""" #suggested notes NOTE = """:: Number of observations - 62 Number of variables - 2 Variable name definitions:: duration - duration of the strike in days iprod - unanticipated industrial production """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the strikes data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """ Load the strikes data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/strikes.csv', 'rb'), delimiter=",", names=True, dtype=float) return data
bsd-3-clause
mkness/TheCannon
code/makeplots_talks/makeplot_fits_self_cluster_1.py
1
5646
#!/usr/bin/python import scipy import numpy import pickle from numpy import * from scipy import ndimage from scipy import interpolate from numpy import loadtxt import os import numpy as np from numpy import * import matplotlib from pylab import rcParams from pylab import * from matplotlib import pyplot import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.pyplot import axes from matplotlib.pyplot import colorbar #from matplotlib.ticker import NullFormatter from matplotlib.ticker import MultipleLocator, FormatStrFormatter s = matplotlib.font_manager.FontProperties() s.set_family('serif') s.set_size(14) from matplotlib import rc rc('text', usetex=False) rc('font', family='serif') def plotfits(): file_in = "self_tags.pickle" file_in2 = open(file_in, 'r') params, icovs_params = pickle.load(file_in2) params = array(params) file_in2.close() filein2 = 'starsin_test2.txt' # this is for self test this is dangerous - need to implement the same logg cut here, this is original data values or otherwise metadata filein2 = 'starsin_new_all_ordered.txt' # this is for self test this is dangerous - need to implement the same logg cut here, this is original data values or otherwise metadata filein2 = 'test4_selfg.txt' # this is for self test this is dangerous - need to implement the same logg cut here, this is original data values or otherwise metadata a = open(filein2) al = a.readlines() names = [] for each in al: names.append(each.split()[1]) unames = unique(names) starind = arange(0,len(names), 1) name_ind = [] names = array(names) for each in unames: takeit = each == names name_ind.append(np.int(starind[takeit][-1]+1. ) ) cluster_ind = [0] + list(sort(name_ind))# + [len(al)] plot_markers = ['ko', 'yo', 'ro', 'bo', 'co','k*', 'y*', 'r*', 'b*', 'c*', 'ks', 'rs', 'bs', 'cs', 'rd', 'kd', 'bd', 'cd', 'mo', 'ms' ] #plot_markers = ['k', 'y', 'r', 'b', 'c','k', 'y', 'r', 'b', 'c', 'k', 'r', 'b', 'c', 'r', 'k', 'b', 'c', 'm', 'm' ] #cv_ind = np.arange(395,469,1) #a = open(filein2) #al = a.readlines() #bl = [] #for each in al: # bl.append(each.strip()) #bl = np.delete(bl, [cv_ind], axis = 0) #savetxt("starsin_cut.txt", bl, fmt = "%s") #filein3 = 'starsin_cut.txt' t,g,feh,t_err,feh_err = loadtxt(filein2, usecols = (4,6,8,16,17), unpack =1) g_err = [0]*len(g) g_err = array(g_err) params = array(params) covs_params = np.linalg.inv(icovs_params) rcParams['figure.figsize'] = 12.0, 10.0 fig, temp = pyplot.subplots(3,1, sharex=False, sharey=False) ax1 = temp[0] ax2 = temp[1] ax3 = temp[2] params_labels = [params[:,0], params[:,1], params[:,2] , covs_params[:,0,0]**0.5, covs_params[:,1,1]**0.5, covs_params[:,2,2]**0.5 ] cval = ['k', 'b', 'r'] input_ASPCAP = [t, g, feh, t_err, g_err, feh_err] listit_1 = [0,1,2] listit_2 = [1,0,0] axs = [ax1,ax2,ax3] labels = ["ASPCAP log g", "ASPCAP Teff", "ASPCAP Teff"] for i in range(0,len(cluster_ind)-1): indc1 = cluster_ind[i] indc2 = cluster_ind[i+1] for ax, num,num2,label1,x1,y1 in zip(axs, listit_1,listit_2,labels, [4800,3.0,0.3], [3400,1,-1.5]): pick = logical_and(g[indc1:indc2] > 0, logical_and(t_err[indc1:indc2] < 300, feh[indc1:indc2] > -4.0) ) cind = array(input_ASPCAP[1][indc1:indc2][pick]) cind = array(input_ASPCAP[num2][indc1:indc2][pick]).flatten() ax.plot(input_ASPCAP[num][indc1:indc2][pick], params_labels[num][indc1:indc2][pick], plot_markers[i]) #ax.errorbar(input_ASPCAP[num][indc1:indc2][pick], params_labels[num][indc1:indc2][pick],yerr= params_labels[num+3][indc1:indc2][pick],marker='',ls='',zorder=0, fmt = None,elinewidth = 1,capsize = 0) #ax.errorbar(input_ASPCAP[num][indc1:indc2][pick], params_labels[num][indc1:indc2][pick],xerr=input_ASPCAP[num+3][indc1:indc2][pick],marker='',ls='',zorder=0, fmt = None,elinewidth = 1,capsize = 0) ax.text(x1,y1,"y-axis, $<\sigma>$ = "+str(round(mean(params_labels[num+3][pick]),2)),fontsize = 14) ax1.plot([0,6000], [0,6000], linewidth = 1.5, color = 'k' ) ax2.plot([0,5], [0,5], linewidth = 1.5, color = 'k' ) ax3.plot([-3,2], [-3,2], linewidth = 1.5, color = 'k' ) ax1.set_xlim(3500, 5500) ax2.set_xlim(0, 5) ax3.set_xlim(-3, 2) ax1.set_xlabel("ASPCAP Teff, [K]", fontsize = 14,labelpad = 5) ax1.set_ylabel("NHR+ Teff, [K]", fontsize = 14,labelpad = 5) ax2.set_xlabel("ASPCAP logg, [dex]", fontsize = 14,labelpad = 5) ax2.set_ylabel("NHR+ logg, [dex]", fontsize = 14,labelpad = 5) ax3.set_xlabel("ASPCAP [Fe/H], [dex]", fontsize = 14,labelpad = 5) ax3.set_ylabel("NHR+ [Fe/H], [dex]", fontsize = 14,labelpad = 5) ax1.set_ylim(1000,6000) ax1.set_ylim(3000,5500) ax2.set_ylim(-3,6) ax3.set_ylim(-3,2) # attach lines to plots fig.subplots_adjust(hspace=0.22) #prefix = "/Users/ness/Downloads/Apogee_Raw/calibration_apogeecontinuum/documents/plots/fits_3_self_cut" ## prefix = "/Users/ness/Downloads/Apogee_Raw/calibration_apogeecontinuum/documents/plots/test_self" #savefig(fig, prefix, transparent=False, bbox_inches='tight', pad_inches=0.5) return def savefig(fig, prefix, **kwargs): for suffix in (".eps", ".png"): print "writing %s" % (prefix + suffix) fig.savefig(prefix + suffix, **kwargs) if __name__ == "__main__": #args in command line wl1,wl2,wl3,wl4,wl5,wl6 = 15392, 15697, 15958.8, 16208.6, 16120.4, 16169.5 plotfits()
mit
phoebe-project/phoebe2-docs
development/tutorials/grav_redshift.py
2
3008
#!/usr/bin/env python # coding: utf-8 # Gravitational Redshift (rv_grav) # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). # In[1]: #!pip install -I "phoebe>=2.3,<2.4" # As always, let's do imports and initialize a logger and a new bundle. # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() # In[3]: b.add_dataset('rv', times=np.linspace(0,1,101), dataset='rv01') # In[4]: b.set_value_all('ld_mode', 'manual') b.set_value_all('ld_func', 'logarithmic') b.set_value_all('ld_coeffs', [0.0, 0.0]) b.set_value_all('atm', 'blackbody') # Relevant Parameters # -------------------- # # Gravitational redshifts are only accounted for flux-weighted RVs (dynamical RVs literally only return the z-component of the velocity of the center-of-mass of each star). # # First let's run a model with the default radii for our stars. # In[5]: print(b['value@requiv@primary@component'], b['value@requiv@secondary@component']) # Note that gravitational redshift effects for RVs (rv_grav) are disabled by default. We could call add_compute and then set them to be true, or just temporarily override them by passing rv_grav to the run_compute call. # In[6]: b.run_compute(rv_method='flux-weighted', rv_grav=True, irrad_method='none', model='defaultradii_true') # Now let's run another model but with much smaller stars (but with the same masses). # In[7]: b['requiv@primary'] = 0.4 b['requiv@secondary'] = 0.4 # In[8]: b.run_compute(rv_method='flux-weighted', rv_grav=True, irrad_method='none', model='smallradii_true') # Now let's run another model, but with gravitational redshift effects disabled # In[9]: b.run_compute(rv_method='flux-weighted', rv_grav=False, irrad_method='none', model='smallradii_false') # Influence on Radial Velocities # ------------------ # In[10]: afig, mplfig = b.filter(model=['defaultradii_true', 'smallradii_true']).plot(legend=True, show=True) # In[11]: afig, mplfig = b.filter(model=['smallradii_true', 'smallradii_false']).plot(legend=True, show=True) # Besides the obvious change in the Rossiter-McLaughlin effect (not due to gravitational redshift), we can see that making the radii smaller shifts the entire RV curve up (the spectra are redshifted as they have to climb out of a steeper potential at the surface of the stars). # In[12]: print(b['rvs@rv01@primary@defaultradii_true'].get_value().min()) print(b['rvs@rv01@primary@smallradii_true'].get_value().min()) print(b['rvs@rv01@primary@smallradii_false'].get_value().min()) # In[13]: print(b['rvs@rv01@primary@defaultradii_true'].get_value().max()) print(b['rvs@rv01@primary@smallradii_true'].get_value().max()) print(b['rvs@rv01@primary@smallradii_false'].get_value().max()) # In[ ]:
gpl-3.0
chenyyx/scikit-learn-doc-zh
examples/zh/linear_model/plot_polynomial_interpolation.py
168
2088
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] lw = 2 plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw, label="ground truth") plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]): model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
gpl-3.0
bearishtrader/trading-with-python
lib/yahooFinance.py
76
8290
# -*- coding: utf-8 -*- # Author: Jev Kuznetsov <[email protected]> # License: BSD """ Toolset working with yahoo finance data This module includes functions for easy access to YahooFinance data Functions ---------- - `getHistoricData` get historic data for a single symbol - `getQuote` get current quote for a symbol - `getScreenerSymbols` load symbols from a yahoo stock screener file Classes --------- - `HistData` a class for working with multiple symbols """ from datetime import datetime, date import urllib2 from pandas import DataFrame, Index, HDFStore, WidePanel import numpy as np import os from extra import ProgressBar def parseStr(s): ''' convert string to a float or string ''' f = s.strip() if f[0] == '"': return f.strip('"') elif f=='N/A': return np.nan else: try: # try float conversion prefixes = {'M':1e6, 'B': 1e9} prefix = f[-1] if prefix in prefixes: # do we have a Billion/Million character? return float(f[:-1])*prefixes[prefix] else: # no, convert to float directly return float(f) except ValueError: # failed, return original string return s class HistData(object): ''' a class for working with yahoo finance data ''' def __init__(self, autoAdjust=True): self.startDate = (2008,1,1) self.autoAdjust=autoAdjust self.wp = WidePanel() def load(self,dataFile): """load data from HDF""" if os.path.exists(dataFile): store = HDFStore(dataFile) symbols = [str(s).strip('/') for s in store.keys() ] data = dict(zip(symbols,[store[symbol] for symbol in symbols])) self.wp = WidePanel(data) store.close() else: raise IOError('Data file does not exist') def save(self,dataFile): """ save data to HDF""" print 'Saving data to', dataFile store = HDFStore(dataFile) for symbol in self.wp.items: store[symbol] = self.wp[symbol] store.close() def downloadData(self,symbols='all'): ''' get data from yahoo ''' if symbols == 'all': symbols = self.symbols #store = HDFStore(self.dataFile) p = ProgressBar(len(symbols)) for idx,symbol in enumerate(symbols): try: df = getSymbolData(symbol,sDate=self.startDate,verbose=False) if self.autoAdjust: df = _adjust(df,removeOrig=True) if len(self.symbols)==0: self.wp = WidePanel({symbol:df}) else: self.wp[symbol] = df except Exception,e: print e p.animate(idx+1) def getDataFrame(self,field='close'): ''' return a slice on wide panel for a given field ''' return self.wp.minor_xs(field) @property def symbols(self): return self.wp.items.tolist() def __repr__(self): return str(self.wp) def getQuote(symbols): ''' get current yahoo quote, return a DataFrame ''' # for codes see: http://www.gummy-stuff.org/Yahoo-data.htm if not isinstance(symbols,list): symbols = [symbols] header = ['symbol','last','change_pct','PE','time','short_ratio','prev_close','eps','market_cap'] request = str.join('', ['s', 'l1', 'p2' , 'r', 't1', 's7', 'p', 'e' , 'j1']) data = dict(zip(header,[[] for i in range(len(header))])) urlStr = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (str.join('+',symbols), request) try: lines = urllib2.urlopen(urlStr).readlines() except Exception, e: s = "Failed to download:\n{0}".format(e); print s for line in lines: fields = line.strip().split(',') #print fields, len(fields) for i,field in enumerate(fields): data[header[i]].append( parseStr(field)) idx = data.pop('symbol') return DataFrame(data,index=idx) def _historicDataUrll(symbol, sDate=(1990,1,1),eDate=date.today().timetuple()[0:3]): """ generate url symbol: Yahoo finanance symbol sDate: start date (y,m,d) eDate: end date (y,m,d) """ urlStr = 'http://ichart.finance.yahoo.com/table.csv?s={0}&a={1}&b={2}&c={3}&d={4}&e={5}&f={6}'.\ format(symbol.upper(),sDate[1]-1,sDate[2],sDate[0],eDate[1]-1,eDate[2],eDate[0]) return urlStr def getHistoricData(symbols, **options): ''' get data from Yahoo finance and return pandas dataframe Will get OHLCV data frame if sinle symbol is provided. If many symbols are provided, it will return a wide panel Parameters ------------ symbols: Yahoo finanance symbol or a list of symbols sDate: start date (y,m,d) eDate: end date (y,m,d) adjust : T/[F] adjust data based on adj_close ''' assert isinstance(symbols,(list,str)), 'Input must be a string symbol or a list of symbols' if isinstance(symbols,str): return getSymbolData(symbols,**options) else: data = {} print 'Downloading data:' p = ProgressBar(len(symbols)) for idx,symbol in enumerate(symbols): p.animate(idx+1) data[symbol] = getSymbolData(symbol,verbose=False,**options) return WidePanel(data) def getSymbolData(symbol, sDate=(1990,1,1),eDate=date.today().timetuple()[0:3], adjust=False, verbose=True): """ get data from Yahoo finance and return pandas dataframe symbol: Yahoo finanance symbol sDate: start date (y,m,d) eDate: end date (y,m,d) """ urlStr = 'http://ichart.finance.yahoo.com/table.csv?s={0}&a={1}&b={2}&c={3}&d={4}&e={5}&f={6}'.\ format(symbol.upper(),sDate[1]-1,sDate[2],sDate[0],eDate[1]-1,eDate[2],eDate[0]) try: lines = urllib2.urlopen(urlStr).readlines() except Exception, e: s = "Failed to download:\n{0}".format(e); print s return None dates = [] data = [[] for i in range(6)] #high # header : Date,Open,High,Low,Close,Volume,Adj Close for line in lines[1:]: #print line fields = line.rstrip().split(',') dates.append(datetime.strptime( fields[0],'%Y-%m-%d')) for i,field in enumerate(fields[1:]): data[i].append(float(field)) idx = Index(dates) data = dict(zip(['open','high','low','close','volume','adj_close'],data)) # create a pandas dataframe structure df = DataFrame(data,index=idx).sort() if verbose: print 'Got %i days of data' % len(df) if adjust: return _adjust(df,removeOrig=True) else: return df def _adjust(df, removeOrig=False): ''' _adjustust hist data based on adj_close field ''' c = df['close']/df['adj_close'] df['adj_open'] = df['open']/c df['adj_high'] = df['high']/c df['adj_low'] = df['low']/c if removeOrig: df=df.drop(['open','close','high','low'],axis=1) renames = dict(zip(['adj_open','adj_close','adj_high','adj_low'],['open','close','high','low'])) df=df.rename(columns=renames) return df def getScreenerSymbols(fileName): ''' read symbols from a .csv saved by yahoo stock screener ''' with open(fileName,'r') as fid: lines = fid.readlines() symbols = [] for line in lines[3:]: fields = line.strip().split(',') field = fields[0].strip() if len(field) > 0: symbols.append(field) return symbols
bsd-3-clause
cwu2011/scikit-learn
sklearn/tests/test_lda.py
71
5883
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.datasets import make_blobs from sklearn import lda # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct values # for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = lda.LDA(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = lda.LDA(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = lda.LDA(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = lda.LDA(solver="svd") clf_lda_lsqr = lda.LDA(solver="lsqr") clf_lda_eigen = lda.LDA(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = lda.LDA(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = lda.LDA(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = lda.LDA(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver)
bsd-3-clause
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/pandas/core/algorithms.py
9
18486
""" Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ from __future__ import division from warnings import warn import numpy as np from pandas import compat, lib, _np_version_under1p8 import pandas.core.common as com import pandas.algos as algos import pandas.hashtable as htable from pandas.compat import string_types def match(to_match, values, na_sentinel=-1): """ Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers """ values = com._asarray_tuplesafe(values) if issubclass(values.dtype.type, string_types): values = np.array(values, dtype='O') f = lambda htype, caster: _match_generic(to_match, values, htype, caster) result = _hashtable_algo(f, values.dtype, np.int64) if na_sentinel != -1: # replace but return a numpy array # use a Series because it handles dtype conversions properly from pandas.core.series import Series result = Series(result.ravel()).replace(-1,na_sentinel).values.reshape(result.shape) return result def unique(values): """ Compute unique values (not necessarily sorted) efficiently from input array of values Parameters ---------- values : array-like Returns ------- uniques """ values = com._asarray_tuplesafe(values) f = lambda htype, caster: _unique_generic(values, htype, caster) return _hashtable_algo(f, values.dtype) def isin(comps, values): """ Compute the isin boolean array Parameters ---------- comps: array-like values: array-like Returns ------- boolean array same length as comps """ if not com.is_list_like(comps): raise TypeError("only list-like objects are allowed to be passed" " to isin(), you passed a " "[{0}]".format(type(comps).__name__)) comps = np.asarray(comps) if not com.is_list_like(values): raise TypeError("only list-like objects are allowed to be passed" " to isin(), you passed a " "[{0}]".format(type(values).__name__)) # GH11232 # work-around for numpy < 1.8 and comparisions on py3 # faster for larger cases to use np.in1d if (_np_version_under1p8 and compat.PY3) or len(comps) > 1000000: f = lambda x, y: np.in1d(x,np.asarray(list(y))) else: f = lambda x, y: lib.ismember_int64(x,set(y)) # may need i8 conversion for proper membership testing if com.is_datetime64_dtype(comps): from pandas.tseries.tools import to_datetime values = to_datetime(values)._values.view('i8') comps = comps.view('i8') elif com.is_timedelta64_dtype(comps): from pandas.tseries.timedeltas import to_timedelta values = to_timedelta(values)._values.view('i8') comps = comps.view('i8') elif com.is_int64_dtype(comps): pass else: f = lambda x, y: lib.ismember(x, set(values)) return f(comps, values) def _hashtable_algo(f, dtype, return_dtype=None): """ f(HashTable, type_caster) -> result """ if com.is_float_dtype(dtype): return f(htable.Float64HashTable, com._ensure_float64) elif com.is_integer_dtype(dtype): return f(htable.Int64HashTable, com._ensure_int64) elif com.is_datetime64_dtype(dtype): return_dtype = return_dtype or 'M8[ns]' return f(htable.Int64HashTable, com._ensure_int64).view(return_dtype) elif com.is_timedelta64_dtype(dtype): return_dtype = return_dtype or 'm8[ns]' return f(htable.Int64HashTable, com._ensure_int64).view(return_dtype) else: return f(htable.PyObjectHashTable, com._ensure_object) def _match_generic(values, index, table_type, type_caster): values = type_caster(values) index = type_caster(index) table = table_type(min(len(index), 1000000)) table.map_locations(index) return table.lookup(values) def _unique_generic(values, table_type, type_caster): values = type_caster(values) table = table_type(min(len(values), 1000000)) uniques = table.unique(values) return type_caster(uniques) def factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None): """ Encode input values as an enumerated type or categorical variable Parameters ---------- values : ndarray (1-d) Sequence sort : boolean, default False Sort by values order : deprecated na_sentinel : int, default -1 Value to mark "not found" size_hint : hint to the hashtable sizer Returns ------- labels : the indexer to the original array uniques : ndarray (1-d) or Index the unique values. Index is returned when passed values is Index or Series note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex """ if order is not None: msg = "order is deprecated. See https://github.com/pydata/pandas/issues/6926" warn(msg, FutureWarning, stacklevel=2) from pandas.core.index import Index from pandas.core.series import Series vals = np.asarray(values) is_datetime = com.is_datetime64_dtype(vals) is_timedelta = com.is_timedelta64_dtype(vals) (hash_klass, vec_klass), vals = _get_data_algo(vals, _hashtables) table = hash_klass(size_hint or len(vals)) uniques = vec_klass() labels = table.get_labels(vals, uniques, 0, na_sentinel) labels = com._ensure_platform_int(labels) uniques = uniques.to_array() if sort and len(uniques) > 0: try: sorter = uniques.argsort() except: # unorderable in py3 if mixed str/int t = hash_klass(len(uniques)) t.map_locations(com._ensure_object(uniques)) # order ints before strings ordered = np.concatenate([ np.sort(np.array([ e for i, e in enumerate(uniques) if f(e) ],dtype=object)) for f in [ lambda x: not isinstance(x,string_types), lambda x: isinstance(x,string_types) ] ]) sorter = com._ensure_platform_int(t.lookup(com._ensure_object(ordered))) reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 labels = reverse_indexer.take(labels) np.putmask(labels, mask, -1) uniques = uniques.take(sorter) if is_datetime: uniques = uniques.astype('M8[ns]') elif is_timedelta: uniques = uniques.astype('m8[ns]') if isinstance(values, Index): uniques = values._shallow_copy(uniques, name=None) elif isinstance(values, Series): uniques = Index(uniques) return labels, uniques def value_counts(values, sort=True, ascending=False, normalize=False, bins=None, dropna=True): """ Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order normalize: boolean, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : boolean, default True Don't include counts of NaN Returns ------- value_counts : Series """ from pandas.core.series import Series from pandas.tools.tile import cut from pandas import Index, PeriodIndex, DatetimeIndex name = getattr(values, 'name', None) values = Series(values).values if bins is not None: try: cat, bins = cut(values, bins, retbins=True) except TypeError: raise TypeError("bins argument only works with numeric data.") values = cat.codes if com.is_categorical_dtype(values.dtype): result = values.value_counts(dropna) else: dtype = values.dtype is_period = com.is_period_arraylike(values) is_datetimetz = com.is_datetimetz(values) if com.is_datetime_or_timedelta_dtype(dtype) or is_period or is_datetimetz: if is_period: values = PeriodIndex(values) elif is_datetimetz: tz = getattr(values, 'tz', None) values = DatetimeIndex(values).tz_localize(None) values = values.view(np.int64) keys, counts = htable.value_count_scalar64(values, dropna) if dropna: from pandas.tslib import iNaT msk = keys != iNaT keys, counts = keys[msk], counts[msk] # localize to the original tz if necessary if is_datetimetz: keys = DatetimeIndex(keys).tz_localize(tz) # convert the keys back to the dtype we came in else: keys = keys.astype(dtype) elif com.is_integer_dtype(dtype): values = com._ensure_int64(values) keys, counts = htable.value_count_scalar64(values, dropna) elif com.is_float_dtype(dtype): values = com._ensure_float64(values) keys, counts = htable.value_count_scalar64(values, dropna) else: values = com._ensure_object(values) mask = com.isnull(values) keys, counts = htable.value_count_object(values, mask) if not dropna and mask.any(): keys = np.insert(keys, 0, np.NaN) counts = np.insert(counts, 0, mask.sum()) if not isinstance(keys, Index): keys = Index(keys) result = Series(counts, index=keys, name=name) if bins is not None: # TODO: This next line should be more efficient result = result.reindex(np.arange(len(cat.categories)), fill_value=0) result.index = bins[:-1] if sort: result = result.sort_values(ascending=ascending) if normalize: result = result / float(values.size) return result def mode(values): """Returns the mode or mode(s) of the passed Series or ndarray (sorted)""" # must sort because hash order isn't necessarily defined. from pandas.core.series import Series if isinstance(values, Series): constructor = values._constructor values = values.values else: values = np.asanyarray(values) constructor = Series dtype = values.dtype if com.is_integer_dtype(values): values = com._ensure_int64(values) result = constructor(sorted(htable.mode_int64(values)), dtype=dtype) elif issubclass(values.dtype.type, (np.datetime64, np.timedelta64)): dtype = values.dtype values = values.view(np.int64) result = constructor(sorted(htable.mode_int64(values)), dtype=dtype) elif com.is_categorical_dtype(values): result = constructor(values.mode()) else: mask = com.isnull(values) values = com._ensure_object(values) res = htable.mode_object(values, mask) try: res = sorted(res) except TypeError as e: warn("Unable to sort modes: %s" % e) result = constructor(res, dtype=dtype) return result def rank(values, axis=0, method='average', na_option='keep', ascending=True, pct=False): """ """ if values.ndim == 1: f, values = _get_data_algo(values, _rank1d_functions) ranks = f(values, ties_method=method, ascending=ascending, na_option=na_option, pct=pct) elif values.ndim == 2: f, values = _get_data_algo(values, _rank2d_functions) ranks = f(values, axis=axis, ties_method=method, ascending=ascending, na_option=na_option, pct=pct) return ranks def quantile(x, q, interpolation_method='fraction'): """ Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- x : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation_method : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ x = np.asarray(x) mask = com.isnull(x) x = x[~mask] values = np.sort(x) def _get_score(at): if len(values) == 0: return np.nan idx = at * (len(values) - 1) if idx % 1 == 0: score = values[int(idx)] else: if interpolation_method == 'fraction': score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == 'lower': score = values[np.floor(idx)] elif interpolation_method == 'higher': score = values[np.ceil(idx)] else: raise ValueError("interpolation_method can only be 'fraction' " ", 'lower' or 'higher'") return score if np.isscalar(q): return _get_score(q) else: q = np.asarray(q, np.float64) return algos.arrmap_float64(q, _get_score) def _interpolate(a, b, fraction): """Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a) * fraction def _get_data_algo(values, func_map): mask = None if com.is_float_dtype(values): f = func_map['float64'] values = com._ensure_float64(values) elif com.needs_i8_conversion(values): # if we have NaT, punt to object dtype mask = com.isnull(values) if mask.ravel().any(): f = func_map['generic'] values = com._ensure_object(values) values[mask] = np.nan else: f = func_map['int64'] values = values.view('i8') elif com.is_integer_dtype(values): f = func_map['int64'] values = com._ensure_int64(values) else: f = func_map['generic'] values = com._ensure_object(values) return f, values def group_position(*args): """ Get group position """ from collections import defaultdict table = defaultdict(int) result = [] for tup in zip(*args): result.append(table[tup]) table[tup] += 1 return result _dtype_map = {'datetime64[ns]': 'int64', 'timedelta64[ns]': 'int64'} def _finalize_nsmallest(arr, kth_val, n, keep, narr): ns, = np.nonzero(arr <= kth_val) inds = ns[arr[ns].argsort(kind='mergesort')][:n] if keep == 'last': # reverse indices return narr - 1 - inds else: return inds def nsmallest(arr, n, keep='first'): ''' Find the indices of the n smallest values of a numpy array. Note: Fails silently with NaN. ''' if keep == 'last': arr = arr[::-1] narr = len(arr) n = min(n, narr) sdtype = str(arr.dtype) arr = arr.view(_dtype_map.get(sdtype, sdtype)) kth_val = algos.kth_smallest(arr.copy(), n - 1) return _finalize_nsmallest(arr, kth_val, n, keep, narr) def nlargest(arr, n, keep='first'): """ Find the indices of the n largest values of a numpy array. Note: Fails silently with NaN. """ sdtype = str(arr.dtype) arr = arr.view(_dtype_map.get(sdtype, sdtype)) return nsmallest(-arr, n, keep=keep) def select_n_slow(dropped, n, keep, method): reverse_it = (keep == 'last' or method == 'nlargest') ascending = method == 'nsmallest' slc = np.s_[::-1] if reverse_it else np.s_[:] return dropped[slc].sort_values(ascending=ascending).head(n) _select_methods = {'nsmallest': nsmallest, 'nlargest': nlargest} def select_n(series, n, keep, method): """Implement n largest/smallest. Parameters ---------- n : int keep : {'first', 'last'}, default 'first' method : str, {'nlargest', 'nsmallest'} Returns ------- nordered : Series """ dtype = series.dtype if not issubclass(dtype.type, (np.integer, np.floating, np.datetime64, np.timedelta64)): raise TypeError("Cannot use method %r with dtype %s" % (method, dtype)) if keep not in ('first', 'last'): raise ValueError('keep must be either "first", "last"') if n <= 0: return series[[]] dropped = series.dropna() if n >= len(series): return select_n_slow(dropped, n, keep, method) inds = _select_methods[method](dropped.values, n, keep) return dropped.iloc[inds] _rank1d_functions = { 'float64': algos.rank_1d_float64, 'int64': algos.rank_1d_int64, 'generic': algos.rank_1d_generic } _rank2d_functions = { 'float64': algos.rank_2d_float64, 'int64': algos.rank_2d_int64, 'generic': algos.rank_2d_generic } _hashtables = { 'float64': (htable.Float64HashTable, htable.Float64Vector), 'int64': (htable.Int64HashTable, htable.Int64Vector), 'generic': (htable.PyObjectHashTable, htable.ObjectVector) }
gpl-2.0
jrdurrant/insect_analysis
vision/io_functions.py
3
1853
import csv import glob import os import sys import skimage.io import matplotlib.pyplot as plt import numpy as np def read_image(filename, **kwargs): return plt.imread(filename, **kwargs)[:, :, :3] def write_image(filename, image, **kwargs): if image.dtype.type == np.bool_: image_out = 255 * image else: image_out = image return skimage.io.imsave(filename, image_out, **kwargs) def apply_all_images(input_folder, function, output_folder=None): images = [image_file for image_file in os.listdir(input_folder) if os.path.splitext(image_file)[1].lower() == '.jpg'] # Ignoring exceptions only for the sake of not interrupting during batch processing for image_file in images: if output_folder is not None: try: function(os.path.join(input_folder, image_file), output_folder) except Exception: sys.exc_clear() else: try: function(os.path.join(input_folder, image_file)) except Exception: sys.exc_clear() def specimen_ids_from_images(filenames, prefix='color_'): prefix_len = len(prefix) for filename in filenames: if filename.startswith(prefix): yield filename[prefix_len:] def get_specimen_ids(filename): with open(filename, 'rU') as csvfile: reader = csv.reader(csvfile) specimen_ids = [] for row in reader: sex = row[3] if sex == 'male' or sex == 'female': ids = glob.glob(os.path.join('data', 'full_image', sex, '*{}*'.format(row[0]))) if ids: if len(ids) > 1: ids = sorted(ids, key=len) specimen_ids.append((row[0], ids[0])) return specimen_ids
gpl-2.0
toastedcornflakes/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
wasit7/book_pae
pae/final_code/src/convert_sub_home_name_tojson.py
1
5762
# -*- coding: utf-8 -*- """ Created on Wed Jun 01 21:37:20 2016 @author: Administrator """ import pandas as pd import pandas.io.sql as pd_sql import sqlite3 as sql df_file_all = pd.read_csv('../data/CS_table_No2_No4_new.csv',delimiter=";", skip_blank_lines = True, error_bad_lines=False,encoding='utf8') df_file_less = pd.read_csv('../data/df_dropSub_less20.csv',delimiter=",", skip_blank_lines = True, error_bad_lines=False,encoding='utf8') df_file_all = df_file_all.drop(['STUDENTID','ACADYEAR','CAMPUSID','SEMESTER','CURRIC','CAMPUSNAME','SECTIONGROUP','GRADE'],axis=1) subjects = [] names = [] countSub = 0 subjects = [] link = [] out={} sources=[] targets=[] for sub in df_file_less['3COURSEID']: if sub not in subjects: subjects.append(sub) countSub = countSub+1 subjects.sort() df_db = df_file_all[df_file_all["COURSEID"].isin(subjects)] df_db = df_db.drop_duplicates(['COURSEID'], take_last=True) df_db = df_db.sort(['COURSEID']) #Create lis of names subject for name in df_db['COURSENAME']: names.append(name) subjects_home = [] node = [] cs = 'CS' tu = 'TU' el = 'EL' for index in xrange(0,111): s = subjects[index] n = names[index] if cs in s: subjects_home.append(s) node.append({"id":s,"name":n}) elif tu in s: subjects_home.append(s) node.append({"id":s,"name":n}) elif el in s: subjects_home.append(s) node.append({"id":s,"name":n}) subjects_home.remove("CS105") node.pop(2) subjects_home.remove("CS115") node.pop(3) subjects_home.remove("CS211") node.pop(3) subjects_home.remove("CS215") node.pop(5) subjects_home.remove("CS231") node.pop(7) subjects_home.remove("CS300") node.pop(18) subjects_home.append('CS112') node.append({"id":'CS112',"name":'Introduction to Object-Oriented Programming'}) subjects_home.append('CS327') node.append({"id":'CS327',"name":'Digital Logic Design'}) subjects_home.append('CS328') node.append({"id":'CS328',"name":'Compiler Construction'}) subjects_home.append('CS357') node.append({"id":'CS357',"name":'Electronic Business'}) subjects_home.append('CS358') node.append({"id":'CS358',"name":'Computer Simulation and Forecasting Techniques in Business'}) subjects_home.append('CS359') node.append({"id":'CS359',"name":'Document Indexing and Retrieval'}) subjects_home.append('CS389') node.append({"id":'CS389',"name":'Software Architecture'}) subjects_home.append('CS406') node.append({"id":'CS406',"name":'Selected Topics in Advance Sofware Engineering Technology'}) subjects_home.append('CS428') node.append({"id":'CS428',"name":'Principles of Multiprocessors Programming'}) subjects_home.append('CS439') node.append({"id":'CS439',"name":'Selected Topics in Programming Languages'}) subjects_home.append('CS447') node.append({"id":'CS447',"name":'Operating Systems II'}) subjects_home.append('CS448') node.append({"id":'CS448',"name":'Software systems for advanced distributed computing'}) subjects_home.append('CS458') node.append({"id":'CS458',"name":'Information Systems for Entrepreneur Management'}) subjects_home.append('CS469') node.append({"id":'CS469',"name":'Selected Topics in Artificial Intelligent Systems'}) subjects_home.append('CS479') node.append({"id":'CS479',"name":'Selected Topics in Computer Interface and Multimedia'}) subjects_home.append('CS496') node.append({"id":'CS496',"name":'Rendering II'}) subjects_home.append('CS497') node.append({"id":'CS497',"name":'Real-time Graphics'}) subjects_home.append('CS499') node.append({"id":'CS499',"name":'Selected Topics in Computer Graphics'}) subjects_home.append('TH161') node.append({"id":'TH161',"name":'Thai Usage'}) subjects_home.append('PY228') node.append({"id":'PY228',"name":'Psychology Of Interpersonal Relations'}) subjects_home.append('BA291') node.append({"id":'BA291',"name":'Introduction Of Business'}) subjects_home.append('EC210') node.append({"id":'EC210',"name":'Introductory Economics'}) subjects_home.append('HO201') node.append({"id":'HO201',"name":'Principles Of Management'}) subjects_home.append('MA211') node.append({"id":'MA211',"name":'Calculus 1'}) subjects_home.append('SC135') node.append({"id":'SC135',"name":'General Physics'}) subjects_home.append('SC185') node.append({"id":'SC185',"name":'General Physics Laboratory'}) subjects_home.append('SC123') node.append({"id":'SC123',"name":'Fundamental Chemistry'}) subjects_home.append('SC173') node.append({"id":'SC173',"name":'Fundamental Chemistry Laboratory'}) subjects_home.append('MA212') node.append({"id":'MA212',"name":'Calculus 2'}) subjects_home.append('MA332') node.append({"id":'MA332',"name":'Linear Algebra'}) subjects_home.append('ST216') node.append({"id":'ST216',"name":'Statistics For Social Science Students 1'}) subjects_home.sort() node.sort() ## Find index of source and target from book/graph1.gv df_st = pd.read_csv('../data/source-target_home.csv',delimiter=";", skip_blank_lines = True, error_bad_lines=False) headers_st=list(df_st.columns.values) df_st = df_st.dropna() for source in df_st[headers_st[0]]: #print "source is %s, index is %d"%(source,subjects_db.index(source)) sources.append(subjects_home.index(source)) for target in df_st[headers_st[1]]: #print "target is %s, index is %d"%(target,subjects_db.index(target)) targets.append(subjects_home.index(target)) for i in xrange(0,82): #In Bachelor has 83 links link.append({"source":sources[i],"target":targets[i],"type": "licensing"}) out["node"]=node out["link"]=link #with open("subjects_name.json","w") as outfile: # json.dump(out,outfile,sort_keys=True, indent=4, separators=(',',': '))
mit
Ziqi-Li/bknqgis
bokeh/examples/app/crossfilter/main.py
4
2214
import pandas as pd from bokeh.layouts import row, widgetbox from bokeh.models import Select from bokeh.palettes import Spectral5 from bokeh.plotting import curdoc, figure from bokeh.sampledata.autompg import autompg_clean as df df = df.copy() SIZES = list(range(6, 22, 3)) COLORS = Spectral5 # data cleanup df.cyl = df.cyl.astype(str) df.yr = df.yr.astype(str) del df['name'] columns = sorted(df.columns) discrete = [x for x in columns if df[x].dtype == object] continuous = [x for x in columns if x not in discrete] quantileable = [x for x in continuous if len(df[x].unique()) > 20] def create_figure(): xs = df[x.value].values ys = df[y.value].values x_title = x.value.title() y_title = y.value.title() kw = dict() if x.value in discrete: kw['x_range'] = sorted(set(xs)) if y.value in discrete: kw['y_range'] = sorted(set(ys)) kw['title'] = "%s vs %s" % (x_title, y_title) p = figure(plot_height=600, plot_width=800, tools='pan,box_zoom,reset', **kw) p.xaxis.axis_label = x_title p.yaxis.axis_label = y_title if x.value in discrete: p.xaxis.major_label_orientation = pd.np.pi / 4 sz = 9 if size.value != 'None': groups = pd.qcut(df[size.value].values, len(SIZES)) sz = [SIZES[xx] for xx in groups.codes] c = "#31AADE" if color.value != 'None': groups = pd.qcut(df[color.value].values, len(COLORS)) c = [COLORS[xx] for xx in groups.codes] p.circle(x=xs, y=ys, color=c, size=sz, line_color="white", alpha=0.6, hover_color='white', hover_alpha=0.5) return p def update(attr, old, new): layout.children[1] = create_figure() x = Select(title='X-Axis', value='mpg', options=columns) x.on_change('value', update) y = Select(title='Y-Axis', value='hp', options=columns) y.on_change('value', update) size = Select(title='Size', value='None', options=['None'] + quantileable) size.on_change('value', update) color = Select(title='Color', value='None', options=['None'] + quantileable) color.on_change('value', update) controls = widgetbox([x, y, color, size], width=200) layout = row(controls, create_figure()) curdoc().add_root(layout) curdoc().title = "Crossfilter"
gpl-2.0
rubikloud/scikit-learn
examples/cluster/plot_color_quantization.py
297
3443
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1] china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
JT5D/scikit-learn
examples/applications/plot_out_of_core_classification.py
2
13546
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents is the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import sgmllib import tarfile import time import urllib import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines ############################################################################### class ReutersParser(sgmllib.SGMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, verbose=0): sgmllib.SGMLParser.__init__(self, verbose) self._reset() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename)): yield doc ############################################################################### # Main ############################################################################### # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [('{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batchs of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results ############################################################################### def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() #fig = plt.gcf() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
zihua/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
23
17698
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true, assert_greater from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Check we used multiple estimators assert_greater(len(clf.estimators_), 1) # Check for distinct random states (see issue #7408) assert_equal(len(set(est.random_state for est in clf.estimators_)), len(clf.estimators_)) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. reg = AdaBoostRegressor(random_state=0) reg.fit(boston.data, boston.target) score = reg.score(boston.data, boston.target) assert score > 0.85 # Check we used multiple estimators assert_true(len(reg.estimators_) > 1) # Check for distinct random states (see issue #7408) assert_equal(len(set(est.random_state for est in reg.estimators_)), len(reg.estimators_)) def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
ioam/holoviews
holoviews/plotting/plotly/element.py
2
18826
from __future__ import absolute_import, division, unicode_literals import numpy as np import param from ...core import util from ...core.element import Element from ...core.spaces import DynamicMap from ...util.transform import dim from ..plot import GenericElementPlot, GenericOverlayPlot from ..util import dim_range_key, dynamic_update from .plot import PlotlyPlot from .util import STYLE_ALIASES, get_colorscale, merge_figure class ElementPlot(PlotlyPlot, GenericElementPlot): aspect = param.Parameter(default='cube', doc=""" The aspect ratio mode of the plot. By default, a plot may select its own appropriate aspect ratio but sometimes it may be necessary to force a square aspect ratio (e.g. to display the plot as an element of a grid). The modes 'auto' and 'equal' correspond to the axis modes of the same name in matplotlib, a numeric value may also be passed.""") bgcolor = param.ClassSelector(class_=(str, tuple), default=None, doc=""" If set bgcolor overrides the background color of the axis.""") invert_axes = param.ObjectSelector(default=False, doc=""" Inverts the axes of the plot. Note that this parameter may not always be respected by all plots but should be respected by adjoined plots when appropriate.""") invert_xaxis = param.Boolean(default=False, doc=""" Whether to invert the plot x-axis.""") invert_yaxis = param.Boolean(default=False, doc=""" Whether to invert the plot y-axis.""") invert_zaxis = param.Boolean(default=False, doc=""" Whether to invert the plot z-axis.""") labelled = param.List(default=['x', 'y', 'z'], doc=""" Whether to label the 'x' and 'y' axes.""") logx = param.Boolean(default=False, doc=""" Whether to apply log scaling to the x-axis of the Chart.""") logy = param.Boolean(default=False, doc=""" Whether to apply log scaling to the y-axis of the Chart.""") logz = param.Boolean(default=False, doc=""" Whether to apply log scaling to the y-axis of the Chart.""") margins = param.NumericTuple(default=(50, 50, 50, 50), doc=""" Margins in pixel values specified as a tuple of the form (left, bottom, right, top).""") show_legend = param.Boolean(default=False, doc=""" Whether to show legend for the plot.""") xaxis = param.ObjectSelector(default='bottom', objects=['top', 'bottom', 'bare', 'top-bare', 'bottom-bare', None], doc=""" Whether and where to display the xaxis, bare options allow suppressing all axis labels including ticks and xlabel. Valid options are 'top', 'bottom', 'bare', 'top-bare' and 'bottom-bare'.""") xticks = param.Parameter(default=None, doc=""" Ticks along x-axis specified as an integer, explicit list of tick locations, list of tuples containing the locations.""") yaxis = param.ObjectSelector(default='left', objects=['left', 'right', 'bare', 'left-bare', 'right-bare', None], doc=""" Whether and where to display the yaxis, bare options allow suppressing all axis labels including ticks and ylabel. Valid options are 'left', 'right', 'bare' 'left-bare' and 'right-bare'.""") yticks = param.Parameter(default=None, doc=""" Ticks along y-axis specified as an integer, explicit list of tick locations, list of tuples containing the locations.""") zlabel = param.String(default=None, doc=""" An explicit override of the z-axis label, if set takes precedence over the dimension label.""") zticks = param.Parameter(default=None, doc=""" Ticks along z-axis specified as an integer, explicit list of tick locations, list of tuples containing the locations.""") trace_kwargs = {} _style_key = None # Whether vectorized styles are applied per trace _per_trace = False # Declare which styles cannot be mapped to a non-scalar dimension _nonvectorized_styles = [] def initialize_plot(self, ranges=None): """ Initializes a new plot object with the last available frame. """ # Get element key and ranges for frame fig = self.generate_plot(self.keys[-1], ranges) self.drawn = True return fig def generate_plot(self, key, ranges, element=None): if element is None: element = self._get_frame(key) if element is None: return self.handles['fig'] # Set plot options plot_opts = self.lookup_options(element, 'plot').options self.param.set_param(**{k: v for k, v in plot_opts.items() if k in self.params()}) # Get ranges ranges = self.compute_ranges(self.hmap, key, ranges) ranges = util.match_spec(element, ranges) # Get style self.style = self.lookup_options(element, 'style') style = self.style[self.cyclic_index] # Get data and options and merge them data = self.get_data(element, ranges, style) opts = self.graph_options(element, ranges, style) graphs = [] for i, d in enumerate(data): # Initialize graph graph = self.init_graph(d, opts, index=i) graphs.append(graph) self.handles['graphs'] = graphs # Initialize layout layout = self.init_layout(key, element, ranges) self.handles['layout'] = layout # Create figure and return it self.drawn = True fig = dict(data=graphs, layout=layout) self.handles['fig'] = fig return fig def graph_options(self, element, ranges, style): if self.overlay_dims: legend = ', '.join([d.pprint_value_string(v) for d, v in self.overlay_dims.items()]) else: legend = element.label opts = dict( showlegend=self.show_legend, legendgroup=element.group, name=legend, **self.trace_kwargs) if self._style_key is not None: styles = self._apply_transforms(element, ranges, style) opts[self._style_key] = {STYLE_ALIASES.get(k, k): v for k, v in styles.items()} else: opts.update({STYLE_ALIASES.get(k, k): v for k, v in style.items() if k != 'cmap'}) return opts def init_graph(self, data, options, index=0): trace = dict(options) for k, v in data.items(): if k in trace and isinstance(trace[k], dict): trace[k].update(v) else: trace[k] = v if self._style_key and self._per_trace: vectorized = {k: v for k, v in options[self._style_key].items() if isinstance(v, np.ndarray)} trace[self._style_key] = dict(trace[self._style_key]) for s, val in vectorized.items(): trace[self._style_key][s] = val[index] return trace def get_data(self, element, ranges, style): return [] def get_aspect(self, xspan, yspan): """ Computes the aspect ratio of the plot """ return self.width/self.height def _get_axis_dims(self, element): """Returns the dimensions corresponding to each axis. Should return a list of dimensions or list of lists of dimensions, which will be formatted to label the axis and to link axes. """ dims = element.dimensions()[:3] pad = [None]*max(3-len(dims), 0) return dims + pad def _apply_transforms(self, element, ranges, style): new_style = dict(style) for k, v in dict(style).items(): if isinstance(v, util.basestring): if k == 'marker' and v in 'xsdo': continue elif v in element: v = dim(v) elif any(d==v for d in self.overlay_dims): v = dim([d for d in self.overlay_dims if d==v][0]) if not isinstance(v, dim): continue elif (not v.applies(element) and v.dimension not in self.overlay_dims): new_style.pop(k) self.warning('Specified %s dim transform %r could not be applied, as not all ' 'dimensions could be resolved.' % (k, v)) continue if len(v.ops) == 0 and v.dimension in self.overlay_dims: val = self.overlay_dims[v.dimension] else: val = v.apply(element, ranges=ranges, flat=True) if (not util.isscalar(val) and len(util.unique_array(val)) == 1 and not 'color' in k): val = val[0] if not util.isscalar(val): if k in self._nonvectorized_styles: element = type(element).__name__ raise ValueError('Mapping a dimension to the "{style}" ' 'style option is not supported by the ' '{element} element using the {backend} ' 'backend. To map the "{dim}" dimension ' 'to the {style} use a groupby operation ' 'to overlay your data along the dimension.'.format( style=k, dim=v.dimension, element=element, backend=self.renderer.backend)) # If color is not valid colorspec add colormapper numeric = isinstance(val, np.ndarray) and val.dtype.kind in 'uifMm' if ('color' in k and isinstance(val, np.ndarray) and numeric): copts = self.get_color_opts(v, element, ranges, style) new_style.pop('cmap', None) new_style.update(copts) new_style[k] = val return new_style def init_layout(self, key, element, ranges): el = element.traverse(lambda x: x, [Element]) el = el[0] if el else element extent = self.get_extents(element, ranges) if len(extent) == 4: l, b, r, t = extent else: l, b, z0, r, t, z1 = extent options = {} dims = self._get_axis_dims(el) if len(dims) > 2: xdim, ydim, zdim = dims else: xdim, ydim = dims zdim = None xlabel, ylabel, zlabel = self._get_axis_labels(dims) if self.invert_axes: xlabel, ylabel = ylabel, xlabel ydim, xdim = xdim, ydim l, b, r, t = b, l, t, r if 'x' not in self.labelled: xlabel = '' if 'y' not in self.labelled: ylabel = '' if 'z' not in self.labelled: zlabel = '' if xdim: xrange = [r, l] if self.invert_xaxis else [l, r] xaxis = dict(range=xrange, title=xlabel) if self.logx: xaxis['type'] = 'log' self._get_ticks(xaxis, self.xticks) else: xaxis = {} if ydim: yrange = [t, b] if self.invert_yaxis else [b, t] yaxis = dict(range=yrange, title=ylabel) if self.logy: yaxis['type'] = 'log' self._get_ticks(yaxis, self.yticks) else: yaxis = {} if self.projection == '3d': scene = dict(xaxis=xaxis, yaxis=yaxis) if zdim: zrange = [z1, z0] if self.invert_zaxis else [z0, z1] zaxis = dict(range=zrange, title=zlabel) if self.logz: zaxis['type'] = 'log' self._get_ticks(zaxis, self.zticks) scene['zaxis'] = zaxis if self.aspect == 'cube': scene['aspectmode'] = 'cube' else: scene['aspectmode'] = 'manual' scene['aspectratio'] = self.aspect options['scene'] = scene else: l, b, r, t = self.margins options['xaxis'] = xaxis options['yaxis'] = yaxis options['margin'] = dict(l=l, r=r, b=b, t=t, pad=4) return dict(width=self.width, height=self.height, title=self._format_title(key, separator=' '), plot_bgcolor=self.bgcolor, **options) def _get_ticks(self, axis, ticker): axis_props = {} if isinstance(ticker, (tuple, list)): if all(isinstance(t, tuple) for t in ticker): ticks, labels = zip(*ticker) labels = [l if isinstance(l, util.basestring) else str(l) for l in labels] axis_props['tickvals'] = ticks axis_props['ticktext'] = labels else: axis_props['tickvals'] = ticker axis.update(axis_props) def update_frame(self, key, ranges=None, element=None): """ Updates an existing plot with data corresponding to the key. """ self.generate_plot(key, ranges, element) class ColorbarPlot(ElementPlot): clim = param.NumericTuple(default=(np.nan, np.nan), length=2, doc=""" User-specified colorbar axis range limits for the plot, as a tuple (low,high). If specified, takes precedence over data and dimension ranges.""") colorbar = param.Boolean(default=False, doc=""" Whether to display a colorbar.""") color_levels = param.ClassSelector(default=None, class_=(int, list), doc=""" Number of discrete colors to use when colormapping or a set of color intervals defining the range of values to map each color to.""") colorbar_opts = param.Dict(default={}, doc=""" Allows setting including borderwidth, showexponent, nticks, outlinecolor, thickness, bgcolor, outlinewidth, bordercolor, ticklen, xpad, ypad, tickangle...""") symmetric = param.Boolean(default=False, doc=""" Whether to make the colormap symmetric around zero.""") def get_color_opts(self, eldim, element, ranges, style): opts = {} dim_name = dim_range_key(eldim) if self.colorbar: if isinstance(eldim, dim): title = str(eldim) if eldim.ops else str(eldim)[1:-1] else: title = eldim.pprint_label opts['colorbar'] = dict(title=title, **self.colorbar_opts) else: opts['showscale'] = False if eldim: auto = False if util.isfinite(self.clim).all(): cmin, cmax = self.clim elif dim_name in ranges: cmin, cmax = ranges[dim_name]['combined'] elif isinstance(eldim, dim): cmin, cmax = np.nan, np.nan auto = True else: cmin, cmax = element.range(dim_name) if self.symmetric: cabs = np.abs([cmin, cmax]) cmin, cmax = -cabs.max(), cabs.max() else: auto = True cmin, cmax = None, None cmap = style.pop('cmap', 'viridis') colorscale = get_colorscale(cmap, self.color_levels, cmin, cmax) if cmin is not None: opts['cmin'] = cmin if cmax is not None: opts['cmax'] = cmax opts['cauto'] = auto opts['colorscale'] = colorscale return opts class OverlayPlot(GenericOverlayPlot, ElementPlot): _propagate_options = [ 'width', 'height', 'xaxis', 'yaxis', 'labelled', 'bgcolor', 'invert_axes', 'show_frame', 'show_grid', 'logx', 'logy', 'xticks', 'toolbar', 'yticks', 'xrotation', 'yrotation', 'invert_xaxis', 'invert_yaxis', 'sizing_mode', 'title', 'title_format', 'padding', 'xlabel', 'ylabel', 'zlabel', 'xlim', 'ylim', 'zlim'] def initialize_plot(self, ranges=None): """ Initializes a new plot object with the last available frame. """ # Get element key and ranges for frame return self.generate_plot(list(self.hmap.data.keys())[0], ranges) def generate_plot(self, key, ranges, element=None): if element is None: element = self._get_frame(key) items = [] if element is None else list(element.data.items()) # Update plot options plot_opts = self.lookup_options(element, 'plot').options inherited = self._traverse_options(element, 'plot', self._propagate_options, defaults=False) plot_opts.update(**{k: v[0] for k, v in inherited.items() if k not in plot_opts}) self.set_param(**plot_opts) ranges = self.compute_ranges(self.hmap, key, ranges) figure = None for okey, subplot in self.subplots.items(): if element is not None and subplot.drawn: idx, spec, exact = dynamic_update(self, subplot, okey, element, items) if idx is not None: _, el = items.pop(idx) else: el = None else: el = None fig = subplot.generate_plot(key, ranges, el) if figure is None: figure = fig else: merge_figure(figure, fig) layout = self.init_layout(key, element, ranges) figure['layout'].update(layout) self.drawn = True self.handles['fig'] = figure return figure def update_frame(self, key, ranges=None, element=None): reused = isinstance(self.hmap, DynamicMap) and self.overlaid if not reused and element is None: element = self._get_frame(key) elif element is not None: self.current_frame = element self.current_key = key items = [] if element is None else list(element.data.items()) # Instantiate dynamically added subplots for k, subplot in self.subplots.items(): # If in Dynamic mode propagate elements to subplots if not (isinstance(self.hmap, DynamicMap) and element is not None): continue idx, _, _ = dynamic_update(self, subplot, k, element, items) if idx is not None: items.pop(idx) if isinstance(self.hmap, DynamicMap) and items: self._create_dynamic_subplots(key, items, ranges) self.generate_plot(key, ranges, element)
bsd-3-clause
CSCfi/antero
pdi_integrations/arvo/python_scripts/get_arvo_vastaukset.py
1
5436
import requests import os from pandas.io.json import json_normalize import base64 ## import API use key, API user and base URL from Jenkins variables try: api_key = os.environ['AUTH_API_KEY'] api_user = os.environ['AUTH_API_USER'] base_url = os.environ['BASE_URL'] env = os.environ['ENV'] except KeyError: print("One or more Jenkins variables are missing. Cannot continue ETL-job.") exit(1) vastaukset=[] urls = [] url = "https://"+base_url+"/api/export/v1/vastaukset?limit=50000" reqheaders = {'Content-Type': 'application/json'} reqheaders['Accept'] = 'application/json' csv_path = "d:/pdi_integrations/data/arvo/vastaukset.csv" ### encode API user and API key tothe request headers tmp = "%s:%s" % (api_user, api_key) reqheaders['Authorization'] = "Basic %s" % base64.b64encode(tmp.encode('utf-8')).decode('utf-8') #set username and counter and i value for id column username = os.environ['USERNAME'] i = 1 def keycheck(x,y): if x in y: return y[x] else: return None def makerow_vastaukset(): return { "id":None, "vastausid": None, "monivalintavaihtoehto_fi": None, "monivalintavaihtoehto_sv": None, "monivalintavaihtoehto_en": None, "vastaajaid": None, "kysymysid": None, "kyselykertaid": None, "koulutustoimija": None, "numerovalinta": None, "kyselyid": None, "vastaajatunnusid": None, "vapaateksti": None, "vaihtoehto": None, "vastausaika": None, "source": url, "loadtime": None, "username": username } while url != None: ## The url is not null response = requests.get(url, headers=reqheaders).json() for vastaus in response['data']: row = makerow_vastaukset() row["id"] = i row["vastausid"] = keycheck("vastausid",vastaus) row["monivalintavaihtoehto_fi"] = keycheck("monivalintavaihtoehto_fi",vastaus) row["monivalintavaihtoehto_sv"] = keycheck("monivalintavaihtoehto_sv",vastaus) row["monivalintavaihtoehto_en"] = keycheck("monivalintavaihtoehto_en",vastaus) row["vastaajaid"] = keycheck("vastaajaid",vastaus) row["kysymysid"] = keycheck("kysymysid",vastaus) row["kyselykertaid"] = keycheck("kyselykertaid",vastaus) row["koulutustoimija"] = keycheck("koulutustoimija",vastaus) #row["numerovalinta"] = keycheck("numerovalinta",vastaus) if "numerovalinta" in vastaus: if vastaus["numerovalinta"] == None: row["numerovalinta"] = -1 else: row["numerovalinta"] = vastaus["numerovalinta"] else: row["numerovalinta"] = -1 row["kyselyid"] = keycheck("kyselyid",vastaus) row["vastaajatunnusid"] = keycheck("vastaajatunnusid",vastaus) row["vapaateksti"] = keycheck("vapaateksti",vastaus) row["vaihtoehto"] = keycheck("vaihtoehto",vastaus) row["vastausaika"] = keycheck("vastausaika",vastaus) vastaukset.append(row) #this is for appending data to csv in the secont for-loop cycle # DATA to csv for import to MSSQL - can be used also for BULK inserting if i == 1: data = json_normalize(vastaukset) data.to_csv(path_or_buf=csv_path, sep='╡', na_rep='', header=True, index=False, mode='w', encoding='utf-8', quoting=0, quotechar='"', line_terminator='\n' , escapechar='$', columns = ["id",'vastausid', 'monivalintavaihtoehto_fi', 'monivalintavaihtoehto_sv','monivalintavaihtoehto_en','vastaajaid','kysymysid', 'kyselykertaid','koulutustoimija','numerovalinta','kyselyid','vastaajatunnusid','vapaateksti','loadtime','source', 'username','vaihtoehto', 'vastausaika']) i+= 1 #add chunk of vastaus to data and then csv else: i+= 1 # DATA to csv for import to MSSQL - can be used also for BULK inserting data = json_normalize(vastaukset) data.to_csv(path_or_buf=csv_path, sep='╡', na_rep='', header=False, index=False, mode='a', encoding='utf-8', quoting=0, quotechar='"', line_terminator='\n' , escapechar='$', columns = ["id",'vastausid', 'monivalintavaihtoehto_fi', 'monivalintavaihtoehto_sv','monivalintavaihtoehto_en','vastaajaid','kysymysid', 'kyselykertaid','koulutustoimija','numerovalinta','kyselyid','vastaajatunnusid','vapaateksti','loadtime','source', 'username','vaihtoehto', 'vastausaika']) #for debugging #print (i-1, " rows exported to csv" ) #reset vastaukset vastaukset= [] url = response['pagination']['next_url'] urls.append(url) print (i-1, " rows exported to csv" ) print ("The End") ''' #append the rest of vastauset into csv data = json_normalize(vastaukset) # DATA to csv for import to MSSQL - can be used also for BULK inserting data.to_csv(path_or_buf=csv_path, sep='|', na_rep='', header=False, index=False, mode='a', encoding='utf-8', quoting=0, quotechar='"', line_terminator='\n' , escapechar='$', columns = ["id",'vastausid', 'monivalintavaihtoehto_fi', 'monivalintavaihtoehto_sv','monivalintavaihtoehto_en','vastaajaid','kysymysid', 'kyselykertaid','koulutustoimija','numerovalinta','kyselyid','vastaajatunnusid','vapaateksti','loadtime','source', 'username','vaihtoehto', 'vastausaika']) '''
mit
naripok/cryptotrader
cryptotrader/datafeed.py
1
28137
from functools import wraps as _wraps from itertools import chain as _chain import json from .utils import convert_to, Logger, dec_con from decimal import Decimal import pandas as pd from time import sleep from datetime import datetime, timezone, timedelta import zmq import threading from multiprocessing import Process from .exceptions import * from cryptotrader.utils import send_email debug = True # Base classes class ExchangeConnection(object): # Feed methods @property def balance(self): return NotImplementedError("This class is not intended to be used directly.") def returnBalances(self): return NotImplementedError("This class is not intended to be used directly.") def returnFeeInfo(self): return NotImplementedError("This class is not intended to be used directly.") def returnCurrencies(self): return NotImplementedError("This class is not intended to be used directly.") def returnChartData(self, currencyPair, period, start=None, end=None): return NotImplementedError("This class is not intended to be used directly.") # Trade execution methods def sell(self, currencyPair, rate, amount, orderType=False): return NotImplementedError("This class is not intended to be used directly.") def buy(self, currencyPair, rate, amount, orderType=False): return NotImplementedError("This class is not intended to be used directly.") def pair_reciprocal(self, df): df[['open', 'high', 'low', 'close']] = df.apply( {col: lambda x: str((Decimal('1') / convert_to.decimal(x)).quantize(Decimal('0E-8'))) for col in ['open', 'low', 'high', 'close']}, raw=True).rename(columns={'low': 'high', 'high': 'low'} ) return df.rename(columns={'quoteVolume': 'volume', 'volume': 'quoteVolume'}) ## Feed daemon # Server class FeedDaemon(Process): """ Data Feed server """ def __init__(self, api={}, addr='ipc:///tmp/feed.ipc', n_workers=8, email={}): """ :param api: dict: exchange name: api instance :param addr: str: client side address :param n_workers: int: n threads """ super(FeedDaemon, self).__init__() self.api = api self.email = email self.context = zmq.Context() self.n_workers = n_workers self.addr = addr self.MINUTE, self.HOUR, self.DAY = 60, 60 * 60, 60 * 60 * 24 self.WEEK, self.MONTH = self.DAY * 7, self.DAY * 30 self.YEAR = self.DAY * 365 self._nonce = int("{:.6f}".format(datetime.utcnow().timestamp()).replace('.', '')) @property def nonce(self): """ Increments the nonce""" self._nonce += 33 return self._nonce def handle_req(self, req): req = req.split(' ') if req[0] == '' or len(req) == 1: return False elif len(req) == 2: return req[0], req[1] else: # Candle data if req[1] == 'returnChartData': if req[4] == 'None': req[4] = datetime.utcnow().timestamp() - self.DAY if req[5] == 'None': req[5] = datetime.utcnow().timestamp() call = ( req[0], req[1], { 'currencyPair': str(req[2]).upper(), 'period': str(req[3]), 'start': str(req[4]), 'end': str(req[5]) } ) return call if req[1] == 'returnTradeHistory': args = {'currencyPair': str(req[2]).upper()} if req[3] != 'None': args['start'] = req[3] if req[4] != 'None': args['end'] = req[4] return req[0], req[1], args # Buy and sell orders if req[1] == 'buy' or req[1] == 'sell': args = { 'currencyPair': str(req[2]).upper(), 'rate': str(req[3]), 'amount': str(req[4]), } # order type specified? try: possTypes = ['fillOrKill', 'immediateOrCancel', 'postOnly'] # check type if not req[5] in possTypes: raise ExchangeError('Invalid orderType') args[req[5]] = 1 except IndexError: pass return req[0], req[1], args if req[1] == 'returnDepositsWithdrawals': args = {} if req[2] != 'None': args['start'] = req[2] if req[3] != 'None': args['end'] = req[3] return req[0], req[1], args def worker(self): # Init socket sock = self.context.socket(zmq.REP) sock.connect("inproc://workers.inproc") while True: try: # Wait for request req = sock.recv_string() Logger.info(FeedDaemon.worker, req) # Handle request call = self.handle_req(req) # Send request to api if call: try: self.api[call[0]].nonce = self.nonce rep = self.api[call[0]].__call__(*call[1:]) except ExchangeError as e: rep = e.__str__() Logger.error(FeedDaemon.worker, "Exchange error: %s\n%s" % (req, rep)) except DataFeedException as e: rep = e.__str__() Logger.error(FeedDaemon.worker, "DataFeedException: %s\n%s" % (req, rep)) if debug: Logger.debug(FeedDaemon.worker, "Debug: %s" % req) # send reply back to client sock.send_json(rep) else: raise TypeError("Bad call format.") except Exception as e: send_email(self.email, "FeedDaemon Error", e) sock.close() raise e def run(self): try: Logger.info(FeedDaemon, "Starting Feed Daemon...") # Socket to talk to clients clients = self.context.socket(zmq.ROUTER) clients.bind(self.addr) # Socket to talk to workers workers = self.context.socket(zmq.DEALER) workers.bind("inproc://workers.inproc") # Launch pool of worker threads for i in range(self.n_workers): thread = threading.Thread(target=self.worker, args=()) thread.start() Logger.info(FeedDaemon.run, "Feed Daemon running. Serving on %s" % self.addr) zmq.proxy(clients, workers) except KeyboardInterrupt: clients.close() workers.close() self.context.term() # Client class DataFeed(ExchangeConnection): """ Data feeder for backtesting with TradingEnvironment. """ # TODO WRITE TESTS retryDelays = [2 ** i for i in range(8)] def __init__(self, exchange='', addr='ipc:///tmp/feed.ipc', timeout=30): """ :param period: int: Data sampling period :param pairs: list: Pair symbols to trade :param exchange: str: FeedDaemon exchange to query :param addr: str: Client socked address :param timeout: int: """ super(DataFeed, self).__init__() # Sock objects self.context = zmq.Context() self.addr = addr self.exchange = exchange self.timeout = timeout * 1000 self.sock = self.context.socket(zmq.REQ) self.sock.connect(addr) self.poll = zmq.Poller() self.poll.register(self.sock, zmq.POLLIN) def __del__(self): self.sock.close() # Retry decorator def retry(func): """ Retry decorator """ @_wraps(func) def retrying(*args, **kwargs): problems = [] for delay in _chain(DataFeed.retryDelays, [None]): try: # attempt call return func(*args, **kwargs) # we need to try again except DataFeedException as problem: problems.append(problem) if delay is None: Logger.debug(DataFeed, problems) raise MaxRetriesException('retryDelays exhausted ' + str(problem)) else: # log exception and wait Logger.debug(DataFeed, problem) Logger.error(DataFeed, "No reply... -- delaying for %ds" % delay) sleep(delay) return retrying def get_response(self, req): req = self.exchange + ' ' + req # Send request try: self.sock.send_string(req) except zmq.ZMQError as e: if 'Operation cannot be accomplished in current state' == e.__str__(): # If request timeout, restart socket Logger.error(DataFeed.get_response, "%s request timeout." % req) # Socket is confused. Close and remove it. self.sock.setsockopt(zmq.LINGER, 0) self.sock.close() self.poll.unregister(self.sock) # Create new connection self.sock = self.context.socket(zmq.REQ) self.sock.connect(self.addr) self.poll.register(self.sock, zmq.POLLIN) raise DataFeedException("Socket error. Restarting connection...") # Get response socks = dict(self.poll.poll(self.timeout)) if socks.get(self.sock) == zmq.POLLIN: # If response, return return self.sock.recv_json() else: # If request timeout, restart socket Logger.error(DataFeed.get_response, "%s request timeout." % req) # Socket is confused. Close and remove it. self.sock.setsockopt(zmq.LINGER, 0) self.sock.close() self.poll.unregister(self.sock) # Create new connection self.sock = self.context.socket(zmq.REQ) self.sock.connect(self.addr) self.poll.register(self.sock, zmq.POLLIN) raise RequestTimeoutException("%s request timedout" % req) @retry def returnTicker(self): try: rep = self.get_response('returnTicker') assert isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnTicker") @retry def returnBalances(self): """ Return balance from exchange. API KEYS NEEDED! :return: list: """ try: rep = self.get_response('returnBalances') assert isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnBalances") @retry def returnFeeInfo(self): """ Returns exchange fee informartion :return: """ try: rep = self.get_response('returnFeeInfo') assert isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnFeeInfo") @retry def returnCurrencies(self): """ Return exchange currency pairs :return: list: """ try: rep = self.get_response('returnCurrencies') assert isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnCurrencies") @retry def returnChartData(self, currencyPair, period, start=None, end=None): """ Return pair OHLC data :param currencyPair: str: Desired pair str :param period: int: Candle period. Must be in [300, 900, 1800, 7200, 14400, 86400] :param start: str: UNIX timestamp to start from :param end: str: UNIX timestamp to end returned data :return: list: List containing desired asset data in "records" format """ try: call = "returnChartData %s %s %s %s" % (str(currencyPair), str(period), str(start), str(end)) rep = self.get_response(call) if 'Invalid currency pair.' in rep: try: symbols = currencyPair.split('_') pair = symbols[1] + '_' + symbols[0] call = "returnChartData %s %s %s %s" % (str(pair), str(period), str(start), str(end)) rep = json.loads( self.pair_reciprocal(pd.DataFrame.from_records(self.get_response(call))).to_json( orient='records')) except Exception as e: raise e assert isinstance(rep, list), "returnChartData reply is not list" assert int(rep[-1]['date']), "Bad returnChartData reply data" assert float(rep[-1]['open']), "Bad returnChartData reply data" assert float(rep[-1]['close']), "Bad returnChartData reply data" return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnChartData") @retry def returnTradeHistory(self, currencyPair='all', start=None, end=None): try: call = "returnTradeHistory %s %s %s" % (str(currencyPair), str(start), str(end)) rep = self.get_response(call) assert isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnTradeHistory") @retry def returnDepositsWithdrawals(self, start=False, end=False): try: call = "returnDepositsWithdrawals %s %s" % ( str(start), str(end) ) rep = self.get_response(call) assert isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnDepositsWithdrawals") @retry def sell(self, currencyPair, rate, amount, orderType=False): try: call = "sell %s %s %s %s" % (str(currencyPair), str(rate), str(amount), str(orderType)) rep = self.get_response(call) if 'Invalid currency pair.' in rep: try: symbols = currencyPair.split('_') pair = symbols[1] + '_' + symbols[0] call = "sell %s %s %s %s" % (str(pair), str(rate), str(amount), str(orderType)) rep = self.get_response(call) except Exception as e: raise e assert isinstance(rep, str) or isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.sell") @retry def buy(self, currencyPair, rate, amount, orderType=False): try: call = "buy %s %s %s %s" % (str(currencyPair), str(rate), str(amount), str(orderType)) rep = self.get_response(call) if 'Invalid currency pair.' in rep: try: symbols = currencyPair.split('_') pair = symbols[1] + '_' + symbols[0] call = "buy %s %s %s %s" % (str(pair), str(rate), str(amount), str(orderType)) rep = self.get_response(call) except Exception as e: raise e assert isinstance(rep, str) or isinstance(rep, dict) return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.buy") # Test datafeeds class BacktestDataFeed(ExchangeConnection): """ Data feeder for backtesting with TradingEnvironment. """ # TODO WRITE TESTS def __init__(self, tapi, period, pairs=[], balance={}, load_dir=None): super().__init__() self.tapi = tapi self.ohlc_data = {} self._balance = balance self.data_length = 0 self.load_dir = load_dir self.tax = {'makerFee': '0.00150000', 'nextTier': '600.00000000', 'takerFee': '0.00250000', 'thirtyDayVolume': '0.00000000'} self.pairs = pairs self.period = period def returnBalances(self): return self._balance def set_tax(self, tax): """ {'makerFee': '0.00150000', 'nextTier': '600.00000000', 'takerFee': '0.00250000', 'thirtyDayVolume': '0.00000000'} :param dict: :return: """ self.tax.update(tax) def returnFeeInfo(self): return self.tax def returnCurrencies(self): if self.load_dir: try: with open(self.load_dir + '/currencies.json') as file: return json.load(file) except Exception as e: Logger.error(BacktestDataFeed.returnCurrencies, str(e.__cause__) + str(e)) return self.tapi.returnCurrencies() else: return self.tapi.returnCurrencies() def download_data(self, start=None, end=None): # TODO WRITE TEST self.ohlc_data = {} self.data_length = None index = pd.date_range(start=start, end=end, freq="%dT" % self.period).ceil("%dT" % self.period) for pair in self.pairs: ohlc_df = pd.DataFrame.from_records( self.tapi.returnChartData( pair, period=self.period * 60, start=start, end=end ), nrows=index.shape[0] ) i = -1 last_close = ohlc_df.at[ohlc_df.index[i], 'close'] while not dec_con.create_decimal(last_close).is_finite(): i -= 1 last_close = ohlc_df.at[ohlc_df.index[i], 'close'] # Replace missing values with last close fill_dict = {col: last_close for col in ['open', 'high', 'low', 'close']} fill_dict.update({'volume': '0E-16'}) self.ohlc_data[pair] = ohlc_df.fillna(fill_dict).ffill() for key in self.ohlc_data: if not self.data_length or self.ohlc_data[key].shape[0] < self.data_length: self.data_length = self.ohlc_data[key].shape[0] for key in self.ohlc_data: if self.ohlc_data[key].shape[0] != self.data_length: # self.ohlc_data[key] = pd.DataFrame.from_records( # self.tapi.returnChartData(key, period=self.period * 60, # start=self.ohlc_data[key].date.iloc[-self.data_length], # end=end # ), # nrows=index.shape[0] # ) self.ohlc_data[key] = self.ohlc_data[key].iloc[:self.data_length] self.ohlc_data[key].set_index('date', inplace=True, drop=False) print("%d intervals, or %d days of data at %d minutes period downloaded." % (self.data_length, (self.data_length * self.period) /\ (24 * 60), self.period)) def save_data(self, dir=None): """ Save data to disk :param dir: str: directory relative to ./; eg './data/train :return: """ for item in self.ohlc_data: self.ohlc_data[item].to_json(dir+'/'+str(item)+'_'+str(self.period)+'min.json', orient='records') def load_data(self, dir): """ Load data form disk. JSON like data expected. :param dir: str: directory relative to self.load_dir; eg: './self.load_dir/dir' :return: None """ self.ohlc_data = {} self.data_length = None for key in self.pairs: self.ohlc_data[key] = pd.read_json(self.load_dir + dir +'/'+str(key)+'_'+str(self.period)+'min.json', convert_dates=False, orient='records', date_unit='s', keep_default_dates=False, dtype=False) self.ohlc_data[key].set_index('date', inplace=True, drop=False) if not self.data_length: self.data_length = self.ohlc_data[key].shape[0] else: assert self.data_length == self.ohlc_data[key].shape[0] def returnChartData(self, currencyPair, period, start=None, end=None): try: data = json.loads(self.ohlc_data[currencyPair].loc[start:end, :].to_json(orient='records')) return data except json.JSONDecodeError: print("Bad exchange response.") except AssertionError as e: if "Invalid period" == e: raise ExchangeError("%d invalid candle period" % period) elif "Invalid pair" == e: raise ExchangeError("Invalid currency pair.") def reverse_data(self): for df in self.ohlc_data: self.ohlc_data.update({df:self.ohlc_data[df].reindex(index=self.ohlc_data[df].index[::-1])}) self.ohlc_data[df]['date'] = self.ohlc_data[df].index[::-1] self.ohlc_data[df].index = self.ohlc_data[df].index[::-1] self.ohlc_data[df] = self.ohlc_data[df].rename(columns={'close': 'open', 'open': 'close'}) class PaperTradingDataFeed(ExchangeConnection): """ Data feeder for paper trading with TradingEnvironment. """ # TODO WRITE TESTS def __init__(self, tapi, period, pairs=[], balance={}): super().__init__() self.tapi = tapi self._balance = balance self.pairs = pairs self.period = period def returnBalances(self): return self._balance def returnFeeInfo(self): return {'makerFee': '0.00150000', 'nextTier': '600.00000000', 'takerFee': '0.00250000', 'thirtyDayVolume': '0.00000000'} def returnTicker(self): return self.tapi.returnTicker() def returnCurrencies(self): """ Return exchange currency pairs :return: list: """ return self.tapi.returnCurrencies() def returnChartData(self, currencyPair, period, start=None, end=None): """ Return pair OHLC data :param currencyPair: str: Desired pair str :param period: int: Candle period. Must be in [300, 900, 1800, 7200, 14400, 86400] :param start: str: UNIX timestamp to start from :param end: str: UNIX timestamp to end returned data :return: list: List containing desired asset data in "records" format """ try: return self.tapi.returnChartData(currencyPair, period, start=start, end=end) except ExchangeError as error: if 'Invalid currency pair.' == error.__str__(): try: symbols = currencyPair.split('_') pair = symbols[1] + '_' + symbols[0] return json.loads( self.pair_reciprocal(pd.DataFrame.from_records(self.tapi.returnChartData(pair, period, start=start, end=end ))).to_json( orient='records')) except Exception as e: raise e else: raise error # Live datafeeds class PoloniexConnection(DataFeed): def __init__(self, period, pairs=[], exchange='', addr='ipc:///tmp/feed.ipc', timeout=20): """ :param tapi: exchange api instance: Exchange api instance :param period: int: Data period :param pairs: list: Pairs to trade """ super().__init__(exchange, addr, timeout) self.pairs = pairs self.period = period @DataFeed.retry def returnChartData(self, currencyPair, period, start=None, end=None): """ Return pair OHLC data :param currencyPair: str: Desired pair str :param period: int: Candle period. Must be in [300, 900, 1800, 7200, 14400, 86400] :param start: str: UNIX timestamp to start from :param end: str: UNIX timestamp to end returned data :return: list: List containing desired asset data in "records" format """ try: call = "returnChartData %s %s %s %s" % (str(currencyPair), str(period), str(start), str(end)) rep = self.get_response(call) if 'Invalid currency pair.' in rep: try: symbols = currencyPair.split('_') pair = symbols[1] + '_' + symbols[0] call = "returnChartData %s %s %s %s" % (str(pair), str(period), str(start), str(end)) rep = json.loads( self.pair_reciprocal( pd.DataFrame.from_records( self.get_response(call) ) ).to_json(orient='records')) except Exception as e: raise e assert isinstance(rep, list), "returnChartData reply is not list: %s" % str(rep) assert int(rep[-1]['date']), "Bad returnChartData reply data" assert float(rep[-1]['open']), "Bad returnChartData reply data" assert float(rep[-1]['close']), "Bad returnChartData reply data" return rep except AssertionError: raise UnexpectedResponseException("Unexpected response from DataFeed.returnChartData")
mit
lukeiwanski/tensorflow-opencl
tensorflow/examples/tutorials/input_fn/boston.py
51
2709
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def input_fn(data_set): feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES} labels = tf.constant(data_set[LABEL].values) return feature_cols, labels def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.contrib.layers.real_valued_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Fit regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000) # Score accuracy ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions y = regressor.predict(input_fn=lambda: input_fn(prediction_set)) # .predict() returns an iterator; convert to a list and print predictions predictions = list(itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
zorojean/scikit-learn
examples/linear_model/plot_robust_fit.py
238
2414
""" Robust linear estimator fitting =============================== Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demoed in different situations: - No measurement errors, only modelling errors (fitting a sine with a polynomial) - Measurement errors in X - Measurement errors in y The median absolute deviation to non corrupt new data is used to judge the quality of the prediction. What we can see that: - RANSAC is good for strong outliers in the y direction - TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs worst than OLS. """ from matplotlib import pyplot as plt import numpy as np from sklearn import linear_model, metrics from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline np.random.seed(42) X = np.random.normal(size=400) y = np.sin(X) # Make sure that it X is 2D X = X[:, np.newaxis] X_test = np.random.normal(size=200) y_test = np.sin(X_test) X_test = X_test[:, np.newaxis] y_errors = y.copy() y_errors[::3] = 3 X_errors = X.copy() X_errors[::3] = 3 y_errors_large = y.copy() y_errors_large[::3] = 10 X_errors_large = X.copy() X_errors_large[::3] = 10 estimators = [('OLS', linear_model.LinearRegression()), ('Theil-Sen', linear_model.TheilSenRegressor(random_state=42)), ('RANSAC', linear_model.RANSACRegressor(random_state=42)), ] x_plot = np.linspace(X.min(), X.max()) for title, this_X, this_y in [ ('Modeling errors only', X, y), ('Corrupt X, small deviants', X_errors, y), ('Corrupt y, small deviants', X, y_errors), ('Corrupt X, large deviants', X_errors_large, y), ('Corrupt y, large deviants', X, y_errors_large)]: plt.figure(figsize=(5, 4)) plt.plot(this_X[:, 0], this_y, 'k+') for name, estimator in estimators: model = make_pipeline(PolynomialFeatures(3), estimator) model.fit(this_X, this_y) mse = metrics.mean_squared_error(model.predict(X_test), y_test) y_plot = model.predict(x_plot[:, np.newaxis]) plt.plot(x_plot, y_plot, label='%s: error = %.3f' % (name, mse)) plt.legend(loc='best', frameon=False, title='Error: mean absolute deviation\n to non corrupt data') plt.xlim(-4, 10.2) plt.ylim(-2, 10.2) plt.title(title) plt.show()
bsd-3-clause
tody411/ImageViewerFramework
ivf/batch/base_detail_separation.py
1
9968
# -*- coding: utf-8 -*- ## @package ivf.batch.base_detail_separation # # ivf.batch.base_detail_separation utility package. # @author tody # @date 2016/02/10 import numpy as np import cv2 import matplotlib.pyplot as plt from PyQt4.QtGui import * from PyQt4.QtCore import * import sys from ivf.batch.batch import DatasetBatch, CharacterBatch from ivf.io_util.image import loadNormal, loadRGBA, loadRGB, saveNormal from ivf.cv.image import to32F, setAlpha, luminance, alpha, rgb from ivf.np.norm import normalizeVector from ivf.core.shader.toon import ToonShader from ivf.core.sfs.detail_layer import baseDetailSeparationGaussian, baseDetailSeparationBilateral,\ baseDetailSeprationDOG, baseDetailSeparationMedian from ivf.plot.window import SubplotGrid, showMaximize from ivf.core.sfs.bump_mapping import bumpNormal, bumpMapping from ivf.cv.normal import normalToColor, normalizeImage from ivf.core.sfs.amg_constraints import normalConstraints from ivf.core.solver import amg_solver from ivf.core.sfs import amg_constraints from ivf.core.sfs.lumo import computeNz from ivf.core.shader.lambert import LambertShader from ivf.ui.image_view import ImageView from ivf.ui.editor.parameter_editor import ParameterEditor class BaseDetailSeprationBatch(DatasetBatch, CharacterBatch): def __init__(self, parameters, view, name="BaseDetailSepration", dataset_name="3dmodel"): super(BaseDetailSeprationBatch, self).__init__(name, dataset_name) self._parameters = parameters self._parameters["sigmaSpace"].valueChanged.connect(self._computeBaseDetalSeparation) self._parameters["sigmaRange"].valueChanged.connect(self._computeBaseDetalSeparation) self._parameters["bumpScale"].valueChanged.connect(self._computeInitialDetailNormal) self._view = view self._N_32F = None self._A_8U = None self._N0_b_32F = None self._N0_d_32F = None self._N_lumo = None self._C0_32F = None self._D = None self._N_b = None self._N_b_smooth = None self._N_d = None self._N_d_smooth = None def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N0_32F, A_8U = normal_data A_32F = to32F(A_8U) L = normalizeVector(np.array([-0.2, 0.3, 0.7])) # C0_32F = ToonShader().diffuseShading(L, N0_32F) C0_32F = LambertShader().diffuseShading(L, N0_32F) self._C0_32F = C0_32F self._loadImage() def _computeBaseDetalSeparation(self): sigma_space, sigma_range = self._parameters["sigmaSpace"], self._parameters["sigmaRange"] C0_32F = self._C0_32F I_32F = luminance(C0_32F) B_b, D_b = baseDetailSeparationBilateral(I_32F, sigma_space=sigma_space.value(), sigma_range=sigma_range.value()) self._D = D_b self._N_b = bumpNormal(B_b, scale=1.0, sigma=1.0) self._N_d = bumpNormal(D_b, scale=1.0, sigma=1.0) self._view.render(D_b) def _computeInitialDetailNormal(self): bump_scale = self._parameters["bumpScale"].value() self._N_b[:, :, :2] *= bump_scale self._N_b = normalizeImage(self._N_b, th=1.0) self._N_d[:, :, :2] *= bump_scale self._N_d = normalizeImage(self._N_d, th=1.0) self._view.render(normalToColor(self._N_b)) def _computeDetailNormal(self, N0_32F): h, w = N0_32F.shape[:2] W_32F = np.zeros((h, w)) # sigma_d = 2.0 * np.max(N0_32F[:, :, 2]) # W_32F = 1.0 - np.exp( - (N0_32F[:, :, 2] ** 2) / (sigma_d ** 2)) W_32F = 1.0 - N0_32F[:, :, 2] W_32F *= 1.0 / np.max(W_32F) W_32F = W_32F ** 1.5 A_c, b_c = amg_constraints.normalConstraints(W_32F, N0_32F) A_L = amg_constraints.laplacianMatrix((h, w)) lambda_d = 2.0 A = A_c + lambda_d * A_L b = b_c N_32F = amg_solver.solve(A, b).reshape(h, w, 3) N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3) N_32F = normalizeImage(N_32F) return N_32F def computeDetailNormal(self): self._N_b_smooth = self._computeDetailNormal(self._N_b) self._N_d_smooth = self._computeDetailNormal(self._N_d) def _computeLumoNormal(self): A_8U = self._A_8U if A_8U is None: return h, w = A_8U.shape[:2] A_c, b_c = amg_constraints.silhouetteConstraints(A_8U) A_L = amg_constraints.laplacianMatrix((h, w)) A = 3.0 * A_c + A_L b = 3.0 * b_c N_32F = amg_solver.solve(A, b).reshape(h, w, 3) N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3) N_32F = normalizeImage(N_32F) self._N_lumo = np.array(N_32F) def computeInitialNormal(self): if self._N_lumo.shape != self._N_b_smooth.shape: return self._N0_b_32F = normalizeImage(bumpMapping(np.array(self._N_lumo), self._N_b_smooth)) self._N0_d_32F = normalizeImage(bumpMapping(np.array(self._N_lumo), self._N_d_smooth)) def _loadImage(self): C0_32F = self._C0_32F I_32F = luminance(C0_32F) self._view.render(I_32F) return # B_g, D_g = baseDetailSeparationGaussian(I_32F, sigma=10.0) # B_b, D_b = baseDetailSeparationBilateral(I_32F, sigma_space=5.0, sigma_range=0.3) # B_dog, D_dog = baseDetailSeprationDOG(I_32F, sigma=2.0) # B_med, D_med = baseDetailSeparationMedian(I_32F, ksize=21) # # separations = [#["Gaussian", B_g, D_g], # #["DOG", B_dog, D_dog], # #["Median", B_med, D_med], # ["Bilateral", B_b, D_b] # ] # for separation in separations: # N0_32F = bumpNormal(separation[-1], scale=50.0, sigma=3.0) # separation.append(normalToColor(N0_32F)) # # th = 0.1 # h, w = N0_32F.shape[:2] # W_32F = np.zeros((h, w)) # # W_32F = 1.0 - N0_32F[:, :, 2] # W_32F *= 1.0 / np.max(W_32F) # # W_32F = W_32F ** 1.5 # #W_32F[W_32F < th] = 0.0 # #W_32F[W_32F > th] = 1.0 # # A_c, b_c = amg_constraints.normalConstraints(W_32F, N0_32F) # # A_L = amg_constraints.laplacianMatrix((h, w)) # A = 3.0 * A_c + A_L # b = 3.0 * b_c # # N_32F = amg_solver.solve(A, b).reshape(h, w, 3) # N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3) # N_32F = normalizeImage(N_32F) # separation.append(normalToColor(N_32F, self._A_8U)) # # self._N_32F = N_32F # C0_32F = LambertShader().diffuseShading(L, N0_32F) # fig, axes = plt.subplots(figsize=(12, 8)) # font_size = 15 # fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) # fig.suptitle(self.name(), fontsize=font_size) # # num_rows = 1 # num_cols = len(separations) + 1 # plot_grid = SubplotGrid(num_rows, num_cols) # # for separation in separations: # plot_grid.showImage(separation[-2], separation[0]) # plot_grid.showImage(separation[-1], separation[0]) # # showMaximize() def _runCharacterImp(self): # if self._character_name != "XMen": # return self._runLayer(self.fullLayerFile()) # for layer_file in self.layerFiles(): # self._runLayer(layer_file) def _runLayer(self, layer_file): if layer_file is None: return C0_8U = loadRGBA(layer_file) if C0_8U is None: C0_8U = loadRGB(layer_file) if C0_8U is None: return h, w = C0_8U.shape[:2] w_low = 1024 h_low = w_low * h / w # C0_8U = cv2.resize(C0_8U, (w_low, h_low)) A_8U = alpha(C0_8U) self._A_8U = A_8U C0_32F = to32F(rgb(C0_8U)) if A_8U is not None: C0_32F[A_8U < 0.9 * np.max(A_8U), :] = np.array([0, 0, 0]) self._C0_32F = C0_32F self._loadImage() self._computeBaseDetalSeparation() self._computeInitialDetailNormal() self.computeDetailNormal() self._computeLumoNormal() self.computeInitialNormal() # plt.savefig(self.characterResultFile("BumpNormal.png")) if self._N_b_smooth is not None: self.cleanCharacterResultDir() saveNormal(self.characterResultFile("N_b.png"), self._N_b, A_8U) saveNormal(self.characterResultFile("N_b_smooth.png"), self._N_b_smooth, A_8U) saveNormal(self.characterResultFile("N_d.png"), self._N_d, A_8U) saveNormal(self.characterResultFile("N_d_smooth.png"), self._N_d_smooth, A_8U) saveNormal(self.characterResultFile("N_lumo.png"), self._N_lumo, A_8U) saveNormal(self.characterResultFile("N0_b.png"), self._N0_b_32F, A_8U) saveNormal(self.characterResultFile("N0_d.png"), self._N0_d_32F, A_8U) def finishCharacter(self): if self._character_name != "": pass self.runCharacter() if __name__ == '__main__': app = QApplication(sys.argv) view = ImageView() view.showMaximized() editor = ParameterEditor() editor.addFloatParameter("sigmaSpace", min_val=1.0, max_val=30.0, default_val=5.0) editor.addFloatParameter("sigmaRange", min_val=0.0, max_val=1.0, default_val=0.3) editor.addFloatParameter("bumpScale", min_val=10.0, max_val=50.0, default_val=20.0) batch = BaseDetailSeprationBatch(editor.parameters(), view) editor.addButton("Compute Silhouette Normal", cmd_func=batch.computeInitialNormal) editor.addButton("Compute Detail Normal", cmd_func=batch.computeDetailNormal) editor.show() #view.setReturnCallback(batch.finishCharacter) batch.runCharacters() sys.exit(app.exec_())
mit
florian-f/sklearn
sklearn/metrics/pairwise.py
3
28439
# -*- coding: utf-8 -*- """ The :mod:`sklearn.metrics.pairwise` submodule implements utilities to evaluate pairwise distances or affinity of sets of samples. This module contains both distance metrics and kernels. A brief summary is given on the two here. Distance metrics are a function d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered "more similar" to objects a and c. Two objects exactly alike would have a distance of zero. One of the most popular examples is Euclidean distance. To be a 'true' metric, it must obey the following four conditions:: 1. d(a, b) >= 0, for all a and b 2. d(a, b) == 0, if and only if a = b, positive definiteness 3. d(a, b) == d(b, a), symmetry 4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality Kernels are measures of similarity, i.e. ``s(a, b) > s(a, c)`` if objects ``a`` and ``b`` are considered "more similar" to objects ``a`` and ``c``. A kernel must also be positive semi-definite. There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let D be the distance, and S be the kernel: 1. ``S = np.exp(-D * gamma)``, where one heuristic for choosing ``gamma`` is ``1 / num_features`` 2. ``S = 1. / (D / np.max(D))`` """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # License: BSD Style. import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import atleast2d_or_csr from ..utils import gen_even_slices from ..utils.extmath import safe_sparse_dot from ..utils.validation import array2d from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast # Utility Functions def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples_a, n_features] Y : {array-like, sparse matrix}, shape = [n_samples_b, n_features] Returns ------- safe_X : {array-like, sparse matrix}, shape = [n_samples_a, n_features] An array equal to X, guarenteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape = [n_samples_b, n_features] An array equal to Y if Y was not None, guarenteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ if Y is X or Y is None: X = Y = atleast2d_or_csr(X, dtype=np.float) else: X = atleast2d_or_csr(X, dtype=np.float) Y = atleast2d_or_csr(Y, dtype=np.float) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y # Distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two main advantages. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot-product `dot(y, y)` can be pre-computed. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples_1, n_features] Y : {array-like, sparse matrix}, shape = [n_samples_2, n_features] Y_norm_squared : array-like, shape = [n_samples_2], optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape = [n_samples_1, n_samples_2] Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if issparse(X): XX = X.multiply(X).sum(axis=1) else: XX = np.sum(X * X, axis=1)[:, np.newaxis] if X is Y: # shortcut in the common case euclidean_distances(X, X) YY = XX.T elif Y_norm_squared is None: if issparse(Y): # scipy.sparse matrices don't have element-wise scalar # exponentiation, and tocsr has a copy kwarg only on CSR matrices. YY = Y.copy() if isinstance(Y, csr_matrix) else Y.tocsr() YY.data **= 2 YY = np.asarray(YY.sum(axis=1)).T else: YY = np.sum(Y ** 2, axis=1)[np.newaxis, :] else: YY = atleast2d_or_csr(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") # TODO: a faster Cython implementation would do the clipping of negative # values in a single pass over the output matrix. distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances) def manhattan_distances(X, Y=None, sum_over_features=True): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise l1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ if issparse(X) or issparse(Y): raise ValueError("manhattan_distance does not support sparse" " matrices.") X, Y = check_pairwise_arrays(X, Y) D = np.abs(X[:, np.newaxis, :] - Y[np.newaxis, :, :]) if sum_over_features: D = np.sum(D, axis=2) else: D = D.reshape((-1, X.shape[1])) return D # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) degree : int Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = linear_kernel(X, Y) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) degree : int Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = linear_kernel(X, Y) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-γ ||x-y||²) for each pair of rows x in X and y in Y. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- kernel matrix : array_like An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = linear_kernel(X_normalized, Y_normalized) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -∑ᵢ [(xᵢ - yᵢ)² / (xᵢ + yᵢ)] It can be interpreted as a weighted difference per entry. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferrable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") ### we don't use check_pairwise to preserve float32. if Y is None: # optimize this case! X = array2d(X) if X.dtype != np.float32: X.astype(np.float) Y = X if (X < 0).any(): raise ValueError("X contains negative values.") else: X = array2d(X) Y = array2d(Y) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) if X.dtype != np.float32 or Y.dtype != np.float32: # if not both are 32bit float, convert to 64bit float X = X.astype(np.float) Y = Y.astype(np.float) if (X < 0).any(): raise ValueError("X contains negative values.") if (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-γ ∑ᵢ [(xᵢ - yᵢ)² / (xᵢ + yᵢ)]) It can be interpreted as a weighted difference per entry. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, 'cityblock': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X ret = Parallel(n_jobs=n_jobs, verbose=0)( delayed(func)(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatability with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Please note that support for sparse matrices is currently limited to those metrics listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. Valid values for metric are: - from scikit-learn: ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. Note in the case of 'euclidean' and 'cityblock' (which are valid scipy.spatial.distance metrics), the values will use the scikit-learn implementation, which is faster and has support for sparse matrices. For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debuging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] if n_jobs == 1: return func(X, Y, **kwds) else: return _parallel_pairwise(X, Y, func, n_jobs, **kwds) elif callable(metric): # Check matrices first (this is usually done by the metric). X, Y = check_pairwise_arrays(X, Y) n_x, n_y = X.shape[0], Y.shape[0] # Calculate distance for each element in X and Y. # FIXME: can use n_jobs here too D = np.zeros((n_x, n_y), dtype='float') for i in range(n_x): start = 0 if X is Y: start = i for j in range(start, n_y): # distance assumed to be symmetric. D[i][j] = metric(X[i], Y[j], **kwds) if X is Y: D[j][i] = D[i][j] return D else: # Note: the distance module doesn't support sparse matrices! if type(X) is csr_matrix: raise TypeError("scipy distance metrics do not" " support sparse matrices.") if Y is None: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) else: if type(Y) is csr_matrix: raise TypeError("scipy distance metrics do not" " support sparse matrices.") return distance.cdist(X, Y, metric=metric, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatability with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debuging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] if n_jobs == 1: return func(X, Y, **kwds) else: return _parallel_pairwise(X, Y, func, n_jobs, **kwds) elif callable(metric): # Check matrices first (this is usually done by the metric). X, Y = check_pairwise_arrays(X, Y) n_x, n_y = X.shape[0], Y.shape[0] # Calculate kernel for each element in X and Y. K = np.zeros((n_x, n_y), dtype='float') for i in range(n_x): start = 0 if X is Y: start = i for j in range(start, n_y): # Kernel assumed to be symmetric. K[i][j] = metric(X[i], Y[j], **kwds) if X is Y: K[j][i] = K[i][j] return K else: raise ValueError("Unknown kernel %r" % metric)
bsd-3-clause
altairpearl/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
apevec/RMS
RMS/Routines/Image.py
1
20077
""" Image processing routines. """ from __future__ import print_function, division, absolute_import import os import math import numpy as np import scipy.misc # Check which imread funtion to use try: imread = scipy.misc.imread imsave = scipy.misc.imsave USING_SCIPY_IMREAD = True except AttributeError: import imageio imread = imageio.imread imsave = imageio.imwrite USING_SCIPY_IMREAD = False from RMS.Decorators import memoizeSingle # Cython init import pyximport pyximport.install(setup_args={'include_dirs':[np.get_include()]}) import RMS.Routines.MorphCy as morph from RMS.Routines.BinImageCy import binImage as binImageCy def loadImage(img_path, flatten=-1): """ Load the given image. Handle loading it using different libraries. Arguments: img_path: [str] Path to the image. Keyword arguments: flatten: [int] Convert color image to grayscale if -1. -1 by default. """ if USING_SCIPY_IMREAD: img = imread(img_path, flatten) else: img = imread(img_path, as_gray=bool(flatten)) return img def saveImage(img_path, img): """ Save image to disk. Arguments: img_path: [str] Image path. img: [ndarray] Image as numpy array. """ imsave(img_path, img) def binImage(img, bin_factor, method='avg'): """ Bin the given image. The binning has to be a factor of 2, e.g. 2, 4, 8, etc. This is just a wrapper function for a cythonized function that does the binning. Arguments: img: [ndarray] Numpy array representing an image. bin_factor: [int] The binning factor. Has to be a factor of 2 (e.g. 2, 4, 8). Keyword arguments: method: [str] Binning method. 'avg' by default. - 'sum' will sum all values in the binning window and assign it to the new pixel. - 'avg' will take the average. Return: out_img: [ndarray] Binned image. """ input_type = img.dtype # Make sure the input image is of the correct type if img.dtype != np.uint16: img = img.astype(np.uint16) # Perform the binning img = binImageCy(img, bin_factor, method=method) # Convert the image back to the input type img = img.astype(input_type) return img def thresholdImg(img, avepixel, stdpixel, k1, j1, ff=False, mask=None, mask_ave_bright=True): """ Threshold the image with given parameters. Arguments: img: [2D ndarray] avepixel: [2D ndarray] stdpixel: [2D ndarray] k1: [float] relative thresholding factor (how many standard deviations above mean the maxpixel image should be) j1: [float] absolute thresholding factor (how many minimum abuolute levels above mean the maxpixel image should be) Keyword arguments: ff: [bool] If true, it indicated that the FF file is being thresholded. mask: [ndarray] Mask image. None by default. mask_ave_bright: [bool] Mask out regions that are 5 sigma brighter in avepixel than the mean. This gets rid of very bright stars, saturating regions, static bright parts, etc. Return: [ndarray] thresholded 2D image """ # If the FF file is used, then values in max will always be larger than values in average if ff: img_avg_sub = img - avepixel else: # Subtract input image and average, making sure there are no values below 0 which will wrap around img_avg_sub = applyDark(img, avepixel) # Compute the thresholded image img_thresh = img_avg_sub > (k1 * stdpixel + j1) # Mask out regions that are very bright in avepixel if mask_ave_bright: # Compute the average saturation mask and mask out everything that's saturating in avepixel ave_saturation_mask = avepixel >= np.min([np.mean(avepixel) + 5*np.std(avepixel), \ np.iinfo(avepixel.dtype).max]) # Dilate the mask 2 times input_type = ave_saturation_mask.dtype ave_saturation_mask = morph.morphApply(ave_saturation_mask.astype(np.uint8), [5, 5]).astype(input_type) img_thresh = img_thresh & ~ave_saturation_mask # If the mask was given, set all areas of the thresholded image convered by the mask to false if mask is not None: if img_thresh.shape == mask.img.shape: img_thresh[mask.img == 0] = False # The thresholded image is always 8 bit return img_thresh.astype(np.uint8) @memoizeSingle def thresholdFF(ff, k1, j1, mask=None, mask_ave_bright=False): """ Threshold the FF with given parameters. Arguments: ff: [FF object] input FF image object on which the thresholding will be applied k1: [float] relative thresholding factor (how many standard deviations above mean the maxpixel image should be) j1: [float] absolute thresholding factor (how many minimum abuolute levels above mean the maxpixel image should be) Keyword arguments: mask: [ndarray] Mask image. None by default. mask_ave_bright: [bool] Mask out regions that are 5 sigma brighter in avepixel than the mean. This gets rid of very bright stars, saturating regions, static bright parts, etc. Return: [ndarray] thresholded 2D image """ return thresholdImg(ff.maxpixel, ff.avepixel, ff.stdpixel, k1, j1, ff=True, mask=mask, \ mask_ave_bright=mask_ave_bright) @np.vectorize def gammaCorrection(intensity, gamma, bp=0, wp=255): """ Correct the given intensity for gamma. Arguments: intensity: [int] Pixel intensity gamma: [float] Gamma. Keyword arguments: bp: [int] Black point. wp: [int] White point. Return: [float] Gamma corrected image intensity. """ if intensity < 0: intensity = 0 x = (intensity - bp)/(wp - bp) if x > 0: # Compute the corrected intensity return bp + (wp - bp)*(x**(1.0/gamma)) else: return bp def applyBrightnessAndContrast(img, brightness, contrast): """ Applies brightness and contrast corrections to the image. Arguments: img: [2D ndarray] Image array. brightness: [int] A number in the range -255 to 255. contrast: [float] A number in the range -255 to 255. Return: img: [2D ndarray] Image array with the brightness applied. """ contrast = float(contrast) # Compute the contrast factor f = (259.0*(contrast + 255.0))/(255*(259 - contrast)) img_type = img.dtype # Convert image to float img = img.astype(np.float) # Apply brightness img = img + brightness # Apply contrast img = f*(img - 128.0) + 128.0 # Clip the values to 0-255 range img = np.clip(img, 0, 255) # Preserve image type img = img.astype(img_type) return img def adjustLevels(img_array, minv, gamma, maxv, nbits=None, scaleto8bits=False): """ Adjusts levels on image with given parameters. Arguments: img_array: [ndarray] Input image array. minv: [int] Minimum level. gamma: [float] gamma value Mmaxv: [int] maximum level. Keyword arguments: nbits: [int] Image bit depth. scaleto8bits: [bool] If True, the maximum value will be scaled to 255 and the image will be converted to 8 bits. Return: [ndarray] Image with adjusted levels. """ if nbits is None: # Get the bit depth from the image type nbits = 8*img_array.itemsize input_type = img_array.dtype # Calculate maximum image level max_lvl = 2**nbits - 1.0 # Limit the maximum level if maxv > max_lvl: maxv = max_lvl # Check that the image adjustment values are in fact given if (minv is None) or (gamma is None) or (maxv is None): return img_array minv = minv/max_lvl maxv = maxv/max_lvl interval = maxv - minv invgamma = 1.0/gamma # Make sure the interval is at least 10 levels of difference if interval*max_lvl < 10: minv *= 0.9 maxv *= 1.1 interval = maxv - minv # Make sure the minimum and maximum levels are in the correct range if minv < 0: minv = 0 if maxv*max_lvl > max_lvl: maxv = 1.0 img_array = img_array.astype(np.float64) # Reduce array to 0-1 values img_array = np.divide(img_array, max_lvl) # Calculate new levels img_array = np.divide((img_array - minv), interval) # Cut values lower than 0 img_array[img_array < 0] = 0 img_array = np.power(img_array, invgamma) img_array = np.multiply(img_array, max_lvl) # Convert back to 0-maxval values img_array = np.clip(img_array, 0, max_lvl) # Scale the image to 8 bits so the maximum value is set to 255 if scaleto8bits: img_array *= 255.0/np.max(img_array) img_array = img_array.astype(np.uint8) else: # Convert the image back to input type img_array = img_array.astype(input_type) return img_array class FlatStruct(object): def __init__(self, flat_img, dark=None): """ Structure containing the flat field. Arguments: flat_img: [ndarray] Flat field. """ # Convert the flat to float64 self.flat_img = flat_img.astype(np.float64) # Store the original flat self.flat_img_raw = np.copy(self.flat_img) # Apply the dark, if given self.applyDark(dark) # Compute the flat median self.computeAverage() # Fix values close to 0 self.fixValues() def applyDark(self, dark): """ Apply a dark to the flat. """ # Apply a dark frame to the flat, if given if dark is not None: self.flat_img = applyDark(self.flat_img_raw, dark) self.dark_applied = True else: self.flat_img = np.copy(self.flat_img_raw) self.dark_applied = False # Compute flat median self.computeAverage() # Fix values close to 0 self.fixValues() def computeAverage(self): """ Compute the reference level. """ # Bin the flat by a factor of 4 using the average method flat_binned = binImage(self.flat_img, 4, method='avg') # Take the maximum average level of pixels that are in a square of 1/4*height from the centre radius = flat_binned.shape[0]//4 img_h_half = flat_binned.shape[0]//2 img_w_half = flat_binned.shape[1]//2 self.flat_avg = np.max(flat_binned[img_h_half-radius:img_h_half+radius, \ img_w_half-radius:img_w_half+radius]) # Make sure the self.flat_avg value is relatively high if self.flat_avg < 1: self.flat_avg = 1 def fixValues(self): """ Handle values close to 0 on flats. """ # Make sure there are no values close to 0, as images are divided by flats self.flat_img[(self.flat_img < self.flat_avg/10) | (self.flat_img < 10)] = self.flat_avg def binFlat(self, binning_factor, binning_method): """ Bin the flat. """ # Bin the processed flat self.flat_img = binImage(self.flat_img, binning_factor, binning_method) # Bin the raw flat image self.flat_img_raw = binImage(self.flat_img_raw, binning_factor, binning_method) def loadFlat(dir_path, file_name, dtype=None, byteswap=False, dark=None): """ Load the flat field image. Arguments: dir_path: [str] Directory where the flat image is. file_name: [str] Name of the flat field file. Keyword arguments: dtype: [bool] A given file type fill be force if given (e.g. np.uint16). byteswap: [bool] Byteswap the flat image. False by default. Return: flat_struct: [Flat struct] Structure containing the flat field info. """ # Load the flat image flat_img = loadImage(os.path.join(dir_path, file_name), -1) # Change the file type if given if dtype is not None: flat_img = flat_img.astype(dtype) # If the flat isn't a 8 bit integer, convert it to uint16 elif flat_img.dtype != np.uint8: flat_img = flat_img.astype(np.uint16) if byteswap: flat_img = flat_img.byteswap() # Init a new Flat structure flat_struct = FlatStruct(flat_img, dark=dark) return flat_struct def applyFlat(img, flat_struct): """ Apply a flat field to the image. Arguments: img: [ndarray] Image to flat field. flat_struct: [Flat struct] Structure containing the flat field. Return: [ndarray] Flat corrected image. """ # Check that the input image and the flat have the same dimensions, otherwise do not apply it if img.shape != flat_struct.flat_img.shape: return img input_type = img.dtype # Apply the flat img = flat_struct.flat_avg*img.astype(np.float64)/flat_struct.flat_img # Limit the image values to image type range dtype_info = np.iinfo(input_type) img = np.clip(img, dtype_info.min, dtype_info.max) # Make sure the output array is the same as the input type img = img.astype(input_type) return img def loadDark(dir_path, file_name, dtype=None, byteswap=False): """ Load the dark frame. Arguments: dir_path: [str] Path to the directory which containes the dark frame. file_name: [str] Name of the dark frame file. Keyword arguments: dtype: [bool] A given file type fill be force if given (e.g. np.uint16). byteswap: [bool] Byteswap the dark. False by default. Return: dark: [ndarray] Dark frame. """ try: # Load the dark dark = loadImage(os.path.join(dir_path, file_name), -1) except OSError as e: print('Dark could not be loaded:', e) return None # Change the file type if given if dtype is not None: dark = dark.astype(dtype) # If the flat isn't a 8 bit integer, convert it to uint16 if dark.dtype != np.uint8: dark = dark.astype(np.uint16) if byteswap: dark = dark.byteswap() return dark def applyDark(img, dark_img): """ Apply the dark frame to an image. Arguments: img: [ndarray] Input image. dark_img: [ndarray] Dark frame. """ # Check that the image sizes are the same if img.shape != dark_img.shape: return img # Save input type input_type = img.dtype # Convert the image to integer (with negative values) img = img.astype(np.int64) # Subtract dark img -= dark_img.astype(np.int64) # Make sure there aren't any values smaller than 0 img[img < 0] = 0 # Convert the image back to the input type img = img.astype(input_type) return img def deinterlaceOdd(img): """ Deinterlaces the numpy array image by duplicating the odd frame. """ # Deepcopy img to new array deinterlaced_image = np.copy(img) deinterlaced_image[1::2, :] = deinterlaced_image[:-1:2, :] # Move the image one row up deinterlaced_image[:-1, :] = deinterlaced_image[1:, :] deinterlaced_image[-1, :] = 0 return deinterlaced_image def deinterlaceEven(img): """ Deinterlaces the numpy array image by duplicating the even frame. """ # Deepcopy img to new array deinterlaced_image = np.copy(img) deinterlaced_image[:-1:2, :] = deinterlaced_image[1::2, :] return deinterlaced_image def blendLighten(arr1, arr2): """ Blends two image array with lighen method (only takes the lighter pixel on each spot). """ # Store input type input_type = arr1.dtype arr1 = arr1.astype(np.int64) temp = arr1 - arr2 temp[temp > 0] = 0 new_arr = arr1 - temp new_arr = new_arr.astype(input_type) return new_arr def deinterlaceBlend(img): """ Deinterlaces the image by making an odd and even frame, then blends them by lighten method. """ img_odd_d = deinterlaceOdd(img) img_even = deinterlaceEven(img) proc_img = blendLighten(img_odd_d, img_even) return proc_img def fillCircle(photom_mask, x_cent, y_cent, radius): y_min = math.floor(y_cent - 1.41*radius) y_max = math.ceil(y_cent + 1.41*radius) if y_min < 0: y_min = 0 if y_max > photom_mask.shape[0]: y_max = photom_mask.shape[0] x_min = math.floor(x_cent - 1.41*radius) x_max = math.ceil(x_cent + 1.41*radius) if x_min < 0: x_min = 0 if x_max > photom_mask.shape[1]: x_max = photom_mask.shape[1] for y in range(y_min, y_max): for x in range(x_min, x_max): if ((x - x_cent)**2 + (y - y_cent)**2) <= radius**2: photom_mask[y, x] = 1 return photom_mask def thickLine(img_h, img_w, x_cent, y_cent, length, rotation, radius): """ Given the image size, return the mask where indices which are inside a thick rounded line are 1s, and the rest are 0s. The Bresenham algorithm is used to compute line indices. Arguments: img_h: [int] Image height (px). img_w: [int] Image width (px). x_cent: [float] X centroid. y_cent: [float] Y centroid. length: [float] Length of the line segment (px). rotation: [float] Rotation of the line (deg). radius: [float] Aperture radius (px). Return: photom_mask: [ndarray] Photometric mask. """ # Init the photom_mask array photom_mask = np.zeros((img_h, img_w), dtype=np.uint8) rotation = np.radians(rotation) # Compute the bounding box x0 = math.floor(x_cent - np.cos(rotation)*length/2.0) y0 = math.floor(y_cent - np.sin(rotation)*length/2.0) y1 = math.ceil(y_cent + np.sin(rotation)*length/2.0) x1 = math.ceil(x_cent + np.cos(rotation)*length/2.0) # Init the photom_mask array photom_mask = np.zeros((img_h, img_w)) dx = abs(x1 - x0) dy = abs(y1 - y0) x, y = x0, y0 sx = -1 if x0 > x1 else 1 sy = -1 if y0 > y1 else 1 if dx > dy: err = dx / 2.0 while x != x1: photom_mask = fillCircle(photom_mask, int(x), int(y), radius) err -= dy if err < 0: y += sy err += dx x += sx else: err = dy / 2.0 while y != y1: photom_mask = fillCircle(photom_mask, int(x), int(y), radius) err -= dx if err < 0: x += sx err += dy y += sy photom_mask = fillCircle(photom_mask, int(x), int(y), radius) return photom_mask if __name__ == "__main__": import time import matplotlib.pyplot as plt from RMS.Formats import FFfile import RMS.ConfigReader as cr # Load config file config = cr.parse(".config") # Generate image data img_data = np.zeros(shape=(256, 256)) for i in range(256): img_data[:, i] += i plt.imshow(img_data, cmap='gray') plt.show() # Adjust levels img_data = adjustLevels(img_data, 100, 1.2, 240) plt.imshow(img_data, cmap='gray') plt.show() #### Apply the flat # Load an FF file dir_path = "/home/dvida/Dropbox/Apps/Elginfield RPi RMS data/ArchivedFiles/CA0001_20171018_230520_894458_detected" file_name = "FF_CA0001_20171019_092744_161_1118976.fits" ff = FFfile.read(dir_path, file_name) # Load the flat flat_struct = loadFlat(os.getcwd(), config.flat_file) t1 = time.clock() # Apply the flat img = applyFlat(ff.maxpixel, flat_struct) print('Flat time:', time.clock() - t1) plt.imshow(img, cmap='gray', vmin=0, vmax=255) plt.show() ### TEST THICK LINE x_cent = 20.1 y_cent = 20 rotation = 90 length = 0 radius = 2 indices = thickLine(200, 200, x_cent, y_cent, length, rotation, radius) plt.imshow(indices) plt.show()
gpl-3.0
jstitch/git_history_visualizer
git_history_test_git.py
2
6352
# coding: utf-8 # In[1]: # %load https://gist.githubusercontent.com/kidpixo/2ec078d09834b5aa7869/raw/c8812811211dc7cd62f5b530b51b0104f39263ff/ipython%20inizialization import pandas as pd import numpy as np import matplotlib from matplotlib import pyplot as plt get_ipython().magic(u'matplotlib inline') # In[2]: commits_list = get_ipython().getoutput(u'git --no-pager log --reverse --oneline') commits = [] for i in commits_list: sha1 = i.split(' ')[0] print 'Commit SHA-1 value:',sha1 commits.append(sha1) # In[41]: import subprocess path = '/Users/damo_ma/Downloads/github_rep/git_history_visualizer' p = subprocess.Popen(['git -C '+path+' --no-pager log --reverse --oneline'], stdout=subprocess.PIPE, shell=True) for line in iter(p.stdout.readline,''): print line.rstrip() # In[3]: all_files = get_ipython().getoutput(u"git --no-pager log --reverse --name-only --oneline --pretty='format:' | sed '/^$/d' | sort | uniq") # ### Legend # # git status # # - `A` : file **A**dded # - `D` : file **D**eleted # - `M` : file **M**odified # - `S` : file is **S**tatic (nothing happen) # - `N` : file is **N**on existent # # See the official [Git - git-log Documentation](http://git-scm.com/docs/git-log) : # # --diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]] # # Select only files that are Added (A), Copied (C), Deleted (D), Modified (M), Renamed (R), have their type (i.e. regular file, symlink, submodule, …) changed (T), are Unmerged (U), are Unknown (X), or have had their pairing Broken (B). Any combination of the filter characters (including none) can be used. When * (All-or-none) is added to the combination, all paths are selected if there is any file that matches other criteria in the comparison; if there is no file that matches other criteria, nothing is selected. # # # In[4]: all_filenames = pd.DataFrame(pd.DataFrame(list(all_files)),columns=commits, index=all_files) all_commits = get_ipython().getoutput(u"git --no-pager log --reverse --name-status --oneline --pretty='format:COMMIT %h %s' | tr '\\t' ' ' | sed -e '/^$/d'") def_states = { 'A' : 0, 'M' : 32, 'S' : 64, # custom value, Static 'D' : 128, 'N' : 128, # custom value, Non existent } def_states_explain = { 'A' : 'Added', 'D' : 'Deleted', 'M' : 'Modified', 'S' : 'Static', 'N' : 'Non existent' } # fill NaN all_filenames.fillna('N', inplace=True) actual_commit = 0 # previous_commit = 0 for i in all_commits: # set the commit number if i[0] == 'C': value = i.split(' ')[1] # starting at the second commit see which file exist in the previous commit if actual_commit != int(all_filenames.columns[0]): previous_commit = actual_commit actual_commit = value # assig 1 to file not null un the previous commit if previous_commit != 0: all_filenames[actual_commit][ (all_filenames[previous_commit] != 'N') & (all_filenames[previous_commit] != 'D')] = 'S' # all_filenames[previous_commit][all_filenames[actual_commit] == 'D'] = 'D' # all_filenames[actual_commit][all_filenames[actual_commit] == 'D'] = 'N' # print previous_commit,'>',actual_commit else: state,value = i.split(' ') # print ' '*4,'-',state,value all_filenames.ix[value,actual_commit] = state # In[5]: all_commits # In[6]: all_filenames # In[7]: def_states = { 'A' : 120, 'M' : 180, 'S' : 255, # custom value, Static 'D' : 240, 'N' : 128, # custom value, Non existent } history = all_filenames.applymap(lambda x: def_states[x]).values.copy() # In[8]: h = history.astype('float') h[history == 128] = np.nan # In[14]: fig = plt.figure(figsize=[10,12]) ax = plt.subplot(111) for i in range(len(all_files)): x = range(len(commits)) y = [i for kk in x] ax.scatter(x, y, s = 500, c=h[i,:], alpha=1, marker='o',linewidths = 3 , cmap = plt.cm.spectral,vmin = 0, vmax = 255) ax.plot(x, y, lw = 3, c='k', zorder=0) ax.set_xticks(range(history.shape[1])) ax.set_xticklabels(all_filenames.columns,rotation=90) ax.set_xlabel('commits sha-1 (time arrow to the right ->)') ax.set_xlim([-.5,len(commits)-0.5]) ax.set_ylabel('file names') ax.set_yticks(range(history.shape[0])) ax.set_yticklabels(all_filenames.index.tolist()) ax.set_yticks = 0.1 # set 0 to bounding box width [i.set_linewidth(0.0) for i in ax.spines.itervalues()] # see http://stackoverflow.com/a/20416681/1435167 # erase x ticks for tic in ax.xaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False # tic.label1On = tic.label2On = False # erase y ticks for tic in ax.yaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False # tic.label1On = tic.label2On = False ax2 = fig.add_axes([0.25, .9, 0.5, 0.075]) colors = np.array(def_states.values()).astype('float') colors[colors == 128] = np.nan x = range(len(colors)) y = [1 for kk in x] ax2.scatter(x, y, s = 500, c=colors, alpha=1, marker='o',linewidths = 3, cmap = plt.cm.spectral,vmin = 0, vmax = 255) ax2.plot(x, y, lw = 3, c='k', zorder=0) ax2.set_xticks(x) ax2.set_xticklabels(def_states_explain.values()) ax2.set_xlabel('Legend') ax2.set_xlim([-.5,len(x)-0.5]) ax2.set_ylim([0.99,1.01]) # set 0 to bounding box width [i.set_linewidth(0.0) for i in ax2.spines.itervalues()] # # see http://stackoverflow.com/a/20416681/1435167 # erase x ticks for tic in ax2.xaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False # erase y ticks for tic in ax2.yaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False tic.label1On = tic.label2On = False fig.savefig('/Users/damo_ma/Desktop/test.png') # In[23]: # fake legend a = np.empty([2,len(def_states)]) a[0,:] = [k for k in def_states.itervalues()] a[1,:] = a[0,:] plt.imshow(a,interpolation='nearest',cmap = plt.cm.spectral,vmin = 0, vmax = 255 ) plt.xticks(range(len(def_states)), [k for k in def_states.iterkeys()]); plt.yticks([1], ''); # In[24]: fig = plt.figure(figsize=[10,10]) plt.imshow(history,interpolation='nearest',cmap = plt.cm.spectral,vmin = 0, vmax = 255 ) plt.xticks(range(history.shape[1]), all_filenames.columns, rotation='vertical'); plt.xlabel('commits sha-1 (time arrow to the right ->)') plt.ylabel('file names') plt.yticks(range(history.shape[0]), all_filenames.index.tolist()); # In[ ]:
mit
TeamHG-Memex/eli5
eli5/sklearn/treeinspect.py
1
2759
# -*- coding: utf-8 -*- """ Inspect scikit-learn decision trees. This is an alternative to sklearn.tree.export which doesn't require graphviz and provides a way to output result in text-based format. """ from __future__ import absolute_import, division from sklearn.base import ClassifierMixin from sklearn.tree import _tree, export_graphviz from eli5.base import TreeInfo, NodeInfo def get_tree_info(decision_tree, feature_names=None, **export_graphviz_kwargs): # type: (...) -> TreeInfo """ Convert DecisionTreeClassifier or DecisionTreeRegressor to an inspectable object. """ return TreeInfo( criterion=decision_tree.criterion, tree=_get_root_node_info(decision_tree, feature_names), graphviz=tree2dot(decision_tree, feature_names=feature_names, **export_graphviz_kwargs), is_classification=isinstance(decision_tree, ClassifierMixin), ) def tree2dot(decision_tree, **export_graphviz_kwargs): return export_graphviz(decision_tree, out_file=None, **export_graphviz_kwargs) def _get_root_node_info(decision_tree, feature_names=None): # type: (...) -> NodeInfo res = _get_node_info(decision_tree.tree_, 0) _add_feature_names(res, feature_names) return res def _add_feature_names(root, feature_names=None): for node in _treeiter(root): if not node.is_leaf: feat_id = node.feature_id if feature_names is None: node.feature_name = "x%s" % feat_id else: node.feature_name = feature_names[feat_id] def _get_node_info(tree, node_id): # type: (...) -> NodeInfo is_leaf = tree.children_left[node_id] == _tree.TREE_LEAF value = _node_value(tree, node_id) node = NodeInfo( id=node_id, is_leaf=is_leaf, value=list(value), value_ratio=list(value / value.sum()), impurity=tree.impurity[node_id], samples=tree.n_node_samples[node_id], sample_ratio=tree.n_node_samples[node_id] / tree.n_node_samples[0], ) if not is_leaf: node.feature_id = tree.feature[node_id] node.threshold = tree.threshold[node_id] node.left = _get_node_info(tree, tree.children_left[node_id]) node.right = _get_node_info(tree, tree.children_right[node_id]) return node def _node_value(tree, node_id): if tree.n_outputs == 1: return tree.value[node_id][0, :] else: return tree.value[node_id] def _treeiter(node): yield node if not node.is_leaf: for n in _treeiter(node.left): yield n for n in _treeiter(node.right): yield n
mit
GuessWhoSamFoo/pandas
asv_bench/benchmarks/indexing.py
5
10167
import warnings import numpy as np import pandas.util.testing as tm from pandas import (Series, DataFrame, Panel, MultiIndex, Int64Index, UInt64Index, Float64Index, IntervalIndex, CategoricalIndex, IndexSlice, concat, date_range) class NumericSeriesIndexing(object): params = [ (Int64Index, UInt64Index, Float64Index), ('unique_monotonic_inc', 'nonunique_monotonic_inc'), ] param_names = ['index_dtype', 'index_structure'] def setup(self, index, index_structure): N = 10**6 indices = { 'unique_monotonic_inc': index(range(N)), 'nonunique_monotonic_inc': index( list(range(55)) + [54] + list(range(55, N - 1))), } self.data = Series(np.random.rand(N), index=indices[index_structure]) self.array = np.arange(10000) self.array_list = self.array.tolist() def time_getitem_scalar(self, index, index_structure): self.data[800000] def time_getitem_slice(self, index, index_structure): self.data[:800000] def time_getitem_list_like(self, index, index_structure): self.data[[800000]] def time_getitem_array(self, index, index_structure): self.data[self.array] def time_getitem_lists(self, index, index_structure): self.data[self.array_list] def time_iloc_array(self, index, index_structure): self.data.iloc[self.array] def time_iloc_list_like(self, index, index_structure): self.data.iloc[[800000]] def time_iloc_scalar(self, index, index_structure): self.data.iloc[800000] def time_iloc_slice(self, index, index_structure): self.data.iloc[:800000] def time_ix_array(self, index, index_structure): self.data.ix[self.array] def time_ix_list_like(self, index, index_structure): self.data.ix[[800000]] def time_ix_scalar(self, index, index_structure): self.data.ix[800000] def time_ix_slice(self, index, index_structure): self.data.ix[:800000] def time_loc_array(self, index, index_structure): self.data.loc[self.array] def time_loc_list_like(self, index, index_structure): self.data.loc[[800000]] def time_loc_scalar(self, index, index_structure): self.data.loc[800000] def time_loc_slice(self, index, index_structure): self.data.loc[:800000] class NonNumericSeriesIndexing(object): params = [ ('string', 'datetime'), ('unique_monotonic_inc', 'nonunique_monotonic_inc'), ] param_names = ['index_dtype', 'index_structure'] def setup(self, index, index_structure): N = 10**6 indexes = {'string': tm.makeStringIndex(N), 'datetime': date_range('1900', periods=N, freq='s')} index = indexes[index] if index_structure == 'nonunique_monotonic_inc': index = index.insert(item=index[2], loc=2)[:-1] self.s = Series(np.random.rand(N), index=index) self.lbl = index[80000] def time_getitem_label_slice(self, index, index_structure): self.s[:self.lbl] def time_getitem_pos_slice(self, index, index_structure): self.s[:80000] def time_get_value(self, index, index_structure): with warnings.catch_warnings(record=True): self.s.get_value(self.lbl) def time_getitem_scalar(self, index, index_structure): self.s[self.lbl] def time_getitem_list_like(self, index, index_structure): self.s[[self.lbl]] class DataFrameStringIndexing(object): def setup(self): index = tm.makeStringIndex(1000) columns = tm.makeStringIndex(30) self.df = DataFrame(np.random.randn(1000, 30), index=index, columns=columns) self.idx_scalar = index[100] self.col_scalar = columns[10] self.bool_indexer = self.df[self.col_scalar] > 0 self.bool_obj_indexer = self.bool_indexer.astype(object) def time_get_value(self): with warnings.catch_warnings(record=True): self.df.get_value(self.idx_scalar, self.col_scalar) def time_ix(self): self.df.ix[self.idx_scalar, self.col_scalar] def time_loc(self): self.df.loc[self.idx_scalar, self.col_scalar] def time_getitem_scalar(self): self.df[self.col_scalar][self.idx_scalar] def time_boolean_rows(self): self.df[self.bool_indexer] def time_boolean_rows_object(self): self.df[self.bool_obj_indexer] class DataFrameNumericIndexing(object): def setup(self): self.idx_dupe = np.array(range(30)) * 99 self.df = DataFrame(np.random.randn(10000, 5)) self.df_dup = concat([self.df, 2 * self.df, 3 * self.df]) self.bool_indexer = [True] * 5000 + [False] * 5000 def time_iloc_dups(self): self.df_dup.iloc[self.idx_dupe] def time_loc_dups(self): self.df_dup.loc[self.idx_dupe] def time_iloc(self): self.df.iloc[:100, 0] def time_loc(self): self.df.loc[:100, 0] def time_bool_indexer(self): self.df[self.bool_indexer] class Take(object): params = ['int', 'datetime'] param_names = ['index'] def setup(self, index): N = 100000 indexes = {'int': Int64Index(np.arange(N)), 'datetime': date_range('2011-01-01', freq='S', periods=N)} index = indexes[index] self.s = Series(np.random.rand(N), index=index) self.indexer = [True, False, True, True, False] * 20000 def time_take(self, index): self.s.take(self.indexer) class MultiIndexing(object): def setup(self): mi = MultiIndex.from_product([range(1000), range(1000)]) self.s = Series(np.random.randn(1000000), index=mi) self.df = DataFrame(self.s) n = 100000 self.mdt = DataFrame({'A': np.random.choice(range(10000, 45000, 1000), n), 'B': np.random.choice(range(10, 400), n), 'C': np.random.choice(range(1, 150), n), 'D': np.random.choice(range(10000, 45000), n), 'x': np.random.choice(range(400), n), 'y': np.random.choice(range(25), n)}) self.idx = IndexSlice[20000:30000, 20:30, 35:45, 30000:40000] self.mdt = self.mdt.set_index(['A', 'B', 'C', 'D']).sort_index() def time_series_ix(self): self.s.ix[999] def time_frame_ix(self): self.df.ix[999] def time_index_slice(self): self.mdt.loc[self.idx, :] class IntervalIndexing(object): def setup_cache(self): idx = IntervalIndex.from_breaks(np.arange(1000001)) monotonic = Series(np.arange(1000000), index=idx) return monotonic def time_getitem_scalar(self, monotonic): monotonic[80000] def time_loc_scalar(self, monotonic): monotonic.loc[80000] def time_getitem_list(self, monotonic): monotonic[80000:] def time_loc_list(self, monotonic): monotonic.loc[80000:] class CategoricalIndexIndexing(object): params = ['monotonic_incr', 'monotonic_decr', 'non_monotonic'] param_names = ['index'] def setup(self, index): N = 10**5 values = list('a' * N + 'b' * N + 'c' * N) indices = { 'monotonic_incr': CategoricalIndex(values), 'monotonic_decr': CategoricalIndex(reversed(values)), 'non_monotonic': CategoricalIndex(list('abc' * N))} self.data = indices[index] self.int_scalar = 10000 self.int_list = list(range(10000)) self.cat_scalar = 'b' self.cat_list = ['a', 'c'] def time_getitem_scalar(self, index): self.data[self.int_scalar] def time_getitem_slice(self, index): self.data[:self.int_scalar] def time_getitem_list_like(self, index): self.data[[self.int_scalar]] def time_getitem_list(self, index): self.data[self.int_list] def time_getitem_bool_array(self, index): self.data[self.data == self.cat_scalar] def time_get_loc_scalar(self, index): self.data.get_loc(self.cat_scalar) def time_get_indexer_list(self, index): self.data.get_indexer(self.cat_list) class PanelIndexing(object): def setup(self): with warnings.catch_warnings(record=True): self.p = Panel(np.random.randn(100, 100, 100)) self.inds = range(0, 100, 10) def time_subset(self): with warnings.catch_warnings(record=True): self.p.ix[(self.inds, self.inds, self.inds)] class MethodLookup(object): def setup_cache(self): s = Series() return s def time_lookup_iloc(self, s): s.iloc def time_lookup_ix(self, s): s.ix def time_lookup_loc(self, s): s.loc class GetItemSingleColumn(object): def setup(self): self.df_string_col = DataFrame(np.random.randn(3000, 1), columns=['A']) self.df_int_col = DataFrame(np.random.randn(3000, 1)) def time_frame_getitem_single_column_label(self): self.df_string_col['A'] def time_frame_getitem_single_column_int(self): self.df_int_col[0] class AssignTimeseriesIndex(object): def setup(self): N = 100000 idx = date_range('1/1/2000', periods=N, freq='H') self.df = DataFrame(np.random.randn(N, 1), columns=['A'], index=idx) def time_frame_assign_timeseries_index(self): self.df['date'] = self.df.index class InsertColumns(object): def setup(self): self.N = 10**3 self.df = DataFrame(index=range(self.N)) def time_insert(self): np.random.seed(1234) for i in range(100): self.df.insert(0, i, np.random.randn(self.N), allow_duplicates=True) def time_assign_with_setitem(self): np.random.seed(1234) for i in range(100): self.df[i] = np.random.randn(self.N) from .pandas_vb_common import setup # noqa: F401
bsd-3-clause
aalmah/pylearn2
pylearn2/models/independent_multiclass_logistic.py
44
2491
""" Multiclass-classification by taking the max over a set of one-against-rest logistic classifiers. """ __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import logging try: from sklearn.linear_model import LogisticRegression except ImportError: LogisticRegression = None import numpy as np from theano.compat.six.moves import xrange logger = logging.getLogger(__name__) class IndependentMulticlassLogistic: """ Fits a separate logistic regression classifier for each class, makes predictions based on the max output: during training, views a one-hot label vector as a vector of independent binary labels, rather than correctly modeling them as one-hot like softmax would do. This is what Jia+Huang used to get state of the art on CIFAR-100 Parameters ---------- C : WRITEME """ def __init__(self, C): self.C = C def fit(self, X, y): """ Fits the model to the given training data. Parameters ---------- X : ndarray 2D array, each row is one example y : ndarray vector of integer class labels """ if LogisticRegression is None: raise RuntimeError("sklearn not available.") min_y = y.min() max_y = y.max() assert min_y == 0 num_classes = max_y + 1 assert num_classes > 1 logistics = [] for c in xrange(num_classes): logger.info('fitting class {0}'.format(c)) cur_y = (y == c).astype('int32') logistics.append(LogisticRegression(C = self.C).fit(X,cur_y)) return Classifier(logistics) class Classifier: """ .. todo:: WRITEME Parameters ---------- logistics : WRITEME """ def __init__(self, logistics): assert len(logistics) > 1 num_classes = len(logistics) num_features = logistics[0].coef_.shape[1] self.W = np.zeros((num_features, num_classes)) self.b = np.zeros((num_classes,)) for i in xrange(num_classes): self.W[:,i] = logistics[i].coef_ self.b[i] = logistics[i].intercept_ def predict(self, X): """ .. todo:: WRITEME """ return np.argmax(self.b + np.dot(X,self.W), 1)
bsd-3-clause
samuelcolvin/julia-slideshow
pydata_lightning_2014_7_1/profile_julia_slideshow/ipython_notebook_config.py
1
22905
# Configuration file for ipython-notebook. c = get_config() #------------------------------------------------------------------------------ # NotebookApp configuration #------------------------------------------------------------------------------ # NotebookApp will inherit config from: BaseIPythonApplication, Application # The url for MathJax.js. # c.NotebookApp.mathjax_url = '' # The IP address the notebook server will listen on. # c.NotebookApp.ip = '127.0.0.1' # The base URL for the notebook server. # # Leading and trailing slashes can be omitted, and will automatically be added. # c.NotebookApp.base_project_url = '/' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.NotebookApp.verbose_crash = False # The random bytes used to secure cookies. By default this is a new random # number every time you start the Notebook. Set it to a value in a config file # to enable logins to persist across server sessions. # # Note: Cookie secrets should be kept private, do not share config files with # cookie_secret stored in plaintext (you can read the value from a file). # c.NotebookApp.cookie_secret = '' # The number of additional ports to try if the specified port is not available. # c.NotebookApp.port_retries = 50 # Whether to open in a browser after starting. The specific browser used is # platform dependent and determined by the python standard library `webbrowser` # module, unless it is overridden using the --browser (NotebookApp.browser) # configuration option. # c.NotebookApp.open_browser = True # The notebook manager class to use. # c.NotebookApp.notebook_manager_class = 'IPython.html.services.notebooks.filenbmanager.FileNotebookManager' # The date format used by logging formatters for %(asctime)s # c.NotebookApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # The base URL for the kernel server # # Leading and trailing slashes can be omitted, and will automatically be added. # c.NotebookApp.base_kernel_url = '/' # The port the notebook server will listen on. # c.NotebookApp.port = 8888 # Whether to overwrite existing config files when copying # c.NotebookApp.overwrite = False # Whether to enable MathJax for typesetting math/TeX # # MathJax is the javascript library IPython uses to render math/LaTeX. It is # very large, so you may want to disable it if you have a slow internet # connection, or for offline use of the notebook. # # When disabled, equations etc. will appear as their untransformed TeX source. # c.NotebookApp.enable_mathjax = True # The full path to an SSL/TLS certificate file. # c.NotebookApp.certfile = u'' # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.NotebookApp.extra_config_file = u'' # The IPython profile to use. # c.NotebookApp.profile = u'default' # The base URL for the websocket server, if it differs from the HTTP server # (hint: it almost certainly doesn't). # # Should be in the form of an HTTP origin: ws[s]://hostname[:port] # c.NotebookApp.websocket_url = '' # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.NotebookApp.ipython_dir = u'/home/samuel/.config/ipython' # Set the log level by value or name. # c.NotebookApp.log_level = 30 # Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from IPython.lib import passwd; passwd() # # The string should be of the form type:salt:hashed-password. # c.NotebookApp.password = u'' # The Logging format template # c.NotebookApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # Wether to use Browser Side less-css parsing instead of compiled css version in # templates that allows it. This is mainly convenient when working on the less # file to avoid a build step, or if user want to overwrite some of the less # variables without having to recompile everything. # # You will need to install the less.js component in the static directory either # in the source tree or in your profile folder. # c.NotebookApp.use_less = False # Extra paths to search for serving static files. # # This allows adding javascript/css to be available from the notebook server # machine, or overriding individual files in the IPython # c.NotebookApp.extra_static_paths = [] # Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded- # For headerssent by the upstream reverse proxy. Neccesary if the proxy handles # SSL # c.NotebookApp.trust_xheaders = False # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.NotebookApp.copy_config_files = False # The full path to a private key file for usage with SSL/TLS. # c.NotebookApp.keyfile = u'' # Supply overrides for the tornado.web.Application that the IPython notebook # uses. # c.NotebookApp.webapp_settings = {} # Specify what command to use to invoke a web browser when opening the notebook. # If not specified, the default browser will be determined by the `webbrowser` # standard library module, which allows setting of the BROWSER environment # variable to override it. # c.NotebookApp.browser = u'' #------------------------------------------------------------------------------ # IPKernelApp configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # IPKernelApp will inherit config from: BaseIPythonApplication, Application, # InteractiveShellApp # The importstring for the DisplayHook factory # c.IPKernelApp.displayhook_class = 'IPython.kernel.zmq.displayhook.ZMQDisplayHook' # Set the IP or interface on which the kernel will listen. # c.IPKernelApp.ip = u'' # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.IPKernelApp.pylab = None # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.IPKernelApp.verbose_crash = False # The Kernel subclass to be used. # # This should allow easy re-use of the IPKernelApp entry point to configure and # launch kernels other than IPython's own. # c.IPKernelApp.kernel_class = 'IPython.kernel.zmq.ipkernel.Kernel' # Run the module as a script. # c.IPKernelApp.module_to_run = '' # The date format used by logging formatters for %(asctime)s # c.IPKernelApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # set the shell (ROUTER) port [default: random] # c.IPKernelApp.shell_port = 0 # set the control (ROUTER) port [default: random] # c.IPKernelApp.control_port = 0 # Whether to overwrite existing config files when copying # c.IPKernelApp.overwrite = False # Execute the given command string. # c.IPKernelApp.code_to_run = '' # set the stdin (ROUTER) port [default: random] # c.IPKernelApp.stdin_port = 0 # Set the log level by value or name. # c.IPKernelApp.log_level = 30 # lines of code to run at IPython startup. # c.IPKernelApp.exec_lines = [] # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.IPKernelApp.extra_config_file = u'' # The importstring for the OutStream factory # c.IPKernelApp.outstream_class = 'IPython.kernel.zmq.iostream.OutStream' # Whether to create profile dir if it doesn't exist # c.IPKernelApp.auto_create = False # set the heartbeat port [default: random] # c.IPKernelApp.hb_port = 0 # # c.IPKernelApp.transport = 'tcp' # redirect stdout to the null device # c.IPKernelApp.no_stdout = False # dotted module name of an IPython extension to load. # c.IPKernelApp.extra_extension = '' # A file to be run # c.IPKernelApp.file_to_run = '' # The IPython profile to use. # c.IPKernelApp.profile = u'default' # # c.IPKernelApp.parent_appname = u'' # kill this process if its parent dies. On Windows, the argument specifies the # HANDLE of the parent process, otherwise it is simply boolean. # c.IPKernelApp.parent_handle = 0 # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.IPKernelApp.connection_file = '' # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an 'import *' is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.IPKernelApp.pylab_import_all = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.IPKernelApp.ipython_dir = u'/home/samuel/.config/ipython' # Configure matplotlib for interactive use with the default matplotlib backend. # c.IPKernelApp.matplotlib = None # ONLY USED ON WINDOWS Interrupt this process when the parent is signaled. # c.IPKernelApp.interrupt = 0 # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.IPKernelApp.copy_config_files = False # List of files to run at IPython startup. # c.IPKernelApp.exec_files = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'none', # 'osx', 'pyglet', 'qt', 'qt4', 'tk', 'wx'). # c.IPKernelApp.gui = None # A list of dotted module names of IPython extensions to load. # c.IPKernelApp.extensions = [] # redirect stderr to the null device # c.IPKernelApp.no_stderr = False # The Logging format template # c.IPKernelApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # set the iopub (PUB) port [default: random] # c.IPKernelApp.iopub_port = 0 #------------------------------------------------------------------------------ # ZMQInteractiveShell configuration #------------------------------------------------------------------------------ # A subclass of InteractiveShell for ZMQ. # ZMQInteractiveShell will inherit config from: InteractiveShell # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.ZMQInteractiveShell.color_info = True # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.ZMQInteractiveShell.ast_transformers = [] # # c.ZMQInteractiveShell.history_length = 10000 # Don't call post-execute functions that have failed in the past. # c.ZMQInteractiveShell.disable_failing_post_execute = False # Show rewritten input, e.g. for autocall. # c.ZMQInteractiveShell.show_rewritten_input = True # Set the color scheme (NoColor, Linux, or LightBG). # c.ZMQInteractiveShell.colors = 'Linux' # # c.ZMQInteractiveShell.separate_in = '\n' # Deprecated, use PromptManager.in2_template # c.ZMQInteractiveShell.prompt_in2 = ' .\\D.: ' # # c.ZMQInteractiveShell.separate_out = '' # Deprecated, use PromptManager.in_template # c.ZMQInteractiveShell.prompt_in1 = 'In [\\#]: ' # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.ZMQInteractiveShell.deep_reload = False # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.ZMQInteractiveShell.autocall = 0 # # c.ZMQInteractiveShell.separate_out2 = '' # Deprecated, use PromptManager.justify # c.ZMQInteractiveShell.prompts_pad_left = True # # c.ZMQInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # Enable magic commands to be called without the leading %. # c.ZMQInteractiveShell.automagic = True # # c.ZMQInteractiveShell.debug = False # # c.ZMQInteractiveShell.object_info_string_level = 0 # # c.ZMQInteractiveShell.ipython_dir = '' # # c.ZMQInteractiveShell.readline_remove_delims = '-/~' # Start logging to the default log file. # c.ZMQInteractiveShell.logstart = False # The name of the logfile to use. # c.ZMQInteractiveShell.logfile = '' # # c.ZMQInteractiveShell.wildcards_case_sensitive = True # Save multi-line entries as one entry in readline history # c.ZMQInteractiveShell.multiline_history = True # Start logging to the given file in append mode. # c.ZMQInteractiveShell.logappend = '' # # c.ZMQInteractiveShell.xmode = 'Context' # # c.ZMQInteractiveShell.quiet = False # Deprecated, use PromptManager.out_template # c.ZMQInteractiveShell.prompt_out = 'Out[\\#]: ' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.ZMQInteractiveShell.cache_size = 1000 # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.ZMQInteractiveShell.ast_node_interactivity = 'last_expr' # Automatically call the pdb debugger after every exception. # c.ZMQInteractiveShell.pdb = False #------------------------------------------------------------------------------ # KernelManager configuration #------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. # KernelManager will inherit config from: ConnectionFileMixin # The Popen Command to launch the kernel. Override this if you have a custom # c.KernelManager.kernel_cmd = [] # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.KernelManager.ip = '127.0.0.1' # # c.KernelManager.transport = 'tcp' # Should we autorestart the kernel if it dies. # c.KernelManager.autorestart = False #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialiization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # Username for the Session. Default is your system username. # c.Session.username = u'samuel' # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = 'json' # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. # c.Session.packer = 'json' # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 # The UUID identifying this session. # c.Session.session = u'' # The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. # c.Session.signature_scheme = 'hmac-sha256' # execution key, for extra authentication. # c.Session.key = '' # Debug output in the Session # c.Session.debug = False # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # path to file containing execution key. # c.Session.keyfile = '' # Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {} #------------------------------------------------------------------------------ # InlineBackend configuration #------------------------------------------------------------------------------ # An object to store configuration of the inline backend. # The image format for figures with the inline backend. # c.InlineBackend.figure_format = 'png' # Close all figures at the end of each cell. # # When True, ensures that each cell starts with no active figures, but it also # means that one must keep track of references in order to edit or redraw # figures in subsequent cells. This mode is ideal for the notebook, where # residual plots from other cells might be surprising. # # When False, one must call figure() to create new figures. This means that # gcf() and getfigs() can reference figures created in other cells, and the # active figure can continue to be edited with pylab/pyplot methods that # reference the current active figure. This mode facilitates iterative editing # of figures, and behaves most consistently with other matplotlib backends, but # figure barriers between cells must be explicit. # c.InlineBackend.close_figures = True # Subset of matplotlib rcParams that should be different for the inline backend. # c.InlineBackend.rc = {'font.size': 10, 'figure.figsize': (6.0, 4.0), 'figure.facecolor': 'white', 'savefig.dpi': 72, 'figure.subplot.bottom': 0.125, 'figure.edgecolor': 'white'} #------------------------------------------------------------------------------ # MappingKernelManager configuration #------------------------------------------------------------------------------ # A KernelManager that handles notebook mapping and HTTP error handling # MappingKernelManager will inherit config from: MultiKernelManager # The kernel manager class. This is configurable to allow subclassing of the # KernelManager for customized behavior. # c.MappingKernelManager.kernel_manager_class = 'IPython.kernel.ioloop.IOLoopKernelManager' #------------------------------------------------------------------------------ # NotebookManager configuration #------------------------------------------------------------------------------ # The directory to use for notebooks. # c.NotebookManager.notebook_dir = u'/home/samuel/.julia/v0.3/IJulia/deps' #------------------------------------------------------------------------------ # FileNotebookManager configuration #------------------------------------------------------------------------------ # FileNotebookManager will inherit config from: NotebookManager # The location in which to keep notebook checkpoints # # By default, it is notebook-dir/.ipynb_checkpoints # c.FileNotebookManager.checkpoint_dir = u'' # Automatically create a Python script when saving the notebook. # # For easier use of import, %run and %load across notebooks, a <notebook- # name>.py script will be created next to any <notebook-name>.ipynb on each # save. This can also be set with the short `--script` flag. # c.FileNotebookManager.save_script = False # The directory to use for notebooks. # c.FileNotebookManager.notebook_dir = u'/home/samuel/.julia/v0.3/IJulia/deps' c.NotebookApp.port = 8998
mit
timmie/cartopy
lib/cartopy/crs.py
2
67901
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. """ The crs module defines Coordinate Reference Systems and the transformations between them. """ from __future__ import (absolute_import, division, print_function) from abc import ABCMeta, abstractproperty import math import warnings import numpy as np import shapely.geometry as sgeom from shapely.prepared import prep import six from cartopy._crs import CRS, Geocentric, Geodetic, Globe, PROJ4_RELEASE import cartopy.trace __document_these__ = ['CRS', 'Geocentric', 'Geodetic', 'Globe'] WGS84_SEMIMAJOR_AXIS = 6378137.0 WGS84_SEMIMINOR_AXIS = 6356752.3142 class RotatedGeodetic(CRS): """ Defines a rotated latitude/longitude coordinate system with spherical topology and geographical distance. Coordinates are measured in degrees. """ def __init__(self, pole_longitude, pole_latitude, central_rotated_longitude=0.0, globe=None): """ Create a RotatedGeodetic CRS. The class uses proj4 to perform an ob_tran operation, using the pole_longitude to set a lon_0 then performing two rotations based on pole_latitude and central_rotated_longitude. This is equivalent to setting the new pole to a location defined by the pole_latitude and pole_longitude values in the GeogCRS defined by globe, then rotating this new CRS about it's pole using the central_rotated_longitude value. Args: * pole_longitude - Pole longitude position, in unrotated degrees. * pole_latitude - Pole latitude position, in unrotated degrees. * central_rotated_longitude - Longitude rotation about the new pole, in degrees. Kwargs: * globe - An optional :class:`cartopy.crs.Globe`. Defaults to a "WGS84" datum. """ proj4_params = [('proj', 'ob_tran'), ('o_proj', 'latlon'), ('o_lon_p', central_rotated_longitude), ('o_lat_p', pole_latitude), ('lon_0', 180 + pole_longitude), ('to_meter', math.radians(1))] globe = globe or Globe(datum='WGS84') super(RotatedGeodetic, self).__init__(proj4_params, globe=globe) class Projection(six.with_metaclass(ABCMeta, CRS)): """ Defines a projected coordinate system with flat topology and Euclidean distance. """ _method_map = { 'Point': '_project_point', 'LineString': '_project_line_string', 'LinearRing': '_project_linear_ring', 'Polygon': '_project_polygon', 'MultiPoint': '_project_multipoint', 'MultiLineString': '_project_multiline', 'MultiPolygon': '_project_multipolygon', } @abstractproperty def boundary(self): pass @abstractproperty def threshold(self): pass @abstractproperty def x_limits(self): pass @abstractproperty def y_limits(self): pass @property def cw_boundary(self): try: boundary = self._cw_boundary except AttributeError: boundary = sgeom.LineString(self.boundary) self._cw_boundary = boundary return boundary @property def ccw_boundary(self): try: boundary = self._ccw_boundary except AttributeError: boundary = sgeom.LineString(self.boundary.coords[::-1]) self._ccw_boundary = boundary return boundary @property def domain(self): try: domain = self._domain except AttributeError: domain = self._domain = sgeom.Polygon(self.boundary) return domain def _as_mpl_axes(self): import cartopy.mpl.geoaxes as geoaxes return geoaxes.GeoAxes, {'map_projection': self} def project_geometry(self, geometry, src_crs=None): """ Projects the given geometry into this projection. :param geometry: The geometry to (re-)project. :param src_crs: The source CRS, or geodetic CRS if None. :rtype: Shapely geometry. If src_crs is None, the source CRS is assumed to be a geodetic version of the target CRS. """ if src_crs is None: src_crs = self.as_geodetic() elif not isinstance(src_crs, CRS): raise TypeError('Source CRS must be an instance of CRS' ' or one of its subclasses, or None.') geom_type = geometry.geom_type method_name = self._method_map.get(geom_type) if not method_name: raise ValueError('Unsupported geometry ' 'type {!r}'.format(geom_type)) return getattr(self, method_name)(geometry, src_crs) def _project_point(self, point, src_crs): return sgeom.Point(*self.transform_point(point.x, point.y, src_crs)) def _project_line_string(self, geometry, src_crs): return cartopy.trace.project_linear(geometry, src_crs, self) def _project_linear_ring(self, linear_ring, src_crs): """ Projects the given LinearRing from the src_crs into this CRS and returns a list of LinearRings and a single MultiLineString. """ debug = False # 1) Resolve the initial lines into projected segments # 1abc # def23ghi # jkl41 multi_line_string = cartopy.trace.project_linear(linear_ring, src_crs, self) # Threshold for whether a point is close enough to be the same # point as another. threshold = max(np.abs(self.x_limits + self.y_limits)) * 1e-5 # 2) Simplify the segments where appropriate. if len(multi_line_string) > 1: # Stitch together segments which are close to continuous. # This is important when: # 1) The first source point projects into the map and the # ring has been cut by the boundary. # Continuing the example from above this gives: # def23ghi # jkl41abc # 2) The cut ends of segments are too close to reliably # place into an order along the boundary. line_strings = list(multi_line_string) any_modified = False i = 0 if debug: first_coord = np.array([ls.coords[0] for ls in line_strings]) last_coord = np.array([ls.coords[-1] for ls in line_strings]) print('Distance matrix:') np.set_printoptions(precision=2) x = first_coord[:, np.newaxis, :] y = last_coord[np.newaxis, :, :] print(np.abs(x - y).max(axis=-1)) while i < len(line_strings): modified = False j = 0 while j < len(line_strings): if i != j and np.allclose(line_strings[i].coords[0], line_strings[j].coords[-1], atol=threshold): if debug: print('Joining together {} and {}.'.format(i, j)) last_coords = list(line_strings[j].coords) first_coords = list(line_strings[i].coords)[1:] combo = sgeom.LineString(last_coords + first_coords) if j < i: i, j = j, i del line_strings[j], line_strings[i] line_strings.append(combo) modified = True any_modified = True break else: j += 1 if not modified: i += 1 if any_modified: multi_line_string = sgeom.MultiLineString(line_strings) # 3) Check for rings that have been created by the projection stage. rings = [] line_strings = [] for line in multi_line_string: if len(line.coords) > 3 and np.allclose(line.coords[0], line.coords[-1], atol=threshold): result_geometry = sgeom.LinearRing(line.coords[:-1]) rings.append(result_geometry) else: line_strings.append(line) # If we found any rings, then we should re-create the multi-line str. if rings: multi_line_string = sgeom.MultiLineString(line_strings) return rings, multi_line_string def _project_multipoint(self, geometry, src_crs): geoms = [] for geom in geometry.geoms: geoms.append(self._project_point(geom, src_crs)) if geoms: return sgeom.MultiPoint(geoms) else: return sgeom.MultiPoint() def _project_multiline(self, geometry, src_crs): geoms = [] for geom in geometry.geoms: r = self._project_line_string(geom, src_crs) if r: geoms.extend(r.geoms) if geoms: return sgeom.MultiLineString(geoms) else: return [] def _project_multipolygon(self, geometry, src_crs): geoms = [] for geom in geometry.geoms: r = self._project_polygon(geom, src_crs) if r: geoms.extend(r.geoms) if geoms: result = sgeom.MultiPolygon(geoms) else: result = sgeom.MultiPolygon() return result def _project_polygon(self, polygon, src_crs): """ Returns the projected polygon(s) derived from the given polygon. """ # Determine orientation of polygon. # TODO: Consider checking the internal rings have the opposite # orientation to the external rings? if src_crs.is_geodetic(): is_ccw = True else: is_ccw = polygon.exterior.is_ccw # Project the polygon exterior/interior rings. # Each source ring will result in either a ring, or one or more # lines. rings = [] multi_lines = [] for src_ring in [polygon.exterior] + list(polygon.interiors): p_rings, p_mline = self._project_linear_ring(src_ring, src_crs) if p_rings: rings.extend(p_rings) if len(p_mline) > 0: multi_lines.append(p_mline) # Convert any lines to rings by attaching them to the boundary. if multi_lines: rings.extend(self._attach_lines_to_boundary(multi_lines, is_ccw)) # Resolve all the inside vs. outside rings, and convert to the # final MultiPolygon. return self._rings_to_multi_polygon(rings, is_ccw) def _attach_lines_to_boundary(self, multi_line_strings, is_ccw): """ Returns a list of LinearRings by attaching the ends of the given lines to the boundary, paying attention to the traversal directions of the lines and boundary. """ debug = False debug_plot_edges = False # Accumulate all the boundary and segment end points, along with # their distance along the boundary. edge_things = [] # Get the boundary as a LineString of the correct orientation # so we can compute distances along it. if is_ccw: boundary = self.ccw_boundary else: boundary = self.cw_boundary def boundary_distance(xy): return boundary.project(sgeom.Point(*xy)) # Squash all the LineStrings into a single list. line_strings = [] for multi_line_string in multi_line_strings: line_strings.extend(multi_line_string) # Record the positions of all the segment ends for i, line_string in enumerate(line_strings): first_dist = boundary_distance(line_string.coords[0]) thing = _BoundaryPoint(first_dist, False, (i, 'first', line_string.coords[0])) edge_things.append(thing) last_dist = boundary_distance(line_string.coords[-1]) thing = _BoundaryPoint(last_dist, False, (i, 'last', line_string.coords[-1])) edge_things.append(thing) # Record the positions of all the boundary vertices for xy in boundary.coords[:-1]: point = sgeom.Point(*xy) dist = boundary.project(point) thing = _BoundaryPoint(dist, True, point) edge_things.append(thing) if debug_plot_edges: import matplotlib.pyplot as plt current_fig = plt.gcf() fig = plt.figure() # Reset the current figure so we don't upset anything. plt.figure(current_fig.number) ax = fig.add_subplot(1, 1, 1) # Order everything as if walking around the boundary. # NB. We make line end-points take precedence over boundary points # to ensure that end-points are still found and followed when they # coincide. edge_things.sort(key=lambda thing: (thing.distance, thing.kind)) remaining_ls = dict(enumerate(line_strings)) prev_thing = None for edge_thing in edge_things[:]: if (prev_thing is not None and not edge_thing.kind and not prev_thing.kind and edge_thing.data[0] == prev_thing.data[0]): j = edge_thing.data[0] # Insert a edge boundary point in between this geometry. mid_dist = (edge_thing.distance + prev_thing.distance) * 0.5 mid_point = boundary.interpolate(mid_dist) new_thing = _BoundaryPoint(mid_dist, True, mid_point) if debug: print('Artificially insert boundary: {}'.format(new_thing)) ind = edge_things.index(edge_thing) edge_things.insert(ind, new_thing) prev_thing = None else: prev_thing = edge_thing if debug: print() print('Edge things') for thing in edge_things: print(' ', thing) if debug_plot_edges: for thing in edge_things: if isinstance(thing.data, sgeom.Point): ax.plot(*thing.data.xy, marker='o') else: ax.plot(*thing.data[2], marker='o') ls = line_strings[thing.data[0]] coords = np.array(ls.coords) ax.plot(coords[:, 0], coords[:, 1]) ax.text(coords[0, 0], coords[0, 1], thing.data[0]) ax.text(coords[-1, 0], coords[-1, 1], '{}.'.format(thing.data[0])) processed_ls = [] while remaining_ls: # Rename line_string to current_ls i, current_ls = remaining_ls.popitem() if debug: import sys sys.stdout.write('+') sys.stdout.flush() print() print('Processing: %s, %s' % (i, current_ls)) # We only want to consider boundary-points, the starts-and-ends of # all other line-strings, or the start-point of the current # line-string. def filter_fn(t): return (t.kind or t.data[0] != i or t.data[1] != 'last') edge_things = list(filter(filter_fn, edge_things)) added_linestring = set() while True: # Find out how far around this linestring's last # point is on the boundary. We will use this to find # the next point on the boundary. d_last = boundary_distance(current_ls.coords[-1]) if debug: print(' d_last: {!r}'.format(d_last)) next_thing = _find_first_gt(edge_things, d_last) # Remove this boundary point from the edge. edge_things.remove(next_thing) if debug: print(' next_thing:', next_thing) if next_thing.kind: # We've just got a boundary point, add it, and keep going. if debug: print(' adding boundary point') boundary_point = next_thing.data combined_coords = (list(current_ls.coords) + [(boundary_point.x, boundary_point.y)]) current_ls = sgeom.LineString(combined_coords) elif next_thing.data[0] == i and next_thing.data[1] == 'first': # We've gone all the way around and are now back at the # first boundary thing. if debug: print(' close loop') processed_ls.append(current_ls) if debug_plot_edges: coords = np.array(current_ls.coords) ax.plot(coords[:, 0], coords[:, 1], color='black', linestyle='--') break else: if debug: print(' adding line') j = next_thing.data[0] line_to_append = line_strings[j] if j in remaining_ls: remaining_ls.pop(j) coords_to_append = list(line_to_append.coords) if next_thing.data[1] == 'last': coords_to_append = coords_to_append[::-1] # Build up the linestring. current_ls = sgeom.LineString((list(current_ls.coords) + coords_to_append)) # Catch getting stuck in an infinite loop by checking that # linestring only added once. if j not in added_linestring: added_linestring.add(j) else: if debug_plot_edges: plt.show() raise RuntimeError('Unidentified problem with ' 'geometry, linestring being ' 're-added. Please raise an issue.') # filter out any non-valid linear rings processed_ls = [linear_ring for linear_ring in processed_ls if len(linear_ring.coords) > 2] linear_rings = [sgeom.LinearRing(line) for line in processed_ls] if debug: print(' DONE') return linear_rings def _rings_to_multi_polygon(self, rings, is_ccw): exterior_rings = [] interior_rings = [] for ring in rings: if ring.is_ccw != is_ccw: interior_rings.append(ring) else: exterior_rings.append(ring) polygon_bits = [] # Turn all the exterior rings into polygon definitions, # "slurping up" any interior rings they contain. for exterior_ring in exterior_rings: polygon = sgeom.Polygon(exterior_ring) prep_polygon = prep(polygon) holes = [] for interior_ring in interior_rings[:]: if prep_polygon.contains(interior_ring): holes.append(interior_ring) interior_rings.remove(interior_ring) elif polygon.crosses(interior_ring): # Likely that we have an invalid geometry such as # that from #509 or #537. holes.append(interior_ring) interior_rings.remove(interior_ring) polygon_bits.append((exterior_ring.coords, [ring.coords for ring in holes])) # Any left over "interior" rings need "inverting" with respect # to the boundary. if interior_rings: boundary_poly = self.domain x3, y3, x4, y4 = boundary_poly.bounds bx = (x4 - x3) * 0.1 by = (y4 - y3) * 0.1 x3 -= bx y3 -= by x4 += bx y4 += by for ring in interior_rings: polygon = sgeom.Polygon(ring) if polygon.is_valid: x1, y1, x2, y2 = polygon.bounds bx = (x2 - x1) * 0.1 by = (y2 - y1) * 0.1 x1 -= bx y1 -= by x2 += bx y2 += by box = sgeom.box(min(x1, x3), min(y1, y3), max(x2, x4), max(y2, y4)) # Invert the polygon polygon = box.difference(polygon) # Intersect the inverted polygon with the boundary polygon = boundary_poly.intersection(polygon) if not polygon.is_empty: polygon_bits.append(polygon) if polygon_bits: multi_poly = sgeom.MultiPolygon(polygon_bits) else: multi_poly = sgeom.MultiPolygon() return multi_poly def quick_vertices_transform(self, vertices, src_crs): """ Where possible, return a vertices array transformed to this CRS from the given vertices array of shape ``(n, 2)`` and the source CRS. .. important:: This method may return None to indicate that the vertices cannot be transformed quickly, and a more complex geometry transformation is required (see :meth:`cartopy.crs.Projection.project_geometry`). """ return_value = None if self == src_crs: x = vertices[:, 0] y = vertices[:, 1] x_limits = self.x_limits y_limits = self.y_limits if (x.min() >= x_limits[0] and x.max() <= x_limits[1] and y.min() >= y_limits[0] and y.max() <= y_limits[1]): return_value = vertices return return_value class _RectangularProjection(Projection): """ The abstract superclass of projections with a rectangular domain which is symmetric about the origin. """ def __init__(self, proj4_params, half_width, half_height, globe=None): self._half_width = half_width self._half_height = half_height super(_RectangularProjection, self).__init__(proj4_params, globe=globe) @property def boundary(self): # XXX Should this be a LinearRing? w, h = self._half_width, self._half_height return sgeom.LineString([(-w, -h), (-w, h), (w, h), (w, -h), (-w, -h)]) @property def x_limits(self): return (-self._half_width, self._half_width) @property def y_limits(self): return (-self._half_height, self._half_height) class _CylindricalProjection(_RectangularProjection): """ The abstract class which denotes cylindrical projections where we want to allow x values to wrap around. """ def _ellipse_boundary(semimajor=2, semiminor=1, easting=0, northing=0, n=201): """ Defines a projection boundary using an ellipse. This type of boundary is used by several projections. """ t = np.linspace(0, 2 * np.pi, n) coords = np.vstack([semimajor * np.cos(t), semiminor * np.sin(t)]) coords += ([easting], [northing]) return coords[:, ::-1] class PlateCarree(_CylindricalProjection): def __init__(self, central_longitude=0.0, globe=None): proj4_params = [('proj', 'eqc'), ('lon_0', central_longitude)] if globe is None: globe = Globe(semimajor_axis=math.degrees(1)) a_rad = math.radians(globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS) x_max = a_rad * 180 y_max = a_rad * 90 # Set the threshold around 0.5 if the x max is 180. self._threshold = x_max / 360. super(PlateCarree, self).__init__(proj4_params, x_max, y_max, globe=globe) @property def threshold(self): return self._threshold def _bbox_and_offset(self, other_plate_carree): """ Returns a pair of (xmin, xmax) pairs and an offset which can be used for identification of whether data in ``other_plate_carree`` needs to be transformed to wrap appropriately. >>> import cartopy.crs as ccrs >>> src = ccrs.PlateCarree(central_longitude=10) >>> bboxes, offset = ccrs.PlateCarree()._bbox_and_offset(src) >>> print(bboxes) [[-180.0, -170.0], [-170.0, 180.0]] >>> print(offset) 10.0 The returned values are longitudes in ``other_plate_carree``'s coordinate system. .. important:: The two CRSs must be identical in every way, other than their central longitudes. No checking of this is done. """ self_lon_0 = self.proj4_params['lon_0'] other_lon_0 = other_plate_carree.proj4_params['lon_0'] lon_0_offset = other_lon_0 - self_lon_0 lon_lower_bound_0 = self.x_limits[0] lon_lower_bound_1 = (other_plate_carree.x_limits[0] + lon_0_offset) if lon_lower_bound_1 < self.x_limits[0]: lon_lower_bound_1 += np.diff(self.x_limits)[0] lon_lower_bound_0, lon_lower_bound_1 = sorted( [lon_lower_bound_0, lon_lower_bound_1]) bbox = [[lon_lower_bound_0, lon_lower_bound_1], [lon_lower_bound_1, lon_lower_bound_0]] bbox[1][1] += np.diff(self.x_limits)[0] return bbox, lon_0_offset def quick_vertices_transform(self, vertices, src_crs): return_value = super(PlateCarree, self).quick_vertices_transform(vertices, src_crs) # Optimise the PlateCarree -> PlateCarree case where no # wrapping or interpolation needs to take place. if return_value is None and isinstance(src_crs, PlateCarree): self_params = self.proj4_params.copy() src_params = src_crs.proj4_params.copy() self_params.pop('lon_0'), src_params.pop('lon_0') xs, ys = vertices[:, 0], vertices[:, 1] potential = (self_params == src_params and self.y_limits[0] <= ys.min() and self.y_limits[1] >= ys.max()) if potential: mod = np.diff(src_crs.x_limits)[0] bboxes, proj_offset = self._bbox_and_offset(src_crs) x_lim = xs.min(), xs.max() y_lim = ys.min(), ys.max() for poly in bboxes: # Arbitrarily choose the number of moduli to look # above and below the -180->180 range. If data is beyond # this range, we're not going to transform it quickly. for i in [-1, 0, 1, 2]: offset = mod * i - proj_offset if ((poly[0] + offset) <= x_lim[0] and (poly[1] + offset) >= x_lim[1]): return_value = vertices + [[-offset, 0]] break if return_value is not None: break return return_value class TransverseMercator(Projection): """ A Transverse Mercator projection. """ def __init__(self, central_longitude=0.0, central_latitude=0.0, false_easting=0.0, false_northing=0.0, scale_factor=1.0, globe=None): """ Kwargs: * central_longitude - The true longitude of the central meridian in degrees. Defaults to 0. * central_latitude - The true latitude of the planar origin in degrees. Defaults to 0. * false_easting - X offset from the planar origin in metres. Defaults to 0. * false_northing - Y offset from the planar origin in metres. Defaults to 0. * scale_factor - Scale factor at the central meridian. Defaults to 1. * globe - An instance of :class:`cartopy.crs.Globe`. If omitted, a default globe is created. """ proj4_params = [('proj', 'tmerc'), ('lon_0', central_longitude), ('lat_0', central_latitude), ('k', scale_factor), ('x_0', false_easting), ('y_0', false_northing), ('units', 'm')] super(TransverseMercator, self).__init__(proj4_params, globe=globe) @property def threshold(self): return 1e4 @property def boundary(self): x0, x1 = self.x_limits y0, y1 = self.y_limits return sgeom.LineString([(x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)]) @property def x_limits(self): return (-2e7, 2e7) @property def y_limits(self): return (-1e7, 1e7) class OSGB(TransverseMercator): def __init__(self): super(OSGB, self).__init__(central_longitude=-2, central_latitude=49, scale_factor=0.9996012717, false_easting=400000, false_northing=-100000, globe=Globe(datum='OSGB36', ellipse='airy')) @property def boundary(self): w = self.x_limits[1] - self.x_limits[0] h = self.y_limits[1] - self.y_limits[0] return sgeom.LineString([(0, 0), (0, h), (w, h), (w, 0), (0, 0)]) @property def x_limits(self): return (0, 7e5) @property def y_limits(self): return (0, 13e5) class OSNI(TransverseMercator): def __init__(self): globe = Globe(semimajor_axis=6377340.189, semiminor_axis=6356034.447938534) super(OSNI, self).__init__(central_longitude=-8, central_latitude=53.5, scale_factor=1.000035, false_easting=200000, false_northing=250000, globe=globe) @property def boundary(self): w = self.x_limits[1] - self.x_limits[0] h = self.y_limits[1] - self.y_limits[0] return sgeom.LineString([(0, 0), (0, h), (w, h), (w, 0), (0, 0)]) @property def x_limits(self): return (18814.9667, 386062.3293) @property def y_limits(self): return (11764.8481, 464720.9559) class UTM(Projection): """ Universal Transverse Mercator projection. """ def __init__(self, zone, southern_hemisphere=False, globe=None): """ Kwargs: * zone - the numeric zone of the UTM required. * globe - An instance of :class:`cartopy.crs.Globe`. If omitted, a default globe is created. * southern_hemisphere - set to True if the zone is in the southern hemisphere, defaults to False. """ proj4_params = [('proj', 'utm'), ('units', 'm'), ('zone', zone)] if southern_hemisphere: proj4_params.append(('south', None)) super(UTM, self).__init__(proj4_params, globe=globe) @property def boundary(self): x0, x1 = self.x_limits y0, y1 = self.y_limits return sgeom.LineString([(x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)]) @property def threshold(self): return 1e2 @property def x_limits(self): easting = 5e5 # allow 50% overflow return (0 - easting/2, 2 * easting + easting/2) @property def y_limits(self): northing = 1e7 # allow 50% overflow return (0 - northing, 2 * northing + northing/2) class EuroPP(UTM): """ UTM Zone 32 projection for EuroPP domain. Ellipsoid is International 1924, Datum is ED50. """ def __init__(self): globe = Globe(ellipse='intl') super(EuroPP, self).__init__(32, globe=globe) @property def x_limits(self): return (-1.4e6, 2e6) @property def y_limits(self): return (4e6, 7.9e6) class Mercator(Projection): """ A Mercator projection. """ def __init__(self, central_longitude=0.0, min_latitude=-80.0, max_latitude=84.0, globe=None): """ Kwargs: * central_longitude - the central longitude. Defaults to 0. * min_latitude - the maximum southerly extent of the projection. Defaults to -80 degrees. * max_latitude - the maximum northerly extent of the projection. Defaults to 84 degrees. * globe - A :class:`cartopy.crs.Globe`. If omitted, a default globe is created. """ proj4_params = [('proj', 'merc'), ('lon_0', central_longitude), ('k', 1), ('units', 'm')] super(Mercator, self).__init__(proj4_params, globe=globe) # Calculate limits. limits = self.transform_points(Geodetic(), np.array([-180, 180]) + central_longitude, np.array([min_latitude, max_latitude])) self._xlimits = tuple(limits[..., 0]) self._ylimits = tuple(limits[..., 1]) self._threshold = np.diff(self.x_limits)[0] / 720 def __eq__(self, other): res = super(Mercator, self).__eq__(other) if hasattr(other, "_ylimits") and hasattr(other, "_xlimits"): res = res and self._ylimits == other._ylimits and \ self._xlimits == other._xlimits return res def __ne__(self, other): return not self == other def __hash__(self): return hash((self.proj4_init, self._xlimits, self._ylimits)) @property def threshold(self): return self._threshold @property def boundary(self): x0, x1 = self.x_limits y0, y1 = self.y_limits return sgeom.LineString([(x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)]) @property def x_limits(self): return self._xlimits @property def y_limits(self): return self._ylimits # Define a specific instance of a Mercator projection, the Google mercator. Mercator.GOOGLE = Mercator(min_latitude=-85.0511287798066, max_latitude=85.0511287798066, globe=Globe(ellipse=None, semimajor_axis=WGS84_SEMIMAJOR_AXIS, semiminor_axis=WGS84_SEMIMAJOR_AXIS, nadgrids='@null')) # Deprecated form GOOGLE_MERCATOR = Mercator.GOOGLE class LambertCylindrical(_RectangularProjection): def __init__(self, central_longitude=0.0): proj4_params = [('proj', 'cea'), ('lon_0', central_longitude)] globe = Globe(semimajor_axis=math.degrees(1)) super(LambertCylindrical, self).__init__(proj4_params, 180, math.degrees(1), globe=globe) @property def threshold(self): return 0.5 class LambertConformal(Projection): """ A Lambert Conformal conic projection. """ def __init__(self, central_longitude=-96.0, central_latitude=39.0, false_easting=0.0, false_northing=0.0, secant_latitudes=None, standard_parallels=None, globe=None, cutoff=-30): """ Kwargs: * central_longitude - The central longitude. Defaults to -96. * central_latitude - The central latitude. Defaults to 39. * false_easting - X offset from planar origin in metres. Defaults to 0. * false_northing - Y offset from planar origin in metres. Defaults to 0. * standard_parallels - Standard parallel latitude(s). Defaults to (33, 45). * globe - A :class:`cartopy.crs.Globe`. If omitted, a default globe is created. * cutoff - Latitude of map cutoff. The map extends to infinity opposite the central pole so we must cut off the map drawing before then. A value of 0 will draw half the globe. Defaults to -30. """ proj4_params = [('proj', 'lcc'), ('lon_0', central_longitude), ('lat_0', central_latitude), ('x_0', false_easting), ('y_0', false_northing)] if secant_latitudes and standard_parallels: raise TypeError('standard_parallels replaces secant_latitudes.') elif secant_latitudes is not None: warnings.warn('secant_latitudes has been deprecated in v0.12. ' 'The standard_parallels keyword can be used as a ' 'direct replacement.') standard_parallels = secant_latitudes elif standard_parallels is None: # The default. Put this as a keyword arg default once # secant_latitudes is removed completely. standard_parallels = (33, 45) n_parallels = len(standard_parallels) if not 1 <= n_parallels <= 2: raise ValueError('1 or 2 standard parallels must be specified. ' 'Got {} ({})'.format(n_parallels, standard_parallels)) proj4_params.append(('lat_1', standard_parallels[0])) if n_parallels == 2: proj4_params.append(('lat_2', standard_parallels[1])) super(LambertConformal, self).__init__(proj4_params, globe=globe) # Compute whether this projection is at the "north pole" or the # "south pole" (after the central lon/lat have been taken into # account). if n_parallels == 1: plat = 90 if standard_parallels[0] > 0 else -90 else: # Which pole are the parallels closest to? That is the direction # that the cone converges. if abs(standard_parallels[0]) > abs(standard_parallels[1]): poliest_sec = standard_parallels[0] else: poliest_sec = standard_parallels[1] plat = 90 if poliest_sec > 0 else -90 self.cutoff = cutoff n = 91 lons = [0] lats = [plat] lons.extend(np.linspace(central_longitude - 180 + 0.001, central_longitude + 180 - 0.001, n)) lats.extend(np.array([cutoff] * n)) lons.append(0) lats.append(plat) points = self.transform_points(PlateCarree(), np.array(lons), np.array(lats)) if plat == 90: # Ensure clockwise points = points[::-1, :] self._boundary = sgeom.LineString(points) bounds = self._boundary.bounds self._x_limits = bounds[0], bounds[2] self._y_limits = bounds[1], bounds[3] def __eq__(self, other): res = super(LambertConformal, self).__eq__(other) if hasattr(other, "cutoff"): res = res and self.cutoff == other.cutoff return res def __ne__(self, other): return not self == other def __hash__(self): return hash((self.proj4_init, self.cutoff)) @property def boundary(self): return self._boundary @property def threshold(self): return 1e5 @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class LambertAzimuthalEqualArea(Projection): """ A Lambert Azimuthal Equal-Area projection. """ def __init__(self, central_longitude=0.0, central_latitude=0.0, false_easting=0.0, false_northing=0.0, globe=None): """ Kwargs: * central_longitude - The central longitude. Defaults to 0. * central_latitude - The central latitude. Defaults to 0. * false_easting - X offset from planar origin in metres. Defaults to 0. * false_northing - Y offset from planar origin in metres. Defaults to 0. * globe - A :class:`cartopy.crs.Globe`. If omitted, a default globe is created. """ proj4_params = [('proj', 'laea'), ('lon_0', central_longitude), ('lat_0', central_latitude), ('x_0', false_easting), ('y_0', false_northing)] super(LambertAzimuthalEqualArea, self).__init__(proj4_params, globe=globe) a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS) b = np.float(self.globe.semiminor_axis or WGS84_SEMIMINOR_AXIS) lon, lat = central_longitude + 180, - central_latitude + 0.01 x, max_y = self.transform_point(lon, lat, PlateCarree()) coords = _ellipse_boundary(a * 1.9999, max_y - false_northing, false_easting, false_northing, 61) self._boundary = sgeom.polygon.LinearRing(coords.T) self._x_limits = self._boundary.bounds[::2] self._y_limits = self._boundary.bounds[1::2] self._threshold = np.diff(self._x_limits)[0] * 1e-3 @property def boundary(self): return self._boundary @property def threshold(self): return self._threshold @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class Miller(_RectangularProjection): def __init__(self, central_longitude=0.0): proj4_params = [('proj', 'mill'), ('lon_0', central_longitude)] globe = Globe(semimajor_axis=math.degrees(1)) # XXX How can we derive the vertical limit of 131.98? super(Miller, self).__init__(proj4_params, 180, 131.98, globe=globe) @property def threshold(self): return 0.5 class RotatedPole(_CylindricalProjection): """ Defines a rotated latitude/longitude projected coordinate system with cylindrical topology and projected distance. Coordinates are measured in projection metres. """ def __init__(self, pole_longitude=0.0, pole_latitude=90.0, central_rotated_longitude=0.0, globe=None): """ Create a RotatedPole CRS. The class uses proj4 to perform an ob_tran operation, using the pole_longitude to set a lon_0 then performing two rotations based on pole_latitude and central_rotated_longitude. This is equivalent to setting the new pole to a location defined by the pole_latitude and pole_longitude values in the GeogCRS defined by globe, then rotating this new CRS about it's pole using the central_rotated_longitude value. Args: * pole_longitude - Pole longitude position, in unrotated degrees. * pole_latitude - Pole latitude position, in unrotated degrees. * central_rotated_longitude - Longitude rotation about the new pole, in degrees. Kwargs: * globe - An optional :class:`cartopy.crs.Globe`. Defaults to a "WGS84" datum. """ proj4_params = [('proj', 'ob_tran'), ('o_proj', 'latlon'), ('o_lon_p', central_rotated_longitude), ('o_lat_p', pole_latitude), ('lon_0', 180 + pole_longitude), ('to_meter', math.radians(1))] super(RotatedPole, self).__init__(proj4_params, 180, 90, globe=globe) @property def threshold(self): return 0.5 class Gnomonic(Projection): def __init__(self, central_latitude=0.0, globe=None): proj4_params = [('proj', 'gnom'), ('lat_0', central_latitude)] super(Gnomonic, self).__init__(proj4_params, globe=globe) self._max = 5e7 @property def boundary(self): return sgeom.Point(0, 0).buffer(self._max).exterior @property def threshold(self): return 1e5 @property def x_limits(self): return (-self._max, self._max) @property def y_limits(self): return (-self._max, self._max) class Stereographic(Projection): def __init__(self, central_latitude=0.0, central_longitude=0.0, false_easting=0.0, false_northing=0.0, true_scale_latitude=None, globe=None): proj4_params = [('proj', 'stere'), ('lat_0', central_latitude), ('lon_0', central_longitude), ('x_0', false_easting), ('y_0', false_northing)] if true_scale_latitude: proj4_params.append(('lat_ts', true_scale_latitude)) super(Stereographic, self).__init__(proj4_params, globe=globe) # TODO: Let the globe return the semimajor axis always. a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS) b = np.float(self.globe.semiminor_axis or WGS84_SEMIMINOR_AXIS) # Note: The magic number has been picked to maintain consistent # behaviour with a wgs84 globe. There is no guarantee that the scaling # should even be linear. x_axis_offset = 5e7 / WGS84_SEMIMAJOR_AXIS y_axis_offset = 5e7 / WGS84_SEMIMINOR_AXIS self._x_limits = (-a * x_axis_offset + false_easting, a * x_axis_offset + false_easting) self._y_limits = (-b * y_axis_offset + false_northing, b * y_axis_offset + false_northing) if self._x_limits[1] == self._y_limits[1]: point = sgeom.Point(false_easting, false_northing) self._boundary = point.buffer(self._x_limits[1]).exterior else: coords = _ellipse_boundary(self._x_limits[1], self._y_limits[1], false_easting, false_northing, 91) self._boundary = sgeom.LinearRing(coords.T) self._threshold = np.diff(self._x_limits)[0] * 1e-3 @property def boundary(self): return self._boundary @property def threshold(self): return self._threshold @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class NorthPolarStereo(Stereographic): def __init__(self, central_longitude=0.0, globe=None): super(NorthPolarStereo, self).__init__( central_latitude=90, central_longitude=central_longitude, globe=globe) class SouthPolarStereo(Stereographic): def __init__(self, central_longitude=0.0, globe=None): super(SouthPolarStereo, self).__init__( central_latitude=-90, central_longitude=central_longitude, globe=globe) class Orthographic(Projection): def __init__(self, central_longitude=0.0, central_latitude=0.0, globe=None): proj4_params = [('proj', 'ortho'), ('lon_0', central_longitude), ('lat_0', central_latitude)] super(Orthographic, self).__init__(proj4_params, globe=globe) # TODO: Let the globe return the semimajor axis always. a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS) b = np.float(self.globe.semiminor_axis or a) if b != a: warnings.warn('The proj4 "ortho" projection does not appear to ' 'handle elliptical globes.') # To stabilise the projection of geometries, we reduce the boundary by # a tiny fraction at the cost of the extreme edges. coords = _ellipse_boundary(a * 0.99999, b * 0.99999, n=61) self._boundary = sgeom.polygon.LinearRing(coords.T) self._xlim = self._boundary.bounds[::2] self._ylim = self._boundary.bounds[1::2] self._threshold = np.diff(self._xlim)[0] * 0.02 @property def boundary(self): return self._boundary @property def threshold(self): return self._threshold @property def x_limits(self): return self._xlim @property def y_limits(self): return self._ylim class _WarpedRectangularProjection(Projection): def __init__(self, proj4_params, central_longitude, globe=None): super(_WarpedRectangularProjection, self).__init__(proj4_params, globe=globe) # Obtain boundary points points = [] n = 91 geodetic_crs = self.as_geodetic() for lat in np.linspace(-90, 90, n): points.append( self.transform_point(180 + central_longitude, lat, geodetic_crs) ) for lat in np.linspace(90, -90, n): points.append( self.transform_point(-180 + central_longitude, lat, geodetic_crs) ) points.append( self.transform_point(180 + central_longitude, -90, geodetic_crs)) self._boundary = sgeom.LineString(points[::-1]) x = [p[0] for p in points] y = [p[1] for p in points] self._x_limits = min(x), max(x) self._y_limits = min(y), max(y) @property def boundary(self): return self._boundary @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class Mollweide(_WarpedRectangularProjection): def __init__(self, central_longitude=0, globe=None): proj4_params = [('proj', 'moll'), ('lon_0', central_longitude)] super(Mollweide, self).__init__(proj4_params, central_longitude, globe=globe) @property def threshold(self): return 1e5 class Robinson(_WarpedRectangularProjection): def __init__(self, central_longitude=0, globe=None): # Warn when using Robinson with proj4 4.8 due to discontinuity at # 40 deg N introduced by incomplete fix to issue #113 (see # https://trac.osgeo.org/proj/ticket/113). import re match = re.search(r"\d\.\d", PROJ4_RELEASE) if match is not None: proj4_version = float(match.group()) if 4.8 <= proj4_version < 4.9: warnings.warn('The Robinson projection in the v4.8.x series ' 'of Proj.4 contains a discontinuity at ' '40 deg latitude. Use this projection with ' 'caution.') else: warnings.warn('Cannot determine Proj.4 version. The Robinson ' 'projection may be unreliable and should be used ' 'with caution.') proj4_params = [('proj', 'robin'), ('lon_0', central_longitude)] super(Robinson, self).__init__(proj4_params, central_longitude, globe=globe) @property def threshold(self): return 1e4 def transform_point(self, x, y, src_crs): """ Capture and handle any input NaNs, else invoke parent function, :meth:`_WarpedRectangularProjection.transform_point`. Needed because input NaNs can trigger a fatal error in the underlying implementation of the Robinson projection. .. note:: Although the original can in fact translate (nan, lat) into (nan, y-value), this patched version doesn't support that. """ if np.isnan(x) or np.isnan(y): result = (np.nan, np.nan) else: result = super(Robinson, self).transform_point(x, y, src_crs) return result def transform_points(self, src_crs, x, y, z=None): """ Capture and handle NaNs in input points -- else as parent function, :meth:`_WarpedRectangularProjection.transform_points`. Needed because input NaNs can trigger a fatal error in the underlying implementation of the Robinson projection. .. note:: Although the original can in fact translate (nan, lat) into (nan, y-value), this patched version doesn't support that. Instead, we invalidate any of the points that contain a NaN. """ input_point_nans = np.isnan(x) | np.isnan(y) if z is not None: input_point_nans |= np.isnan(z) handle_nans = np.any(input_point_nans) if handle_nans: # Remove NaN points from input data to avoid the error. x[input_point_nans] = 0.0 y[input_point_nans] = 0.0 if z is not None: z[input_point_nans] = 0.0 result = super(Robinson, self).transform_points(src_crs, x, y, z) if handle_nans: # Result always has shape (N, 3). # Blank out each (whole) point where we had a NaN in the input. result[input_point_nans] = np.nan return result class InterruptedGoodeHomolosine(Projection): def __init__(self, central_longitude=0, globe=None): proj4_params = [('proj', 'igh'), ('lon_0', central_longitude)] super(InterruptedGoodeHomolosine, self).__init__(proj4_params, globe=globe) # Obtain boundary points points = [] n = 31 geodetic_crs = self.as_geodetic() # Right boundary for lat in np.linspace(-90, 90, n): points.append(self.transform_point(180 + central_longitude, lat, geodetic_crs)) # Top boundary interrupted_lons = (-40.0,) delta = 0.001 for lon in interrupted_lons: for lat in np.linspace(90, 0, n): points.append(self.transform_point(lon + delta + central_longitude, lat, geodetic_crs)) for lat in np.linspace(0, 90, n): points.append(self.transform_point(lon - delta + central_longitude, lat, geodetic_crs)) # Left boundary for lat in np.linspace(90, -90, n): points.append(self.transform_point(-180 + central_longitude, lat, geodetic_crs)) # Bottom boundary interrupted_lons = (-100.0, -20.0, 80.0) delta = 0.001 for lon in interrupted_lons: for lat in np.linspace(-90, 0, n): points.append(self.transform_point(lon - delta + central_longitude, lat, geodetic_crs)) for lat in np.linspace(0, -90, n): points.append(self.transform_point(lon + delta + central_longitude, lat, geodetic_crs)) # Close loop points.append(self.transform_point(180 + central_longitude, -90, geodetic_crs)) self._boundary = sgeom.LineString(points[::-1]) x = [p[0] for p in points] y = [p[1] for p in points] self._x_limits = min(x), max(x) self._y_limits = min(y), max(y) @property def boundary(self): return self._boundary @property def threshold(self): return 2e4 @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class Geostationary(Projection): def __init__(self, central_longitude=0.0, satellite_height=35785831, false_easting=0, false_northing=0, globe=None): proj4_params = [('proj', 'geos'), ('lon_0', central_longitude), ('lat_0', 0), ('h', satellite_height), ('x_0', false_easting), ('y_0', false_northing), ('units', 'm')] super(Geostationary, self).__init__(proj4_params, globe=globe) # TODO: Let the globe return the semimajor axis always. a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS) b = np.float(self.globe.semiminor_axis or a) h = np.float(satellite_height) max_x = h * math.atan(a / (a + h)) max_y = h * math.atan(b / (b + h)) coords = _ellipse_boundary(max_x, max_y, false_easting, false_northing, 61) self._boundary = sgeom.LinearRing(coords.T) self._xlim = self._boundary.bounds[::2] self._ylim = self._boundary.bounds[1::2] self._threshold = np.diff(self._xlim)[0] * 0.02 @property def boundary(self): return self._boundary @property def threshold(self): return self._threshold @property def x_limits(self): return self._xlim @property def y_limits(self): return self._ylim class AlbersEqualArea(Projection): """ An Albers Equal Area projection This projection is conic and equal-area, and is commonly used for maps of the conterminous United States. """ def __init__(self, central_longitude=0.0, central_latitude=0.0, false_easting=0.0, false_northing=0.0, standard_parallels=(20.0, 50.0), globe=None): """ Kwargs: * central_longitude - The central longitude. Defaults to 0. * central_latitude - The central latitude. Defaults to 0. * false_easting - X offset from planar origin in metres. Defaults to 0. * false_northing - Y offset from planar origin in metres. Defaults to 0. * standard_parallels - The one or two latitudes of correct scale. Defaults to (20, 50). * globe - A :class:`cartopy.crs.Globe`. If omitted, a default globe is created. """ proj4_params = [('proj', 'aea'), ('lon_0', central_longitude), ('lat_0', central_latitude), ('x_0', false_easting), ('y_0', false_northing)] if standard_parallels is not None: try: proj4_params.append(('lat_1', standard_parallels[0])) try: proj4_params.append(('lat_2', standard_parallels[1])) except IndexError: pass except TypeError: proj4_params.append(('lat_1', standard_parallels)) super(AlbersEqualArea, self).__init__(proj4_params, globe=globe) # bounds n = 103 lons = np.empty(2 * n + 1) lats = np.empty(2 * n + 1) tmp = np.linspace(central_longitude - 180, central_longitude + 180, n) lons[:n] = tmp lats[:n] = 90 lons[n:-1] = tmp[::-1] lats[n:-1] = -90 lons[-1] = lons[0] lats[-1] = lats[0] points = self.transform_points(self.as_geodetic(), lons, lats) self._boundary = sgeom.LineString(points) bounds = self._boundary.bounds self._x_limits = bounds[0], bounds[2] self._y_limits = bounds[1], bounds[3] @property def boundary(self): return self._boundary @property def threshold(self): return 1e5 @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class AzimuthalEquidistant(Projection): """ An Azimuthal Equidistant projection This projection provides accurate angles about and distances through the central position. Other angles, distances, or areas may be distorted. """ def __init__(self, central_longitude=0.0, central_latitude=0.0, false_easting=0.0, false_northing=0.0, globe=None): """ Kwargs: * central_longitude - The true longitude of the central meridian in degrees. Defaults to 0. * central_latitude - The true latitude of the planar origin in degrees. Defaults to 0. * false_easting - X offset from the planar origin in metres. Defaults to 0. * false_northing - Y offset from the planar origin in metres. Defaults to 0. * globe - An instance of :class:`cartopy.crs.Globe`. If omitted, a default globe is created. """ proj4_params = [('proj', 'aeqd'), ('lon_0', central_longitude), ('lat_0', central_latitude), ('x_0', false_easting), ('y_0', false_northing)] super(AzimuthalEquidistant, self).__init__(proj4_params, globe=globe) # TODO: Let the globe return the semimajor axis always. a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS) b = np.float(self.globe.semiminor_axis or a) coords = _ellipse_boundary(a * np.pi, b * np.pi, false_easting, false_northing, 61) self._boundary = sgeom.LinearRing(coords.T) bounds = self._boundary.bounds self._x_limits = bounds[0], bounds[2] self._y_limits = bounds[1], bounds[3] @property def boundary(self): return self._boundary @property def threshold(self): return 1e5 @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits class Sinusoidal(Projection): """ A Sinusoidal projection. This projection is equal-area. """ def __init__(self, central_longitude=0.0, false_easting=0.0, false_northing=0.0, globe=None): """ Kwargs: * central_longitude - The central longitude. Defaults to 0. * false_easting - X offset from planar origin in metres. Defaults to 0. * false_northing - Y offset from planar origin in metres. Defaults to 0. * globe - A :class:`cartopy.crs.Globe`. If omitted, a default globe is created. """ proj4_params = [('proj', 'sinu'), ('lon_0', central_longitude), ('x_0', false_easting), ('y_0', false_northing)] super(Sinusoidal, self).__init__(proj4_params, globe=globe) # Obtain boundary points points = [] n = 91 geodetic_crs = self.as_geodetic() for lat in np.linspace(-90, 90, n): points.append( self.transform_point(180 + central_longitude, lat, geodetic_crs) ) for lat in np.linspace(90, -90, n): points.append( self.transform_point(-180 + central_longitude, lat, geodetic_crs) ) points.append( self.transform_point(180 + central_longitude, -90, geodetic_crs)) self._boundary = sgeom.LineString(points[::-1]) minx, miny, maxx, maxy = self._boundary.bounds self._x_limits = minx, maxx self._y_limits = miny, maxy self._threshold = max(np.abs(self.x_limits + self.y_limits)) * 1e-5 @property def boundary(self): return self._boundary @property def threshold(self): return self._threshold @property def x_limits(self): return self._x_limits @property def y_limits(self): return self._y_limits # MODIS data products use a Sinusoidal projection of a spherical Earth # http://modis-land.gsfc.nasa.gov/GCTP.html Sinusoidal.MODIS = Sinusoidal(globe=Globe(ellipse=None, semimajor_axis=6371007.181, semiminor_axis=6371007.181)) class _BoundaryPoint(object): def __init__(self, distance, kind, data): """ A representation for a geometric object which is connected to the boundary. Parameters ========== distance - float The distance along the boundary that this object can be found. kind - bool Whether this object represents a point from the pre-computed boundary. data - point or namedtuple The actual data that this boundary object represents. """ self.distance = distance self.kind = kind self.data = data def __repr__(self): return '_BoundaryPoint(%r, %r, %s)' % (self.distance, self.kind, self.data) def _find_first_gt(a, x): for v in a: if v.distance > x: return v # We've gone all the way around, so pick the first point again. return a[0] def epsg(code): """ Return the projection which corresponds to the given EPSG code. The EPSG code must correspond to a "projected coordinate system", so EPSG codes such as 4326 (WGS-84) which define a "geodetic coordinate system" will not work. .. note:: The conversion is performed by querying https://epsg.io/ so a live internet connection is required. """ import cartopy._epsg return cartopy._epsg._EPSGProjection(code)
gpl-3.0
DangoMelon0701/PyRemote-Sensing
NETCDF scripts/QuikSCAT/wndstrss_read_nc.py
1
3641
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 10 15:23:19 2017 @author: DangoMelon0701 """ from scipy.io import netcdf import os import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl #%% def plot_data(data,cbar=0,save_img=0,name='image'): norm = mpl.colors.Normalize(vmin=-0.5, vmax=0.5) cmap = mpl.cm.get_cmap('jet') plot,axs = plt.subplots() raw_data = axs.imshow(data,interpolation="gaussian",cmap=cmap,norm=norm) if cbar == 1: cbar = plot.colorbar(raw_data) if save_img == 1: plt.savefig("{}.png".format(name),dpi=1000,bbox_inches='tight') #%% def rmse(predictions, targets): return np.sqrt(np.nanmean((predictions - targets) ** 2)) #%% list_files = [] drag_c = 1e-3 air_ro = 1.2 for files in os.listdir(os.getcwd()): if files.endswith('.nc'): list_files.append(files) for nc_files in list_files: open_file = netcdf.NetCDFFile(nc_files,'r') #Velocidad zonal znl_wnd_speed = open_file.variables['zonal_wind_speed'] np_znl_speed = znl_wnd_speed[:]*znl_wnd_speed.scale_factor np_znl_speed[np.where(np_znl_speed==np_znl_speed.max())]=np.nan #Velocidad meridional mrdnl_wnd_speed = open_file.variables['meridional_wind_speed'] np_mrdnl_speed = mrdnl_wnd_speed[:]*mrdnl_wnd_speed.scale_factor np_mrdnl_speed[np.where(np_mrdnl_speed==np_mrdnl_speed.max())]=np.nan #Magnitud del vector velocidad np_wnd_module = np.sqrt(np.power(np_znl_speed,2)+np.power(np_mrdnl_speed,2)) #Calculo de estres tao_x = air_ro*drag_c*np_znl_speed*np_wnd_module tao_y = air_ro*drag_c*np_mrdnl_speed*np_wnd_module #Leo los datos de estres para comparar znl_wnd_stress = open_file.variables['zonal_wind_stress'] np_znl_stress = znl_wnd_stress[:]*znl_wnd_stress.scale_factor np_znl_stress[np.where(np_znl_stress==np_znl_stress.max())]=np.nan np_znl_stress[np.where(np_znl_stress==np.nanmax(np_znl_stress))]=np.nan np_znl_stress[np.where(np_znl_stress==np.nanmin(np_znl_stress))]=np.nan mrdnl_wnd_stress = open_file.variables['meridional_wind_stress'] np_mrdnl_stress = mrdnl_wnd_stress[:]*mrdnl_wnd_stress.scale_factor np_mrdnl_stress[np.where(np_mrdnl_stress==np_mrdnl_stress.max())]=np.nan np_mrdnl_stress[np.where(np_mrdnl_stress==np.nanmax(np_mrdnl_stress))]=np.nan np_mrdnl_stress[np.where(np_mrdnl_stress==np.nanmin(np_mrdnl_stress))]=np.nan open_file.close() #%% #Grafica de dispersión para comparar la data x_limit = 0.45 y_limit = 0.45 fig, axes = plt.subplots(figsize=(7,7)) #linea 1:1 _11line = np.linspace(0,x_limit,2) axes.plot(_11line,_11line, color ='black',lw=0.6) #scatter plot axes.scatter(np_mrdnl_stress,tao_y,edgecolors="black",linewidth=0.1,s=10) axes.axis([0,x_limit,0,y_limit],fontsize=10) #nombre de los ejes y grafico fig.suptitle('QuikSCAT {}'.format(nc_files),fontsize=16) axes.set_ylabel('Computed Meridional Wind Stress',fontsize=16) axes.set_xlabel('QuikSCAT Meridional Wind Stress',fontsize=16) #valores adicionales rmse_value = rmse(np_mrdnl_stress,tao_y) axes.text(0.08,0.78,"(RMSE={:.3f})".format(rmse_value),fontsize=13.5,\ transform=axes.transAxes) axes.grid(linestyle='--') #guardando la figura fig.savefig("mrdstrss_scatter_plot.png",dpi=1000,bbox_inches='tight') #%% plot_data(tao_x,1,1,'zonal_strees_calculated') plot_data(np_znl_stress,1,1,'zonal_stress_given') plot_data(tao_y,1,1,'meridional_strees_calculated') plot_data(np_mrdnl_stress,1,1,'meridional_stress_given') #%% break
mit
shakamunyi/tensorflow
tensorflow/contrib/learn/python/learn/estimators/classifier_test.py
16
5175
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Classifier.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib import learn from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.session_bundle import manifest_pb2 def iris_input_fn(num_epochs=None): iris = tf.contrib.learn.datasets.load_iris() features = tf.train.limit_epochs( tf.reshape(tf.constant(iris.data), [-1, 4]), num_epochs=num_epochs) labels = tf.reshape(tf.constant(iris.target), [-1]) return features, labels def logistic_model_fn(features, labels, unused_mode): labels = tf.one_hot(labels, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, labels) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def logistic_model_params_fn(features, labels, unused_mode, params): labels = tf.one_hot(labels, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, labels) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op class ClassifierTest(tf.test.TestCase): def testIrisAll(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) self._runIrisAll(est) def testIrisAllWithParams(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_params_fn, n_classes=3, params={'learning_rate': 0.01}) self._runIrisAll(est) def testIrisInputFn(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) est.fit(input_fn=iris_input_fn, steps=100) est.evaluate(input_fn=iris_input_fn, steps=1, name='eval') predict_input_fn = functools.partial(iris_input_fn, num_epochs=1) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertEqual(len(predictions), iris.target.shape[0]) def _runIrisAll(self, est): iris = tf.contrib.learn.datasets.load_iris() est.fit(iris.data, iris.target, steps=100) scores = est.evaluate(x=iris.data, y=iris.target, name='eval') predictions = list(est.predict(x=iris.data)) predictions_proba = list(est.predict_proba(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) self.assertAllEqual(predictions, np.argmax(predictions_proba, axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions) self.assertAllClose(other_score, scores['accuracy']) def _get_default_signature(self, export_meta_filename): """Gets the default signature from the export.meta file.""" with tf.Session(): save = tf.train.import_meta_graph(export_meta_filename) meta_graph_def = save.export_meta_graph() collection_def = meta_graph_def.collection_def signatures_any = collection_def['serving_signatures'].any_list.value self.assertEquals(len(signatures_any), 1) signatures = manifest_pb2.Signatures() signatures_any[0].Unpack(signatures) default_signature = signatures.default_signature return default_signature # Disable this test case until b/31032996 is fixed. def _testExportMonitorRegressionSignature(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) export_dir = tempfile.mkdtemp() + 'export/' export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=1, signature_fn=tf.contrib.learn.classifier.classification_signature_fn) est.fit(iris.data, iris.target, steps=2, monitors=[export_monitor]) self.assertTrue(tf.gfile.Exists(export_dir)) self.assertFalse(tf.gfile.Exists(export_dir + '00000000/export')) self.assertTrue(tf.gfile.Exists(export_dir + '00000002/export')) # Validate the signature signature = self._get_default_signature(export_dir + '00000002/export.meta') self.assertTrue(signature.HasField('classification_signature')) if __name__ == '__main__': tf.test.main()
apache-2.0
jreback/pandas
pandas/tests/resample/test_datetime_index.py
2
59676
from datetime import datetime from functools import partial from io import StringIO import numpy as np import pytest import pytz from pandas._libs import lib from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Series, Timedelta, Timestamp, isna, notna import pandas._testing as tm from pandas.core.groupby.grouper import Grouper from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, period_range from pandas.core.resample import DatetimeIndex, _get_timestamp_range_edges import pandas.tseries.offsets as offsets from pandas.tseries.offsets import Minute @pytest.fixture() def _index_factory(): return date_range @pytest.fixture def _index_freq(): return "Min" @pytest.fixture def _static_values(index): return np.random.rand(len(index)) def test_custom_grouper(index): dti = index s = Series(np.array([1] * len(dti)), index=dti, dtype="int64") b = Grouper(freq=Minute(5)) g = s.groupby(b) # check all cython functions work funcs = ["add", "mean", "prod", "ohlc", "min", "max", "var"] for f in funcs: g._cython_agg_general(f) b = Grouper(freq=Minute(5), closed="right", label="right") g = s.groupby(b) # check all cython functions work funcs = ["add", "mean", "prod", "ohlc", "min", "max", "var"] for f in funcs: g._cython_agg_general(f) assert g.ngroups == 2593 assert notna(g.mean()).all() # construct expected val arr = [1] + [5] * 2592 idx = dti[0:-1:5] idx = idx.append(dti[-1:]) idx = DatetimeIndex(idx, freq="5T") expect = Series(arr, index=idx) # GH2763 - return in put dtype if we can result = g.agg(np.sum) tm.assert_series_equal(result, expect) df = DataFrame(np.random.rand(len(dti), 10), index=dti, dtype="float64") r = df.groupby(b).agg(np.sum) assert len(r.columns) == 10 assert len(r.index) == 2593 @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) @pytest.mark.parametrize( "closed, expected", [ ( "right", lambda s: Series( [s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=date_range("1/1/2000", periods=4, freq="5min", name="index"), ), ), ( "left", lambda s: Series( [s[:5].mean(), s[5:10].mean(), s[10:].mean()], index=date_range( "1/1/2000 00:05", periods=3, freq="5min", name="index" ), ), ), ], ) def test_resample_basic(series, closed, expected): s = series expected = expected(s) result = s.resample("5min", closed=closed, label="right").mean() tm.assert_series_equal(result, expected) def test_resample_integerarray(): # GH 25580, resample on IntegerArray ts = Series( range(9), index=pd.date_range("1/1/2000", periods=9, freq="T"), dtype="Int64" ) result = ts.resample("3T").sum() expected = Series( [3, 12, 21], index=pd.date_range("1/1/2000", periods=3, freq="3T"), dtype="Int64", ) tm.assert_series_equal(result, expected) result = ts.resample("3T").mean() expected = Series( [1, 4, 7], index=pd.date_range("1/1/2000", periods=3, freq="3T"), dtype="Float64", ) tm.assert_series_equal(result, expected) def test_resample_basic_grouper(series): s = series result = s.resample("5Min").last() grouper = Grouper(freq=Minute(5), closed="left", label="left") expected = s.groupby(grouper).agg(lambda x: x[-1]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) @pytest.mark.parametrize( "keyword,value", [("label", "righttt"), ("closed", "righttt"), ("convention", "starttt")], ) def test_resample_string_kwargs(series, keyword, value): # see gh-19303 # Check that wrong keyword argument strings raise an error msg = f"Unsupported value {value} for `{keyword}`" with pytest.raises(ValueError, match=msg): series.resample("5min", **({keyword: value})) @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) def test_resample_how(series, downsample_method): if downsample_method == "ohlc": pytest.skip("covered by test_resample_how_ohlc") s = series grouplist = np.ones_like(s) grouplist[0] = 0 grouplist[1:6] = 1 grouplist[6:11] = 2 grouplist[11:] = 3 expected = s.groupby(grouplist).agg(downsample_method) expected.index = date_range("1/1/2000", periods=4, freq="5min", name="index") result = getattr( s.resample("5min", closed="right", label="right"), downsample_method )() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) def test_resample_how_ohlc(series): s = series grouplist = np.ones_like(s) grouplist[0] = 0 grouplist[1:6] = 1 grouplist[6:11] = 2 grouplist[11:] = 3 def _ohlc(group): if isna(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] expected = DataFrame( s.groupby(grouplist).agg(_ohlc).values.tolist(), index=date_range("1/1/2000", periods=4, freq="5min", name="index"), columns=["open", "high", "low", "close"], ) result = s.resample("5min", closed="right", label="right").ohlc() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["min", "max", "sum", "prod", "mean", "var", "std"]) def test_numpy_compat(func): # see gh-12811 s = Series([1, 2, 3, 4, 5], index=date_range("20130101", periods=5, freq="s")) r = s.resample("2s") msg = "numpy operations are not valid with resample" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(r, func)(func, 1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(r, func)(axis=1) def test_resample_how_callables(): # GH#7929 data = np.arange(5, dtype=np.int64) ind = date_range(start="2014-01-01", periods=len(data), freq="d") df = DataFrame({"A": data, "B": data}, index=ind) def fn(x, a=1): return str(type(x)) class FnClass: def __call__(self, x): return str(type(x)) df_standard = df.resample("M").apply(fn) df_lambda = df.resample("M").apply(lambda x: str(type(x))) df_partial = df.resample("M").apply(partial(fn)) df_partial2 = df.resample("M").apply(partial(fn, a=2)) df_class = df.resample("M").apply(FnClass()) tm.assert_frame_equal(df_standard, df_lambda) tm.assert_frame_equal(df_standard, df_partial) tm.assert_frame_equal(df_standard, df_partial2) tm.assert_frame_equal(df_standard, df_class) def test_resample_rounding(): # GH 8371 # odd results when rounding is needed data = """date,time,value 11-08-2014,00:00:01.093,1 11-08-2014,00:00:02.159,1 11-08-2014,00:00:02.667,1 11-08-2014,00:00:03.175,1 11-08-2014,00:00:07.058,1 11-08-2014,00:00:07.362,1 11-08-2014,00:00:08.324,1 11-08-2014,00:00:08.830,1 11-08-2014,00:00:08.982,1 11-08-2014,00:00:09.815,1 11-08-2014,00:00:10.540,1 11-08-2014,00:00:11.061,1 11-08-2014,00:00:11.617,1 11-08-2014,00:00:13.607,1 11-08-2014,00:00:14.535,1 11-08-2014,00:00:15.525,1 11-08-2014,00:00:17.960,1 11-08-2014,00:00:20.674,1 11-08-2014,00:00:21.191,1""" df = pd.read_csv( StringIO(data), parse_dates={"timestamp": ["date", "time"]}, index_col="timestamp", ) df.index.name = None result = df.resample("6s").sum() expected = DataFrame( {"value": [4, 9, 4, 2]}, index=date_range("2014-11-08", freq="6s", periods=4) ) tm.assert_frame_equal(result, expected) result = df.resample("7s").sum() expected = DataFrame( {"value": [4, 10, 4, 1]}, index=date_range("2014-11-08", freq="7s", periods=4) ) tm.assert_frame_equal(result, expected) result = df.resample("11s").sum() expected = DataFrame( {"value": [11, 8]}, index=date_range("2014-11-08", freq="11s", periods=2) ) tm.assert_frame_equal(result, expected) result = df.resample("13s").sum() expected = DataFrame( {"value": [13, 6]}, index=date_range("2014-11-08", freq="13s", periods=2) ) tm.assert_frame_equal(result, expected) result = df.resample("17s").sum() expected = DataFrame( {"value": [16, 3]}, index=date_range("2014-11-08", freq="17s", periods=2) ) tm.assert_frame_equal(result, expected) def test_resample_basic_from_daily(): # from daily dti = date_range( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D", name="index" ) s = Series(np.random.rand(len(dti)), dti) # to weekly result = s.resample("w-sun").last() assert len(result) == 3 assert (result.index.dayofweek == [6, 6, 6]).all() assert result.iloc[0] == s["1/2/2005"] assert result.iloc[1] == s["1/9/2005"] assert result.iloc[2] == s.iloc[-1] result = s.resample("W-MON").last() assert len(result) == 2 assert (result.index.dayofweek == [0, 0]).all() assert result.iloc[0] == s["1/3/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-TUE").last() assert len(result) == 2 assert (result.index.dayofweek == [1, 1]).all() assert result.iloc[0] == s["1/4/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-WED").last() assert len(result) == 2 assert (result.index.dayofweek == [2, 2]).all() assert result.iloc[0] == s["1/5/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-THU").last() assert len(result) == 2 assert (result.index.dayofweek == [3, 3]).all() assert result.iloc[0] == s["1/6/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-FRI").last() assert len(result) == 2 assert (result.index.dayofweek == [4, 4]).all() assert result.iloc[0] == s["1/7/2005"] assert result.iloc[1] == s["1/10/2005"] # to biz day result = s.resample("B").last() assert len(result) == 7 assert (result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all() assert result.iloc[0] == s["1/2/2005"] assert result.iloc[1] == s["1/3/2005"] assert result.iloc[5] == s["1/9/2005"] assert result.index.name == "index" def test_resample_upsampling_picked_but_not_correct(): # Test for issue #3020 dates = date_range("01-Jan-2014", "05-Jan-2014", freq="D") series = Series(1, index=dates) result = series.resample("D").mean() assert result.index[0] == dates[0] # GH 5955 # incorrect deciding to upsample when the axis frequency matches the # resample frequency s = Series( np.arange(1.0, 6), index=[datetime(1975, 1, i, 12, 0) for i in range(1, 6)] ) expected = Series( np.arange(1.0, 6), index=date_range("19750101", periods=5, freq="D") ) result = s.resample("D").count() tm.assert_series_equal(result, Series(1, index=expected.index)) result1 = s.resample("D").sum() result2 = s.resample("D").mean() tm.assert_series_equal(result1, expected) tm.assert_series_equal(result2, expected) def test_resample_frame_basic(): df = tm.makeTimeDataFrame() b = Grouper(freq="M") g = df.groupby(b) # check all cython functions work funcs = ["add", "mean", "prod", "min", "max", "var"] for f in funcs: g._cython_agg_general(f) result = df.resample("A").mean() tm.assert_series_equal(result["A"], df["A"].resample("A").mean()) result = df.resample("M").mean() tm.assert_series_equal(result["A"], df["A"].resample("M").mean()) df.resample("M", kind="period").mean() df.resample("W-WED", kind="period").mean() def test_resample_upsample(): # from daily dti = date_range( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D", name="index" ) s = Series(np.random.rand(len(dti)), dti) # to minutely, by padding result = s.resample("Min").pad() assert len(result) == 12961 assert result[0] == s[0] assert result[-1] == s[-1] assert result.index.name == "index" def test_resample_how_method(): # GH9915 s = Series( [11, 22], index=[ Timestamp("2015-03-31 21:48:52.672000"), Timestamp("2015-03-31 21:49:52.739000"), ], ) expected = Series( [11, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 22], index=DatetimeIndex( [ Timestamp("2015-03-31 21:48:50"), Timestamp("2015-03-31 21:49:00"), Timestamp("2015-03-31 21:49:10"), Timestamp("2015-03-31 21:49:20"), Timestamp("2015-03-31 21:49:30"), Timestamp("2015-03-31 21:49:40"), Timestamp("2015-03-31 21:49:50"), ], freq="10s", ), ) tm.assert_series_equal(s.resample("10S").mean(), expected) def test_resample_extra_index_point(): # GH#9756 index = date_range(start="20150101", end="20150331", freq="BM") expected = DataFrame({"A": Series([21, 41, 63], index=index)}) index = date_range(start="20150101", end="20150331", freq="B") df = DataFrame({"A": Series(range(len(index)), index=index)}, dtype="int64") result = df.resample("BM").last() tm.assert_frame_equal(result, expected) def test_upsample_with_limit(): rng = date_range("1/1/2000", periods=3, freq="5t") ts = Series(np.random.randn(len(rng)), rng) result = ts.resample("t").ffill(limit=2) expected = ts.reindex(result.index, method="ffill", limit=2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("freq", ["5D", "10H", "5Min", "10S"]) @pytest.mark.parametrize("rule", ["Y", "3M", "15D", "30H", "15Min", "30S"]) def test_nearest_upsample_with_limit(tz_aware_fixture, freq, rule): # GH 33939 rng = date_range("1/1/2000", periods=3, freq=freq, tz=tz_aware_fixture) ts = Series(np.random.randn(len(rng)), rng) result = ts.resample(rule).nearest(limit=2) expected = ts.reindex(result.index, method="nearest", limit=2) tm.assert_series_equal(result, expected) def test_resample_ohlc(series): s = series grouper = Grouper(freq=Minute(5)) expect = s.groupby(grouper).agg(lambda x: x[-1]) result = s.resample("5Min").ohlc() assert len(result) == len(expect) assert len(result.columns) == 4 xs = result.iloc[-2] assert xs["open"] == s[-6] assert xs["high"] == s[-6:-1].max() assert xs["low"] == s[-6:-1].min() assert xs["close"] == s[-2] xs = result.iloc[0] assert xs["open"] == s[0] assert xs["high"] == s[:5].max() assert xs["low"] == s[:5].min() assert xs["close"] == s[4] def test_resample_ohlc_result(): # GH 12332 index = pd.date_range("1-1-2000", "2-15-2000", freq="h") index = index.union(pd.date_range("4-15-2000", "5-15-2000", freq="h")) s = Series(range(len(index)), index=index) a = s.loc[:"4-15-2000"].resample("30T").ohlc() assert isinstance(a, DataFrame) b = s.loc[:"4-14-2000"].resample("30T").ohlc() assert isinstance(b, DataFrame) # GH12348 # raising on odd period rng = date_range("2013-12-30", "2014-01-07") index = rng.drop( [ Timestamp("2014-01-01"), Timestamp("2013-12-31"), Timestamp("2014-01-04"), Timestamp("2014-01-05"), ] ) df = DataFrame(data=np.arange(len(index)), index=index) result = df.resample("B").mean() expected = df.reindex(index=date_range(rng[0], rng[-1], freq="B")) tm.assert_frame_equal(result, expected) def test_resample_ohlc_dataframe(): df = ( DataFrame( { "PRICE": { Timestamp("2011-01-06 10:59:05", tz=None): 24990, Timestamp("2011-01-06 12:43:33", tz=None): 25499, Timestamp("2011-01-06 12:54:09", tz=None): 25499, }, "VOLUME": { Timestamp("2011-01-06 10:59:05", tz=None): 1500000000, Timestamp("2011-01-06 12:43:33", tz=None): 5000000000, Timestamp("2011-01-06 12:54:09", tz=None): 100000000, }, } ) ).reindex(["VOLUME", "PRICE"], axis=1) res = df.resample("H").ohlc() exp = pd.concat( [df["VOLUME"].resample("H").ohlc(), df["PRICE"].resample("H").ohlc()], axis=1, keys=["VOLUME", "PRICE"], ) tm.assert_frame_equal(exp, res) df.columns = [["a", "b"], ["c", "d"]] res = df.resample("H").ohlc() exp.columns = pd.MultiIndex.from_tuples( [ ("a", "c", "open"), ("a", "c", "high"), ("a", "c", "low"), ("a", "c", "close"), ("b", "d", "open"), ("b", "d", "high"), ("b", "d", "low"), ("b", "d", "close"), ] ) tm.assert_frame_equal(exp, res) # dupe columns fail atm # df.columns = ['PRICE', 'PRICE'] def test_resample_dup_index(): # GH 4812 # dup columns with resample raising df = DataFrame( np.random.randn(4, 12), index=[2000, 2000, 2000, 2000], columns=[Period(year=2000, month=i + 1, freq="M") for i in range(12)], ) df.iloc[3, :] = np.nan result = df.resample("Q", axis=1).mean() expected = df.groupby(lambda x: int((x.month - 1) / 3), axis=1).mean() expected.columns = [Period(year=2000, quarter=i + 1, freq="Q") for i in range(4)] tm.assert_frame_equal(result, expected) def test_resample_reresample(): dti = date_range(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D") s = Series(np.random.rand(len(dti)), dti) bs = s.resample("B", closed="right", label="right").mean() result = bs.resample("8H").mean() assert len(result) == 22 assert isinstance(result.index.freq, offsets.DateOffset) assert result.index.freq == offsets.Hour(8) def test_resample_timestamp_to_period(simple_date_range_series): ts = simple_date_range_series("1/1/1990", "1/1/2000") result = ts.resample("A-DEC", kind="period").mean() expected = ts.resample("A-DEC").mean() expected.index = period_range("1990", "2000", freq="a-dec") tm.assert_series_equal(result, expected) result = ts.resample("A-JUN", kind="period").mean() expected = ts.resample("A-JUN").mean() expected.index = period_range("1990", "2000", freq="a-jun") tm.assert_series_equal(result, expected) result = ts.resample("M", kind="period").mean() expected = ts.resample("M").mean() expected.index = period_range("1990-01", "2000-01", freq="M") tm.assert_series_equal(result, expected) result = ts.resample("M", kind="period").mean() expected = ts.resample("M").mean() expected.index = period_range("1990-01", "2000-01", freq="M") tm.assert_series_equal(result, expected) def test_ohlc_5min(): def _ohlc(group): if isna(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] rng = date_range("1/1/2000 00:00:00", "1/1/2000 5:59:50", freq="10s") ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample("5min", closed="right", label="right").ohlc() assert (resampled.loc["1/1/2000 00:00"] == ts[0]).all() exp = _ohlc(ts[1:31]) assert (resampled.loc["1/1/2000 00:05"] == exp).all() exp = _ohlc(ts["1/1/2000 5:55:01":]) assert (resampled.loc["1/1/2000 6:00:00"] == exp).all() def test_downsample_non_unique(): rng = date_range("1/1/2000", "2/29/2000") rng2 = rng.repeat(5).values ts = Series(np.random.randn(len(rng2)), index=rng2) result = ts.resample("M").mean() expected = ts.groupby(lambda x: x.month).mean() assert len(result) == 2 tm.assert_almost_equal(result[0], expected[1]) tm.assert_almost_equal(result[1], expected[2]) def test_asfreq_non_unique(): # GH #1077 rng = date_range("1/1/2000", "2/29/2000") rng2 = rng.repeat(2).values ts = Series(np.random.randn(len(rng2)), index=rng2) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): ts.asfreq("B") def test_resample_axis1(): rng = date_range("1/1/2000", "2/29/2000") df = DataFrame(np.random.randn(3, len(rng)), columns=rng, index=["a", "b", "c"]) result = df.resample("M", axis=1).mean() expected = df.T.resample("M").mean().T tm.assert_frame_equal(result, expected) def test_resample_anchored_ticks(): # If a fixed delta (5 minute, 4 hour) evenly divides a day, we should # "anchor" the origin at midnight so we get regular intervals rather # than starting from the first timestamp which might start in the # middle of a desired interval rng = date_range("1/1/2000 04:00:00", periods=86400, freq="s") ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same freqs = ["t", "5t", "15t", "30t", "4h", "12h"] for freq in freqs: result = ts[2:].resample(freq, closed="left", label="left").mean() expected = ts.resample(freq, closed="left", label="left").mean() tm.assert_series_equal(result, expected) def test_resample_single_group(): mysum = lambda x: x.sum() rng = date_range("2000-1-1", "2000-2-10", freq="D") ts = Series(np.random.randn(len(rng)), index=rng) tm.assert_series_equal(ts.resample("M").sum(), ts.resample("M").apply(mysum)) rng = date_range("2000-1-1", "2000-1-10", freq="D") ts = Series(np.random.randn(len(rng)), index=rng) tm.assert_series_equal(ts.resample("M").sum(), ts.resample("M").apply(mysum)) # GH 3849 s = Series( [30.1, 31.6], index=[Timestamp("20070915 15:30:00"), Timestamp("20070915 15:40:00")], ) expected = Series([0.75], index=DatetimeIndex([Timestamp("20070915")], freq="D")) result = s.resample("D").apply(lambda x: np.std(x)) tm.assert_series_equal(result, expected) def test_resample_offset(): # GH 31809 rng = date_range("1/1/2000 00:00:00", "1/1/2000 02:00", freq="s") ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample("5min", offset="2min").mean() exp_rng = date_range("12/31/1999 23:57:00", "1/1/2000 01:57", freq="5min") tm.assert_index_equal(resampled.index, exp_rng) def test_resample_origin(): # GH 31809 rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s") ts = Series(np.random.randn(len(rng)), index=rng) exp_rng = date_range("1999-12-31 23:57:00", "2000-01-01 01:57", freq="5min") resampled = ts.resample("5min", origin="1999-12-31 23:57:00").mean() tm.assert_index_equal(resampled.index, exp_rng) offset_timestamp = Timestamp(0) + Timedelta("2min") resampled = ts.resample("5min", origin=offset_timestamp).mean() tm.assert_index_equal(resampled.index, exp_rng) resampled = ts.resample("5min", origin="epoch", offset="2m").mean() tm.assert_index_equal(resampled.index, exp_rng) # origin of '1999-31-12 12:02:00' should be equivalent for this case resampled = ts.resample("5min", origin="1999-12-31 12:02:00").mean() tm.assert_index_equal(resampled.index, exp_rng) resampled = ts.resample("5min", offset="-3m").mean() tm.assert_index_equal(resampled.index, exp_rng) @pytest.mark.parametrize( "origin", ["invalid_value", "epch", "startday", "startt", "2000-30-30", object()] ) def test_resample_bad_origin(origin): rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s") ts = Series(np.random.randn(len(rng)), index=rng) msg = ( "'origin' should be equal to 'epoch', 'start', 'start_day', " "'end', 'end_day' or should be a Timestamp convertible type. Got " f"'{origin}' instead." ) with pytest.raises(ValueError, match=msg): ts.resample("5min", origin=origin) @pytest.mark.parametrize("offset", ["invalid_value", "12dayys", "2000-30-30", object()]) def test_resample_bad_offset(offset): rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s") ts = Series(np.random.randn(len(rng)), index=rng) msg = f"'offset' should be a Timedelta convertible type. Got '{offset}' instead." with pytest.raises(ValueError, match=msg): ts.resample("5min", offset=offset) def test_resample_origin_prime_freq(): # GH 31809 start, end = "2000-10-01 23:30:00", "2000-10-02 00:30:00" rng = pd.date_range(start, end, freq="7min") ts = Series(np.random.randn(len(rng)), index=rng) exp_rng = date_range("2000-10-01 23:14:00", "2000-10-02 00:22:00", freq="17min") resampled = ts.resample("17min").mean() tm.assert_index_equal(resampled.index, exp_rng) resampled = ts.resample("17min", origin="start_day").mean() tm.assert_index_equal(resampled.index, exp_rng) exp_rng = date_range("2000-10-01 23:30:00", "2000-10-02 00:21:00", freq="17min") resampled = ts.resample("17min", origin="start").mean() tm.assert_index_equal(resampled.index, exp_rng) resampled = ts.resample("17min", offset="23h30min").mean() tm.assert_index_equal(resampled.index, exp_rng) resampled = ts.resample("17min", origin="start_day", offset="23h30min").mean() tm.assert_index_equal(resampled.index, exp_rng) exp_rng = date_range("2000-10-01 23:18:00", "2000-10-02 00:26:00", freq="17min") resampled = ts.resample("17min", origin="epoch").mean() tm.assert_index_equal(resampled.index, exp_rng) exp_rng = date_range("2000-10-01 23:24:00", "2000-10-02 00:15:00", freq="17min") resampled = ts.resample("17min", origin="2000-01-01").mean() tm.assert_index_equal(resampled.index, exp_rng) def test_resample_origin_with_tz(): # GH 31809 msg = "The origin must have the same timezone as the index." tz = "Europe/Paris" rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s", tz=tz) ts = Series(np.random.randn(len(rng)), index=rng) exp_rng = date_range("1999-12-31 23:57:00", "2000-01-01 01:57", freq="5min", tz=tz) resampled = ts.resample("5min", origin="1999-12-31 23:57:00+00:00").mean() tm.assert_index_equal(resampled.index, exp_rng) # origin of '1999-31-12 12:02:00+03:00' should be equivalent for this case resampled = ts.resample("5min", origin="1999-12-31 12:02:00+03:00").mean() tm.assert_index_equal(resampled.index, exp_rng) resampled = ts.resample("5min", origin="epoch", offset="2m").mean() tm.assert_index_equal(resampled.index, exp_rng) with pytest.raises(ValueError, match=msg): ts.resample("5min", origin="12/31/1999 23:57:00").mean() # if the series is not tz aware, origin should not be tz aware rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s") ts = Series(np.random.randn(len(rng)), index=rng) with pytest.raises(ValueError, match=msg): ts.resample("5min", origin="12/31/1999 23:57:00+03:00").mean() def test_resample_origin_epoch_with_tz_day_vs_24h(): # GH 34474 start, end = "2000-10-01 23:30:00+0500", "2000-12-02 00:30:00+0500" rng = pd.date_range(start, end, freq="7min") random_values = np.random.randn(len(rng)) ts_1 = Series(random_values, index=rng) result_1 = ts_1.resample("D", origin="epoch").mean() result_2 = ts_1.resample("24H", origin="epoch").mean() tm.assert_series_equal(result_1, result_2) # check that we have the same behavior with epoch even if we are not timezone aware ts_no_tz = ts_1.tz_localize(None) result_3 = ts_no_tz.resample("D", origin="epoch").mean() result_4 = ts_no_tz.resample("24H", origin="epoch").mean() tm.assert_series_equal(result_1, result_3.tz_localize(rng.tz), check_freq=False) tm.assert_series_equal(result_1, result_4.tz_localize(rng.tz), check_freq=False) # check that we have the similar results with two different timezones (+2H and +5H) start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200" rng = pd.date_range(start, end, freq="7min") ts_2 = Series(random_values, index=rng) result_5 = ts_2.resample("D", origin="epoch").mean() result_6 = ts_2.resample("24H", origin="epoch").mean() tm.assert_series_equal(result_1.tz_localize(None), result_5.tz_localize(None)) tm.assert_series_equal(result_1.tz_localize(None), result_6.tz_localize(None)) def test_resample_origin_with_day_freq_on_dst(): # GH 31809 tz = "America/Chicago" def _create_series(values, timestamps, freq="D"): return Series( values, index=DatetimeIndex( [Timestamp(t, tz=tz) for t in timestamps], freq=freq, ambiguous=True ), ) # test classical behavior of origin in a DST context start = Timestamp("2013-11-02", tz=tz) end = Timestamp("2013-11-03 23:59", tz=tz) rng = pd.date_range(start, end, freq="1h") ts = Series(np.ones(len(rng)), index=rng) expected = _create_series([24.0, 25.0], ["2013-11-02", "2013-11-03"]) for origin in ["epoch", "start", "start_day", start, None]: result = ts.resample("D", origin=origin).sum() tm.assert_series_equal(result, expected) # test complex behavior of origin/offset in a DST context start = Timestamp("2013-11-03", tz=tz) end = Timestamp("2013-11-03 23:59", tz=tz) rng = pd.date_range(start, end, freq="1h") ts = Series(np.ones(len(rng)), index=rng) expected_ts = ["2013-11-02 22:00-05:00", "2013-11-03 22:00-06:00"] expected = _create_series([23.0, 2.0], expected_ts) result = ts.resample("D", origin="start", offset="-2H").sum() tm.assert_series_equal(result, expected) expected_ts = ["2013-11-02 22:00-05:00", "2013-11-03 21:00-06:00"] expected = _create_series([22.0, 3.0], expected_ts, freq="24H") result = ts.resample("24H", origin="start", offset="-2H").sum() tm.assert_series_equal(result, expected) expected_ts = ["2013-11-02 02:00-05:00", "2013-11-03 02:00-06:00"] expected = _create_series([3.0, 22.0], expected_ts) result = ts.resample("D", origin="start", offset="2H").sum() tm.assert_series_equal(result, expected) expected_ts = ["2013-11-02 23:00-05:00", "2013-11-03 23:00-06:00"] expected = _create_series([24.0, 1.0], expected_ts) result = ts.resample("D", origin="start", offset="-1H").sum() tm.assert_series_equal(result, expected) expected_ts = ["2013-11-02 01:00-05:00", "2013-11-03 01:00:00-0500"] expected = _create_series([1.0, 24.0], expected_ts) result = ts.resample("D", origin="start", offset="1H").sum() tm.assert_series_equal(result, expected) def test_resample_daily_anchored(): rng = date_range("1/1/2000 0:00:00", periods=10000, freq="T") ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same result = ts[2:].resample("D", closed="left", label="left").mean() expected = ts.resample("D", closed="left", label="left").mean() tm.assert_series_equal(result, expected) def test_resample_to_period_monthly_buglet(): # GH #1259 rng = date_range("1/1/2000", "12/31/2000") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("M", kind="period").mean() exp_index = period_range("Jan-2000", "Dec-2000", freq="M") tm.assert_index_equal(result.index, exp_index) def test_period_with_agg(): # aggregate a period resampler with a lambda s2 = Series( np.random.randint(0, 5, 50), index=pd.period_range("2012-01-01", freq="H", periods=50), dtype="float64", ) expected = s2.to_timestamp().resample("D").mean().to_period() result = s2.resample("D").agg(lambda x: x.mean()) tm.assert_series_equal(result, expected) def test_resample_segfault(): # GH 8573 # segfaulting in older versions all_wins_and_wagers = [ (1, datetime(2013, 10, 1, 16, 20), 1, 0), (2, datetime(2013, 10, 1, 16, 10), 1, 0), (2, datetime(2013, 10, 1, 18, 15), 1, 0), (2, datetime(2013, 10, 1, 16, 10, 31), 1, 0), ] df = DataFrame.from_records( all_wins_and_wagers, columns=("ID", "timestamp", "A", "B") ).set_index("timestamp") result = df.groupby("ID").resample("5min").sum() expected = df.groupby("ID").apply(lambda x: x.resample("5min").sum()) tm.assert_frame_equal(result, expected) def test_resample_dtype_preservation(): # GH 12202 # validation tests for dtype preservation df = DataFrame( { "date": pd.date_range(start="2016-01-01", periods=4, freq="W"), "group": [1, 1, 2, 2], "val": Series([5, 6, 7, 8], dtype="int32"), } ).set_index("date") result = df.resample("1D").ffill() assert result.val.dtype == np.int32 result = df.groupby("group").resample("1D").ffill() assert result.val.dtype == np.int32 def test_resample_dtype_coercion(): pytest.importorskip("scipy.interpolate") # GH 16361 df = {"a": [1, 3, 1, 4]} df = DataFrame(df, index=pd.date_range("2017-01-01", "2017-01-04")) expected = df.astype("float64").resample("H").mean()["a"].interpolate("cubic") result = df.resample("H")["a"].mean().interpolate("cubic") tm.assert_series_equal(result, expected) result = df.resample("H").mean()["a"].interpolate("cubic") tm.assert_series_equal(result, expected) def test_weekly_resample_buglet(): # #1327 rng = date_range("1/1/2000", freq="B", periods=20) ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample("W").mean() expected = ts.resample("W-SUN").mean() tm.assert_series_equal(resampled, expected) def test_monthly_resample_error(): # #1451 dates = date_range("4/16/2012 20:00", periods=5000, freq="h") ts = Series(np.random.randn(len(dates)), index=dates) # it works! ts.resample("M") def test_nanosecond_resample_error(): # GH 12307 - Values falls after last bin when # Resampling using pd.tseries.offsets.Nano as period start = 1443707890427 exp_start = 1443707890400 indx = pd.date_range(start=pd.to_datetime(start), periods=10, freq="100n") ts = Series(range(len(indx)), index=indx) r = ts.resample(pd.tseries.offsets.Nano(100)) result = r.agg("mean") exp_indx = pd.date_range(start=pd.to_datetime(exp_start), periods=10, freq="100n") exp = Series(range(len(exp_indx)), index=exp_indx) tm.assert_series_equal(result, exp) def test_resample_anchored_intraday(simple_date_range_series): # #1471, #1458 rng = date_range("1/1/2012", "4/1/2012", freq="100min") df = DataFrame(rng.month, index=rng) result = df.resample("M").mean() expected = df.resample("M", kind="period").mean().to_timestamp(how="end") expected.index += Timedelta(1, "ns") - Timedelta(1, "D") expected.index = expected.index._with_freq("infer") assert expected.index.freq == "M" tm.assert_frame_equal(result, expected) result = df.resample("M", closed="left").mean() exp = df.shift(1, freq="D").resample("M", kind="period").mean() exp = exp.to_timestamp(how="end") exp.index = exp.index + Timedelta(1, "ns") - Timedelta(1, "D") exp.index = exp.index._with_freq("infer") assert exp.index.freq == "M" tm.assert_frame_equal(result, exp) rng = date_range("1/1/2012", "4/1/2012", freq="100min") df = DataFrame(rng.month, index=rng) result = df.resample("Q").mean() expected = df.resample("Q", kind="period").mean().to_timestamp(how="end") expected.index += Timedelta(1, "ns") - Timedelta(1, "D") expected.index._data.freq = "Q" expected.index._freq = lib.no_default tm.assert_frame_equal(result, expected) result = df.resample("Q", closed="left").mean() expected = df.shift(1, freq="D").resample("Q", kind="period", closed="left").mean() expected = expected.to_timestamp(how="end") expected.index += Timedelta(1, "ns") - Timedelta(1, "D") expected.index._data.freq = "Q" expected.index._freq = lib.no_default tm.assert_frame_equal(result, expected) ts = simple_date_range_series("2012-04-29 23:00", "2012-04-30 5:00", freq="h") resampled = ts.resample("M").mean() assert len(resampled) == 1 def test_resample_anchored_monthstart(simple_date_range_series): ts = simple_date_range_series("1/1/2000", "12/31/2002") freqs = ["MS", "BMS", "QS-MAR", "AS-DEC", "AS-JUN"] for freq in freqs: ts.resample(freq).mean() def test_resample_anchored_multiday(): # When resampling a range spanning multiple days, ensure that the # start date gets used to determine the offset. Fixes issue where # a one day period is not a multiple of the frequency. # # See: https://github.com/pandas-dev/pandas/issues/8683 index1 = pd.date_range("2014-10-14 23:06:23.206", periods=3, freq="400L") index2 = pd.date_range("2014-10-15 23:00:00", periods=2, freq="2200L") index = index1.union(index2) s = Series(np.random.randn(5), index=index) # Ensure left closing works result = s.resample("2200L").mean() assert result.index[-1] == Timestamp("2014-10-15 23:00:02.000") # Ensure right closing works result = s.resample("2200L", label="right").mean() assert result.index[-1] == Timestamp("2014-10-15 23:00:04.200") def test_corner_cases(simple_period_range_series, simple_date_range_series): # miscellaneous test coverage rng = date_range("1/1/2000", periods=12, freq="t") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("5t", closed="right", label="left").mean() ex_index = date_range("1999-12-31 23:55", periods=4, freq="5t") tm.assert_index_equal(result.index, ex_index) len0pts = simple_period_range_series("2007-01", "2010-05", freq="M")[:0] # it works result = len0pts.resample("A-DEC").mean() assert len(result) == 0 # resample to periods ts = simple_date_range_series("2000-04-28", "2000-04-30 11:00", freq="h") result = ts.resample("M", kind="period").mean() assert len(result) == 1 assert result.index[0] == Period("2000-04", freq="M") def test_anchored_lowercase_buglet(): dates = date_range("4/16/2012 20:00", periods=50000, freq="s") ts = Series(np.random.randn(len(dates)), index=dates) # it works! ts.resample("d").mean() def test_upsample_apply_functions(): # #1596 rng = pd.date_range("2012-06-12", periods=4, freq="h") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("20min").aggregate(["mean", "sum"]) assert isinstance(result, DataFrame) def test_resample_not_monotonic(): rng = pd.date_range("2012-06-12", periods=200, freq="h") ts = Series(np.random.randn(len(rng)), index=rng) ts = ts.take(np.random.permutation(len(ts))) result = ts.resample("D").sum() exp = ts.sort_index().resample("D").sum() tm.assert_series_equal(result, exp) def test_resample_median_bug_1688(): for dtype in ["int64", "int32", "float64", "float32"]: df = DataFrame( [1, 2], index=[datetime(2012, 1, 1, 0, 0, 0), datetime(2012, 1, 1, 0, 5, 0)], dtype=dtype, ) result = df.resample("T").apply(lambda x: x.mean()) exp = df.asfreq("T") tm.assert_frame_equal(result, exp) result = df.resample("T").median() exp = df.asfreq("T") tm.assert_frame_equal(result, exp) def test_how_lambda_functions(simple_date_range_series): ts = simple_date_range_series("1/1/2000", "4/1/2000") result = ts.resample("M").apply(lambda x: x.mean()) exp = ts.resample("M").mean() tm.assert_series_equal(result, exp) foo_exp = ts.resample("M").mean() foo_exp.name = "foo" bar_exp = ts.resample("M").std() bar_exp.name = "bar" result = ts.resample("M").apply([lambda x: x.mean(), lambda x: x.std(ddof=1)]) result.columns = ["foo", "bar"] tm.assert_series_equal(result["foo"], foo_exp) tm.assert_series_equal(result["bar"], bar_exp) # this is a MI Series, so comparing the names of the results # doesn't make sense result = ts.resample("M").aggregate( {"foo": lambda x: x.mean(), "bar": lambda x: x.std(ddof=1)} ) tm.assert_series_equal(result["foo"], foo_exp, check_names=False) tm.assert_series_equal(result["bar"], bar_exp, check_names=False) def test_resample_unequal_times(): # #1772 start = datetime(1999, 3, 1, 5) # end hour is less than start end = datetime(2012, 7, 31, 4) bad_ind = date_range(start, end, freq="30min") df = DataFrame({"close": 1}, index=bad_ind) # it works! df.resample("AS").sum() def test_resample_consistency(): # GH 6418 # resample with bfill / limit / reindex consistency i30 = pd.date_range("2002-02-02", periods=4, freq="30T") s = Series(np.arange(4.0), index=i30) s[2] = np.NaN # Upsample by factor 3 with reindex() and resample() methods: i10 = pd.date_range(i30[0], i30[-1], freq="10T") s10 = s.reindex(index=i10, method="bfill") s10_2 = s.reindex(index=i10, method="bfill", limit=2) rl = s.reindex_like(s10, method="bfill", limit=2) r10_2 = s.resample("10Min").bfill(limit=2) r10 = s.resample("10Min").bfill() # s10_2, r10, r10_2, rl should all be equal tm.assert_series_equal(s10_2, r10) tm.assert_series_equal(s10_2, r10_2) tm.assert_series_equal(s10_2, rl) def test_resample_timegrouper(): # GH 7227 dates1 = [ datetime(2014, 10, 1), datetime(2014, 9, 3), datetime(2014, 11, 5), datetime(2014, 9, 5), datetime(2014, 10, 8), datetime(2014, 7, 15), ] dates2 = dates1[:2] + [pd.NaT] + dates1[2:4] + [pd.NaT] + dates1[4:] dates3 = [pd.NaT] + dates1 + [pd.NaT] for dates in [dates1, dates2, dates3]: df = DataFrame({"A": dates, "B": np.arange(len(dates))}) result = df.set_index("A").resample("M").count() exp_idx = DatetimeIndex( ["2014-07-31", "2014-08-31", "2014-09-30", "2014-10-31", "2014-11-30"], freq="M", name="A", ) expected = DataFrame({"B": [1, 0, 2, 2, 1]}, index=exp_idx) if df["A"].isna().any(): expected.index = expected.index._with_freq(None) tm.assert_frame_equal(result, expected) result = df.groupby(Grouper(freq="M", key="A")).count() tm.assert_frame_equal(result, expected) df = DataFrame( {"A": dates, "B": np.arange(len(dates)), "C": np.arange(len(dates))} ) result = df.set_index("A").resample("M").count() expected = DataFrame( {"B": [1, 0, 2, 2, 1], "C": [1, 0, 2, 2, 1]}, index=exp_idx, columns=["B", "C"], ) if df["A"].isna().any(): expected.index = expected.index._with_freq(None) tm.assert_frame_equal(result, expected) result = df.groupby(Grouper(freq="M", key="A")).count() tm.assert_frame_equal(result, expected) def test_resample_nunique(): # GH 12352 df = DataFrame( { "ID": { Timestamp("2015-06-05 00:00:00"): "0010100903", Timestamp("2015-06-08 00:00:00"): "0010150847", }, "DATE": { Timestamp("2015-06-05 00:00:00"): "2015-06-05", Timestamp("2015-06-08 00:00:00"): "2015-06-08", }, } ) r = df.resample("D") g = df.groupby(Grouper(freq="D")) expected = df.groupby(Grouper(freq="D")).ID.apply(lambda x: x.nunique()) assert expected.name == "ID" for t in [r, g]: result = r.ID.nunique() tm.assert_series_equal(result, expected) result = df.ID.resample("D").nunique() tm.assert_series_equal(result, expected) result = df.ID.groupby(Grouper(freq="D")).nunique() tm.assert_series_equal(result, expected) def test_resample_nunique_preserves_column_level_names(): # see gh-23222 df = tm.makeTimeDataFrame(freq="1D").abs() df.columns = pd.MultiIndex.from_arrays( [df.columns.tolist()] * 2, names=["lev0", "lev1"] ) result = df.resample("1h").nunique() tm.assert_index_equal(df.columns, result.columns) def test_resample_nunique_with_date_gap(): # GH 13453 index = pd.date_range("1-1-2000", "2-15-2000", freq="h") index2 = pd.date_range("4-15-2000", "5-15-2000", freq="h") index3 = index.append(index2) s = Series(range(len(index3)), index=index3, dtype="int64") r = s.resample("M") # Since all elements are unique, these should all be the same results = [r.count(), r.nunique(), r.agg(Series.nunique), r.agg("nunique")] tm.assert_series_equal(results[0], results[1]) tm.assert_series_equal(results[0], results[2]) tm.assert_series_equal(results[0], results[3]) @pytest.mark.parametrize("n", [10000, 100000]) @pytest.mark.parametrize("k", [10, 100, 1000]) def test_resample_group_info(n, k): # GH10914 # use a fixed seed to always have the same uniques prng = np.random.RandomState(1234) dr = date_range(start="2015-08-27", periods=n // 10, freq="T") ts = Series(prng.randint(0, n // k, n).astype("int64"), index=prng.choice(dr, n)) left = ts.resample("30T").nunique() ix = date_range(start=ts.index.min(), end=ts.index.max(), freq="30T") vals = ts.values bins = np.searchsorted(ix.values, ts.index, side="right") sorter = np.lexsort((vals, bins)) vals, bins = vals[sorter], bins[sorter] mask = np.r_[True, vals[1:] != vals[:-1]] mask |= np.r_[True, bins[1:] != bins[:-1]] arr = np.bincount(bins[mask] - 1, minlength=len(ix)).astype("int64", copy=False) right = Series(arr, index=ix) tm.assert_series_equal(left, right) def test_resample_size(): n = 10000 dr = date_range("2015-09-19", periods=n, freq="T") ts = Series(np.random.randn(n), index=np.random.choice(dr, n)) left = ts.resample("7T").size() ix = date_range(start=left.index.min(), end=ts.index.max(), freq="7T") bins = np.searchsorted(ix.values, ts.index.values, side="right") val = np.bincount(bins, minlength=len(ix) + 1)[1:].astype("int64", copy=False) right = Series(val, index=ix) tm.assert_series_equal(left, right) def test_resample_across_dst(): # The test resamples a DatetimeIndex with values before and after a # DST change # Issue: 14682 # The DatetimeIndex we will start with # (note that DST happens at 03:00+02:00 -> 02:00+01:00) # 2016-10-30 02:23:00+02:00, 2016-10-30 02:23:00+01:00 df1 = DataFrame([1477786980, 1477790580], columns=["ts"]) dti1 = DatetimeIndex( pd.to_datetime(df1.ts, unit="s") .dt.tz_localize("UTC") .dt.tz_convert("Europe/Madrid") ) # The expected DatetimeIndex after resampling. # 2016-10-30 02:00:00+02:00, 2016-10-30 02:00:00+01:00 df2 = DataFrame([1477785600, 1477789200], columns=["ts"]) dti2 = DatetimeIndex( pd.to_datetime(df2.ts, unit="s") .dt.tz_localize("UTC") .dt.tz_convert("Europe/Madrid"), freq="H", ) df = DataFrame([5, 5], index=dti1) result = df.resample(rule="H").sum() expected = DataFrame([5, 5], index=dti2) tm.assert_frame_equal(result, expected) def test_groupby_with_dst_time_change(): # GH 24972 index = DatetimeIndex( [1478064900001000000, 1480037118776792000], tz="UTC" ).tz_convert("America/Chicago") df = DataFrame([1, 2], index=index) result = df.groupby(Grouper(freq="1d")).last() expected_index_values = pd.date_range( "2016-11-02", "2016-11-24", freq="d", tz="America/Chicago" ) index = DatetimeIndex(expected_index_values) expected = DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index) tm.assert_frame_equal(result, expected) def test_resample_dst_anchor(): # 5172 dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz="US/Eastern") df = DataFrame([5], index=dti) dti = DatetimeIndex(df.index.normalize(), freq="D") expected = DataFrame([5], index=dti) tm.assert_frame_equal(df.resample(rule="D").sum(), expected) df.resample(rule="MS").sum() tm.assert_frame_equal( df.resample(rule="MS").sum(), DataFrame( [5], index=DatetimeIndex([datetime(2012, 11, 1)], tz="US/Eastern", freq="MS"), ), ) dti = date_range("2013-09-30", "2013-11-02", freq="30Min", tz="Europe/Paris") values = range(dti.size) df = DataFrame({"a": values, "b": values, "c": values}, index=dti, dtype="int64") how = {"a": "min", "b": "max", "c": "count"} tm.assert_frame_equal( df.resample("W-MON").agg(how)[["a", "b", "c"]], DataFrame( { "a": [0, 48, 384, 720, 1056, 1394], "b": [47, 383, 719, 1055, 1393, 1586], "c": [48, 336, 336, 336, 338, 193], }, index=date_range("9/30/2013", "11/4/2013", freq="W-MON", tz="Europe/Paris"), ), "W-MON Frequency", ) tm.assert_frame_equal( df.resample("2W-MON").agg(how)[["a", "b", "c"]], DataFrame( { "a": [0, 48, 720, 1394], "b": [47, 719, 1393, 1586], "c": [48, 672, 674, 193], }, index=date_range( "9/30/2013", "11/11/2013", freq="2W-MON", tz="Europe/Paris" ), ), "2W-MON Frequency", ) tm.assert_frame_equal( df.resample("MS").agg(how)[["a", "b", "c"]], DataFrame( {"a": [0, 48, 1538], "b": [47, 1537, 1586], "c": [48, 1490, 49]}, index=date_range("9/1/2013", "11/1/2013", freq="MS", tz="Europe/Paris"), ), "MS Frequency", ) tm.assert_frame_equal( df.resample("2MS").agg(how)[["a", "b", "c"]], DataFrame( {"a": [0, 1538], "b": [1537, 1586], "c": [1538, 49]}, index=date_range("9/1/2013", "11/1/2013", freq="2MS", tz="Europe/Paris"), ), "2MS Frequency", ) df_daily = df["10/26/2013":"10/29/2013"] tm.assert_frame_equal( df_daily.resample("D").agg({"a": "min", "b": "max", "c": "count"})[ ["a", "b", "c"] ], DataFrame( { "a": [1248, 1296, 1346, 1394], "b": [1295, 1345, 1393, 1441], "c": [48, 50, 48, 48], }, index=date_range("10/26/2013", "10/29/2013", freq="D", tz="Europe/Paris"), ), "D Frequency", ) def test_downsample_across_dst(): # GH 8531 tz = pytz.timezone("Europe/Berlin") dt = datetime(2014, 10, 26) dates = date_range(tz.localize(dt), periods=4, freq="2H") result = Series(5, index=dates).resample("H").mean() expected = Series( [5.0, np.nan] * 3 + [5.0], index=date_range(tz.localize(dt), periods=7, freq="H"), ) tm.assert_series_equal(result, expected) def test_downsample_across_dst_weekly(): # GH 9119, GH 21459 df = DataFrame( index=DatetimeIndex( ["2017-03-25", "2017-03-26", "2017-03-27", "2017-03-28", "2017-03-29"], tz="Europe/Amsterdam", ), data=[11, 12, 13, 14, 15], ) result = df.resample("1W").sum() expected = DataFrame( [23, 42], index=DatetimeIndex( ["2017-03-26", "2017-04-02"], tz="Europe/Amsterdam", freq="W" ), ) tm.assert_frame_equal(result, expected) idx = pd.date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="H") s = Series(index=idx, dtype=np.float64) result = s.resample("W").mean() expected = Series( index=pd.date_range("2013-04-07", freq="W", periods=5, tz="Europe/London"), dtype=np.float64, ) tm.assert_series_equal(result, expected) def test_downsample_dst_at_midnight(): # GH 25758 start = datetime(2018, 11, 3, 12) end = datetime(2018, 11, 5, 12) index = pd.date_range(start, end, freq="1H") index = index.tz_localize("UTC").tz_convert("America/Havana") data = list(range(len(index))) dataframe = DataFrame(data, index=index) result = dataframe.groupby(Grouper(freq="1D")).mean() dti = date_range("2018-11-03", periods=3).tz_localize( "America/Havana", ambiguous=True ) dti = DatetimeIndex(dti, freq="D") expected = DataFrame([7.5, 28.0, 44.5], index=dti) tm.assert_frame_equal(result, expected) def test_resample_with_nat(): # GH 13020 index = DatetimeIndex( [ pd.NaT, "1970-01-01 00:00:00", pd.NaT, "1970-01-01 00:00:01", "1970-01-01 00:00:02", ] ) frame = DataFrame([2, 3, 5, 7, 11], index=index) index_1s = DatetimeIndex( ["1970-01-01 00:00:00", "1970-01-01 00:00:01", "1970-01-01 00:00:02"] ) frame_1s = DataFrame([3, 7, 11], index=index_1s) tm.assert_frame_equal(frame.resample("1s").mean(), frame_1s) index_2s = DatetimeIndex(["1970-01-01 00:00:00", "1970-01-01 00:00:02"]) frame_2s = DataFrame([5, 11], index=index_2s) tm.assert_frame_equal(frame.resample("2s").mean(), frame_2s) index_3s = DatetimeIndex(["1970-01-01 00:00:00"]) frame_3s = DataFrame([7], index=index_3s) tm.assert_frame_equal(frame.resample("3s").mean(), frame_3s) tm.assert_frame_equal(frame.resample("60s").mean(), frame_3s) def test_resample_datetime_values(): # GH 13119 # check that datetime dtype is preserved when NaT values are # introduced by the resampling dates = [datetime(2016, 1, 15), datetime(2016, 1, 19)] df = DataFrame({"timestamp": dates}, index=dates) exp = Series( [datetime(2016, 1, 15), pd.NaT, datetime(2016, 1, 19)], index=date_range("2016-01-15", periods=3, freq="2D"), name="timestamp", ) res = df.resample("2D").first()["timestamp"] tm.assert_series_equal(res, exp) res = df["timestamp"].resample("2D").first() tm.assert_series_equal(res, exp) def test_resample_apply_with_additional_args(series): # GH 14615 def f(data, add_arg): return np.mean(data) * add_arg multiplier = 10 result = series.resample("D").apply(f, multiplier) expected = series.resample("D").mean().multiply(multiplier) tm.assert_series_equal(result, expected) # Testing as kwarg result = series.resample("D").apply(f, add_arg=multiplier) expected = series.resample("D").mean().multiply(multiplier) tm.assert_series_equal(result, expected) # Testing dataframe df = DataFrame({"A": 1, "B": 2}, index=pd.date_range("2017", periods=10)) result = df.groupby("A").resample("D").agg(f, multiplier) expected = df.groupby("A").resample("D").mean().multiply(multiplier) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("k", [1, 2, 3]) @pytest.mark.parametrize( "n1, freq1, n2, freq2", [ (30, "S", 0.5, "Min"), (60, "S", 1, "Min"), (3600, "S", 1, "H"), (60, "Min", 1, "H"), (21600, "S", 0.25, "D"), (86400, "S", 1, "D"), (43200, "S", 0.5, "D"), (1440, "Min", 1, "D"), (12, "H", 0.5, "D"), (24, "H", 1, "D"), ], ) def test_resample_equivalent_offsets(n1, freq1, n2, freq2, k): # GH 24127 n1_ = n1 * k n2_ = n2 * k s = Series(0, index=pd.date_range("19910905 13:00", "19911005 07:00", freq=freq1)) s = s + range(len(s)) result1 = s.resample(str(n1_) + freq1).mean() result2 = s.resample(str(n2_) + freq2).mean() tm.assert_series_equal(result1, result2) @pytest.mark.parametrize( "first,last,freq,exp_first,exp_last", [ ("19910905", "19920406", "D", "19910905", "19920407"), ("19910905 00:00", "19920406 06:00", "D", "19910905", "19920407"), ("19910905 06:00", "19920406 06:00", "H", "19910905 06:00", "19920406 07:00"), ("19910906", "19920406", "M", "19910831", "19920430"), ("19910831", "19920430", "M", "19910831", "19920531"), ("1991-08", "1992-04", "M", "19910831", "19920531"), ], ) def test_get_timestamp_range_edges(first, last, freq, exp_first, exp_last): first = Period(first) first = first.to_timestamp(first.freq) last = Period(last) last = last.to_timestamp(last.freq) exp_first = Timestamp(exp_first, freq=freq) exp_last = Timestamp(exp_last, freq=freq) freq = pd.tseries.frequencies.to_offset(freq) result = _get_timestamp_range_edges(first, last, freq) expected = (exp_first, exp_last) assert result == expected def test_resample_apply_product(): # GH 5586 index = date_range(start="2012-01-31", freq="M", periods=12) ts = Series(range(12), index=index) df = DataFrame({"A": ts, "B": ts + 2}) result = df.resample("Q").apply(np.product) expected = DataFrame( np.array([[0, 24], [60, 210], [336, 720], [990, 1716]], dtype=np.int64), index=DatetimeIndex( ["2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31"], freq="Q-DEC" ), columns=["A", "B"], ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "first,last,freq_in,freq_out,exp_last", [ ( "2020-03-28", "2020-03-31", "D", "24H", "2020-03-30 01:00", ), # includes transition into DST ( "2020-03-28", "2020-10-27", "D", "24H", "2020-10-27 00:00", ), # includes transition into and out of DST ( "2020-10-25", "2020-10-27", "D", "24H", "2020-10-26 23:00", ), # includes transition out of DST ( "2020-03-28", "2020-03-31", "24H", "D", "2020-03-30 00:00", ), # same as above, but from 24H to D ("2020-03-28", "2020-10-27", "24H", "D", "2020-10-27 00:00"), ("2020-10-25", "2020-10-27", "24H", "D", "2020-10-26 00:00"), ], ) def test_resample_calendar_day_with_dst( first: str, last: str, freq_in: str, freq_out: str, exp_last: str ): # GH 35219 ts = Series(1.0, pd.date_range(first, last, freq=freq_in, tz="Europe/Amsterdam")) result = ts.resample(freq_out).pad() expected = Series( 1.0, pd.date_range(first, exp_last, freq=freq_out, tz="Europe/Amsterdam") ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("func", ["min", "max", "first", "last"]) def test_resample_aggregate_functions_min_count(func): # GH#37768 index = date_range(start="2020", freq="M", periods=3) ser = Series([1, np.nan, np.nan], index) result = getattr(ser.resample("Q"), func)(min_count=2) expected = Series( [np.nan], index=DatetimeIndex(["2020-03-31"], dtype="datetime64[ns]", freq="Q-DEC"), ) tm.assert_series_equal(result, expected)
bsd-3-clause
bolozna/EDENetworks
RawDataWindow.py
1
37921
""" EDENetworks, a genetic network analyzer Copyright (C) 2011 Aalto University This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ from __future__ import with_statement # -*- coding: utf-8 -*- from Tkinter import * from netpython import * import tkFileDialog,tkMessageBox from pylab import * import pylab from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,NavigationToolbar2TkAgg from PIL import Image from PIL import ImageTk import os import shutil,math import random from EdenNetWindow import EdenNetWindow from DataWindow import DataWindow class RawDataWindow(Toplevel): def __init__(self,parent,distancematrix,namestring=None,sizeX=800,sizeY=600,matrixtype='distance',distancemeasure='unknown',msdata=None,poplist=None,nodeTypes='individual'): """ nodeTypes : individual or population """ Toplevel.__init__(self,parent,bg='gray90') # creates the window itself self.distancematrix=distancematrix self.parent=parent self.weighted=True self.matrixtype=0 # meaning this is a distance matrix instead of a weight matrix (type=1) self.coords=[] self.namestring="" self.msdata=msdata self.poplist=poplist self.nodeTypes=nodeTypes self.distancemeasure=distancemeasure if namestring: self.title("Raw data: "+namestring) self.namestring=namestring mBar=Frame(self,relief='raised',borderwidth=2,bg='steelblue') # this will be the menu bar lowerhalf=Frame(self,bg='gray90') # --- calculate main statistics etc N=len(self.distancematrix) [minw,maxw,avgw]=netanalysis.weightStats(self.distancematrix) self.minw=minw #saved for disabling log binning from menu bars # --- menu bar ------------------------------ mBar=Frame(self,relief='raised',borderwidth=2,bg='steelblue') FileBtn=self.makeFileMenu(mBar,self.distancematrix,namestring,self.parent) AnalyzeBtn=self.makeAnalyzeMenu(mBar,self.distancematrix,namestring,self.parent,self.weighted) DeriveBtn=self.makeDeriveMenu(mBar,self.distancematrix,namestring,self.parent,self.weighted) if self.nodeTypes=="population": PopBtn=self.makePopulationMenu(mBar) if self.nodeTypes=="population": mBar.tk_menuBar=(FileBtn,DeriveBtn,AnalyzeBtn,PopBtn) else: mBar.tk_menuBar=(FileBtn,DeriveBtn,AnalyzeBtn) # --- lower left: plot panel --------------- # generate plot frame plotframe=Frame(lowerhalf,relief='raised',borderwidth=2,bg='gray80') # first generate plot temp=netanalysis.weight_distribution(self.distancematrix,'linbin',14) datavector=[[temp[0],temp[1]]] width=0.75*(temp[0][-1]-temp[0][0])/float(len(temp[0])) myplot=visuals.ReturnPlotObject(datavector,'bar',"sample distances","d","P(d)",figsize=(3,2),fontsize=9,addstr=',width='+str(width)+',color=\"#9e0b0f\"') myplot.canvas=FigureCanvasTkAgg(myplot.thisFigure,master=plotframe) myplot.canvas.show() myplot.canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=YES, padx=10,pady=10) plotframe.grid(row=0,column=0,sticky=NW) # ----- lower right: info panel ------- infoframe=Frame(lowerhalf,relief='raised',borderwidth=2,bg='gray80') lwidth=20 # sets width for the following labels rowcounter=0 Label(infoframe, text="Data:", relief='flat', bg='DarkOliveGreen2', justify=RIGHT,width=lwidth).grid(row=rowcounter) Label(infoframe, text="%s" % namestring, relief='flat', bg='DarkOliveGreen3', width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 Label(infoframe,text="Size:",relief='flat',bg='gray70',width=lwidth).grid(row=rowcounter) sizeunit="samples" if self.nodeTypes=="population": sizeunit="populations" Label(infoframe,text="N=%d " % N + sizeunit,relief='flat',bg='gray60',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 if hasattr(self.distancematrix,'N_origsamples'): Label(infoframe,text="Based on:",relief='flat',bg='gray70',width=lwidth).grid(row=rowcounter) Label(infoframe,text="Ns=%d samples" % self.distancematrix.N_origsamples,relief='flat',bg='gray60',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 if not(self.nodeTypes=="population"): # label informing about how clones have been handled Label(infoframe,text="Clones:",relief='flat',bg='gray70',width=lwidth).grid(row=rowcounter) if hasattr(self.distancematrix,'clones'): if self.distancematrix.clones=='collapsed': if hasattr(self.distancematrix,'Nclones'): clonetext='removed %d samples' % self.distancematrix.Nclones else: clonetext='removed' elif self.distancematrix.clones=='included': clonetext='kept' else: clonetext='unknown' else: clonetext='unknown' Label(infoframe,text="%s" % clonetext,relief='flat',bg='gray60',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 # label about distance measure if hasattr(self.distancematrix,'distancemeasure'): distancetext=self.distancematrix.distancemeasure else: distancetext='unknown' Label(infoframe,text="Distance measure:",relief='flat',bg='gray65',width=lwidth).grid(row=rowcounter) Label(infoframe,text="%s" % distancetext,relief='flat',bg='gray55',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 Label(infoframe,text="Average distance:",relief='flat',bg='gray65',width=lwidth).grid(row=rowcounter) Label(infoframe,text="<d>=%3.2f" % avgw,relief='flat',bg='gray55',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 Label(infoframe,text="Min distance:",relief='flat',bg='gray65',width=lwidth).grid(row=rowcounter) Label(infoframe,text="dmin=%3.2f" % minw,relief='flat',bg='gray55',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 Label(infoframe,text="Max distance:",relief='flat',bg='gray65',width=lwidth).grid(row=rowcounter) Label(infoframe,text="dmax=%3.2f" % maxw,relief='flat',bg='gray55',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 if hasattr(self.distancematrix,'nodeProperty'): Label(infoframe,text="Imported attributes", relief='flat',bg='DarkOliveGreen2',width=lwidth).grid(row=rowcounter) Label(infoframe,text="type",relief='flat',bg='DarkOliveGreen3',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 propertydict=netext.getPropertyTypes(self.distancematrix) for prop in propertydict.keys(): Label(infoframe,text=prop,relief='flat',bg='gray70',width=lwidth).grid(row=rowcounter) Label(infoframe,text=propertydict[prop],relief='flat',bg='gray65',width=lwidth).grid(row=rowcounter,column=1) rowcounter=rowcounter+1 # -- SHOW IT ALL --- mBar.pack(side=TOP,fill=X,expand=YES,anchor=NW) infoframe.grid(row=0,column=1,sticky=NW) lowerhalf.pack(side=TOP,fill=BOTH,expand=YES) # ------- generators for menus ---------- def makeFileMenu(self,mBar,network,namestring,root): FileBtn=Menubutton(mBar,text="File",underline=0,bg='steelblue') FileBtn.pack(side=LEFT,padx="2m") FileBtn.menu=Menu(FileBtn) FileBtn.menu.save=Menu(FileBtn.menu) FileBtn.menu.save.add_command(label="Square matrix",underline=0,command=lambda s=self,type="square":s.save_network(type)) FileBtn.menu.save.add_command(label="Upper triangular",underline=0,command=lambda s=self,type="upperdiag":s.save_network(type)) FileBtn.menu.save.add_command(label="Strictly upper triangluar",underline=0,command=lambda s=self,type="supperdiag":s.save_network(type)) FileBtn.menu.save.add_command(label="Lower triangular",underline=0,command=lambda s=self,type="lowerdiag":s.save_network(type)) FileBtn.menu.save.add_command(label="Strictly lower triangluar",underline=0,command=lambda s=self,type="slowerdiag":s.save_network(type)) FileBtn.menu.add_cascade(label='Save distance matrix',menu=FileBtn.menu.save) FileBtn.menu.add('separator') FileBtn.menu.add_command(label="Close",underline=0,command=self.exit_network) FileBtn['menu']=FileBtn.menu return FileBtn def makeDeriveMenu(self,mBar,network,namestring,root,weighted=FALSE): DeriveBtn=Menubutton(mBar,text="Derive",underline=0,bg='steelblue') DeriveBtn.pack(side=LEFT,padx="2m") DeriveBtn.menu=Menu(DeriveBtn) DeriveBtn.menu.add_command(label='Minimum spanning tree',command=lambda s=self,net=self.distancematrix,n=namestring,r=root: s.generate_mst(net,n,r,False)) DeriveBtn.menu.add_command(label='Manual thresholding',command=lambda s=self,n=namestring,r=root: s.percolation(r,namestring=n,method='weight',reverse=False)) DeriveBtn.menu.add_command(label='Automatic thresholding',command=self.autothreshold) DeriveBtn["menu"]=DeriveBtn.menu def makeAnalyzeMenu(self,mBar,network,namestring,root,weighted=FALSE): AnalyzeBtn=Menubutton(mBar,text="Analyze",underline=0,bg='steelblue') AnalyzeBtn.pack(side=LEFT,padx="2m") AnalyzeBtn.menu=Menu(AnalyzeBtn) AnalyzeBtn.menu.weights=Menu(AnalyzeBtn.menu) AnalyzeBtn.menu.weights.add_command(label='Linear bins',command=lambda s=self,net=self.distancematrix,n=namestring,r=root: s.weights_bin(net,n,r,'lin')) AnalyzeBtn.menu.weights.add_command(label='Cumulative',command=lambda s=self,net=self.distancematrix,n=namestring,r=root: s.weights_cumulative(net,n,r)) AnalyzeBtn.menu.weights.add_command(label='Logarithmic bins',command=lambda s=self,net=self.distancematrix,n=namestring,r=root: s.weights_bin(net,n,r,'log')) #Disable logarithmic bins if data has zero distances if self.minw==0: AnalyzeBtn.menu.weights.entryconfig(3, state=DISABLED) AnalyzeBtn.menu.add_cascade(label='Distance distribution',menu=AnalyzeBtn.menu.weights) AnalyzeBtn['menu']=AnalyzeBtn.menu return AnalyzeBtn def makePopulationMenu(self,mBar): PopBtn=Menubutton(mBar,text="Randomizations",underline=0,bg='steelblue') PopBtn.pack(side=LEFT,padx="2m") PopBtn.menu=Menu(PopBtn) PopBtn.menu.stats=Menu(PopBtn.menu) PopBtn.menu.single=Menu(PopBtn.menu) PopBtn.menu.single.add_command(label='Bootstrapping',command=lambda: self.singleBootstrapping()) PopBtn.menu.stats.add_command(label='Betweenness: Bootstrapping',command=lambda: self.bootstrapping()) PopBtn.menu.single.add_command(label='Shuffle samples',command=lambda: self.singleShuffledNodes()) PopBtn.menu.stats.add_command(label='Clustering: Shuffle samples',command=lambda: self.statsShuffled("nodes")) PopBtn.menu.single.add_command(label='Shuffle alleles',command=lambda: self.singleShuffledAlleles()) PopBtn.menu.stats.add_command(label='Clustering: Shuffle alleles',command=lambda: self.statsShuffled("alleles")) PopBtn.menu.add_cascade(label="Single realizations",menu=PopBtn.menu.single) PopBtn.menu.add_cascade(label="Statistics",menu=PopBtn.menu.stats) PopBtn['menu']=PopBtn.menu return PopBtn # DEFINE ANALYSIS COMMANDS def bootstrapping(self): bsdialog=dialogues.BootstrapPopulationsDialog(self) bsP,rounds=bsdialog.result bsP,rounds=float(bsP),int(rounds) bsWaiter=dialogues.WaitWindow(self,title="Processsing...",titlemsg="Calculating statistics...",hasProgressbar=True) bsFunction=lambda:bootstrap(self.msdata,self.poplist,self.distancematrix,bsP,rounds,bsWaiter.progressbar.set) bsWaiter.go(bsFunction) nodeBc,nodeBcRank,nodeDegree,nodeDegreeRank=bsWaiter.result BootstrapResultsWindow(self.parent,nodeBc,nodeBcRank,"betweenness centrality","BC",namestring=self.namestring,bsP=bsP) def singleBootstrapping(self): bsdialog=dialogues.SliderDialog2(self,0.0,1.0,0.01,0.5,bodyText="Percentage of nodes in each location?") bsP=bsdialog.result bsNet,bsMsdata,bsPoplist=bootstrap_single(self.msdata,self.poplist,self.distancematrix,bsP) bsNet.matrixtype=0 RawDataWindow(self.parent,bsNet,namestring=self.namestring+"_bootstrap_P="+str(bsP),sizeX=800,sizeY=600,matrixtype=self.matrixtype,distancemeasure=self.distancemeasure,msdata=bsMsdata,poplist=bsPoplist,nodeTypes=self.nodeTypes) def autothreshold(self): newnet,threshold=autoThreshold(self.distancematrix,outputThreshold=True) netext.copyNodeProperties(self.distancematrix,newnet) titlestring=self.namestring+" thresholded at %2.2f" % threshold self.makeMstAndCoords() EdenNetWindow(self.parent,newnet,namestring=titlestring,nettype=self.matrixtype,parentnet=self.distancematrix,coords=self.coords,mstnet=self.mstnet) def singleShuffledNodes(self): newmsdata=self.msdata.copy() #make a copy of the data newmsdata.shuffleNodes() goldstein_list,unique_poplist=eden.getGoldsteinLists(self.poplist) newdm=newmsdata.getGroupwiseDistanceMatrix(goldstein_list,self.distancematrix.distancemeasure,groupNames=unique_poplist) newdm.distancemeasure=self.distancematrix.distancemeasure newdm.matrixtype=0 RawDataWindow(self.parent,newdm,namestring=self.namestring+"_shuffledSamples",sizeX=800,sizeY=600,matrixtype=self.matrixtype,distancemeasure=self.distancemeasure,msdata=newmsdata,poplist=self.poplist,nodeTypes=self.nodeTypes) def singleShuffledAlleles(self): newmsdata=self.msdata.copy() #make a copy of the data newmsdata.randomize() goldstein_list,unique_poplist=eden.getGoldsteinLists(self.poplist) newdm=newmsdata.getGroupwiseDistanceMatrix(goldstein_list,self.distancematrix.distancemeasure,groupNames=unique_poplist) newdm.distancemeasure=self.distancematrix.distancemeasure newdm.matrixtype=0 RawDataWindow(self.parent,newdm,namestring=self.namestring+"_shuffledAlleles",sizeX=800,sizeY=600,matrixtype=self.matrixtype,distancemeasure=self.distancemeasure,msdata=newmsdata,poplist=self.poplist,nodeTypes=self.nodeTypes) def statsShuffled(self,shuffling): #first autothreshold the original network thNet,autoTh=autoThreshold(self.distancematrix,outputThreshold=True) repDialog=dialogues.AskNumberDialog(self,title="Provide a treshold leveel",bodyText="Threshold distance:",initNumber=autoTh) try: th=float(repDialog.result) except Exception: tkMessageBox.showerror( "Error", "Please provide a number." ) return thNet=transforms.threshold_by_value(self.distancematrix,th,accept="<=",keepIsolatedNodes=True) thEdges=len(thNet.edges) oClustering=netanalysis.globalClustering(thNet) #ask how many repetitions repDialog=dialogues.AskNumberDialog(self,title="Provide number of repetitions",bodyText="Number of repetitions:") try: reps=int(repDialog.result) except Exception: tkMessageBox.showerror( "Error", "Please provide a number." ) return #show progressbar waiter=dialogues.WaitWindow(self,title="Processing...",titlemsg="Calculating statistics...",hasProgressbar=True) #calculate stats clustering=[] for round in range(reps): newmsdata=self.msdata.copy() #make a copy of the data if shuffling=="nodes": newmsdata.shuffleNodes() elif shuffling=="alleles": newmsdata.randomize() else: raise Exception("No such shuffling method.") goldstein_list,unique_poplist=eden.getGoldsteinLists(self.poplist) newdm=newmsdata.getGroupwiseDistanceMatrix(goldstein_list,self.distancematrix.distancemeasure,groupNames=unique_poplist) newdm.distancemeasure=self.distancematrix.distancemeasure newEdges=list(newdm.edges) newEdges.sort(key=lambda x:x[2]) newThNet=pynet.SymmNet() for i in range(thEdges): edge=newEdges[i] newThNet[edge[0],edge[1]]=edge[2] clustering.append(netanalysis.globalClustering(newThNet)) waiter.progressbar.set(float(round)/float(reps)) #terminate the progressbar window waiter.ok() p=float(len(filter(lambda x:x>=oClustering,clustering)))/float(len(clustering)) try: #for numpy <1.3 ? temp=pylab.histogram(clustering,bins=min(reps,30),new=True) except TypeError: temp=pylab.histogram(clustering,bins=min(reps,30)) temp=list(temp) temp[1]=temp[1][:len(temp[1])-1] width=temp[1][1]-temp[1][0] t=DataWindow(self,[[temp[1],temp[0]]],self.namestring+"_shuffle_"+shuffling+"_"+str(reps),'bar','Clustering (original=%.2f,p=%g)' %(oClustering,p),'<c>','P(<c>)',addstring=",width="+str(width)) def weights_cumulative(self,network,namestring,parent,maxPoints=1000): nDists=len(network.weights) dists=pylab.zeros(nDists) for i,w in enumerate(network.weights): dists[i]=w dists.sort() x=pylab.array(pylab.linspace(0,nDists,min(nDists,maxPoints)),dtype='uint') x[-1]=x[-1]-1 dists=dists[x] x=pylab.array(x,dtype='float')/nDists DataWindow(self,[[dists,x]],namestring,'plot','Cumulative distance distribution','d','P(<d)') def weights_bin(self,network,namestring,parent,linorlog='log'): '''Calculates and plots weight distribution''' choices=dialogues.AskNumberOfBins(parent,'Distance distribution: options') if choices.result!=None: if linorlog=='lin': plotstyle='bar' temp=netanalysis.weight_distribution(network,'linbin',choices.result) width=0.75*(temp[0][-1]-temp[0][0])/float(len(temp[0])) addstring=',width='+str(width)+',color=\"#9e0b0f\"' else: plotstyle='loglog' temp=netanalysis.weight_distribution(network,'logbin',choices.result) addstring='' t=DataWindow(parent,[[temp[0],temp[1]]],namestring,plotstyle,'Distance distribution','d','P(d)',addstring=addstring) def percolation(self,parent,namestring='',method='fraction',reverse=False): edges=list(self.distancematrix.edges) random.shuffle(edges) Nedges=len(edges) Nnodes=len(self.distancematrix) edges.sort(lambda x,y:cmp(x[2],y[2]),reverse=reverse) ee=percolator.EvaluationList(edges) if method=='weight': ee.setStrengthEvaluations() else: ee.setLinearEvaluations(0,len(edges),100) data=[] thresholds=[] threshfract=[] gcs=[] clusterings=[] susc=[] suscmax=0.0 suscmax_thresh=0.0 suscmax_fract=0.0 counter=0 gcctitle='' for cs in percolator.Percolator(ee): thresholds.append(cs.threshold) threshfract.append(cs.addedEdges/float(Nedges)) gcs.append(cs.getGiantSize()) s=cs.getSusceptibility(Nnodes) if (s>suscmax): suscmax=s suscmax_thresh=cs.threshold suscmax_fract=cs.addedEdges/float(Nedges) susc.append(s) if method=='weight': data.append([thresholds,gcs]) data.append([thresholds,susc]) tstring='w' susctitle='S peaks at f=%2.2f' % float(suscmax_thresh) if not(reverse): gcctitle='Links with w<threshold added' else: gcctitle='Links with w>threshold added' else: data.append([threshfract,gcs]) data.append([threshfract,susc]) tstring='%' susctitle='S peaks at f=%2.2f, w=%2.2f' % (float(suscmax_fract),float(suscmax_thresh)) if not(reverse): gcctitle='% weakest links added' else: gcctitle='% strongest links added' if len(self.coords)==0: mstnet=transforms.mst_kruskal(self.distancematrix,randomize=TRUE,maximum=FALSE) mstnet.matrixtype=0 h=visuals.Himmeli(mstnet,treeMode=True) c=h.getCoordinates() self.coords=c self.mstnet=mstnet #Use autoThreshold results instead of max susc values newnet,suscmax_thresh=autoThreshold(self.distancematrix,outputThreshold=True) #To avoid rounding errors, not a very nice thing to do :( suscmax_thresh+=suscmax_thresh*0.00000001 temp=dialogues.PercolationDialog(parent,title="Choose threshold distance:",titlemsg="Set threshold distance",pdata=data,suscmax_thresh=suscmax_thresh) if temp.result!=None: threshold=float(temp.result) newnet=transforms.threshold_by_value(self.distancematrix,threshold,accept="<=",keepIsolatedNodes=True) newnet.matrixtype=0 titlestring=self.namestring+" thresholded at %2.2f" % threshold if len(newnet.edges)==0: tkMessageBox.showerror("Error while thresholding","Threshodling lead to an empty network.\nIncrease the threshold level.") else: t=EdenNetWindow(parent,newnet,titlestring,coords=self.coords,nettype=self.matrixtype,mstnet=self.mstnet,parentnet=self.distancematrix) def makeMstAndCoords(self): if len(self.coords)==0: mstnet=transforms.mst_kruskal(self.distancematrix,randomize=True,maximum=False) mstnet.matrixtype=0 h=visuals.Himmeli(mstnet,treeMode=True) c=h.getCoordinates() self.coords=c self.mstnet=mstnet def generate_mst(self,network,namestring,parent,max_spanningtree): if max_spanningtree: titlestring='Max_spanning_tree_%s' % namestring else: titlestring='Min_spanning_tree_%s' % namestring newnet=transforms.mst_kruskal(network,randomize=True,maximum=max_spanningtree) newnet.matrixtype=0 h=visuals.Himmeli(newnet,treeMode=True) c=h.getCoordinates() filename=h.netName+"_0001.eps" if os.path.isfile(filename): os.remove(filename) t=EdenNetWindow(parent,newnet,titlestring,nettype=self.matrixtype,parentnet=network,coords=c,mstnet=newnet) def threshold_manual(self,network,namestring,parent,mode): th=dialogues.AskThreshold(parent,'Choose threshold:') threshold=th.result if mode: titlestring='%s_edges_above_%3.2f' % (namestring,threshold) else: titlestring='%s_edges_below_%3.2f' % (namestring,threshold) newnet=transforms.threshold_by_value(network,threshold,mode) newnet.matrixtype=0 if len(self.coords)==0: # first time thresholding; generate MST visualization coords if self.matrixtype==1: maximum=TRUE else: maximum=FALSE mstnet=transforms.mst_kruskal(network,randomize=TRUE,maximum=maximum) h=visuals.Himmeli(mstnet) c=h.getCoordinates() self.coords=c self.mstnet=mstnet t=NetWindow(parent,newnet,titlestring,coords=self.coords,nettype=self.matrixtype,mstnet=self.mstnet) def dist_to_weight(self,network,namestring,parent): matrixfilename='%s_DtoW' % namestring m=transforms.dist_to_weights(network) t=MatrixWindow(parent,m,matrixfilename,matrixtype=1) def open_network(self): pass def load_aux_data(self): aux_filename=tkFileDialog.askopenfilename(filetypes=[("Text files",".txt"), ("Ascii files",".asc")], title="Choose auxiliary data file") if len(aux_filename)==0: return else: try: netio.loadNodeProperties(self.distancematrix,aux_filename) except Exception,e: tkMessageBox.showerror( "Error importing auxiliary data:", "File in wrong format:\n %s" % str(e) ) #call for method updating the property labels in the window def save_network(self,type="square"): network=self.distancematrix netfilename=tkFileDialog.asksaveasfilename(title="Select file for the distance matrix") if len(netfilename)==0: return netfile=open(netfilename,"w") nodes=netio.writeNet_mat(network,netfile,type=type) nodefilename=tkFileDialog.asksaveasfilename(title="Select file for node names") if len(nodefilename)>0: nodefile=open(nodefilename,"w") for node in nodes: nodefile.write(str(node)+"\n") tkMessageBox.showinfo(message='Save succesful.') else: tkMessageBox.showinfo(message='Save succesful.\nNode names not saved.') def exit_network(self): self.destroy() def setAxes(self,a,c,xstring,ystring): setp(a,'xscale',xstring,'yscale',ystring) c.show() def close_window(self): self.destroy() class BootstrapResultsWindow(Toplevel): def __init__(self,parent,nodeM,nodeMRank,measureName,measureShorthand,namestring=None,sizeX=8000,sizeY=8000,bsP=None): Toplevel.__init__(self,parent,bg='gray90') # creates the window itself self.parent=parent if namestring!=None: self.title("Bootstrapping results for "+measureName+", "+namestring+" with "+str(100*bsP)+"% of samples kept") self.namestring=namestring else: self.namestring="" mBar=Frame(self,relief='raised',borderwidth=2,bg='steelblue') # this will be the menu bar lowerhalf=Frame(self,bg='gray90') # --- menu bar ------------------------------ mBar=Frame(self,relief='raised',borderwidth=2,bg='steelblue') FileBtn=self.makeFileMenu(mBar,self.parent) # --- left: bc histograms --------------- # generate plot frame plotframe=Frame(lowerhalf,relief='raised',borderwidth=2,bg='gray80',width=2000, height=2000) #generate the figure fig=self.getMFigure(nodeM,measureName,measureShorthand) self.figure_left=fig #Show the figure canvas=FigureCanvasTkAgg(fig,master=plotframe) canvas.show() canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=YES, padx=10,pady=10) plotframe.grid(row=0,column=0,sticky=NW) # --- right: bc rank histograms --------------- # generate plot frame rightFrame=Frame(lowerhalf,relief='raised',borderwidth=2,bg='gray80',width=2000, height=2000) plotframe=Frame(rightFrame,relief='raised',borderwidth=2,bg='gray80',width=2000, height=2000) fig=self.getTopRankedFigure(nodeMRank,measureShorthand) canvas=FigureCanvasTkAgg(fig,master=plotframe) canvas.show() canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=YES, padx=10,pady=10) plotframe.grid(row=0,column=0,sticky=NW) plotframe=Frame(rightFrame,relief='raised',borderwidth=2,bg='gray80',width=2000, height=2000) self.figure_upper_right=fig fig=self.getTopRankedFigure(nodeMRank,measureShorthand,nTop=1) canvas=FigureCanvasTkAgg(fig,master=plotframe) canvas.show() canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=YES, padx=10,pady=10) plotframe.grid(row=1,column=0,sticky=NW) self.figure_lower_right=fig rightFrame.grid(row=0,column=1,sticky=NW) #rightFrame.pack(side=TOP,fill=BOTH,expand=YES) # -- SHOW IT ALL --- mBar.pack(side=TOP,fill=X,expand=YES,anchor=NW) lowerhalf.pack(side=TOP,fill=BOTH,expand=YES) def getMFigure(self,nodeBc,measureName,measureShorthand): #sort bc by mean names=nodeBc.keys() meanNodeBc={} for name in names: meanNodeBc[name]=pylab.mean(nodeBc[name]) names.sort(key=lambda x:meanNodeBc[x],reverse=True) data=[] for name in names: data.append(nodeBc[name]) #top 5 distributions nTop=5 fig=pylab.Figure(figsize=(5,8), dpi=80) fig.subplots_adjust(bottom=0.08,right=0.95,top=0.95) for nodeIndex in range(nTop): axes=fig.add_subplot(nTop,1,nodeIndex+1) axes.hist(data[nodeIndex],100) axes.set_ylabel(names[nodeIndex],fontsize=8) for tick in axes.get_yticklabels(): tick.set_fontsize(10) tick.set_fontname("Times") if nodeIndex==0: axes.set_title("Distribution of "+measureShorthand+"s for top "+str(nTop)+" locations") axes.set_xlabel(measureName) return fig def getTopRankedFigure(self,nodeBcRank,measureShorthand,nTop=5,plotAtMost=10): tops={} for node in nodeBcRank.iterkeys(): for rank in nodeBcRank[node]: if rank<nTop: tops[node]=tops.get(node,0)+1 names=tops.keys() names.sort(key=lambda x:tops[x],reverse=True) data=[] for name in names: data.append(tops[name]) fig=pylab.Figure(figsize=(5,3.8),dpi=80) fig.subplots_adjust(bottom=0.3) axes=fig.add_subplot(111) nums=range(min(len(data),plotAtMost)) axes.bar(nums,data[:plotAtMost]) axes.set_xticklabels(names,rotation=45,fontsize=8) axes.set_xticks(map(lambda x:x+0.5,nums)) axes.set_title("# of times at top "+str(nTop)) return fig def makeFileMenu(self,mBar,root): FileBtn=Menubutton(mBar,text="File",underline=0,bg='steelblue') FileBtn.pack(side=LEFT,padx="2m") FileBtn.menu=Menu(FileBtn) FileBtn.menu.add_command(label="Save figure on the left...",underline=0,command=self.save_left) FileBtn.menu.add_command(label="Save figure on the upper right...",underline=0,command=self.save_upper_right) FileBtn.menu.add_command(label="Save figure on the lower right...",underline=0,command=self.save_lower_right) FileBtn.menu.add_command(label="Close",underline=0,command=self.destroy) FileBtn['menu']=FileBtn.menu return FileBtn def save_left(self): self.save_figure("left.png",self.figure_left) def save_upper_right(self): self.save_figure("upper_right.png",self.figure_upper_right) def save_lower_right(self): self.save_figure("lower_right.png",self.figure_lower_right) def save_figure(self,namestring,thefigure): filetypes=[("PNG file","*.png"),("PDF file","*.pdf"),('EPS file','*.eps'),("SVG file","*.svg")] types=["png","pdf","eps","svg"] newname=tkFileDialog.asksaveasfilename(initialfile=namestring,title='Save as',filetypes=filetypes) if len(newname)>0: #if user did not press cancel button ending=newname.split(".")[-1] if ending in types: thefigure.savefig(newname) else: tkMessageBox.showerror( "Error saving the figure", "Unknown file format. Use png, pdf, eps or svg." ) def bootstrap(msdata,poplist,distancematrix,bsP,rounds,progressUpdater): #find the threhold for the original distance matrix othrNet=autoThreshold(distancematrix) originalThreshold=len(othrNet.edges) #transfer poplist to another format: pops={} for i,p in enumerate(poplist): if p not in pops: pops[p]=[] pops[p].append(i) #make node statistics containers: nodeBc={} nodeBcRank={} nodeDegree={} nodeDegreeRank={} for node in distancematrix: nodeBc[node]=[] nodeBcRank[node]=[] nodeDegree[node]=[] nodeDegreeRank[node]=[] #rounds for r in range(rounds): #first select nodes selected=[] for pop in pops: nPop=len(pops[pop]) bsSize=int(bsP*nPop) if bsSize<1: bsSize=1 selected.extend(random.sample(pops[pop],bsSize)) selected.sort() #make new distance matrix newmsdata=msdata.getSubset(selected) newpoplist=[] for index in selected: newpoplist.append(poplist[index]) newglists,newunique_poplist=eden.getGoldsteinLists(newpoplist) newdm=newmsdata.getGroupwiseDistanceMatrix(newglists,distancematrix.distancemeasure,groupNames=newunique_poplist) newdm.matrixtype=distancematrix.matrixtype #--BC statistics thNet=autoThreshold(newdm) #calculate statistics for this realization bc=netext.getBetweennessCentrality(thNet) bcRankList=list(distancematrix) random.shuffle(bcRankList) bcRankList.sort(key=lambda x:-bc[x]) for rank,node in enumerate(bcRankList): nodeBcRank[node].append(rank) for node in distancematrix: nodeBc[node].append(bc[node]) #--Degree statistics othNet=pynet.SymmNet() for node in newdm: othNet.addNode(node) edges=list(newdm.edges) edges.sort(lambda x,y:cmp(x[2],y[2]),reverse=False) for i in range(originalThreshold): othNet[edges[i][0],edges[i][1]]=edges[i][2] #calculate statistics degrees=netext.deg(othNet) for node in othNet: nodeDegree[node].append(degrees[node]) degreeRankList=list(distancematrix) random.shuffle(degreeRankList) degreeRankList.sort(key=lambda x:-degrees[x]) for rank,node in enumerate(degreeRankList): nodeDegreeRank[node].append(rank) progressUpdater(float(r)/float(rounds)) return nodeBc,nodeBcRank,nodeDegree,nodeDegreeRank def bootstrap_single(msdata,poplist,distancematrix,bsP): pops={} for i,p in enumerate(poplist): if p not in pops: pops[p]=[] pops[p].append(i) selected=[] for pop in pops: nPop=len(pops[pop]) bsSize=int(bsP*nPop) if bsSize<1: bsSize=1 selected.extend(random.sample(pops[pop],bsSize)) selected.sort() #make new distance matrix newmsdata=msdata.getSubset(selected) newpoplist=[] for index in selected: newpoplist.append(poplist[index]) newglists,newunique_poplist=eden.getGoldsteinLists(newpoplist) newdm=newmsdata.getGroupwiseDistanceMatrix(newglists,distancematrix.distancemeasure,groupNames=newunique_poplist) return newdm,newmsdata,newpoplist def autoThreshold(net,outputThreshold=False): """ Returns a thresholded copy of the net given as a parameter. The threshold is determined to be the percolation threshold by finding a maximum value for the susceptibility. """ edges=list(net.edges) edges.sort(lambda x,y:cmp(x[2],y[2]),reverse=False) ee=percolator.EvaluationList(edges) ee.setStrengthEvaluations() suscmax=0 suscmax_thresh=0 nNodes=len(net) for cs in percolator.Percolator(ee): s=cs.getSusceptibility(nNodes) if (s>=suscmax): suscmax=s suscmax_thresh=cs.threshold suscmax_nedges=cs.addedEdges if cs.getGiantSize()>0.95*len(net): break newNet=pynet.SymmNet() for node in net: newNet.addNode(node) #continue one threshold level after the threshold maximizing susceptibility maxReached=False stopAtNext=False for e in edges: if e[2]==suscmax_thresh: maxReached=True if maxReached and e[2]!=suscmax_thresh and not stopAtNext: stopAtNext=True lastW=e[2] if stopAtNext and lastW!=e[2]: break newNet[e[0],e[1]]=e[2] newNet.matrixtype=net.matrixtype if outputThreshold: return newNet,lastW else: return newNet
gpl-2.0
bnaul/scikit-learn
examples/feature_selection/plot_f_test_vs_mi.py
82
1671
""" =========================================== Comparison of F-test and mutual information =========================================== This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on them as follows: y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the third features is completely irrelevant. The code below plots the dependency of y against individual x_i and normalized values of univariate F-tests statistics and mutual information. As F-test captures only linear dependency, it rates x_1 as the most discriminative feature. On the other hand, mutual information can capture any kind of dependency between variables and it rates x_2 as the most discriminative feature, which probably agrees better with our intuitive perception for this example. Both methods correctly marks x_3 as irrelevant. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.feature_selection import f_regression, mutual_info_regression np.random.seed(0) X = np.random.rand(1000, 3) y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000) f_test, _ = f_regression(X, y) f_test /= np.max(f_test) mi = mutual_info_regression(X, y) mi /= np.max(mi) plt.figure(figsize=(15, 5)) for i in range(3): plt.subplot(1, 3, i + 1) plt.scatter(X[:, i], y, edgecolor='black', s=20) plt.xlabel("$x_{}$".format(i + 1), fontsize=14) if i == 0: plt.ylabel("$y$", fontsize=14) plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]), fontsize=16) plt.show()
bsd-3-clause
bdh1011/wau
venv/lib/python2.7/site-packages/pandas/io/wb.py
5
12305
# -*- coding: utf-8 -*- from __future__ import print_function from pandas.compat import map, reduce, range, lrange from pandas.io.common import urlopen from pandas.io import json import pandas import numpy as np import warnings # This list of country codes was pulled from wikipedia during October 2014. # While some exceptions do exist, it is the best proxy for countries supported # by World Bank. It is an aggregation of the 2-digit ISO 3166-1 alpha-2, and # 3-digit ISO 3166-1 alpha-3, codes, with 'all', 'ALL', and 'All' appended ot # the end. country_codes = ['AD', 'AE', 'AF', 'AG', 'AI', 'AL', 'AM', 'AO', 'AQ', 'AR', \ 'AS', 'AT', 'AU', 'AW', 'AX', 'AZ', 'BA', 'BB', 'BD', 'BE', \ 'BF', 'BG', 'BH', 'BI', 'BJ', 'BL', 'BM', 'BN', 'BO', 'BQ', \ 'BR', 'BS', 'BT', 'BV', 'BW', 'BY', 'BZ', 'CA', 'CC', 'CD', \ 'CF', 'CG', 'CH', 'CI', 'CK', 'CL', 'CM', 'CN', 'CO', 'CR', \ 'CU', 'CV', 'CW', 'CX', 'CY', 'CZ', 'DE', 'DJ', 'DK', 'DM', \ 'DO', 'DZ', 'EC', 'EE', 'EG', 'EH', 'ER', 'ES', 'ET', 'FI', \ 'FJ', 'FK', 'FM', 'FO', 'FR', 'GA', 'GB', 'GD', 'GE', 'GF', \ 'GG', 'GH', 'GI', 'GL', 'GM', 'GN', 'GP', 'GQ', 'GR', 'GS', \ 'GT', 'GU', 'GW', 'GY', 'HK', 'HM', 'HN', 'HR', 'HT', 'HU', \ 'ID', 'IE', 'IL', 'IM', 'IN', 'IO', 'IQ', 'IR', 'IS', 'IT', \ 'JE', 'JM', 'JO', 'JP', 'KE', 'KG', 'KH', 'KI', 'KM', 'KN', \ 'KP', 'KR', 'KW', 'KY', 'KZ', 'LA', 'LB', 'LC', 'LI', 'LK', \ 'LR', 'LS', 'LT', 'LU', 'LV', 'LY', 'MA', 'MC', 'MD', 'ME', \ 'MF', 'MG', 'MH', 'MK', 'ML', 'MM', 'MN', 'MO', 'MP', 'MQ', \ 'MR', 'MS', 'MT', 'MU', 'MV', 'MW', 'MX', 'MY', 'MZ', 'NA', \ 'NC', 'NE', 'NF', 'NG', 'NI', 'NL', 'NO', 'NP', 'NR', 'NU', \ 'NZ', 'OM', 'PA', 'PE', 'PF', 'PG', 'PH', 'PK', 'PL', 'PM', \ 'PN', 'PR', 'PS', 'PT', 'PW', 'PY', 'QA', 'RE', 'RO', 'RS', \ 'RU', 'RW', 'SA', 'SB', 'SC', 'SD', 'SE', 'SG', 'SH', 'SI', \ 'SJ', 'SK', 'SL', 'SM', 'SN', 'SO', 'SR', 'SS', 'ST', 'SV', \ 'SX', 'SY', 'SZ', 'TC', 'TD', 'TF', 'TG', 'TH', 'TJ', 'TK', \ 'TL', 'TM', 'TN', 'TO', 'TR', 'TT', 'TV', 'TW', 'TZ', 'UA', \ 'UG', 'UM', 'US', 'UY', 'UZ', 'VA', 'VC', 'VE', 'VG', 'VI', \ 'VN', 'VU', 'WF', 'WS', 'YE', 'YT', 'ZA', 'ZM', 'ZW', \ 'ABW', 'AFG', 'AGO', 'AIA', 'ALA', 'ALB', 'AND', 'ARE', \ 'ARG', 'ARM', 'ASM', 'ATA', 'ATF', 'ATG', 'AUS', 'AUT', \ 'AZE', 'BDI', 'BEL', 'BEN', 'BES', 'BFA', 'BGD', 'BGR', \ 'BHR', 'BHS', 'BIH', 'BLM', 'BLR', 'BLZ', 'BMU', 'BOL', \ 'BRA', 'BRB', 'BRN', 'BTN', 'BVT', 'BWA', 'CAF', 'CAN', \ 'CCK', 'CHE', 'CHL', 'CHN', 'CIV', 'CMR', 'COD', 'COG', \ 'COK', 'COL', 'COM', 'CPV', 'CRI', 'CUB', 'CUW', 'CXR', \ 'CYM', 'CYP', 'CZE', 'DEU', 'DJI', 'DMA', 'DNK', 'DOM', \ 'DZA', 'ECU', 'EGY', 'ERI', 'ESH', 'ESP', 'EST', 'ETH', \ 'FIN', 'FJI', 'FLK', 'FRA', 'FRO', 'FSM', 'GAB', 'GBR', \ 'GEO', 'GGY', 'GHA', 'GIB', 'GIN', 'GLP', 'GMB', 'GNB', \ 'GNQ', 'GRC', 'GRD', 'GRL', 'GTM', 'GUF', 'GUM', 'GUY', \ 'HKG', 'HMD', 'HND', 'HRV', 'HTI', 'HUN', 'IDN', 'IMN', \ 'IND', 'IOT', 'IRL', 'IRN', 'IRQ', 'ISL', 'ISR', 'ITA', \ 'JAM', 'JEY', 'JOR', 'JPN', 'KAZ', 'KEN', 'KGZ', 'KHM', \ 'KIR', 'KNA', 'KOR', 'KWT', 'LAO', 'LBN', 'LBR', 'LBY', \ 'LCA', 'LIE', 'LKA', 'LSO', 'LTU', 'LUX', 'LVA', 'MAC', \ 'MAF', 'MAR', 'MCO', 'MDA', 'MDG', 'MDV', 'MEX', 'MHL', \ 'MKD', 'MLI', 'MLT', 'MMR', 'MNE', 'MNG', 'MNP', 'MOZ', \ 'MRT', 'MSR', 'MTQ', 'MUS', 'MWI', 'MYS', 'MYT', 'NAM', \ 'NCL', 'NER', 'NFK', 'NGA', 'NIC', 'NIU', 'NLD', 'NOR', \ 'NPL', 'NRU', 'NZL', 'OMN', 'PAK', 'PAN', 'PCN', 'PER', \ 'PHL', 'PLW', 'PNG', 'POL', 'PRI', 'PRK', 'PRT', 'PRY', \ 'PSE', 'PYF', 'QAT', 'REU', 'ROU', 'RUS', 'RWA', 'SAU', \ 'SDN', 'SEN', 'SGP', 'SGS', 'SHN', 'SJM', 'SLB', 'SLE', \ 'SLV', 'SMR', 'SOM', 'SPM', 'SRB', 'SSD', 'STP', 'SUR', \ 'SVK', 'SVN', 'SWE', 'SWZ', 'SXM', 'SYC', 'SYR', 'TCA', \ 'TCD', 'TGO', 'THA', 'TJK', 'TKL', 'TKM', 'TLS', 'TON', \ 'TTO', 'TUN', 'TUR', 'TUV', 'TWN', 'TZA', 'UGA', 'UKR', \ 'UMI', 'URY', 'USA', 'UZB', 'VAT', 'VCT', 'VEN', 'VGB', \ 'VIR', 'VNM', 'VUT', 'WLF', 'WSM', 'YEM', 'ZAF', 'ZMB', \ 'ZWE', 'all', 'ALL', 'All'] def download(country=['MX', 'CA', 'US'], indicator=['NY.GDP.MKTP.CD', 'NY.GNS.ICTR.ZS'], start=2003, end=2005,errors='warn'): """ Download data series from the World Bank's World Development Indicators Parameters ---------- indicator: string or list of strings taken from the ``id`` field in ``WDIsearch()`` country: string or list of strings. ``all`` downloads data for all countries 2 or 3 character ISO country codes select individual countries (e.g.``US``,``CA``) or (e.g.``USA``,``CAN``). The codes can be mixed. The two ISO lists of countries, provided by wikipedia, are hardcoded into pandas as of 11/10/2014. start: int First year of the data series end: int Last year of the data series (inclusive) errors: str {'ignore', 'warn', 'raise'}, default 'warn' Country codes are validated against a hardcoded list. This controls the outcome of that validation, and attempts to also apply to the results from world bank. errors='raise', will raise a ValueError on a bad country code. Returns ------- ``pandas`` DataFrame with columns: country, iso_code, year, indicator value. """ if type(country) == str: country = [country] bad_countries = np.setdiff1d(country, country_codes) # Validate the input if len(bad_countries) > 0: tmp = ", ".join(bad_countries) if errors == 'raise': raise ValueError("Invalid Country Code(s): %s" % tmp) if errors == 'warn': warnings.warn('Non-standard ISO country codes: %s' % tmp) # Work with a list of indicators if type(indicator) == str: indicator = [indicator] # Download data = [] bad_indicators = {} for ind in indicator: one_indicator_data,msg = _get_data(ind, country, start, end) if msg == "Success": data.append(one_indicator_data) else: bad_indicators[ind] = msg if len(bad_indicators.keys()) > 0: bad_ind_msgs = [i + " : " + m for i,m in bad_indicators.items()] bad_ind_msgs = "\n\n".join(bad_ind_msgs) bad_ind_msgs = "\n\nInvalid Indicators:\n\n%s" % bad_ind_msgs if errors == 'raise': raise ValueError(bad_ind_msgs) if errors == 'warn': warnings.warn(bad_ind_msgs) # Confirm we actually got some data, and build Dataframe if len(data) > 0: out = reduce(lambda x, y: x.merge(y, how='outer'), data) out = out.drop('iso_code', axis=1) out = out.set_index(['country', 'year']) out = out.convert_objects(convert_numeric=True) return out else: msg = "No indicators returned data." if errors == 'ignore': msg += " Set errors='warn' for more information." raise ValueError(msg) def _get_data(indicator="NY.GNS.ICTR.GN.ZS", country='US', start=2002, end=2005): if type(country) == str: country = [country] countries = ';'.join(country) # Build URL for api call url = ("http://api.worldbank.org/countries/" + countries + "/indicators/" + indicator + "?date=" + str(start) + ":" + str(end) + "&per_page=25000&format=json") # Download with urlopen(url) as response: data = response.read() # Check to see if there is a possible problem possible_message = json.loads(data)[0] if 'message' in possible_message.keys(): msg = possible_message['message'][0] try: msg = msg['key'].split() + ["\n "] + msg['value'].split() wb_err = ' '.join(msg) except: wb_err = "" if 'key' in msg.keys(): wb_err = msg['key'] + "\n " if 'value' in msg.keys(): wb_err += msg['value'] error_msg = "Problem with a World Bank Query \n %s" return None, error_msg % wb_err if 'total' in possible_message.keys(): if possible_message['total'] == 0: return None, "No results from world bank." # Parse JSON file data = json.loads(data)[1] country = [x['country']['value'] for x in data] iso_code = [x['country']['id'] for x in data] year = [x['date'] for x in data] value = [x['value'] for x in data] # Prepare output out = pandas.DataFrame([country, iso_code, year, value]).T out.columns = ['country', 'iso_code', 'year', indicator] return out,"Success" def get_countries(): '''Query information about countries ''' url = 'http://api.worldbank.org/countries/?per_page=1000&format=json' with urlopen(url) as response: data = response.read() data = json.loads(data)[1] data = pandas.DataFrame(data) data.adminregion = [x['value'] for x in data.adminregion] data.incomeLevel = [x['value'] for x in data.incomeLevel] data.lendingType = [x['value'] for x in data.lendingType] data.region = [x['value'] for x in data.region] data = data.rename(columns={'id': 'iso3c', 'iso2Code': 'iso2c'}) return data def get_indicators(): '''Download information about all World Bank data series ''' url = 'http://api.worldbank.org/indicators?per_page=50000&format=json' with urlopen(url) as response: data = response.read() data = json.loads(data)[1] data = pandas.DataFrame(data) # Clean fields data.source = [x['value'] for x in data.source] fun = lambda x: x.encode('ascii', 'ignore') data.sourceOrganization = data.sourceOrganization.apply(fun) # Clean topic field def get_value(x): try: return x['value'] except: return '' fun = lambda x: [get_value(y) for y in x] data.topics = data.topics.apply(fun) data.topics = data.topics.apply(lambda x: ' ; '.join(x)) # Clean outpu data = data.sort(columns='id') data.index = pandas.Index(lrange(data.shape[0])) return data _cached_series = None def search(string='gdp.*capi', field='name', case=False): """ Search available data series from the world bank Parameters ---------- string: string regular expression field: string id, name, source, sourceNote, sourceOrganization, topics See notes below case: bool case sensitive search? Notes ----- The first time this function is run it will download and cache the full list of available series. Depending on the speed of your network connection, this can take time. Subsequent searches will use the cached copy, so they should be much faster. id : Data series indicator (for use with the ``indicator`` argument of ``WDI()``) e.g. NY.GNS.ICTR.GN.ZS" name: Short description of the data series source: Data collection project sourceOrganization: Data collection organization note: sourceNote: topics: """ # Create cached list of series if it does not exist global _cached_series if type(_cached_series) is not pandas.core.frame.DataFrame: _cached_series = get_indicators() data = _cached_series[field] idx = data.str.contains(string, case=case) out = _cached_series.ix[idx].dropna() return out
mit
bikong2/scikit-learn
sklearn/metrics/cluster/__init__.py
312
1322
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "entropy", "silhouette_samples", "silhouette_score", "consensus_score"]
bsd-3-clause
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/matplotlib/backends/backend_macosx.py
2
7342
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, NavigationToolbar2, TimerBase) from matplotlib.figure import Figure from matplotlib import rcParams from matplotlib.widgets import SubplotTool import matplotlib from matplotlib.backends import _macosx from .backend_agg import RendererAgg, FigureCanvasAgg ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## class TimerMac(_macosx.Timer, TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses CoreFoundation run loops for timer events. Attributes ---------- interval : int The time between timer events in milliseconds. Default is 1000 ms. single_shot : bool Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. callbacks : list Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions `add_callback` and `remove_callback` can be used. ''' # completely implemented at the C-level (in _macosx.Timer) class FigureCanvasMac(_macosx.FigureCanvas, FigureCanvasAgg): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Events such as button presses, mouse movements, and key presses are handled in the C code and the base class methods button_press_event, button_release_event, motion_notify_event, key_press_event, and key_release_event are called from there. Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ def __init__(self, figure): FigureCanvasBase.__init__(self, figure) width, height = self.get_width_height() _macosx.FigureCanvas.__init__(self, width, height) self._device_scale = 1.0 def _set_device_scale(self, value): if self._device_scale != value: self.figure.dpi = self.figure.dpi / self._device_scale * value self._device_scale = value def get_renderer(self, cleared=False): l, b, w, h = self.figure.bbox.bounds key = w, h, self.figure.dpi try: self._lastKey, self._renderer except AttributeError: need_new_renderer = True else: need_new_renderer = (self._lastKey != key) if need_new_renderer: self._renderer = RendererAgg(w, h, self.figure.dpi) self._lastKey = key elif cleared: self._renderer.clear() return self._renderer def _draw(self): renderer = self.get_renderer() if not self.figure.stale: return renderer self.figure.draw(renderer) return renderer def draw(self): self.invalidate() def draw_idle(self, *args, **kwargs): self.invalidate() def blit(self, bbox): self.invalidate() def resize(self, width, height): dpi = self.figure.dpi width /= dpi height /= dpi self.figure.set_size_inches(width * self._device_scale, height * self._device_scale, forward=False) FigureCanvasBase.resize_event(self) self.draw_idle() def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. Other Parameters ---------------- interval : scalar Timer interval in milliseconds callbacks : list Sequence of (func, args, kwargs) where ``func(*args, **kwargs)`` will be executed by the timer every *interval*. """ return TimerMac(*args, **kwargs) class FigureManagerMac(_macosx.FigureManager, FigureManagerBase): """ Wrap everything up into a window for the pylab interface """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) title = "Figure %d" % num _macosx.FigureManager.__init__(self, canvas, title) if rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2Mac(canvas) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) if matplotlib.is_interactive(): self.show() self.canvas.draw_idle() def close(self): Gcf.destroy(self.num) class NavigationToolbar2Mac(_macosx.NavigationToolbar2, NavigationToolbar2): def __init__(self, canvas): NavigationToolbar2.__init__(self, canvas) def _init_toolbar(self): basedir = os.path.join(rcParams['datapath'], "images") _macosx.NavigationToolbar2.__init__(self, basedir) def draw_rubberband(self, event, x0, y0, x1, y1): self.canvas.set_rubberband(int(x0), int(y0), int(x1), int(y1)) def release(self, event): self.canvas.remove_rubberband() def set_cursor(self, cursor): _macosx.set_cursor(cursor) def save_figure(self, *args): filename = _macosx.choose_save_file('Save the figure', self.canvas.get_default_filename()) if filename is None: # Cancel return self.canvas.figure.savefig(filename) def prepare_configure_subplots(self): toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasMac(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) return canvas def set_message(self, message): _macosx.NavigationToolbar2.set_message(self, message.encode('utf-8')) ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## @_Backend.export class _BackendMac(_Backend): FigureCanvas = FigureCanvasMac FigureManager = FigureManagerMac def trigger_manager_draw(manager): # For performance reasons, we don't want to redraw the figure after # each draw command. Instead, we mark the figure as invalid, so that it # will be redrawn as soon as the event loop resumes via PyOS_InputHook. # This function should be called after each draw event, even if # matplotlib is not running interactively. manager.canvas.invalidate() @staticmethod def mainloop(): _macosx.show()
mit
ltiao/scikit-learn
sklearn/utils/estimator_checks.py
3
55953
from __future__ import print_function import types import warnings import sys import traceback import pickle from copy import deepcopy import numpy as np from scipy import sparse import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.pipeline import make_pipeline from sklearn.decomposition import NMF, ProjectedGradientNMF from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import DataConversionWarning from sklearn.cross_validation import train_test_split from sklearn.utils import shuffle from sklearn.utils.fixes import signature from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'GaussianProcessRegressor', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] # Estimators with deprecated transform methods. Should be removed in 0.19 when # _LearntSelectorMixin is removed. DEPRECATED_TRANSFORM = [ "RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "LinearSVC", "SGDClassifier", "SGDRegressor", "Perceptron", "LogisticRegression", "LogisticRegressionCV", "GradientBoostingClassifier", "GradientBoostingRegressor"] def _yield_non_meta_checks(name, Estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, Classifier): # test classfiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train yield check_classifiers_regression_target if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in Classifier().get_params().keys(): yield check_class_weight_classifiers def check_supervised_y_no_nan(name, Estimator): # Checks that the Estimator targets are not NaN. rng = np.random.RandomState(888) X = rng.randn(10, 5) y = np.ones(10) * np.inf y = multioutput_estimator_convert_y_2d(name, y) errmsg = "Input contains NaN, infinity or a value too large for " \ "dtype('float64')." try: Estimator().fit(X, y) except ValueError as e: if str(e) != errmsg: raise ValueError("Estimator {0} raised warning as expected, but " "does not match expected error message" \ .format(name)) else: raise ValueError("Estimator {0} should have raised error on fitting " "array y with NaN value.".format(name)) def _yield_regressor_checks(name, Regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d yield check_supervised_y_no_nan if name != 'CCA': # check that the regressor handles int input yield check_regressors_int if name != "GaussianProcessRegressor": # Test if NotFittedError is raised yield check_estimators_unfitted def _yield_transformer_checks(name, Transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted def _yield_clustering_checks(name, Clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features def _yield_all_checks(name, Estimator): for check in _yield_non_meta_checks(name, Estimator): yield check if issubclass(Estimator, ClassifierMixin): for check in _yield_classifier_checks(name, Estimator): yield check if issubclass(Estimator, RegressorMixin): for check in _yield_regressor_checks(name, Estimator): yield check if issubclass(Estimator, TransformerMixin): if name not in DEPRECATED_TRANSFORM: for check in _yield_transformer_checks(name, Estimator): yield check if issubclass(Estimator, ClusterMixin): for check in _yield_clustering_checks(name, Estimator): yield check yield check_fit2d_predict1d yield check_fit2d_1sample yield check_fit2d_1feature yield check_fit1d_1feature yield check_fit1d_1sample def check_estimator(Estimator): """Check if estimator adheres to sklearn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Parameters ---------- Estimator : class Class to check. Estimator is a class object (not an instance). """ name = Estimator.__name__ check_parameters_default_constructible(name, Estimator) for check in _yield_all_checks(name, Estimator): check(name, Estimator) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_testing_parameters(estimator): # set parameters to speed up some estimators and # avoid deprecated behaviour params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: warnings.simplefilter("ignore", ConvergenceWarning) if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR if estimator.__class__.__name__ == 'LinearSVR': estimator.set_params(max_iter=20) # NMF if estimator.__class__.__name__ == 'NMF': estimator.set_params(max_iter=100) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if "decision_function_shape" in params: # SVC estimator.set_params(decision_function_shape='ovo') if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=1) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) if isinstance(estimator, NMF): if not isinstance(estimator, ProjectedGradientNMF): estimator.set_params(solver='cd') class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, Estimator): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) for sparse_format in ['csr', 'csc', 'dok', 'lil', 'coo', 'dia', 'bsr']: X = X_csr.asformat(sparse_format) # catch deprecation warnings with warnings.catch_warnings(): if name in ['Scaler', 'StandardScaler']: estimator = Estimator(with_mean=False) else: estimator = Estimator() set_testing_parameters(estimator) # fit and predict try: estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) assert_equal(pred.shape, (X.shape[0],)) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) assert_equal(probs.shape, (X.shape[0], 4)) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise def check_dtype_object(name, Estimator): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) with warnings.catch_warnings(): estimator = Estimator() set_testing_parameters(estimator) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if (hasattr(estimator, "transform") and name not in DEPRECATED_TRANSFORM): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) @ignore_warnings def check_fit2d_predict1d(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): try: assert_warns(DeprecationWarning, getattr(estimator, method), X[0]) except ValueError: pass @ignore_warnings def check_fit2d_1sample(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit2d_1feature(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1feature(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1sample(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = np.array([1]) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass def check_transformer_general(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, Transformer, X, y) _check_transformer(name, Transformer, X.tolist(), y.tolist()) def check_transformer_data_not_an_array(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, Transformer, this_X, this_y) def check_transformers_unfitted(name, Transformer): X, y = _boston_subset() with warnings.catch_warnings(record=True): transformer = Transformer() assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, Transformer, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape # catch deprecation warnings with warnings.catch_warnings(record=True): transformer = Transformer() set_random_state(transformer) set_testing_parameters(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) # fit_transform method should work on non fitted estimator transformer_clone = clone(transformer) X_pred = transformer_clone.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: # check for consistent n_samples assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_array_almost_equal( x_pred, x_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( x_pred, x_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) else: assert_array_almost_equal( X_pred, X_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( X_pred, X_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) assert_equal(len(X_pred2), n_samples) assert_equal(len(X_pred3), n_samples) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, Estimator): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) if name in DEPRECATED_TRANSFORM: funcs = ["score"] else: funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_array_almost_equal(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, Estimator): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) if name in DEPRECATED_TRANSFORM: funcs = ["fit", "score", "partial_fit", "fit_predict"] else: funcs = [ "fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = [p.name for p in signature(func).parameters.values()] assert_true(args[1] in ["y", "Y"], "Expected y or Y as second argument for method " "%s of %s. Got arguments: %r." % (func_name, Estimator.__name__, args)) @ignore_warnings def check_estimators_dtypes(name, Estimator): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(name, y) if name in DEPRECATED_TRANSFORM: methods = ["predict", "decision_function", "predict_proba"] else: methods = [ "predict", "transform", "decision_function", "predict_proba"] for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in methods: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_estimators_empty_data_messages(name, Estimator): e = Estimator() set_testing_parameters(e) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(name, np.array([1, 0, 1])) msg = "0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* is required." assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y) def check_estimators_nan_inf(name, Estimator): # Checks that Estimator X's do not contain NaN or inf. rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(name, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, Estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, Estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, Estimator) # transform if (hasattr(estimator, "transform") and name not in DEPRECATED_TRANSFORM): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, Estimator) @ignore_warnings def check_estimators_pickle(name, Estimator): """Test that we can pickle all estimators""" if name in DEPRECATED_TRANSFORM: check_methods = ["predict", "decision_function", "predict_proba"] else: check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(name, y) # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_random_state(estimator) set_testing_parameters(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_array_almost_equal(result[method], unpickled_result) def check_estimators_partial_fit_n_features(name, Alg): # check if number of features changes between calls to partial_fit. if not hasattr(Alg, 'partial_fit'): return X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() with warnings.catch_warnings(record=True): alg = Alg() set_testing_parameters(alg) if isinstance(alg, ClassifierMixin): classes = np.unique(y) alg.partial_fit(X, y, classes=classes) else: alg.partial_fit(X, y) assert_raises(ValueError, alg.partial_fit, X[:, :-1], y) def check_clustering(name, Alg): X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings with warnings.catch_warnings(record=True): alg = Alg() set_testing_parameters(alg) if hasattr(alg, "n_clusters"): alg.set_params(n_clusters=3) set_random_state(alg) if name == 'AffinityPropagation': alg.set_params(preference=-100) alg.set_params(max_iter=100) # fit alg.fit(X) # with lists alg.fit(X.tolist()) assert_equal(alg.labels_.shape, (n_samples,)) pred = alg.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name is 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(alg) with warnings.catch_warnings(record=True): pred2 = alg.fit_predict(X) assert_array_equal(pred, pred2) def check_clusterer_compute_labels_predict(name, Clusterer): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = Clusterer() if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) def check_classifiers_one_label(name, Classifier): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() set_testing_parameters(classifier) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, Classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, Classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, Classifier, exc) raise exc @ignore_warnings # Warnings are raised by decision function def check_classifiers_train(name, Classifier): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: # catch deprecation warnings classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape with warnings.catch_warnings(record=True): classifier = Classifier() if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_testing_parameters(classifier) set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes is 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes is 3 and not isinstance(classifier, BaseLibSVM)): # 1on1 of LibSVM works differently assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) def check_estimators_fit_returns_self(name, Estimator): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, Estimator): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() with warnings.catch_warnings(record=True): est = Estimator() msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) def check_supervised_y_2d(name, Estimator): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_array_almost_equal(y_pred.ravel(), y_pred_2d.ravel()) def check_classifiers_classes(name, Classifier): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_testing_parameters(classifier) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) def check_regressors_int(name, Regressor): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds regressor_1 = Regressor() regressor_2 = Regressor() set_testing_parameters(regressor_1) set_testing_parameters(regressor_2) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_regressors_train(name, Regressor): X, y = _boston_subset() y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled y = y.ravel() y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): regressor = Regressor() set_testing_parameters(regressor) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, Regressor): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) y = multioutput_estimator_convert_y_2d(name, X[:, 0]) regressor = Regressor() set_testing_parameters(regressor) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) def check_class_weight_classifiers(name, Classifier): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} with warnings.catch_warnings(record=True): classifier = Classifier(class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) def check_class_weight_balanced_classifiers(name, Classifier, X_train, y_train, X_test, y_test, weights): with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_array_almost_equal(coef_balanced, coef_manual) def check_estimators_overwrite_params(name, Estimator): X, y = make_blobs(random_state=0, n_samples=9) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() with warnings.catch_warnings(record=True): # catch deprecation warnings estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) # Make a physical copy of the orginal estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) def check_sparsify_coefficients(name, Estimator): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = Estimator() est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) def check_classifier_data_not_an_array(name, Estimator): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_regressor_data_not_an_array(name, Estimator): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_estimators_data_not_an_array(name, Estimator, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds estimator_1 = Estimator() estimator_2 = Estimator() set_testing_parameters(estimator_1) set_testing_parameters(estimator_2) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_parameters_default_constructible(name, Estimator): classifier = LinearDiscriminantAnalysis() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they can need a non-default argument init_params = init_params[1:] for init_param in init_params: assert_not_equal(init_param.default, init_param.empty, "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) assert_in(type(init_param.default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert_true(init_param.default is None) continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: assert_equal(param_value, init_param.default) def multioutput_estimator_convert_y_2d(name, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if "MultiTask" in name: return np.reshape(y, (-1, 1)) return y def check_non_transformer_estimators_n_iter(name, estimator, multi_output=False): # Check if all iterative solvers, run for more than one iteratiom iris = load_iris() X, y_ = iris.data, iris.target if multi_output: y_ = np.reshape(y_, (-1, 1)) set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) assert_greater(estimator.n_iter_, 0) def check_transformer_n_iter(name, estimator): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater(iter_, 1) else: assert_greater(estimator.n_iter_, 1) def check_get_params_invariance(name, estimator): class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self if name in ('FeatureUnion', 'Pipeline'): e = estimator([('clf', T())]) elif name in ('GridSearchCV', 'RandomizedSearchCV', 'SelectFromModel'): return else: e = estimator() shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items())) def check_classifiers_regression_target(name, Estimator): # Check if classifier throws an exception when fed regression targets boston = load_boston() X, y = boston.data, boston.target e = Estimator() msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, e.fit, X, y)
bsd-3-clause
great-expectations/great_expectations
great_expectations/core/expectation_configuration.py
1
49533
import json import logging from copy import deepcopy from typing import Any, Dict import jsonpatch from great_expectations.core.evaluation_parameters import ( _deduplicate_evaluation_parameter_dependencies, build_evaluation_parameters, find_evaluation_parameter_dependencies, ) from great_expectations.core.urn import ge_urn from great_expectations.core.util import ( convert_to_json_serializable, ensure_json_serializable, nested_update, ) from great_expectations.exceptions import ( InvalidExpectationConfigurationError, InvalidExpectationKwargsError, ParserError, ) from great_expectations.expectations.registry import get_expectation_impl from great_expectations.marshmallow__shade import ( Schema, ValidationError, fields, post_load, ) from great_expectations.types import SerializableDictDot logger = logging.getLogger(__name__) def parse_result_format(result_format): """This is a simple helper utility that can be used to parse a string result_format into the dict format used internally by great_expectations. It is not necessary but allows shorthand for result_format in cases where there is no need to specify a custom partial_unexpected_count.""" if isinstance(result_format, str): result_format = {"result_format": result_format, "partial_unexpected_count": 20} else: if "partial_unexpected_count" not in result_format: result_format["partial_unexpected_count"] = 20 return result_format class ExpectationConfiguration(SerializableDictDot): """ExpectationConfiguration defines the parameters and name of a specific expectation.""" kwarg_lookup_dict = { "expect_column_to_exist": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["column_index"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "column_index": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_table_columns_to_match_ordered_list": { "domain_kwargs": [], "success_kwargs": ["column_list"], "default_kwarg_values": { "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_table_column_count_to_be_between": { "domain_kwargs": [], "success_kwargs": ["min_value", "max_value"], "default_kwarg_values": { "min_value": None, "max_value": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_table_column_count_to_equal": { "domain_kwargs": [], "success_kwargs": ["value"], "default_kwarg_values": { "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_table_row_count_to_be_between": { "domain_kwargs": [], "success_kwargs": ["min_value", "max_value"], "default_kwarg_values": { "min_value": None, "max_value": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_table_row_count_to_equal": { "domain_kwargs": [], "success_kwargs": ["value"], "default_kwarg_values": { "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_unique": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_not_be_null": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_compound_columns_to_be_unique": { "domain_kwargs": ["column_list", "row_condition", "condition_parser"], "success_kwargs": ["ignore_row_if"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "ignore_row_if": "all_values_are_missing", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_null": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_of_type": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["type_", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_in_type_list": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["type_list", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_in_set": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value_set", "mostly", "parse_strings_as_datetimes"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "parse_strings_as_datetimes": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_not_be_in_set": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value_set", "mostly", "parse_strings_as_datetimes"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "parse_strings_as_datetimes": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": [ "min_value", "max_value", "strict_min", "strict_max", "allow_cross_type_comparisons", "parse_strings_as_datetimes", "output_strftime_format", "mostly", ], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "allow_cross_type_comparisons": None, "parse_strings_as_datetimes": None, "output_strftime_format": None, "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_increasing": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["strictly", "parse_strings_as_datetimes", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "strictly": None, "parse_strings_as_datetimes": None, "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_decreasing": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["strictly", "parse_strings_as_datetimes", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "strictly": None, "parse_strings_as_datetimes": None, "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_value_lengths_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_value_lengths_to_equal": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_match_regex": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["regex", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_not_match_regex": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["regex", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_match_regex_list": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["regex_list", "match_on", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "match_on": "any", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_not_match_regex_list": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["regex_list", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_match_strftime_format": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["strftime_format", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_dateutil_parseable": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_be_json_parseable": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_values_to_match_json_schema": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["json_schema", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_parameterized_distribution_ks_test_p_value_to_be_greater_than": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["distribution", "p_value", "params"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "p_value": 0.05, "params": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_distinct_values_to_be_in_set": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value_set", "parse_strings_as_datetimes"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "parse_strings_as_datetimes": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_distinct_values_to_equal_set": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value_set", "parse_strings_as_datetimes"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "parse_strings_as_datetimes": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_distinct_values_to_contain_set": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value_set", "parse_strings_as_datetimes"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "parse_strings_as_datetimes": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_mean_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value", "strict_min", "strict_max"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_median_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value", "strict_min", "strict_max"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_quantile_values_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["quantile_ranges", "allow_relative_error"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "allow_relative_error": False, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_stdev_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value", "strict_min", "strict_max"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_unique_value_count_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_proportion_of_unique_values_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value", "strict_min", "strict_max"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_most_common_value_to_be_in_set": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["value_set", "ties_okay"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "ties_okay": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_sum_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["min_value", "max_value", "strict_min", "strict_max"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_min_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": [ "min_value", "max_value", "strict_min", "strict_max", "parse_strings_as_datetimes", "output_strftime_format", ], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "parse_strings_as_datetimes": None, "output_strftime_format": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_max_to_be_between": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": [ "min_value", "max_value", "strict_min", "strict_max", "parse_strings_as_datetimes", "output_strftime_format", ], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "min_value": None, "max_value": None, "strict_min": False, "strict_max": False, "parse_strings_as_datetimes": None, "output_strftime_format": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_chisquare_test_p_value_to_be_greater_than": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["partition_object", "p", "tail_weight_holdout"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "partition_object": None, "p": 0.05, "tail_weight_holdout": 0, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_bootstrapped_ks_test_p_value_to_be_greater_than": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": [ "partition_object", "p", "bootstrap_samples", "bootstrap_sample_size", ], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "partition_object": None, "p": 0.05, "bootstrap_samples": None, "bootstrap_sample_size": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_kl_divergence_to_be_less_than": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": [ "partition_object", "threshold", "tail_weight_holdout", "internal_weight_holdout", "bucketize_data", ], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "partition_object": None, "threshold": None, "tail_weight_holdout": 0, "internal_weight_holdout": 0, "bucketize_data": True, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_pair_values_to_be_equal": { "domain_kwargs": [ "column_A", "column_B", "row_condition", "condition_parser", ], "success_kwargs": ["ignore_row_if"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "ignore_row_if": "both_values_are_missing", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_pair_values_A_to_be_greater_than_B": { "domain_kwargs": [ "column_A", "column_B", "row_condition", "condition_parser", ], "success_kwargs": [ "or_equal", "parse_strings_as_datetimes", "allow_cross_type_comparisons", "ignore_row_if", ], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "or_equal": None, "parse_strings_as_datetimes": None, "allow_cross_type_comparisons": None, "ignore_row_if": "both_values_are_missing", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_pair_values_to_be_in_set": { "domain_kwargs": [ "column_A", "column_B", "row_condition", "condition_parser", ], "success_kwargs": ["value_pairs_set", "ignore_row_if"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "ignore_row_if": "both_values_are_missing", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_multicolumn_values_to_be_unique": { "domain_kwargs": ["column_list", "row_condition", "condition_parser"], "success_kwargs": ["ignore_row_if"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "ignore_row_if": "all_values_are_missing", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "_expect_column_values_to_be_of_type__aggregate": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["type_", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "_expect_column_values_to_be_of_type__map": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["type_", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "_expect_column_values_to_be_in_type_list__aggregate": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["type_list", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "_expect_column_values_to_be_in_type_list__map": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["type_list", "mostly"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_column_value_z_scores_to_be_less_than": { "domain_kwargs": ["column", "row_condition", "condition_parser"], "success_kwargs": ["threshold", "mostly", "double_sided"], "default_kwarg_values": { "row_condition": None, "condition_parser": "pandas", "mostly": 1, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, }, }, "expect_file_line_regex_match_count_to_be_between": { "domain_kwargs": [], "success_kwargs": [ "regex", "expected_min_count", "expected_max_count", "skip", ], "default_kwarg_values": { "expected_min_count": 0, "expected_max_count": None, "skip": None, "mostly": 1, "nonnull_lines_regex": r"^\s*$", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, "_lines": None, }, }, "expect_file_line_regex_match_count_to_equal": { "domain_kwargs": [], "success_kwargs": ["regex", "expected_count", "skip"], "default_kwarg_values": { "expected_count": 0, "skip": None, "mostly": 1, "nonnull_lines_regex": r"^\s*$", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, "_lines": None, }, }, "expect_file_hash_to_equal": { "domain_kwargs": [], "success_kwargs": ["value", "hash_alg"], "default_kwarg_values": { "hash_alg": "md5", "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, }, }, "expect_file_size_to_be_between": { "domain_kwargs": [], "success_kwargs": ["minsize", "maxsize"], "default_kwarg_values": { "minsize": 0, "maxsize": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, }, }, "expect_file_to_exist": { "domain_kwargs": [], "success_kwargs": ["filepath"], "default_kwarg_values": { "filepath": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, }, }, "expect_file_to_have_valid_table_header": { "domain_kwargs": [], "success_kwargs": ["regex", "skip"], "default_kwarg_values": { "skip": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, }, }, "expect_file_to_be_valid_json": { "domain_kwargs": [], "success_kwargs": ["schema"], "default_kwarg_values": { "schema": None, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, "meta": None, }, }, } runtime_kwargs = ["result_format", "include_config", "catch_exceptions"] def __init__(self, expectation_type, kwargs, meta=None, success_on_last_run=None): if not isinstance(expectation_type, str): raise InvalidExpectationConfigurationError( "expectation_type must be a string" ) self._expectation_type = expectation_type if not isinstance(kwargs, dict): raise InvalidExpectationConfigurationError( "expectation configuration kwargs must be a dict." ) self._kwargs = kwargs self._raw_kwargs = None # the kwargs before evaluation parameters are evaluated if meta is None: meta = {} # We require meta information to be serializable, but do not convert until necessary ensure_json_serializable(meta) self.meta = meta self.success_on_last_run = success_on_last_run def process_evaluation_parameters( self, evaluation_parameters, interactive_evaluation=True, data_context=None ): if self._raw_kwargs is not None: logger.debug( "evaluation_parameters have already been built on this expectation" ) (evaluation_args, substituted_parameters,) = build_evaluation_parameters( self._kwargs, evaluation_parameters, interactive_evaluation, data_context, ) self._raw_kwargs = self._kwargs self._kwargs = evaluation_args if len(substituted_parameters) > 0: self.meta["substituted_parameters"] = substituted_parameters def get_raw_configuration(self): # return configuration without substituted evaluation parameters raw_config = deepcopy(self) if raw_config._raw_kwargs is not None: raw_config._kwargs = raw_config._raw_kwargs raw_config._raw_kwargs = None return raw_config def patch(self, op: str, path: str, value: Any) -> "ExpectationConfiguration": """ Args: op: A jsonpatch operation. One of 'add', 'replace', or 'remove' path: A jsonpatch path for the patch operation value: The value to patch Returns: The patched ExpectationConfiguration object """ if op not in ["add", "replace", "remove"]: raise ValueError("Op must be either 'add', 'replace', or 'remove'") try: valid_path = path.split("/")[1] except IndexError: raise IndexError( "Ensure you have a valid jsonpatch path of the form '/path/foo' " "(see http://jsonpatch.com/)" ) if valid_path not in self.get_runtime_kwargs().keys(): raise ValueError("Path not available in kwargs (see http://jsonpatch.com/)") # TODO: Call validate_kwargs when implemented patch = jsonpatch.JsonPatch([{"op": op, "path": path, "value": value}]) patch.apply(self.kwargs, in_place=True) return self @property def expectation_type(self): return self._expectation_type @property def kwargs(self): return self._kwargs def _get_default_custom_kwargs(self): # NOTE: this is a holdover until class-first expectations control their # defaults, and so defaults are inherited. if self.expectation_type.startswith("expect_column_pair"): return { "domain_kwargs": [ "column_A", "column_B", "row_condition", "condition_parser", ], # NOTE: this is almost certainly incomplete; subclasses should override "success_kwargs": [], "default_kwarg_values": { "column_A": None, "column_B": None, "row_condition": None, "condition_parser": None, }, } elif self.expectation_type.startswith("expect_column"): return { "domain_kwargs": ["column", "row_condition", "condition_parser"], # NOTE: this is almost certainly incomplete; subclasses should override "success_kwargs": [], "default_kwarg_values": { "column": None, "row_condition": None, "condition_parser": None, }, } logger.warning("Requested kwargs for an unrecognized expectation.") return { "domain_kwargs": [], # NOTE: this is almost certainly incomplete; subclasses should override "success_kwargs": [], "default_kwarg_values": {}, } def get_domain_kwargs(self): expectation_kwargs_dict = self.kwarg_lookup_dict.get( self.expectation_type, None ) if expectation_kwargs_dict is None: impl = get_expectation_impl(self.expectation_type) if impl is not None: domain_keys = impl.domain_keys default_kwarg_values = impl.default_kwarg_values else: expectation_kwargs_dict = self._get_default_custom_kwargs() default_kwarg_values = expectation_kwargs_dict.get( "default_kwarg_values", dict() ) domain_keys = expectation_kwargs_dict["domain_kwargs"] else: default_kwarg_values = expectation_kwargs_dict.get( "default_kwarg_values", dict() ) domain_keys = expectation_kwargs_dict["domain_kwargs"] domain_kwargs = { key: self.kwargs.get(key, default_kwarg_values.get(key)) for key in domain_keys } missing_kwargs = set(domain_keys) - set(domain_kwargs.keys()) if missing_kwargs: raise InvalidExpectationKwargsError( f"Missing domain kwargs: {list(missing_kwargs)}" ) return domain_kwargs def get_success_kwargs(self): expectation_kwargs_dict = self.kwarg_lookup_dict.get( self.expectation_type, None ) if expectation_kwargs_dict is None: impl = get_expectation_impl(self.expectation_type) if impl is not None: success_keys = impl.success_keys default_kwarg_values = impl.default_kwarg_values else: expectation_kwargs_dict = self._get_default_custom_kwargs() default_kwarg_values = expectation_kwargs_dict.get( "default_kwarg_values", dict() ) success_keys = expectation_kwargs_dict["success_kwargs"] else: default_kwarg_values = expectation_kwargs_dict.get( "default_kwarg_values", dict() ) success_keys = expectation_kwargs_dict["success_kwargs"] domain_kwargs = self.get_domain_kwargs() success_kwargs = { key: self.kwargs.get(key, default_kwarg_values.get(key)) for key in success_keys } success_kwargs.update(domain_kwargs) return success_kwargs def get_runtime_kwargs(self, runtime_configuration=None): expectation_kwargs_dict = self.kwarg_lookup_dict.get( self.expectation_type, None ) if expectation_kwargs_dict is None: impl = get_expectation_impl(self.expectation_type) if impl is not None: runtime_keys = impl.runtime_keys default_kwarg_values = impl.default_kwarg_values else: expectation_kwargs_dict = self._get_default_custom_kwargs() default_kwarg_values = expectation_kwargs_dict.get( "default_kwarg_values", dict() ) runtime_keys = self.runtime_kwargs else: default_kwarg_values = expectation_kwargs_dict.get( "default_kwarg_values", dict() ) runtime_keys = self.runtime_kwargs success_kwargs = self.get_success_kwargs() lookup_kwargs = deepcopy(self.kwargs) if runtime_configuration: lookup_kwargs.update(runtime_configuration) runtime_kwargs = { key: lookup_kwargs.get(key, default_kwarg_values.get(key)) for key in runtime_keys } runtime_kwargs["result_format"] = parse_result_format( runtime_kwargs["result_format"] ) runtime_kwargs.update(success_kwargs) return runtime_kwargs def applies_to_same_domain(self, other_expectation_configuration): if ( not self.expectation_type == other_expectation_configuration.expectation_type ): return False return ( self.get_domain_kwargs() == other_expectation_configuration.get_domain_kwargs() ) def isEquivalentTo(self, other, match_type="success"): """ExpectationConfiguration equivalence does not include meta, and relies on *equivalence* of kwargs.""" if not isinstance(other, self.__class__): if isinstance(other, dict): try: other = expectationConfigurationSchema.load(other) except ValidationError: logger.debug( "Unable to evaluate equivalence of ExpectationConfiguration object with dict because " "dict other could not be instantiated as an ExpectationConfiguration" ) return NotImplemented else: # Delegate comparison to the other instance return NotImplemented if match_type == "domain": return all( ( self.expectation_type == other.expectation_type, self.get_domain_kwargs() == other.get_domain_kwargs(), ) ) elif match_type == "success": return all( ( self.expectation_type == other.expectation_type, self.get_success_kwargs() == other.get_success_kwargs(), ) ) elif match_type == "runtime": return all( ( self.expectation_type == other.expectation_type, self.kwargs == other.kwargs, ) ) def __eq__(self, other): """ExpectationConfiguration equality does include meta, but ignores instance identity.""" if not isinstance(other, self.__class__): # Delegate comparison to the other instance's __eq__. return NotImplemented this_kwargs: dict = convert_to_json_serializable(self.kwargs) other_kwargs: dict = convert_to_json_serializable(other.kwargs) this_meta: dict = convert_to_json_serializable(self.meta) other_meta: dict = convert_to_json_serializable(other.meta) return all( ( self.expectation_type == other.expectation_type, this_kwargs == other_kwargs, this_meta == other_meta, ) ) def __ne__(self, other): # By using the == operator, the returned NotImplemented is handled correctly. return not self == other def __repr__(self): return json.dumps(self.to_json_dict()) def __str__(self): return json.dumps(self.to_json_dict(), indent=2) def to_json_dict(self): myself = expectationConfigurationSchema.dump(self) # NOTE - JPC - 20191031: migrate to expectation-specific schemas that subclass result with properly-typed # schemas to get serialization all-the-way down via dump myself["kwargs"] = convert_to_json_serializable(myself["kwargs"]) return myself def get_evaluation_parameter_dependencies(self): parsed_dependencies = dict() for key, value in self.kwargs.items(): if isinstance(value, dict) and "$PARAMETER" in value: param_string_dependencies = find_evaluation_parameter_dependencies( value["$PARAMETER"] ) nested_update(parsed_dependencies, param_string_dependencies) dependencies = dict() urns = parsed_dependencies.get("urns", []) for string_urn in urns: try: urn = ge_urn.parseString(string_urn) except ParserError: logger.warning( "Unable to parse great_expectations urn {}".format( value["$PARAMETER"] ) ) continue if not urn.get("metric_kwargs"): nested_update( dependencies, {urn["expectation_suite_name"]: [urn["metric_name"]]}, ) else: nested_update( dependencies, { urn["expectation_suite_name"]: [ { "metric_kwargs_id": { urn["metric_kwargs"]: [urn["metric_name"]] } } ] }, ) dependencies = _deduplicate_evaluation_parameter_dependencies(dependencies) return dependencies def _get_expectation_impl(self): return get_expectation_impl(self.expectation_type) def validate( self, validator, runtime_configuration=None, ): expectation_impl = self._get_expectation_impl() return expectation_impl(self).validate( validator=validator, runtime_configuration=runtime_configuration, ) def metrics_validate( self, metrics: Dict, runtime_configuration: dict = None, execution_engine=None, ): expectation_impl = self._get_expectation_impl() return expectation_impl(self).metrics_validate( metrics, runtime_configuration=runtime_configuration, execution_engine=execution_engine, ) class ExpectationConfigurationSchema(Schema): expectation_type = fields.Str( required=True, error_messages={ "required": "expectation_type missing in expectation configuration" }, ) kwargs = fields.Dict() meta = fields.Dict() # noinspection PyUnusedLocal @post_load def make_expectation_configuration(self, data, **kwargs): return ExpectationConfiguration(**data) expectationConfigurationSchema = ExpectationConfigurationSchema()
apache-2.0
cyberphox/MissionPlanner
Lib/site-packages/scipy/signal/waveforms.py
55
11609
# Author: Travis Oliphant # 2003 # # Feb. 2010: Updated by Warren Weckesser: # Rewrote much of chirp() # Added sweep_poly() from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ exp, cos, sin, polyval, polyint def sawtooth(t, width=1): """ Return a periodic sawtooth waveform. The sawtooth waveform has a period 2*pi, rises from -1 to 1 on the interval 0 to width*2*pi and drops from 1 to -1 on the interval width*2*pi to 2*pi. `width` must be in the interval [0,1]. Parameters ---------- t : array_like Time. width : float, optional Width of the waveform. Default is 1. Returns ------- y : ndarray Output array containing the sawtooth waveform. Examples -------- >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 20*np.pi, 500) >>> plt.plot(x, sp.signal.sawtooth(x)) """ t,w = asarray(t), asarray(width) w = asarray(w + (t-t)) t = asarray(t + (w-w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape,ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y,mask1,nan) # take t modulo 2*pi tmod = mod(t,2*pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1-mask1) & (tmod < w*2*pi) tsub = extract(mask2,tmod) wsub = extract(mask2,w) place(y,mask2,tsub / (pi*wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1-mask1) & (1-mask2) tsub = extract(mask3,tmod) wsub = extract(mask3,w) place(y,mask3, (pi*(wsub+1)-tsub)/(pi*(1-wsub))) return y def square(t, duty=0.5): """ Return a periodic square-wave waveform. The square wave has a period 2*pi, has value +1 from 0 to 2*pi*duty and -1 from 2*pi*duty to 2*pi. `duty` must be in the interval [0,1]. Parameters ---------- t : array_like The input time array. duty : float, optional Duty cycle. Returns ------- y : array_like The output square wave. """ t,w = asarray(t), asarray(duty) w = asarray(w + (t-t)) t = asarray(t + (w-w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape,ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y,mask1,nan) # take t modulo 2*pi tmod = mod(t,2*pi) # on the interval 0 to duty*2*pi function is # 1 mask2 = (1-mask1) & (tmod < w*2*pi) tsub = extract(mask2,tmod) wsub = extract(mask2,w) place(y,mask2,1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1-mask1) & (1-mask2) tsub = extract(mask3,tmod) wsub = extract(mask3,w) place(y,mask3,-1) return y def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False): """ Return a gaussian modulated sinusoid: exp(-a t^2) exp(1j*2*pi*fc*t). If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid. Parameters ---------- t : ndarray, or the string 'cutoff' Input array. fc : int, optional Center frequency (Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (Hz). Default is 0.5. bwr: float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False. """ if fc < 0: raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) if bw <= 0: raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) if bwr >= 0: raise ValueError("Reference level for bandwidth (bwr=%.2f) must " "be < 0 dB" % bwr) # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) ref = pow(10.0, bwr / 20.0) # fdel = fc*bw/2: g(fdel) = ref --- solve this for a # # pi^2/a * fc^2 * bw^2 /4=-log(ref) a = -(pi*fc*bw)**2 / (4.0*log(ref)) if t == 'cutoff': # compute cut_off point # Solve exp(-a tc**2) = tref for tc # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) if tpr >= 0: raise ValueError("Reference level for time cutoff must be < 0 dB") tref = pow(10.0, tpr / 20.0) return sqrt(-log(tref)/a) yenv = exp(-a*t*t) yI = yenv * cos(2*pi*fc*t) yQ = yenv * sin(2*pi*fc*t) if not retquad and not retenv: return yI if not retquad and retenv: return yI, yenv if retquad and not retenv: return yI, yQ if retquad and retenv: return yI, yQ, yenv def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): """Frequency-swept cosine generator. In the following, 'Hz' should be interpreted as 'cycles per time unit'; there is no assumption here that the time unit is one second. The important distinction is that the units of rotation are cycles, not radians. Parameters ---------- t : ndarray Times at which to evaluate the waveform. f0 : float Frequency (in Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (in Hz) of the waveform at time `t1`. method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1. Returns ------- A numpy array containing the signal evaluated at 't' with the requested time-varying frequency. More precisely, the function returns: ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to t) of ``2*pi*f(t)``. ``f(t)`` is defined below. See Also -------- scipy.signal.waveforms.sweep_poly Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used. linear, lin, li: ``f(t) = f0 + (f1 - f0) * t / t1`` quadratic, quad, q: The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is: if vertex_zero is True: ``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` else: ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.waveforms.sweep_poly`. logarithmic, log, lo: ``f(t) = f0 * (f1/f0)**(t/t1)`` f0 and f1 must be nonzero and have the same sign. This signal is also known as a geometric or exponential chirp. hyperbolic, hyp: ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` f1 must be positive, and f0 must be greater than f1. """ # 'phase' is computed in _chirp_phase, to make testing easier. phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) # Convert phi to radians. phi *= pi / 180 return cos(phase + phi) def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): """ Calculate the phase used by chirp_phase to generate its output. See `chirp_phase` for a description of the arguments. """ f0 = float(f0) t1 = float(t1) f1 = float(f1) if method in ['linear', 'lin', 'li']: beta = (f1 - f0) / t1 phase = 2*pi * (f0*t + 0.5*beta*t*t) elif method in ['quadratic','quad','q']: beta = (f1 - f0)/(t1**2) if vertex_zero: phase = 2*pi * (f0*t + beta * t**3/3) else: phase = 2*pi * (f1*t + beta * ((t1 - t)**3 - t1**3)/3) elif method in ['logarithmic', 'log', 'lo']: if f0*f1 <= 0.0: raise ValueError("For a geometric chirp, f0 and f1 must be nonzero " \ "and have the same sign.") if f0 == f1: phase = 2*pi * f0 * t else: beta = t1 / log(f1/f0) phase = 2*pi * beta * f0 * (pow(f1/f0, t/t1) - 1.0) elif method in ['hyperbolic', 'hyp']: if f1 <= 0.0 or f0 <= f1: raise ValueError("hyperbolic chirp requires f0 > f1 > 0.0.") c = f1*t1 df = f0 - f1 phase = 2*pi * (f0 * c / df) * log((df*t + c)/c) else: raise ValueError("method must be 'linear', 'quadratic', 'logarithmic', " "or 'hyperbolic', but a value of %r was given." % method) return phase def sweep_poly(t, poly, phi=0): """Frequency-swept cosine generator, with a time-dependent frequency specified as a polynomial. This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`. Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1D ndarray (or array-like), or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is ``f(t) = poly(t)`` phi : float, optional Phase offset, in degrees. Default is 0. Returns ------- A numpy array containing the signal evaluated at 't' with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. See Also -------- scipy.signal.waveforms.chirp Notes ----- .. versionadded:: 0.8.0 """ # 'phase' is computed in _sweep_poly_phase, to make testing easier. phase = _sweep_poly_phase(t, poly) # Convert to radians. phi *= pi / 180 return cos(phase + phi) def _sweep_poly_phase(t, poly): """ Calculate the phase used by sweep_poly to generate its output. See `sweep_poly` for a description of the arguments. """ # polyint handles lists, ndarrays and instances of poly1d automatically. intpoly = polyint(poly) phase = 2*pi * polyval(intpoly, t) return phase
gpl-3.0
cjqian/incubator-airflow
tests/contrib/hooks/test_bigquery_hook.py
10
9247
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import mock from airflow.contrib.hooks import bigquery_hook as hook from oauth2client.contrib.gce import HttpAccessTokenRefreshError bq_available = True try: hook.BigQueryHook().get_service() except HttpAccessTokenRefreshError: bq_available = False class TestBigQueryDataframeResults(unittest.TestCase): def setUp(self): self.instance = hook.BigQueryHook() @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_output_is_dataframe_with_valid_query(self): import pandas as pd df = self.instance.get_pandas_df('select 1') self.assertIsInstance(df, pd.DataFrame) @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_throws_exception_with_invalid_query(self): with self.assertRaises(Exception) as context: self.instance.get_pandas_df('from `1`') self.assertIn('pandas_gbq.gbq.GenericGBQException: Reason: invalidQuery', str(context.exception), "") @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_suceeds_with_explicit_legacy_query(self): df = self.instance.get_pandas_df('select 1', dialect='legacy') self.assertEqual(df.iloc(0)[0][0], 1) @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_suceeds_with_explicit_std_query(self): df = self.instance.get_pandas_df('select * except(b) from (select 1 a, 2 b)', dialect='standard') self.assertEqual(df.iloc(0)[0][0], 1) @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_throws_exception_with_incompatible_syntax(self): with self.assertRaises(Exception) as context: self.instance.get_pandas_df('select * except(b) from (select 1 a, 2 b)', dialect='legacy') self.assertIn('pandas_gbq.gbq.GenericGBQException: Reason: invalidQuery', str(context.exception), "") class TestBigQueryTableSplitter(unittest.TestCase): def test_internal_need_default_project(self): with self.assertRaises(Exception) as context: hook._split_tablename('dataset.table', None) self.assertIn('INTERNAL: No default project is specified', str(context.exception), "") def test_split_dataset_table(self): project, dataset, table = hook._split_tablename('dataset.table', 'project') self.assertEqual("project", project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_split_project_dataset_table(self): project, dataset, table = hook._split_tablename('alternative:dataset.table', 'project') self.assertEqual("alternative", project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_sql_split_project_dataset_table(self): project, dataset, table = hook._split_tablename('alternative.dataset.table', 'project') self.assertEqual("alternative", project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_colon_in_project(self): project, dataset, table = hook._split_tablename('alt1:alt.dataset.table', 'project') self.assertEqual('alt1:alt', project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_valid_double_column(self): project, dataset, table = hook._split_tablename('alt1:alt:dataset.table', 'project') self.assertEqual('alt1:alt', project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_invalid_syntax_triple_colon(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1:alt2:alt3:dataset.table', 'project') self.assertIn('Use either : or . to specify project', str(context.exception), "") self.assertFalse('Format exception for' in str(context.exception)) def test_invalid_syntax_triple_dot(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1.alt.dataset.table', 'project') self.assertIn('Expect format of (<project.|<project:)<dataset>.<table>', str(context.exception), "") self.assertFalse('Format exception for' in str(context.exception)) def test_invalid_syntax_column_double_project_var(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1:alt2:alt.dataset.table', 'project', 'var_x') self.assertIn('Use either : or . to specify project', str(context.exception), "") self.assertIn('Format exception for var_x:', str(context.exception), "") def test_invalid_syntax_triple_colon_project_var(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1:alt2:alt:dataset.table', 'project', 'var_x') self.assertIn('Use either : or . to specify project', str(context.exception), "") self.assertIn('Format exception for var_x:', str(context.exception), "") def test_invalid_syntax_triple_dot_var(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1.alt.dataset.table', 'project', 'var_x') self.assertIn('Expect format of (<project.|<project:)<dataset>.<table>', str(context.exception), "") self.assertIn('Format exception for var_x:', str(context.exception), "") class TestBigQueryHookSourceFormat(unittest.TestCase): def test_invalid_source_format(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").run_load("test.test", "test_schema.json", ["test_data.json"], source_format="json") # since we passed 'json' in, and it's not valid, make sure it's present in the error string. self.assertIn("JSON", str(context.exception)) # Helpers to test_cancel_queries that have mock_poll_job_complete returning false, unless mock_job_cancel was called with the same job_id mock_canceled_jobs = [] def mock_poll_job_complete(job_id): return job_id in mock_canceled_jobs def mock_job_cancel(projectId, jobId): mock_canceled_jobs.append(jobId) return mock.Mock() class TestBigQueryBaseCursor(unittest.TestCase): def test_invalid_schema_update_options(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").run_load( "test.test", "test_schema.json", ["test_data.json"], schema_update_options=["THIS IS NOT VALID"] ) self.assertIn("THIS IS NOT VALID", str(context.exception)) def test_invalid_schema_update_and_write_disposition(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").run_load( "test.test", "test_schema.json", ["test_data.json"], schema_update_options=['ALLOW_FIELD_ADDITION'], write_disposition='WRITE_EMPTY' ) self.assertIn("schema_update_options is only", str(context.exception)) @mock.patch("airflow.contrib.hooks.bigquery_hook.LoggingMixin") @mock.patch("airflow.contrib.hooks.bigquery_hook.time") def test_cancel_queries(self, mocked_logging, mocked_time): project_id = 12345 running_job_id = 3 mock_jobs = mock.Mock() mock_jobs.cancel = mock.Mock(side_effect=mock_job_cancel) mock_service = mock.Mock() mock_service.jobs = mock.Mock(return_value=mock_jobs) bq_hook = hook.BigQueryBaseCursor(mock_service, project_id) bq_hook.running_job_id = running_job_id bq_hook.poll_job_complete = mock.Mock(side_effect=mock_poll_job_complete) bq_hook.cancel_query() mock_jobs.cancel.assert_called_with(projectId=project_id, jobId=running_job_id) if __name__ == '__main__': unittest.main()
apache-2.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/sklearn/cluster/tests/test_mean_shift.py
150
3651
""" Testing for mean shift clustering methods """ import numpy as np import warnings from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raise_message from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=300, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=11) def test_estimate_bandwidth(): # Test estimate_bandwidth bandwidth = estimate_bandwidth(X, n_samples=200) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): # Test MeanShift algorithm bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_parallel(): ms1 = MeanShift(n_jobs=2) ms1.fit(X) ms2 = MeanShift() ms2.fit(X) assert_array_equal(ms1.cluster_centers_,ms2.cluster_centers_) assert_array_equal(ms1.labels_,ms2.labels_) def test_meanshift_predict(): # Test MeanShift.predict ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_meanshift_all_orphans(): # init away from the data, crash with a sensible warning ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]]) msg = "No point was within bandwidth=0.1" assert_raise_message(ValueError, msg, ms.fit, X,) def test_unfitted(): # Non-regression: before fit, there should be not fitted attributes. ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): # Test the bin seeding technique which can be used in the mean shift # algorithm # Data is just 6 points in the plane X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found # we bail and use the whole data here. with warnings.catch_warnings(record=True): test_bins = get_bin_seeds(X, 0.01, 1) assert_array_equal(test_bins, X) # tight clusters around [0, 0] and [1, 1], only get two bins X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]], cluster_std=0.1, random_state=0) test_bins = get_bin_seeds(X, 1) assert_array_equal(test_bins, [[0, 0], [1, 1]])
gpl-2.0
ocastany/GradissimoCalculator
examples/T3_Waist.py
1
1122
#!/usr/bin/python3 # encoding: utf-8 from gradissimo import * from matplotlib import pyplot set_wavelength(1.31e-6) ############################################################################## # Demonstration that the diameter at waist does not depend on the material, # but the position of the waist depends on the material. # Consider a test profile at the entrance of the material. Remember that # waist diameter and reduced curvature do not change at a material interface. P = GaussianProfile(w=30e-6, C=-1/200e-6) # Create the two materials to compare... HS_1 = HomogeneousSpace(1.00) HS_2 = HomogeneousSpace(1.60) # Build the beams... beam1 = P.beam(HS_1) beam2 = P.beam(HS_2) # Print the result... print("Beam in two different materials but with the same input profile...") w0_1 = beam1.waist_profile.w z0_1 = beam1.waist_position print("Waist for beam 1: {:.4e} m at distance {:.2e} m".format(w0_1, z0_1)) w0_2 = beam2.waist_profile.w z0_2 = beam2.waist_position print("Waist for beam 2: {:.4e} m at distance {:.2e} m".format(w0_2, z0_2)) beam1.plot(z2=2*z0_1) beam2.plot(z2=2*z0_2) pyplot.show()
gpl-3.0
huzq/scikit-learn
benchmarks/bench_glmnet.py
20
3872
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of matplotlib.pyplot import matplotlib.pyplot as plt scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) plt.clf() xx = range(0, n * step, step) plt.title('Lasso regression on sample dataset (%d features)' % n_features) plt.plot(xx, scikit_results, 'b-', label='scikit-learn') plt.plot(xx, glmnet_results, 'r-', label='glmnet') plt.legend() plt.xlabel('number of samples to classify') plt.ylabel('Time (s)') plt.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) plt.figure('scikit-learn vs. glmnet benchmark results') plt.title('Regression in high dimensional spaces (%d samples)' % n_samples) plt.plot(xx, scikit_results, 'b-', label='scikit-learn') plt.plot(xx, glmnet_results, 'r-', label='glmnet') plt.legend() plt.xlabel('number of features') plt.ylabel('Time (s)') plt.axis('tight') plt.show()
bsd-3-clause
massmutual/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
jakevdp/multiband_LS
figures/fig04_regularization_example.py
1
2542
""" Here we plot an example of how regularization can affect the fit """ import sys import os sys.path.append(os.path.abspath('../..')) import numpy as np import matplotlib.pyplot as plt # Use seaborn settings for plot styles import seaborn; seaborn.set() from gatspy.datasets import RRLyraeGenerated from gatspy.periodic import LombScargle # Choose a Sesar 2010 object to base our fits on lcid = 1019544 rrlyrae = RRLyraeGenerated(lcid, random_state=0) # Generate data in a 6-month observing season Nobs = 60 rng = np.random.RandomState(0) nights = np.arange(180) rng.shuffle(nights) nights = nights[:Nobs] t = 57000 + nights + 0.05 * rng.randn(Nobs) dmag = 0.06 + 0.01 * rng.randn(Nobs) mag = rrlyrae.generated('r', t, err=dmag, corrected=False) periods = np.linspace(0.2, 1.4, 1000) phase = (t / rrlyrae.period) % 1 phasefit = np.linspace(0, 1, 1000) tfit = rrlyrae.period * phasefit fig = plt.figure(figsize=(10, 4)) gs = plt.GridSpec(2, 2, left=0.07, right=0.95, wspace=0.15, bottom=0.15) ax = [fig.add_subplot(gs[:, 0]), fig.add_subplot(gs[0, 1]), fig.add_subplot(gs[1, 1])] # Plot the data ax[0].errorbar(phase, mag, dmag, fmt='o', color='#AAAAAA') ylim = ax[0].get_ylim() # Here we construct some regularization. Nterms = 20 sigma_r_inv = np.vstack([np.arange(Nterms + 1), np.arange(Nterms + 1)]).T.ravel()[1:] ** 2 models = [0.5 * sigma_r_inv ** 2, None] for i, reg in enumerate(models): model = LombScargle(Nterms=Nterms, regularization=reg, regularize_by_trace=False).fit(t, mag, dmag) if reg is None: label = "unregularized" else: label = "regularized" lines = ax[0].plot(phasefit, model.predict(tfit, period=rrlyrae.period), label=label) ax[1 + i].plot(periods, model.periodogram(periods), lw=1, c=lines[0].get_color()) ax[1 + i].set_title("{0} Periodogram ({1} terms)".format(label.title(), Nterms)) ax[1 + i].set_ylabel('power') ax[1 + i].set_xlim(0.2, 1.4) ax[1 + i].set_ylim(0, 1) #ax[1 + i].yaxis.set_major_formatter(plt.NullFormatter()) ax[0].set_xlabel('phase') ax[0].set_ylabel('magnitude') ax[0].set_ylim(ylim) ax[0].invert_yaxis() ax[0].legend(loc='upper left') ax[0].set_title('Folded Data (P={0:.3f} days)'.format(rrlyrae.period)) ax[1].xaxis.set_major_formatter(plt.NullFormatter()) ax[2].set_xlabel('period (days)') plt.savefig('fig04.pdf') plt.show()
bsd-2-clause
jchodera/LiquidBenchmark
src/old/find_static_dielectric.py
2
3451
import re from rdkit import Chem from rdkit.Chem import AllChem import pandas as pd import glob from thermopyl import thermoml_lib, cirpy data = pd.read_hdf("./data.h5", 'data') # SEE GOOGLE DOC!!!!!!# SEE GOOGLE DOC!!!!!!# SEE GOOGLE DOC!!!!!!# SEE GOOGLE DOC!!!!!! bad_filenames = ["./10.1016/j.fluid.2013.12.014.xml"] data = data[~data.filename.isin(bad_filenames)] # SEE GOOGLE DOC!!!!!!# SEE GOOGLE DOC!!!!!!# SEE GOOGLE DOC!!!!!!# SEE GOOGLE DOC!!!!!! experiments = ["Mass density, kg/m3", "Relative permittivity at zero frequency"] # , "Isothermal compressibility, 1/kPa", "Isobaric coefficient of expansion, 1/K"] ind_list = [data[exp].dropna().index for exp in experiments] ind = reduce(lambda x,y: x.union(y), ind_list) X = data.ix[ind] name_to_formula = pd.read_hdf("./compound_name_to_formula.h5", 'data') name_to_formula = name_to_formula.dropna() X["n_components"] = X.components.apply(lambda x: len(x.split("__"))) X = X[X.n_components == 1] X.dropna(axis=1, how='all', inplace=True) X["formula"] = X.components.apply(lambda chemical: name_to_formula[chemical]) heavy_atoms = ["N", "C", "O", "S", "Cl", "Br", "F"] desired_atoms = ["H"] + heavy_atoms X["n_atoms"] = X.formula.apply(lambda formula_string : thermoml_lib.count_atoms(formula_string)) X["n_heavy_atoms"] = X.formula.apply(lambda formula_string : thermoml_lib.count_atoms_in_set(formula_string, heavy_atoms)) X["n_desired_atoms"] = X.formula.apply(lambda formula_string : thermoml_lib.count_atoms_in_set(formula_string, desired_atoms)) X["n_other_atoms"] = X.n_atoms - X.n_desired_atoms X = X[X.n_other_atoms == 0] X = X[X.n_heavy_atoms > 0] X = X[X.n_heavy_atoms <= 10] X.dropna(axis=1, how='all', inplace=True) X["smiles"] = X.components.apply(lambda x: cirpy.resolve(x, "smiles")) # This should be cached via sklearn. X = X[X.smiles != None] X = X.ix[X.smiles.dropna().index] X["cas"] = X.components.apply(lambda x: thermoml_lib.get_first_entry(cirpy.resolve(x, "cas"))) # This should be cached via sklearn. X = X[X.cas != None] X = X.ix[X.cas.dropna().index] # Neither names (components) nor smiles are unique. Use CAS to ensure consistency. cannonical_smiles_lookup = X.groupby("cas").smiles.first() cannonical_components_lookup = X.groupby("cas").components.first() X["smiles"] = X.cas.apply(lambda x: cannonical_smiles_lookup[x]) X["components"] = X.cas.apply(lambda x: cannonical_components_lookup[x]) X = X[X["Temperature, K"] > 270] X = X[X["Temperature, K"] < 330] X = X[X["Pressure, kPa"] > 100.] X = X[X["Pressure, kPa"] < 102.] X.dropna(axis=1, how='all', inplace=True) X["Pressure, kPa"] = 101.325 # Assume everything within range is comparable. X["Temperature, K"] = X["Temperature, K"].apply(lambda x: x.round(1)) # Round at the 0.1 digit. mu = X.groupby(["components", "smiles", "cas", "Temperature, K", "Pressure, kPa"])[experiments].mean() sigma_std = X.groupby(["components", "smiles", "cas", "Temperature, K", "Pressure, kPa"])[experiments].std().dropna() sigma_est = X.groupby(["components", "smiles", "cas", "Temperature, K", "Pressure, kPa"])[[e + "_std" for e in experiments]].mean().dropna() sigma = pd.concat((sigma_std, sigma_est)) sigma["index"] = sigma.index sigma.drop_duplicates(cols='index', take_last=True, inplace=True) del sigma["index"] for e in experiments: mu[e + "_std"] = sigma[e + "_std"] q = mu.reset_index() q = q.ix[q[experiments].dropna().index] q.to_csv("./tables/data_dielectric.csv")
gpl-2.0
dubourg/openturns
python/doc/pyplots/UserDefinedCovarianceModel.py
2
1077
import openturns as ot from math import exp from matplotlib import pyplot as plt from openturns.viewer import View def C(s, t): return exp(-4.0 * abs(s - t) / (1 + (s * s + t * t))) N = 64 a = 4.0 #myMesh = ot.IntervalMesher([N]).build(ot.Interval(-a, a)) myMesh = ot.RegularGrid(-a, 2 * a / N, N + 1) myCovarianceCollection = ot.CovarianceMatrixCollection() for k in range(myMesh.getVerticesNumber()): t = myMesh.getVertices()[k] for l in range(k + 1): s = myMesh.getVertices()[l] matrix = ot.CovarianceMatrix(1) matrix[0, 0] = C(s[0], t[0]) myCovarianceCollection.add(matrix) covarianceModel = ot.UserDefinedCovarianceModel(myMesh, myCovarianceCollection) def f(x): return [covarianceModel([x[0]], [x[1]])[0, 0]] func = ot.PythonFunction(2, 1, f) func.setDescription(['$s$', '$t$', '$cov$']) cov_graph = func.draw([-a] * 2, [a] * 2, [512] * 2) fig = plt.figure(figsize=(10, 4)) plt.suptitle('User defined covariance model') cov_axis = fig.add_subplot(111) View(cov_graph, figure=fig, axes=[cov_axis], add_legend=False)
gpl-3.0
chen0031/nupic
nupic/math/roc_utils.py
49
8308
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Utility functions to compute ROC (Receiver Operator Characteristic) curves and AUC (Area Under the Curve). The ROCCurve() and AreaUnderCurve() functions are based on the roc_curve() and auc() functions found in metrics.py module of scikit-learn (http://scikit-learn.org/stable/). Scikit-learn has a BSD license (3 clause). Following is the original license/credits statement from the top of the metrics.py file: # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # License: BSD Style. """ import numpy as np def ROCCurve(y_true, y_score): """compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Parameters ---------- y_true : array, shape = [n_samples] true binary labels y_score : array, shape = [n_samples] target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- fpr : array, shape = [>2] False Positive Rates tpr : array, shape = [>2] True Positive Rates thresholds : array, shape = [>2] Thresholds on y_score used to compute fpr and tpr Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) References ---------- http://en.wikipedia.org/wiki/Receiver_operating_characteristic """ y_true = np.ravel(y_true) classes = np.unique(y_true) # ROC only for binary classification if classes.shape[0] != 2: raise ValueError("ROC is defined for binary classification only") y_score = np.ravel(y_score) n_pos = float(np.sum(y_true == classes[1])) # nb of true positive n_neg = float(np.sum(y_true == classes[0])) # nb of true negative thresholds = np.unique(y_score) neg_value, pos_value = classes[0], classes[1] tpr = np.empty(thresholds.size, dtype=np.float) # True positive rate fpr = np.empty(thresholds.size, dtype=np.float) # False positive rate # Build tpr/fpr vector current_pos_count = current_neg_count = sum_pos = sum_neg = idx = 0 signal = np.c_[y_score, y_true] sorted_signal = signal[signal[:, 0].argsort(), :][::-1] last_score = sorted_signal[0][0] for score, value in sorted_signal: if score == last_score: if value == pos_value: current_pos_count += 1 else: current_neg_count += 1 else: tpr[idx] = (sum_pos + current_pos_count) / n_pos fpr[idx] = (sum_neg + current_neg_count) / n_neg sum_pos += current_pos_count sum_neg += current_neg_count current_pos_count = 1 if value == pos_value else 0 current_neg_count = 1 if value == neg_value else 0 idx += 1 last_score = score else: tpr[-1] = (sum_pos + current_pos_count) / n_pos fpr[-1] = (sum_neg + current_neg_count) / n_neg # hard decisions, add (0,0) if fpr.shape[0] == 2: fpr = np.array([0.0, fpr[0], fpr[1]]) tpr = np.array([0.0, tpr[0], tpr[1]]) # trivial decisions, add (0,0) and (1,1) elif fpr.shape[0] == 1: fpr = np.array([0.0, fpr[0], 1.0]) tpr = np.array([0.0, tpr[0], 1.0]) return fpr, tpr, thresholds def AreaUnderCurve(x, y): """Compute Area Under the Curve (AUC) using the trapezoidal rule Parameters ---------- x : array, shape = [n] x coordinates y : array, shape = [n] y coordinates Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred) >>> metrics.auc(fpr, tpr) 0.75 """ #x, y = check_arrays(x, y) if x.shape[0] != y.shape[0]: raise ValueError('x and y should have the same shape' ' to compute area under curve,' ' but x.shape = %s and y.shape = %s.' % (x.shape, y.shape)) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) # reorder the data points according to the x axis order = np.argsort(x) x = x[order] y = y[order] h = np.diff(x) area = np.sum(h * (y[1:] + y[:-1])) / 2.0 return area def _printNPArray(x, precision=2): format = "%%.%df" % (precision) for elem in x: print format % (elem), print def _test(): """ This is a toy example, to show the basic functionality: The dataset is: actual prediction ------------------------- 0 0.1 0 0.4 1 0.5 1 0.3 1 0.45 Some ROC terminology: A True Positive (TP) is when we predict TRUE and the actual value is 1. A False Positive (FP) is when we predict TRUE, but the actual value is 0. The True Positive Rate (TPR) is TP/P, where P is the total number of actual positives (3 in this example, the last 3 samples). The False Positive Rate (FPR) is FP/N, where N is the total number of actual negatives (2 in this example, the first 2 samples) Here are the classifications at various choices for the threshold. The prediction is TRUE if the predicted value is >= threshold and FALSE otherwise. actual pred 0.50 0.45 0.40 0.30 0.10 --------------------------------------------------------- 0 0.1 0 0 0 0 1 0 0.4 0 0 1 1 1 1 0.5 1 1 1 1 1 1 0.3 0 0 0 1 1 1 0.45 0 1 1 1 1 TruePos(TP) 1 2 2 3 3 FalsePos(FP) 0 0 1 1 2 TruePosRate(TPR) 1/3 2/3 2/3 3/3 3/3 FalsePosRate(FPR) 0/2 0/2 1/2 1/2 2/2 The ROC curve is a plot of FPR on the x-axis and TPR on the y-axis. Basically, one can pick any operating point along this curve to run, the operating point determined by which threshold you want to use. By changing the threshold, you tradeoff TP's for FPs. The more area under this curve, the better the classification algorithm is. The AreaUnderCurve() function can be used to compute the area under this curve. """ yTrue = np.array([0, 0, 1, 1, 1]) yScore = np.array([0.1, 0.4, 0.5, 0.3, 0.45]) (fpr, tpr, thresholds) = ROCCurve(yTrue, yScore) print "Actual: ", _printNPArray(yTrue) print "Predicted: ", _printNPArray(yScore) print print "Thresholds:", _printNPArray(thresholds[::-1]) print "FPR(x): ", _printNPArray(fpr) print "TPR(y): ", _printNPArray(tpr) print area = AreaUnderCurve(fpr, tpr) print "AUC: ", area if __name__=='__main__': _test()
agpl-3.0
chanceraine/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/__init__.py
72
2225
import matplotlib import inspect import warnings # ipython relies on interactive_bk being defined here from matplotlib.rcsetup import interactive_bk __all__ = ['backend','show','draw_if_interactive', 'new_figure_manager', 'backend_version'] backend = matplotlib.get_backend() # validates, to match all_backends def pylab_setup(): 'return new_figure_manager, draw_if_interactive and show for pylab' # Import the requested backend into a generic module object if backend.startswith('module://'): backend_name = backend[9:] else: backend_name = 'backend_'+backend backend_name = backend_name.lower() # until we banish mixed case backend_name = 'matplotlib.backends.%s'%backend_name.lower() backend_mod = __import__(backend_name, globals(),locals(),[backend_name]) # Things we pull in from all backends new_figure_manager = backend_mod.new_figure_manager # image backends like pdf, agg or svg do not need to do anything # for "show" or "draw_if_interactive", so if they are not defined # by the backend, just do nothing def do_nothing_show(*args, **kwargs): frame = inspect.currentframe() fname = frame.f_back.f_code.co_filename if fname in ('<stdin>', '<ipython console>'): warnings.warn(""" Your currently selected backend, '%s' does not support show(). Please select a GUI backend in your matplotlibrc file ('%s') or with matplotlib.use()""" % (backend, matplotlib.matplotlib_fname())) def do_nothing(*args, **kwargs): pass backend_version = getattr(backend_mod,'backend_version', 'unknown') show = getattr(backend_mod, 'show', do_nothing_show) draw_if_interactive = getattr(backend_mod, 'draw_if_interactive', do_nothing) # Additional imports which only happen for certain backends. This section # should probably disappear once all backends are uniform. if backend.lower() in ['wx','wxagg']: Toolbar = backend_mod.Toolbar __all__.append('Toolbar') matplotlib.verbose.report('backend %s version %s' % (backend,backend_version)) return new_figure_manager, draw_if_interactive, show
agpl-3.0
nishantnath/MusicPredictiveAnalysis_EE660_USCFall2015
Code/Machine_Learning_Algos/10k_Tests/ml_classification_qda.py
1
2709
__author__ = 'Arnav' # !/usr/bin/env python ''' Using : Python 2.7+ (backward compatibility exists for Python 3.x if separate environment created) Required files : hdf5_getters.py Required packages : numpy, pandas, sklearn # Uses QDA for classification ''' import pandas import numpy as np # main function if __name__ == '__main__': col_input = ['genre', 'AvgBarDuration','Loudness', 'Tempo','ArtistFamiliarity','ArtistHotttnesss','SongHotttnesss', 'Mode[0]','Mode[1]','Year', 'Key[0]','Key[1]','Key[2]','Key[3]','Key[4]','Key[5]', 'Key[6]','Key[7]','Key[8]','Key[9]','Key[10]','Key[11]', 'PicthesMean[0]','PicthesMean[1]','PicthesMean[2]','PicthesMean[3]','PicthesMean[4]','PicthesMean[5]', 'PicthesMean[6]','PicthesMean[7]','PicthesMean[8]','PicthesMean[9]','PicthesMean[10]','PicthesMean[11]', 'PitchesVar[0]','PitchesVar[1]','PitchesVar[2]','PitchesVar[3]','PitchesVar[4]','PitchesVar[5]', 'PitchesVar[6]','PitchesVar[7]','PitchesVar[8]','PitchesVar[9]','PitchesVar[10]','PitchesVar[11]', 'TimbreMean[0]','TimbreMean[1]','TimbreMean[2]','TimbreMean[3]','TimbreMean[4]','TimbreMean[5]', 'TimbreMean[6]','TimbreMean[7]','TimbreMean[8]','TimbreMean[9]','TimbreMean[10]','TimbreMean[11]', 'TimbreVar[0]','TimbreVar[1]','TimbreVar[2]','TimbreVar[3]','TimbreVar[4]','TimbreVar[5]', 'TimbreVar[6]','TimbreVar[7]','TimbreVar[8]','TimbreVar[9]','TimbreVar[10]','TimbreVar[11]'] df_input = pandas.read_csv('pandas_merged_output_cleaned_None.csv', header=None, delimiter="|", names=col_input) df_input = df_input.dropna() #df_input = df_input[df_input['Year'] != 0][df_input['genre'] != 'CLASSICAL'] #df_input = df_input[df_input['Year'] != 0][df_input['Year'] < 1992][df_input['genre'] != 'CLASSICAL'] df_input = df_input[df_input['Year'] != 0][df_input['Year'] >= 1992][df_input['genre'] != 'CLASSICAL'] df_input_target = df_input[list(range(0, 1))].as_matrix() df_input_data = df_input[list(range(1, 70))].as_matrix() # splitting the data into training and testing sets from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(df_input_data, df_input_target.tolist()) # Start QDA Classification from sklearn.qda import QDA clf = QDA(priors=None, reg_param=0.001).fit(X_train, np.ravel(y_train[:])) predicted = clf.predict(X_test) matches = (predicted == [item for sublist in y_test for item in sublist]) print "Accuracy : ", (matches.sum() / float(len(matches)))
mit
tridesclous/tridesclous
tridesclous/peeler_engine_geometry.py
1
28001
""" Here implementation that tale in account the geometry of the probe to speed up template matching. """ import time import numpy as np import joblib from concurrent.futures import ThreadPoolExecutor import itertools from .peeler_engine_base import PeelerEngineGeneric from .peeler_tools import * from .peeler_tools import _dtype_spike import sklearn.metrics.pairwise from .cltools import HAVE_PYOPENCL, OpenCL_Helper if HAVE_PYOPENCL: import pyopencl mf = pyopencl.mem_flags from .peakdetector import get_peak_detector_class try: import numba HAVE_NUMBA = True from .numba_tools import numba_explore_best_shift, numba_sparse_scalar_product except ImportError: HAVE_NUMBA = False class PeelerEngineGeometrical(PeelerEngineGeneric): def change_params(self, **kargs): PeelerEngineGeneric.change_params(self, **kargs) def initialize(self, **kargs): PeelerEngineGeneric.initialize(self, **kargs) # create peak detector p = dict(self.catalogue['peak_detector_params']) self.peakdetector_engine = p.pop('engine') self.peakdetector_method = p.pop('method') PeakDetector_class = get_peak_detector_class(self.peakdetector_method, self.peakdetector_engine) chunksize = self.fifo_size-2*self.n_span # not the real chunksize here self.peakdetector = PeakDetector_class(self.sample_rate, self.nb_channel, chunksize, self.internal_dtype, self.geometry) self.peakdetector.change_params(**p) # some attrs self.shifts = np.arange(-self.maximum_jitter_shift, self.maximum_jitter_shift+1) self.nb_shift = self.shifts.size #~ self.channel_distances = sklearn.metrics.pairwise.euclidean_distances(self.geometry).astype('float32') #~ self.channels_adjacency = {} #~ for c in range(self.nb_channel): #~ if self.use_sparse_template: #~ nearest, = np.nonzero(self.channel_distances[c, :]<self.adjacency_radius_um) #~ self.channels_adjacency[c] = nearest #~ else: #~ self.channels_adjacency[c] = np.arange(self.nb_channel, dtype='int64') self.mask_already_tested = np.zeros((self.fifo_size, self.nb_channel), dtype='bool') def initialize_before_each_segment(self, **kargs): PeelerEngineGeneric.initialize_before_each_segment(self, **kargs) self.peakdetector.initialize_stream() def detect_local_peaks_before_peeling_loop(self): # reset tested mask self.mask_already_tested[:] = False # and detect peak self.re_detect_local_peak() #~ print('detect_local_peaks_before_peeling_loop', self.pending_peaks.size) def re_detect_local_peak(self): mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) if mask.ndim ==1: #~ mask &= ~self.mask_already_tested[self.n_span:-self.n_span, 0] sample_indexes, = np.nonzero(mask) sample_indexes += self.n_span tested = self.mask_already_tested[sample_indexes, 0] sample_indexes = sample_indexes[~tested] chan_indexes = np.zeros(sample_indexes.size, dtype='int64') else: #~ mask &= ~self.mask_already_tested[self.n_span:-self.n_span, :] sample_indexes, chan_indexes = np.nonzero(mask) sample_indexes += self.n_span tested = self.mask_already_tested[sample_indexes, chan_indexes] sample_indexes = sample_indexes[~tested] chan_indexes = chan_indexes[~tested] amplitudes = np.abs(self.fifo_residuals[sample_indexes, chan_indexes]) order = np.argsort(amplitudes)[::-1] dtype_peak = [('sample_index', 'int32'), ('chan_index', 'int32'), ('peak_value', 'float32')] self.pending_peaks = np.zeros(sample_indexes.size, dtype=dtype_peak) self.pending_peaks['sample_index'] = sample_indexes self.pending_peaks['chan_index'] = chan_indexes self.pending_peaks['peak_value'] = amplitudes self.pending_peaks = self.pending_peaks[order] #~ print('re_detect_local_peak', self.pending_peaks.size) def select_next_peak(self): #~ print(len(self.pending_peaks)) if len(self.pending_peaks)>0: sample_ind, chan_ind, ampl = self.pending_peaks[0] self.pending_peaks = self.pending_peaks[1:] return sample_ind, chan_ind else: return LABEL_NO_MORE_PEAK, None def on_accepted_spike(self, sample_ind, cluster_idx, jitter): # remove spike prediction from fifo residuals #~ t1 = time.perf_counter() pos, pred = make_prediction_one_spike(sample_ind, cluster_idx, jitter, self.fifo_residuals.dtype, self.catalogue) #~ t2 = time.perf_counter() #~ print(' make_prediction_one_spike', (t2-t1)*1000) #~ t1 = time.perf_counter() self.fifo_residuals[pos:pos+self.peak_width_long, :] -= pred #~ t2 = time.perf_counter() #~ print(' self.fifo_residuals -', (t2-t1)*1000) # this prevent search peaks in the zone until next "reset_to_not_tested" #~ t1 = time.perf_counter() self.clean_pending_peaks_zone(sample_ind, cluster_idx) #~ t2 = time.perf_counter() #~ print(' self.clean_pending_peaks_zone -', (t2-t1)*1000) def clean_pending_peaks_zone(self, sample_ind, cluster_idx): # TODO test with sparse_mask_level3s!!!!! mask = self.sparse_mask_level1[cluster_idx, :] #~ t1 = time.perf_counter() #~ keep = np.zeros(self.pending_peaks.size, dtype='bool') #~ for i, peak in enumerate(self.pending_peaks): #~ in_zone = mask[peak['chan_index']] and \ #~ (peak['sample_index']+self.n_left)<sample_ind and \ #~ sample_ind<(peak['sample_index']+self.n_right) #~ keep[i] = not(in_zone) peaks = self.pending_peaks in_zone = mask[peaks['chan_index']] &\ ((peaks['sample_index']+self.n_left)<sample_ind) & \ ((peaks['sample_index']+self.n_right)>sample_ind) keep = ~ in_zone #~ t2 = time.perf_counter() #~ print(' clean_pending_peaks_zone loop', (t2-t1)*1000) self.pending_peaks = self.pending_peaks[keep] #~ print('clean_pending_peaks_zone', self.pending_peaks.size) def set_already_tested(self, sample_ind, peak_chan): self.mask_already_tested[sample_ind, peak_chan] = True def reset_to_not_tested(self, good_spikes): for spike in good_spikes: # each good spike can remove from cluster_idx = self.catalogue['label_to_index'][spike.cluster_label] chan_mask = self.sparse_mask_level1[cluster_idx, :] self.mask_already_tested[spike.index + self.n_left_long:spike.index + self.n_right_long][:, chan_mask] = False self.re_detect_local_peak() def get_no_label_peaks(self): mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) nolabel_indexes, chan_indexes = np.nonzero(mask) #~ nolabel_indexes, chan_indexes = np.nonzero(~self.mask_not_already_tested) nolabel_indexes += self.n_span nolabel_indexes = nolabel_indexes[nolabel_indexes<(self.chunksize+self.n_span)] bad_spikes = np.zeros(nolabel_indexes.shape[0], dtype=_dtype_spike) bad_spikes['index'] = nolabel_indexes bad_spikes['cluster_label'] = LABEL_UNCLASSIFIED return bad_spikes def get_best_template(self, left_ind, chan_ind): full_waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:] centers0 = self.catalogue['centers0'] projections = self.catalogue['projections'] strict_low = self.catalogue['boundaries'][:, 0] strict_high = self.catalogue['boundaries'][:, 1] flexible_low = self.catalogue['boundaries'][:, 2] flexible_high = self.catalogue['boundaries'][:, 3] n = centers0.shape[0] flat_waveform = full_waveform.flatten() flat_centers0 = centers0.reshape(n, -1) #~ scalar_products = np.zeros(n, dtype='float32') #~ for i in range(n): #~ sp = np.sum((flat_waveform - flat_centers0[i, :]) * projections[i, :]) #~ scalar_products[i] = sp #~ scalar_products = np.sum((flat_waveform[np.newaxis, :] - flat_centers0[:, :]) * projections[:, :], axis=1) #~ print(scalar_products) #~ t1 = time.perf_counter() scalar_products = numba_sparse_scalar_product(self.fifo_residuals, left_ind, centers0, projections, chan_ind, self.sparse_mask_level1, ) #~ t2 = time.perf_counter() #~ print('numba_sparse_scalar_product', (t2-t1)*1000) #~ print(scalar_products) possible_idx, = np.nonzero((scalar_products < strict_high) & (scalar_products > strict_low)) #~ possible_idx, = np.nonzero((scalar_products < flexible_high) & (scalar_products > flexible_low)) #~ print('possible_idx', possible_idx) #~ print('scalar_products[possible_idx]', scalar_products[possible_idx]) #~ do_plot = False if len(possible_idx) == 1: extra_idx = None candidates_idx =possible_idx elif len(possible_idx) == 0: #~ extra_idx, = np.nonzero((np.abs(scalar_products) < 0.5)) extra_idx, = np.nonzero((scalar_products < flexible_high) & (scalar_products > flexible_low)) #~ if len(extra_idx) ==0: # give a try to very far ones. #~ extra_idx, = np.nonzero((np.abs(scalar_products) < 1.)) #~ print('extra_idx', extra_idx) #~ if len(extra_idx) ==0: #~ candidates_idx = [] #~ else: #~ candidates_idx = extra_idx candidates_idx = extra_idx #~ candidates_idx =possible_idx #~ pass elif len(possible_idx) > 1 : extra_idx = None candidates_idx = possible_idx debug_plot_change = False if len(candidates_idx) > 0: #~ t1 = time.perf_counter() candidates_idx = np.array(candidates_idx, dtype='int64') common_mask = np.sum(self.sparse_mask_level3[candidates_idx, :], axis=0) > 0 shift_scalar_product, shift_distance = numba_explore_best_shift(self.fifo_residuals, left_ind, self.catalogue['centers0'], self.catalogue['projections'], candidates_idx, self.maximum_jitter_shift, common_mask, self.sparse_mask_level1) #~ i0, i1 = np.unravel_index(np.argmin(np.abs(shift_scalar_product), axis=None), shift_scalar_product.shape) i0, i1 = np.unravel_index(np.argmin(shift_distance, axis=None), shift_distance.shape) #~ best_idx = candidates_idx[i0] shift = self.shifts[i1] cluster_idx = candidates_idx[i0] final_scalar_product = shift_scalar_product[i0, i1] #~ t2 = time.perf_counter() #~ print('numba_explore_best_shift', (t2-t1)*1000) #~ print('shift', shift) #~ print('cluster_idx', cluster_idx) #~ print('final_scalar_product', final_scalar_product) if np.abs(shift) == self.maximum_jitter_shift: cluster_idx = None shift = None final_scalar_product = None #~ print('maximum_jitter_shift >> cluster_idx = None ') #~ do_plot = True #~ i0_bis, i1_bis = np.unravel_index(np.argmin(np.abs(shift_scalar_product), axis=None), shift_scalar_product.shape) #~ if i0 != i0_bis: #~ debug_plot_change = True #~ print('Warning') #~ print(possible_idx) #~ print(shift_scalar_product) #~ print(shift_distance) #~ if best_idx != cluster_idx: #~ print('*'*50) #~ print('best_idx != cluster_idx', best_idx, cluster_idx) #~ print('*'*50) #~ cluster_idx = best_idx #~ debug_plot_change = True else: cluster_idx = None shift = None final_scalar_product = None #~ import matplotlib.pyplot as plt #~ fig, ax = plt.subplots() #~ ax.plot(self.shifts, shift_scalar_product.T) #~ plt.show() #~ print('ici',) # DEBUG OMP #~ from sklearn.linear_model import orthogonal_mp_gram #~ from sklearn.linear_model import OrthogonalMatchingPursuit #~ n_nonzero_coefs = 2 #~ omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) #~ X = self.catalogue['centers0'].reshape(self.catalogue['centers0'].shape[0], -1).T #~ waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:].flatten() #~ y = waveform #~ omp.fit(X, y) #~ coef = omp.coef_ #~ idx_r, = coef.nonzero() #~ cluster_idx_omp = np.argmin(np.abs(coef - 1)) #~ if cluster_idx_omp != cluster_idx and coef[cluster_idx_omp] > 0.5: #~ if True: if False: #~ if cluster_idx in (3,6): #~ if do_plot: #~ if False: #~ if final_scalar_product is not None and np.abs(final_scalar_product) > 0.5: #~ if True: #~ if len(possible_idx) != 1: #~ if len(possible_idx) > 1: #~ if len(candidates_idx) > 1: #~ if 7 in possible_idx or cluster_idx == 7: #~ if cluster_idx not in possible_idx and len(possible_idx) > 0: #~ if debug_plot_change: import matplotlib.pyplot as plt print() print('best cluster_idx', cluster_idx) print('possible_idx', possible_idx) print('extra_idx', extra_idx) print(scalar_products[possible_idx]) print(strict_high[possible_idx]) print('cluster_idx_omp', cluster_idx_omp) fig, ax = plt.subplots() ax.plot(coef) if cluster_idx is not None: ax.axvline(cluster_idx) ax.set_title(f'{cluster_idx} omp {cluster_idx_omp}') #~ plt.show() fig, ax = plt.subplots() shift2 = 0 if shift is None else shift full_waveform2 = self.fifo_residuals[left_ind+shift2:left_ind+shift2+self.peak_width,:] ax.plot(full_waveform2.T.flatten(), color='k') if shift !=0 and shift is not None: ax.plot(full_waveform.T.flatten(), color='grey', ls='--') for idx in candidates_idx: ax.plot(self.catalogue['centers0'][idx, :].T.flatten(), color='m') ax.plot(self.catalogue['centers0'][cluster_idx_omp, :].T.flatten(), color='y') if cluster_idx is not None: ax.plot(self.catalogue['centers0'][cluster_idx, :].T.flatten(), color='c', ls='--') ax.set_title(f'best {cluster_idx} shift {shift} possible_idx {possible_idx}') if shift is not None: fig, ax = plt.subplots() #~ ax.plot(self.shifts, np.abs(shift_scalar_product).T) ax.plot(self.shifts, shift_scalar_product.T) ax.axhline(0) fig, ax = plt.subplots() ax.plot(self.shifts, np.abs(shift_distance).T) plt.show() best_template_info = {'nb_candidate' : len(candidates_idx), 'final_scalar_product':final_scalar_product} return cluster_idx, shift, best_template_info def accept_tempate(self, left_ind, cluster_idx, jitter, best_template_info): if jitter is None: # this must have a jitter jitter = 0 #~ if np.abs(jitter) > (self.maximum_jitter_shift - 0.5): #~ return False strict_low = self.catalogue['boundaries'][:, 0] strict_high = self.catalogue['boundaries'][:, 1] flexible_low = self.catalogue['boundaries'][:, 2] flexible_high = self.catalogue['boundaries'][:, 3] #~ flat_waveform = full_waveform.flatten() #~ sp2 = np.sum((flat_waveform - centers0[cluster_idx, :].flatten()) * projections[cluster_idx, :]) sp = best_template_info['final_scalar_product'] nb_candidate = best_template_info['nb_candidate'] if nb_candidate == 1: #~ accept_template = strict_low[cluster_idx] < sp < strict_high[cluster_idx] accept_template = flexible_low[cluster_idx] < sp < flexible_high[cluster_idx] else: accept_template = flexible_low[cluster_idx] < sp < flexible_high[cluster_idx] # waveform L2 on mask #~ full_waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:] #~ wf = full_waveform[:, mask] # prediction with interpolation #~ _, pred_wf = make_prediction_one_spike(left_ind - self.n_left, cluster_idx, jitter, self.fifo_residuals.dtype, self.catalogue, long=False) #~ pred_wf = pred_wf[:, mask] #~ dist = (pred_wf - wf) ** 2 # criteria per channel #~ residual_nrj_by_chan = np.sum(dist, axis=0) #~ wf_nrj = np.sum(wf**2, axis=0) #~ weight = self.weight_per_template_dict[cluster_idx] #~ crietria_weighted = (wf_nrj>residual_nrj_by_chan).astype('float') * weight #~ accept_template = np.sum(crietria_weighted) >= 0.7 * np.sum(weight) # criteria per sample #~ dist * np.abs(pred_wf) < #~ dist_w = dist / np.abs(pred_wf) #~ gain = (dist < wf**2).astype('float') * np.abs(pred_wf) / np.sum(np.abs(pred_wf)) #~ gain = (wf / pred_wf - 1) * np.abs(pred_wf) / np.sum(np.abs(pred_wf)) #~ gain = (pred_wf**2 / wf**1 - 1) * np.abs(pred_wf) / np.sum(np.abs(pred_wf)) #~ accept_template = np.sum(gain) > 0.8 #~ accept_template = np.sum(gain) > 0.7 #~ accept_template0 = np.sum(gain) > 0.6 #~ accept_template = np.sum(gain) > 0.5 # criteria max residual #~ max_res = np.max(np.abs(pred_wf - wf)) #~ max_pred = np.max(np.abs(pred_wf)) #~ accept_template1 = max_pred > max_res #~ accept_template = False # debug #~ limit_sp =self.catalogue['sp_normed_limit'][cluster_idx, :] #~ sp = np.sum(self.catalogue['centers0_normed'] * full_waveform * self.catalogue['template_weight']) #~ print('limit_sp', limit_sp, 'sp', sp) #~ accept_template = False #~ immediate_accept = False # DEBUG always refuse!!!!! #~ accept_template = False #~ label = self.catalogue['cluster_labels'][cluster_idx] # debug #~ if label == 13: #~ if accept_template and not immediate_accept: #~ accept_template = False # debug #~ if label == 13: #~ if not hasattr(self, 'count_accept'): #~ self.count_accept = {} #~ self.count_accept[label] = {'accept_template':0, 'immediate_accept':0, 'not_accepted':0} #~ if accept_template: #~ self.count_accept[label]['accept_template'] += 1 #~ if immediate_accept: #~ self.count_accept[label]['immediate_accept'] += 1 #~ else: #~ self.count_accept[label]['not_accepted'] += 1 #~ print(self.count_accept) #~ if self._plot_debug: #~ if not accept_template and label in []: #~ if not accept_template: #~ if accept_template: #~ if True: if False: #~ if not immediate_accept: #~ if immediate_accept: #~ if immediate_accept: #~ if label == 7 and not accept_template: #~ if label == 7: #~ if label == 121: #~ if label == 5: #~ if nb_candidate > 1: #~ if label == 13 and accept_template and not immediate_accept: #~ if label == 13 and not accept_template: #~ if label in (7,9): #~ nears = np.array([ 5813767, 5813767, 11200038, 11322540, 14989650, 14989673, 14989692, 14989710, 15119220, 15830377, 16138346, 16216666, 17078883]) #~ print(np.abs((left_ind - self.n_left) - nears)) #~ print(np.abs((left_ind - self.n_left) - nears) < 2) #~ if label == 5 and np.any(np.abs((left_ind - self.n_left) - nears) < 50): #~ if immediate_accept: import matplotlib.pyplot as plt mask = self.sparse_mask_level2[cluster_idx] full_waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:] wf = full_waveform[:, mask] _, pred_waveform = make_prediction_one_spike(left_ind - self.n_left, cluster_idx, jitter, self.fifo_residuals.dtype, self.catalogue, long=False) pred_wf = pred_waveform[:, mask] if accept_template: color = 'g' else: color = 'r' #~ if accept_template: #~ if immediate_accept: #~ color = 'g' #~ else: #~ color = 'c' #~ else: #~ color = 'r' #~ if not immediate_accept: #~ fig, ax = plt.subplots() #~ ax.plot(gain.T.flatten(), color=color) #~ ax.set_title('{}'.format(np.sum(gain))) #~ fig, ax = plt.subplots() #~ ax.plot(feat_centroids.T, alpha=0.5) #~ ax.plot(feat_waveform, color='k') fig, ax = plt.subplots() ax.plot(full_waveform.T.flatten(), color='k') ax.plot(pred_waveform.T.flatten(), color=color) l0, l1 = strict_low[cluster_idx], strict_high[cluster_idx] l2, l3 = flexible_low[cluster_idx], flexible_high[cluster_idx] title = f'{cluster_idx} {sp:0.3f} lim [{l0:0.3f} {l1:0.3f}] [{l2:0.3f} {l3:0.3f}] {nb_candidate}' ax.set_title(title) #~ fig, ax = plt.subplots() #~ ax.plot(wf.T.flatten(), color='k') #~ ax.plot(pred_wf.T.flatten(), color=color) #~ ax.plot( wf.T.flatten() - pred_wf.T.flatten(), color=color, ls='--') print() print('cluster_idx',cluster_idx, 'accept_template', accept_template) #~ print(distance, self.distance_limit[cluster_idx]) #~ print('distance', distance, distance2, 'limit_distance', self.distance_limit[cluster_idx]) #~ limit_sp =self.catalogue['sp_normed_limit'][cluster_idx, :] #~ sp = np.sum(self.catalogue['centers0_normed'] * full_waveform * self.catalogue['template_weight']) #~ sp = np.sum(self.catalogue['centers0_normed'] * full_waveform) #~ print('limit_sp', limit_sp, 'sp', sp) #~ if not immediate_accept: #~ print('np.sum(gain)', np.sum(gain)) #~ fig, ax = plt.subplots() #~ res = wf - pred_wf #~ count, bins = np.histogram(res, bins=150, weights=np.abs(pred_wf)) #~ ax.plot(bins[:-1], count) #~ plt.show() #~ if distance2 >= self.distance_limit[cluster_idx]: #~ print(crietria_weighted, weight) #~ print(np.sum(crietria_weighted), np.sum(weight)) #~ ax.plot(full_wf0.T.flatten(), color='y') #~ ax.plot( full_wf.T.flatten() - full_wf0.T.flatten(), color='y') #~ ax.set_title('not accepted') plt.show() return accept_template def _plot_after_inner_peeling_loop(self): pass def _plot_before_peeling_loop(self): import matplotlib.pyplot as plt fig, ax = plt.subplots() plot_sigs = self.fifo_residuals.copy() self._plot_sigs_before = plot_sigs #~ chan_order = np.argsort(self.channel_distances[0, :]) for c in range(self.nb_channel): #~ for c in chan_order: plot_sigs[:, c] += c*30 ax.plot(plot_sigs, color='k') ax.axvline(self.fifo_size - self.n_right_long, color='r') ax.axvline(-self.n_left_long, color='r') mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) sample_inds, chan_inds= np.nonzero(mask) sample_inds += self.n_span ax.scatter(sample_inds, plot_sigs[sample_inds, chan_inds], color='r') ax.set_title(f'nb peak {sample_inds.size}') #~ plt.show() def _plot_label_unclassified(self, left_ind, peak_chan, cluster_idx, jitter): return import matplotlib.pyplot as plt #~ print('LABEL UNCLASSIFIED', left_ind, cluster_idx) fig, ax = plt.subplots() wf = self.fifo_residuals[left_ind:left_ind+self.peak_width, :] wf0 = self.catalogue['centers0'][cluster_idx, :, :] ax.plot(wf.T.flatten(), color='b') #~ ax.plot(wf0.T.flatten(), color='g') ax.set_title(f'label_unclassified {left_ind-self.n_left} {cluster_idx} chan{peak_chan}') ax.axvline(peak_chan*self.peak_width-self.n_left) plt.show() def _plot_after_peeling_loop(self, good_spikes): import matplotlib.pyplot as plt fig, ax = plt.subplots() plot_sigs = self.fifo_residuals.copy() for c in range(self.nb_channel): plot_sigs[:, c] += c*30 ax.plot(plot_sigs, color='k') ax.plot(self._plot_sigs_before, color='b') ax.axvline(self.fifo_size - self.n_right_long, color='r') ax.axvline(-self.n_left_long, color='r') mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) sample_inds, chan_inds= np.nonzero(mask) sample_inds += self.n_span ax.scatter(sample_inds, plot_sigs[sample_inds, chan_inds], color='r') good_spikes = np.array(good_spikes, dtype=_dtype_spike) pred = make_prediction_signals(good_spikes, self.internal_dtype, plot_sigs.shape, self.catalogue, safe=True) plot_pred = pred.copy() for c in range(self.nb_channel): plot_pred[:, c] += c*30 ax.plot(plot_pred, color='m') plt.show()
mit
paris-saclay-cds/ramp-workflow
rampwf/tests/kits/drug_spectra/submissions/starting_kit/regressor.py
1
1353
from sklearn.ensemble import GradientBoostingRegressor from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn.base import BaseEstimator import numpy as np class Regressor(BaseEstimator): def __init__(self): self.n_components = 10 self.n_estimators = 40 self.learning_rate = 0.2 self.list_molecule = ['A', 'B', 'Q', 'R'] self.dict_reg = {} for mol in self.list_molecule: self.dict_reg[mol] = Pipeline([ ('pca', PCA(n_components=self.n_components)), ('reg', GradientBoostingRegressor( n_estimators=self.n_estimators, learning_rate=self.learning_rate, random_state=42)) ]) def fit(self, X, y): for i, mol in enumerate(self.list_molecule): ind_mol = np.where(np.argmax(X[:, -4:], axis=1) == i)[0] X_mol = X[ind_mol] y_mol = y[ind_mol] self.dict_reg[mol].fit(X_mol, np.log(y_mol)) def predict(self, X): y_pred = np.zeros(X.shape[0]) for i, mol in enumerate(self.list_molecule): ind_mol = np.where(np.argmax(X[:, -4:], axis=1) == i)[0] X_mol = X[ind_mol] y_pred[ind_mol] = np.exp(self.dict_reg[mol].predict(X_mol)) return y_pred
bsd-3-clause