repo_name
stringlengths
6
96
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
762
753k
license
stringclasses
15 values
ahoyosid/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
ebothmann/seaborn
seaborn/tests/test_matrix.py
2
28570
import itertools import tempfile import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd from scipy.spatial import distance from scipy.cluster import hierarchy import nose.tools as nt import numpy.testing as npt import pandas.util.testing as pdt from numpy.testing.decorators import skipif from .. import matrix as mat from .. import color_palette from ..external.six.moves import range try: import fastcluster assert fastcluster _no_fastcluster = False except ImportError: _no_fastcluster = True class TestHeatmap(object): rs = np.random.RandomState(sum(map(ord, "heatmap"))) x_norm = rs.randn(4, 8) letters = pd.Series(["A", "B", "C", "D"], name="letters") df_norm = pd.DataFrame(x_norm, index=letters) x_unif = rs.rand(20, 13) df_unif = pd.DataFrame(x_unif) default_kws = dict(vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=False, fmt=".2f", annot_kws=None, cbar=True, cbar_kws=None, mask=None) def test_ndarray_input(self): p = mat._HeatMapper(self.x_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm[::-1]) pdt.assert_frame_equal(p.data, pd.DataFrame(self.x_norm).ix[::-1]) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, np.arange(4)[::-1]) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "") def test_df_input(self): p = mat._HeatMapper(self.df_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm[::-1]) pdt.assert_frame_equal(p.data, self.df_norm.ix[::-1]) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, ["D", "C", "B", "A"]) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "letters") def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index p = mat._HeatMapper(df, **self.default_kws) npt.assert_array_equal(p.yticklabels, ["D-4", "C-3", "B-2", "A-1"]) nt.assert_equal(p.ylabel, "letter-number") p = mat._HeatMapper(df.T, **self.default_kws) npt.assert_array_equal(p.xticklabels, ["A-1", "B-2", "C-3", "D-4"]) nt.assert_equal(p.xlabel, "letter-number") def test_mask_input(self): kws = self.default_kws.copy() mask = self.x_norm > 0 kws['mask'] = mask p = mat._HeatMapper(self.x_norm, **kws) plot_data = np.ma.masked_where(mask, self.x_norm) npt.assert_array_equal(p.plot_data, plot_data[::-1]) def test_default_sequential_vlims(self): p = mat._HeatMapper(self.df_unif, **self.default_kws) nt.assert_equal(p.vmin, self.x_unif.min()) nt.assert_equal(p.vmax, self.x_unif.max()) nt.assert_true(not p.divergent) def test_default_diverging_vlims(self): p = mat._HeatMapper(self.df_norm, **self.default_kws) vlim = max(abs(self.x_norm.min()), abs(self.x_norm.max())) nt.assert_equal(p.vmin, -vlim) nt.assert_equal(p.vmax, vlim) nt.assert_true(p.divergent) def test_robust_sequential_vlims(self): kws = self.default_kws.copy() kws["robust"] = True p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, np.percentile(self.x_unif, 2)) nt.assert_equal(p.vmax, np.percentile(self.x_unif, 98)) def test_custom_sequential_vlims(self): kws = self.default_kws.copy() kws["vmin"] = 0 kws["vmax"] = 1 p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, 0) nt.assert_equal(p.vmax, 1) def test_custom_diverging_vlims(self): kws = self.default_kws.copy() kws["vmin"] = -4 kws["vmax"] = 5 p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.vmin, -5) nt.assert_equal(p.vmax, 5) def test_array_with_nans(self): x1 = self.rs.rand(10, 10) nulls = np.zeros(10) * np.nan x2 = np.c_[x1, nulls] m1 = mat._HeatMapper(x1, **self.default_kws) m2 = mat._HeatMapper(x2, **self.default_kws) nt.assert_equal(m1.vmin, m2.vmin) nt.assert_equal(m1.vmax, m2.vmax) def test_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) kws = self.default_kws.copy() kws["mask"] = np.isnan(df.values) m = mat._HeatMapper(df, **kws) npt.assert_array_equal(np.isnan(m.plot_data.data), m.plot_data.mask) def test_custom_cmap(self): kws = self.default_kws.copy() kws["cmap"] = "BuGn" p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.cmap, "BuGn") def test_centered_vlims(self): kws = self.default_kws.copy() kws["center"] = .5 p = mat._HeatMapper(self.df_unif, **kws) nt.assert_true(p.divergent) nt.assert_equal(p.vmax - .5, .5 - p.vmin) def test_tickabels_off(self): kws = self.default_kws.copy() kws['xticklabels'] = False kws['yticklabels'] = False p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.xticklabels, ['' for _ in range( self.df_norm.shape[1])]) nt.assert_equal(p.yticklabels, ['' for _ in range( self.df_norm.shape[0])]) def test_custom_ticklabels(self): kws = self.default_kws.copy() xticklabels = list('iheartheatmaps'[:self.df_norm.shape[1]]) yticklabels = list('heatmapsarecool'[:self.df_norm.shape[0]]) kws['xticklabels'] = xticklabels kws['yticklabels'] = yticklabels p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.xticklabels, xticklabels) nt.assert_equal(p.yticklabels, yticklabels[::-1]) def test_heatmap_annotation(self): ax = mat.heatmap(self.df_norm, annot=True, fmt=".1f", annot_kws={"fontsize": 14}) for val, text in zip(self.x_norm[::-1].flat, ax.texts): nt.assert_equal(text.get_text(), "{:.1f}".format(val)) nt.assert_equal(text.get_fontsize(), 14) def test_heatmap_cbar(self): f = plt.figure() mat.heatmap(self.df_norm) nt.assert_equal(len(f.axes), 2) plt.close(f) f = plt.figure() mat.heatmap(self.df_norm, cbar=False) nt.assert_equal(len(f.axes), 1) plt.close(f) f, (ax1, ax2) = plt.subplots(2) mat.heatmap(self.df_norm, ax=ax1, cbar_ax=ax2) nt.assert_equal(len(f.axes), 2) plt.close(f) def test_heatmap_axes(self): ax = mat.heatmap(self.df_norm) xtl = [int(l.get_text()) for l in ax.get_xticklabels()] nt.assert_equal(xtl, list(self.df_norm.columns)) ytl = [l.get_text() for l in ax.get_yticklabels()] nt.assert_equal(ytl, list(self.df_norm.index[::-1])) nt.assert_equal(ax.get_xlabel(), "") nt.assert_equal(ax.get_ylabel(), "letters") nt.assert_equal(ax.get_xlim(), (0, 8)) nt.assert_equal(ax.get_ylim(), (0, 4)) plt.close("all") def test_heatmap_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(self.df_norm, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 0) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 90) plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(df, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 90) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) def test_heatmap_inner_lines(self): c = (0, 0, 1, 1) ax = mat.heatmap(self.df_norm, linewidths=2, linecolor=c) mesh = ax.collections[0] nt.assert_equal(mesh.get_linewidths()[0], 2) nt.assert_equal(tuple(mesh.get_edgecolor()[0]), c) plt.close("all") def test_square_aspect(self): ax = mat.heatmap(self.df_norm, square=True) nt.assert_equal(ax.get_aspect(), "equal") plt.close("all") class TestDendrogram(object): rs = np.random.RandomState(sum(map(ord, "dendrogram"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) try: import fastcluster x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') except ImportError: x_norm_distances = distance.squareform( distance.pdist(x_norm.T, metric='euclidean')) x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) default_kws = dict(linkage=None, metric='euclidean', method='single', axis=1, label=True, rotate=False) def test_ndarray_input(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) npt.assert_array_equal(p.array.T, self.x_norm) pdt.assert_frame_equal(p.data.T, pd.DataFrame(self.x_norm)) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) npt.assert_array_equal(p.xticklabels, self.x_norm_leaves) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, None) nt.assert_equal(p.ylabel, '') def test_df_input(self): p = mat._DendrogramPlotter(self.df_norm, **self.default_kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.xticklabels, np.asarray(self.df_norm.columns)[ self.x_norm_leaves]) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, 'letters') nt.assert_equal(p.ylabel, '') def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index kws = self.default_kws.copy() kws['label'] = True p = mat._DendrogramPlotter(df.T, **kws) xticklabels = ["A-1", "B-2", "C-3", "D-4"] xticklabels = [xticklabels[i] for i in p.reordered_ind] npt.assert_array_equal(p.xticklabels, xticklabels) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, "letter-number") def test_axis0_input(self): kws = self.default_kws.copy() kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.array, np.asarray(self.df_norm.T)) pdt.assert_frame_equal(p.data, self.df_norm.T) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.xticklabels, self.df_norm_leaves) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, 'letters') nt.assert_equal(p.ylabel, '') def test_rotate_input(self): kws = self.default_kws.copy() kws['rotate'] = True p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.xticklabels, []) npt.assert_array_equal(p.yticklabels, self.df_norm_leaves) nt.assert_equal(p.xlabel, '') nt.assert_equal(p.ylabel, 'letters') def test_rotate_axis0_input(self): kws = self.default_kws.copy() kws['rotate'] = True kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) def test_custom_linkage(self): kws = self.default_kws.copy() try: import fastcluster linkage = fastcluster.linkage_vector(self.x_norm, method='single', metric='euclidean') except ImportError: d = distance.squareform(distance.pdist(self.x_norm, metric='euclidean')) linkage = hierarchy.linkage(d, method='single') dendrogram = hierarchy.dendrogram(linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) kws['linkage'] = linkage p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.linkage, linkage) nt.assert_dict_equal(p.dendrogram, dendrogram) def test_label_false(self): kws = self.default_kws.copy() kws['label'] = False p = mat._DendrogramPlotter(self.df_norm, **kws) nt.assert_equal(p.xticks, []) nt.assert_equal(p.yticks, []) nt.assert_equal(p.xticklabels, []) nt.assert_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "") def test_linkage_scipy(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) scipy_linkage = p._calculate_linkage_scipy() from scipy.spatial import distance from scipy.cluster import hierarchy dists = distance.squareform(distance.pdist(self.x_norm.T, metric=self.default_kws[ 'metric'])) linkage = hierarchy.linkage(dists, method=self.default_kws['method']) npt.assert_array_equal(scipy_linkage, linkage) @skipif(_no_fastcluster) def test_fastcluster_other_method(self): import fastcluster kws = self.default_kws.copy() kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method='average', metric='euclidean') p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) @skipif(_no_fastcluster) def test_fastcluster_non_euclidean(self): import fastcluster kws = self.default_kws.copy() kws['metric'] = 'cosine' kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method=kws['method'], metric=kws['metric']) p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) def test_dendrogram_plot(self): d = mat.dendrogram(self.x_norm, **self.default_kws) ax = plt.gca() d.xmin, d.xmax = ax.get_xlim() xmax = min(map(min, d.X)) + max(map(max, d.X)) nt.assert_equal(d.xmin, 0) nt.assert_equal(d.xmax, xmax) nt.assert_equal(len(ax.get_lines()), len(d.X)) nt.assert_equal(len(ax.get_lines()), len(d.Y)) plt.close('all') def test_dendrogram_rotate(self): kws = self.default_kws.copy() kws['rotate'] = True d = mat.dendrogram(self.x_norm, **kws) ax = plt.gca() d.ymin, d.ymax = ax.get_ylim() ymax = min(map(min, d.Y)) + max(map(max, d.Y)) nt.assert_equal(d.ymin, 0) nt.assert_equal(d.ymax, ymax) plt.close('all') def test_dendrogram_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(self.df_norm, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 90) plt.close(f) f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df.T, axis=0, rotate=True) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) class TestClustermap(object): rs = np.random.RandomState(sum(map(ord, "clustermap"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) try: import fastcluster x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') except ImportError: x_norm_distances = distance.squareform( distance.pdist(x_norm.T, metric='euclidean')) x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) default_kws = dict(pivot_kws=None, z_score=None, standard_scale=None, figsize=None, row_colors=None, col_colors=None) default_plot_kws = dict(metric='euclidean', method='average', colorbar_kws=None, row_cluster=True, col_cluster=True, row_linkage=None, col_linkage=None, mask=None) row_colors = color_palette('Set2', df_norm.shape[0]) col_colors = color_palette('Dark2', df_norm.shape[1]) def test_ndarray_input(self): cm = mat.ClusterGrid(self.x_norm, **self.default_kws) pdt.assert_frame_equal(cm.data, pd.DataFrame(self.x_norm)) nt.assert_equal(len(cm.fig.axes), 4) nt.assert_equal(cm.ax_row_colors, None) nt.assert_equal(cm.ax_col_colors, None) plt.close('all') def test_df_input(self): cm = mat.ClusterGrid(self.df_norm, **self.default_kws) pdt.assert_frame_equal(cm.data, self.df_norm) plt.close('all') def test_corr_df_input(self): df = self.df_norm.corr() cg = mat.ClusterGrid(df, **self.default_kws) cg.plot(**self.default_plot_kws) diag = cg.data2d.values[np.diag_indices_from(cg.data2d)] npt.assert_array_equal(diag, np.ones(cg.data2d.shape[0])) plt.close('all') def test_pivot_input(self): df_norm = self.df_norm.copy() df_norm.index.name = 'numbers' df_long = pd.melt(df_norm.reset_index(), var_name='letters', id_vars='numbers') kws = self.default_kws.copy() kws['pivot_kws'] = dict(index='numbers', columns='letters', values='value') cm = mat.ClusterGrid(df_long, **kws) pdt.assert_frame_equal(cm.data2d, df_norm) plt.close('all') def test_colors_input(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, self.row_colors) npt.assert_array_equal(cm.col_colors, self.col_colors) nt.assert_equal(len(cm.fig.axes), 6) plt.close('all') def test_nested_colors_input(self): kws = self.default_kws.copy() row_colors = [self.row_colors, self.row_colors] col_colors = [self.col_colors, self.col_colors] kws['row_colors'] = row_colors kws['col_colors'] = col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, row_colors) npt.assert_array_equal(cm.col_colors, col_colors) nt.assert_equal(len(cm.fig.axes), 6) plt.close('all') def test_colors_input_custom_cmap(self): kws = self.default_kws.copy() kws['cmap'] = mpl.cm.PRGn kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, self.row_colors) npt.assert_array_equal(cm.col_colors, self.col_colors) nt.assert_equal(len(cm.fig.axes), 6) plt.close('all') def test_z_score(self): df = self.df_norm.copy() df = (df - df.mean()) / df.var() kws = self.default_kws.copy() kws['z_score'] = 1 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_z_score_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.mean()) / df.var() df = df.T kws = self.default_kws.copy() kws['z_score'] = 0 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_standard_scale(self): df = self.df_norm.copy() df = (df - df.min()) / (df.max() - df.min()) kws = self.default_kws.copy() kws['standard_scale'] = 1 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_standard_scale_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.min()) / (df.max() - df.min()) df = df.T kws = self.default_kws.copy() kws['standard_scale'] = 0 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_z_score_standard_scale(self): kws = self.default_kws.copy() kws['z_score'] = True kws['standard_scale'] = True with nt.assert_raises(ValueError): cm = mat.ClusterGrid(self.df_norm, **kws) plt.close('all') def test_color_list_to_matrix_and_cmap(self): matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( self.col_colors, self.x_norm_leaves) colors_set = set(self.col_colors) col_to_value = dict((col, i) for i, col in enumerate(colors_set)) matrix_test = np.array([col_to_value[col] for col in self.col_colors])[self.x_norm_leaves] shape = len(self.col_colors), 1 matrix_test = matrix_test.reshape(shape) cmap_test = mpl.colors.ListedColormap(colors_set) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) plt.close('all') def test_nested_color_list_to_matrix_and_cmap(self): colors = [self.col_colors, self.col_colors] matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( colors, self.x_norm_leaves) all_colors = set(itertools.chain(*colors)) color_to_value = dict((col, i) for i, col in enumerate(all_colors)) matrix_test = np.array( [color_to_value[c] for color in colors for c in color]) shape = len(colors), len(colors[0]) matrix_test = matrix_test.reshape(shape) matrix_test = matrix_test[:, self.x_norm_leaves] matrix_test = matrix_test.T cmap_test = mpl.colors.ListedColormap(all_colors) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) plt.close('all') def test_color_list_to_matrix_and_cmap_axis1(self): matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( self.col_colors, self.x_norm_leaves, axis=1) colors_set = set(self.col_colors) col_to_value = dict((col, i) for i, col in enumerate(colors_set)) matrix_test = np.array([col_to_value[col] for col in self.col_colors])[self.x_norm_leaves] shape = 1, len(self.col_colors) matrix_test = matrix_test.reshape(shape) cmap_test = mpl.colors.ListedColormap(colors_set) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) plt.close('all') def test_savefig(self): # Not sure if this is the right way to test.... cm = mat.ClusterGrid(self.df_norm, **self.default_kws) cm.plot(**self.default_plot_kws) cm.savefig(tempfile.NamedTemporaryFile(), format='png') plt.close('all') def test_plot_dendrograms(self): cm = mat.clustermap(self.df_norm, **self.default_kws) nt.assert_equal(len(cm.ax_row_dendrogram.get_lines()), len(cm.dendrogram_row.X)) nt.assert_equal(len(cm.ax_col_dendrogram.get_lines()), len(cm.dendrogram_col.X)) data2d = self.df_norm.iloc[cm.dendrogram_row.reordered_ind, cm.dendrogram_col.reordered_ind] pdt.assert_frame_equal(cm.data2d, data2d) plt.close('all') def test_cluster_false(self): kws = self.default_kws.copy() kws['row_cluster'] = False kws['col_cluster'] = False cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_col_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_yticks()), 0) pdt.assert_frame_equal(cm.data2d, self.df_norm) plt.close('all') def test_row_col_colors(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_colors.collections), 1) nt.assert_equal(len(cm.ax_col_colors.collections), 1) plt.close('all') def test_cluster_false_row_col_colors(self): kws = self.default_kws.copy() kws['row_cluster'] = False kws['col_cluster'] = False kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_col_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_row_colors.collections), 1) nt.assert_equal(len(cm.ax_col_colors.collections), 1) pdt.assert_frame_equal(cm.data2d, self.df_norm) plt.close('all')
bsd-3-clause
ArtsiomCh/tensorflow
tensorflow/python/estimator/canned/dnn_linear_combined_test.py
46
26964
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn_linear_combined.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator.canned import dnn_linear_combined from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import linear_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import gradient_descent from tensorflow.python.training import input as input_lib from tensorflow.python.training import optimizer as optimizer_lib try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False class DNNOnlyModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, self._dnn_only_model_fn) def _dnn_only_model_fn(self, features, labels, mode, head, hidden_units, feature_columns, optimizer='Adagrad', activation_fn=nn.relu, dropout=None, input_layer_partitioner=None, config=None): return dnn_linear_combined._dnn_linear_combined_model_fn( features=features, labels=labels, mode=mode, head=head, linear_feature_columns=[], dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, dnn_activation_fn=activation_fn, dnn_dropout=dropout, input_layer_partitioner=input_layer_partitioner, config=config) # A function to mimic linear-regressor init reuse same tests. def _linear_regressor_fn(feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Ftrl', config=None, partitioner=None): return dnn_linear_combined.DNNLinearCombinedRegressor( model_dir=model_dir, linear_feature_columns=feature_columns, linear_optimizer=optimizer, label_dimension=label_dimension, weight_column=weight_column, input_layer_partitioner=partitioner, config=config) class LinearOnlyRegressorPartitionerTest( linear_testing_utils.BaseLinearRegressorPartitionerTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorPartitionerTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorEvaluationTest( linear_testing_utils.BaseLinearRegressorEvaluationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorEvaluationTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorPredictTest( linear_testing_utils.BaseLinearRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorPredictTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorIntegrationTest( linear_testing_utils.BaseLinearRegressorIntegrationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorIntegrationTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorTrainingTest( linear_testing_utils.BaseLinearRegressorTrainingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorTrainingTest.__init__( self, _linear_regressor_fn) def _linear_classifier_fn(feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer='Ftrl', config=None, partitioner=None): return dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=feature_columns, linear_optimizer=optimizer, n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, input_layer_partitioner=partitioner, config=config) class LinearOnlyClassifierTrainingTest( linear_testing_utils.BaseLinearClassifierTrainingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierTrainingTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierClassesEvaluationTest( linear_testing_utils.BaseLinearClassifierEvaluationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierEvaluationTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierPredictTest( linear_testing_utils.BaseLinearClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierPredictTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierIntegrationTest( linear_testing_utils.BaseLinearClassifierIntegrationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierIntegrationTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class DNNLinearCombinedRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): linear_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] dnn_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] feature_columns = linear_feature_columns + dnn_feature_columns est = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) # A function to mimic dnn-classifier init reuse same tests. def _dnn_classifier_fn(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer='Adagrad', config=None, input_layer_partitioner=None): return dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=model_dir, dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, input_layer_partitioner=input_layer_partitioner, config=config) class DNNOnlyClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNOnlyClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNOnlyClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) # A function to mimic dnn-regressor init reuse same tests. def _dnn_regressor_fn(hidden_units, feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Adagrad', config=None, input_layer_partitioner=None): return dnn_linear_combined.DNNLinearCombinedRegressor( model_dir=model_dir, dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, label_dimension=label_dimension, weight_column=weight_column, input_layer_partitioner=input_layer_partitioner, config=config) class DNNOnlyRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNOnlyRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNOnlyRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) class DNNLinearCombinedClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): linear_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] dnn_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] feature_columns = linear_feature_columns + dnn_feature_columns est = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = self._as_label(np.reshape(data[:batch_size], (batch_size, 1))) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 2 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes-1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) class DNNLinearCombinedTests(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _mock_optimizer(self, real_optimizer, var_name_prefix): """Verifies global_step is None and var_names start with given prefix.""" def _minimize(loss, global_step=None, var_list=None): self.assertIsNone(global_step) trainable_vars = var_list or ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) var_names = [var.name for var in trainable_vars] self.assertTrue( all([name.startswith(var_name_prefix) for name in var_names])) # var is used to check this op called by training. with ops.name_scope(''): var = variables_lib.Variable(0., name=(var_name_prefix + '_called')) with ops.control_dependencies([var.assign(100.)]): return real_optimizer.minimize(loss, global_step, var_list) optimizer_mock = test.mock.NonCallableMagicMock( spec=optimizer_lib.Optimizer, wraps=real_optimizer) optimizer_mock.minimize = test.mock.MagicMock(wraps=_minimize) return optimizer_mock def test_train_op_calls_both_dnn_and_linear(self): opt = gradient_descent.GradientDescentOptimizer(1.) x_column = feature_column.numeric_column('x') input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[0.], [1.]])}, y=np.array([[0.], [1.]]), batch_size=1, shuffle=False) est = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[x_column], # verifies linear_optimizer is used only for linear part. linear_optimizer=self._mock_optimizer(opt, 'linear'), dnn_hidden_units=(2, 2), dnn_feature_columns=[x_column], # verifies dnn_optimizer is used only for linear part. dnn_optimizer=self._mock_optimizer(opt, 'dnn'), model_dir=self._model_dir) est.train(input_fn, steps=1) # verifies train_op fires linear minimize op self.assertEqual(100., checkpoint_utils.load_variable( self._model_dir, 'linear_called')) # verifies train_op fires dnn minimize op self.assertEqual(100., checkpoint_utils.load_variable( self._model_dir, 'dnn_called')) def test_dnn_and_linear_logits_are_added(self): with ops.Graph().as_default(): variables_lib.Variable([[1.0]], name='linear/linear_model/x/weights') variables_lib.Variable([2.0], name='linear/linear_model/bias_weights') variables_lib.Variable([[3.0]], name='dnn/hiddenlayer_0/kernel') variables_lib.Variable([4.0], name='dnn/hiddenlayer_0/bias') variables_lib.Variable([[5.0]], name='dnn/logits/kernel') variables_lib.Variable([6.0], name='dnn/logits/bias') variables_lib.Variable(1, name='global_step', dtype=dtypes.int64) linear_testing_utils.save_variables_to_ckpt(self._model_dir) x_column = feature_column.numeric_column('x') est = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[x_column], dnn_hidden_units=[1], dnn_feature_columns=[x_column], model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[10.]])}, batch_size=1, shuffle=False) # linear logits = 10*1 + 2 = 12 # dnn logits = (10*3 + 4)*5 + 6 = 176 # logits = dnn + linear = 176 + 12 = 188 self.assertAllClose( { prediction_keys.PredictionKeys.PREDICTIONS: [188.], }, next(est.predict(input_fn=input_fn))) if __name__ == '__main__': test.main()
apache-2.0
mprelee/data-incubator-capstone
src/child_cost_investigation.py
1
5797
# Look at words # Matt Prelee import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns import pickle import nltk import re from sklearn import base from sklearn.linear_model import LinearRegression, Lasso, ElasticNet from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.kernel_ridge import KernelRidge from sklearn.grid_search import GridSearchCV import time from scipy import stats from sklearn.cluster import KMeans from config import MAIN_DATA from preprocessing import default_preprocess, remove_outliers_iqr CHILD_ALL_WORD_COUNT = 'data/child_all_count.txt' CHILD_1500_WORD_COUNT = 'data/child_1500_count.txt' CHILD_1000_WORD_COUNT = 'data/child_1000_count.txt' CHILD_250_WORD_COUNT = 'data/child_250_count.txt' CHILD_NOT_1500_WORD_COUNT = 'data/child_not_1500_count.txt' ADULT_1500_WORD_COUNT = 'data/adult_1500_count.txt' CHILD_COST_HISTOGRAM = 'static/plots/child_cost_hist.png' ADULT_COST_HISTOGRAM = 'static/plots/adult_cost_hist.png' ELDERLY_COST_HISTOGRAM = 'static/plots/elderly_cost_hist.png' # Load data df = default_preprocess(pickle.load(open(MAIN_DATA,'rb'))) kids = df[df.age_group == 'child'] plt.figure(1) kids.Cost.hist(bins=150) plt.xlabel('Operation Cost ($)') plt.ylabel('Number of child patients') plt.title('Histogram of child patient operation costs') plt.savefig(CHILD_COST_HISTOGRAM,format='png') plt.figure(2) df[df.age_group == 'adult'].Cost.hist(bins=150) plt.xlabel('Operation Cost ($)') plt.ylabel('Number of adult patients') plt.title('Histogram of adult patient operation costs') plt.savefig(ADULT_COST_HISTOGRAM,format='png') plt.figure(3) df[df.age_group=='elderly'].Cost.hist(bins=150) plt.xlabel('Operation Cost ($)') plt.ylabel('Number of elderly patients') plt.title('Histogram of elderly patient operation costs') plt.savefig(ELDERLY_COST_HISTOGRAM,format='png') kids1500 = kids[kids.Cost==1500] kids1000 = kids[(kids.Cost>940) & (kids.Cost < 1020)] kids250 = kids[(kids.Cost > 0) & (kids.Cost < 310)] kids_not_1500 = kids[kids.Cost!=1500] #print kids1500['fund_time'].value_counts() #print kids_not_1500['fund_time'].value_counts() #print 'Compare adult fund times with heart disease' #print df[(df.age_group=='adult') & (df.Cost == 1500.)]['fund_time'].mean() #print df[(df.age_group=='adult') & (df.Cost != 1500.)]['fund_time'].mean() print 'Number of children costing $1500 is %d' % len(kids1500) print 'Number of children costing $1000 is %d' % len(kids1000) print 'Number of children costing $250 is %d' % len(kids250) count_vectorizer_all = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,1)) count_vectorizer_1500 = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,1)) count_vectorizer_1000 = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,1)) count_vectorizer_250 = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,1)) count_vectorizer_not_1500 = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,1)) adult_1500_vect = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,1)) all_vect = CountVectorizer(strip_accents='unicode',stop_words='english',ngram_range=(1,2)) print 'Vectorizing stories...' start_time = time.time() count_mtx_all = count_vectorizer_all.fit_transform(kids['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) print 'Vectorizing stories...' start_time = time.time() count_mtx_1500 = count_vectorizer_1500.fit_transform(kids1500['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) print 'Vectorizing stories...' start_time = time.time() count_mtx_1000 = count_vectorizer_1000.fit_transform(kids1000['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) print 'Vectorizing stories...' start_time = time.time() count_mtx_250 = count_vectorizer_250.fit_transform(kids250['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) print 'Vectorizing stories...' start_time = time.time() count_mtx_not_1500 = count_vectorizer_not_1500.fit_transform(kids_not_1500['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) print 'Vectorizing stories...' start_time = time.time() all_mtx = all_vect.fit_transform(df['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) print 'Vectorizing stories...' start_time = time.time() adult_1500_mtx = adult_1500_vect.fit_transform(df[df.age_group=='adult']['story'].values) #adult_1500_mtx = adult_1500_vect.fit_transform(df[(df.age_group=='adult') & (df.gender=='F')]['story'].values) end_time = time.time() print 'Vectorized in %d seconds.' % (end_time-start_time) def count_and_write(mtx,vec,file) : # Map counts counts = mtx.sum(axis=0).T count_dict = dict((key,int(val)) for key,val in zip(vec.get_feature_names(),counts)) print '\'heart\' appears %d times' % count_dict['heart'] with open(file,'w') as f: for key in count_dict.keys() : f.write(str(key) + ':'+ str(count_dict[key])+'\n') count_and_write(count_mtx_all,count_vectorizer_all,CHILD_ALL_WORD_COUNT) count_and_write(count_mtx_1500,count_vectorizer_1500,CHILD_1500_WORD_COUNT) count_and_write(count_mtx_1000,count_vectorizer_1000,CHILD_1000_WORD_COUNT) count_and_write(count_mtx_250,count_vectorizer_250,CHILD_250_WORD_COUNT) count_and_write(count_mtx_not_1500,count_vectorizer_250,CHILD_NOT_1500_WORD_COUNT) count_and_write(adult_1500_mtx,adult_1500_vect,ADULT_1500_WORD_COUNT)
gpl-2.0
herilalaina/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
harisbal/pandas
pandas/tests/groupby/test_bin_groupby.py
5
5046
# -*- coding: utf-8 -*- import pytest from numpy import nan import numpy as np from pandas.core.dtypes.common import ensure_int64 from pandas import Index, isna from pandas.core.groupby.ops import generate_bins_generic from pandas.util.testing import assert_almost_equal import pandas.util.testing as tm from pandas._libs import lib, groupby, reduction def test_series_grouper(): from pandas import Series obj = Series(np.random.randn(10)) dummy = obj[:0] labels = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64) grouper = reduction.SeriesGrouper(obj, np.mean, labels, 2, dummy) result, counts = grouper.get_result() expected = np.array([obj[3:6].mean(), obj[6:].mean()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) def test_series_bin_grouper(): from pandas import Series obj = Series(np.random.randn(10)) dummy = obj[:0] bins = np.array([3, 6]) grouper = reduction.SeriesBinGrouper(obj, np.mean, bins, dummy) result, counts = grouper.get_result() expected = np.array([obj[:3].mean(), obj[3:6].mean(), obj[6:].mean()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) class TestBinGroupers(object): def setup_method(self, method): self.obj = np.random.randn(10, 1) self.labels = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2], dtype=np.int64) self.bins = np.array([3, 6], dtype=np.int64) def test_generate_bins(self): values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6, 9], dtype=np.int64) for func in [lib.generate_bins_dt64, generate_bins_generic]: bins = func(values, binner, closed='left') assert ((bins == np.array([2, 5, 6])).all()) bins = func(values, binner, closed='right') assert ((bins == np.array([3, 6, 6])).all()) for func in [lib.generate_bins_dt64, generate_bins_generic]: values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6], dtype=np.int64) bins = func(values, binner, closed='right') assert ((bins == np.array([3, 6])).all()) pytest.raises(ValueError, generate_bins_generic, values, [], 'right') pytest.raises(ValueError, generate_bins_generic, values[:0], binner, 'right') pytest.raises(ValueError, generate_bins_generic, values, [4], 'right') pytest.raises(ValueError, generate_bins_generic, values, [-3, -1], 'right') def test_group_ohlc(): def _check(dtype): obj = np.array(np.random.randn(20), dtype=dtype) bins = np.array([6, 12, 20]) out = np.zeros((3, 4), dtype) counts = np.zeros(len(out), dtype=np.int64) labels = ensure_int64(np.repeat(np.arange(3), np.diff(np.r_[0, bins]))) func = getattr(groupby, 'group_ohlc_%s' % dtype) func(out, counts, obj[:, None], labels) def _ohlc(group): if isna(group).all(): return np.repeat(nan, 4) return [group[0], group.max(), group.min(), group[-1]] expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])]) assert_almost_equal(out, expected) tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64)) obj[:6] = nan func(out, counts, obj[:, None], labels) expected[0] = nan assert_almost_equal(out, expected) _check('float32') _check('float64') class TestMoments(object): pass class TestReducer(object): def test_int_index(self): from pandas.core.series import Series arr = np.random.randn(100, 4) result = reduction.reduce(arr, np.sum, labels=Index(np.arange(4))) expected = arr.sum(0) assert_almost_equal(result, expected) result = reduction.reduce(arr, np.sum, axis=1, labels=Index(np.arange(100))) expected = arr.sum(1) assert_almost_equal(result, expected) dummy = Series(0., index=np.arange(100)) result = reduction.reduce(arr, np.sum, dummy=dummy, labels=Index(np.arange(4))) expected = arr.sum(0) assert_almost_equal(result, expected) dummy = Series(0., index=np.arange(4)) result = reduction.reduce(arr, np.sum, axis=1, dummy=dummy, labels=Index(np.arange(100))) expected = arr.sum(1) assert_almost_equal(result, expected) result = reduction.reduce(arr, np.sum, axis=1, dummy=dummy, labels=Index(np.arange(100))) assert_almost_equal(result, expected)
bsd-3-clause
rtavenar/tslearn
tslearn/docs/examples/neighbors/plot_neighbors.py
1
3522
# -*- coding: utf-8 -*- """ Nearest neighbors ================= This example illustrates the use of nearest neighbor methods for database search and classification tasks. The three-nearest neighbors of the time series from a test set are computed. Then, the predictive performance of a three-nearest neighbors classifier [1] is computed with three different metrics: Dynamic Time Warping [2], Euclidean distance and SAX-MINDIST [3]. [1] `Wikipedia entry for the k-nearest neighbors algorithm <https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm>`_ [2] H. Sakoe and S. Chiba, "Dynamic programming algorithm optimization for spoken word recognition". IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49 (1978). [3] J. Lin, E. Keogh, L. Wei and S. Lonardi, "Experiencing SAX: a novel symbolic representation of time series". Data Mining and Knowledge Discovery, 15(2), 107-144 (2007). """ # Author: Romain Tavenard # License: BSD 3 clause import numpy from sklearn.metrics import accuracy_score from sklearn.pipeline import Pipeline from tslearn.generators import random_walk_blobs from tslearn.preprocessing import TimeSeriesScalerMinMax from tslearn.neighbors import KNeighborsTimeSeriesClassifier, \ KNeighborsTimeSeries from tslearn.piecewise import SymbolicAggregateApproximation numpy.random.seed(0) n_ts_per_blob, sz, d, n_blobs = 20, 100, 1, 2 # Prepare data X, y = random_walk_blobs(n_ts_per_blob=n_ts_per_blob, sz=sz, d=d, n_blobs=n_blobs) scaler = TimeSeriesScalerMinMax(value_range=(0., 1.)) # Rescale time series X_scaled = scaler.fit_transform(X) indices_shuffle = numpy.random.permutation(n_ts_per_blob * n_blobs) X_shuffle = X_scaled[indices_shuffle] y_shuffle = y[indices_shuffle] X_train = X_shuffle[:n_ts_per_blob * n_blobs // 2] X_test = X_shuffle[n_ts_per_blob * n_blobs // 2:] y_train = y_shuffle[:n_ts_per_blob * n_blobs // 2] y_test = y_shuffle[n_ts_per_blob * n_blobs // 2:] # Nearest neighbor search knn = KNeighborsTimeSeries(n_neighbors=3, metric="dtw") knn.fit(X_train, y_train) dists, ind = knn.kneighbors(X_test) print("1. Nearest neighbour search") print("Computed nearest neighbor indices (wrt DTW)\n", ind) print("First nearest neighbor class:", y_test[ind[:, 0]]) # Nearest neighbor classification knn_clf = KNeighborsTimeSeriesClassifier(n_neighbors=3, metric="dtw") knn_clf.fit(X_train, y_train) predicted_labels = knn_clf.predict(X_test) print("\n2. Nearest neighbor classification using DTW") print("Correct classification rate:", accuracy_score(y_test, predicted_labels)) # Nearest neighbor classification with a different metric (Euclidean distance) knn_clf = KNeighborsTimeSeriesClassifier(n_neighbors=3, metric="euclidean") knn_clf.fit(X_train, y_train) predicted_labels = knn_clf.predict(X_test) print("\n3. Nearest neighbor classification using L2") print("Correct classification rate:", accuracy_score(y_test, predicted_labels)) # Nearest neighbor classification based on SAX representation sax_trans = SymbolicAggregateApproximation(n_segments=10, alphabet_size_avg=5) knn_clf = KNeighborsTimeSeriesClassifier(n_neighbors=3, metric="euclidean") pipeline_model = Pipeline(steps=[('sax', sax_trans), ('knn', knn_clf)]) pipeline_model.fit(X_train, y_train) predicted_labels = pipeline_model.predict(X_test) print("\n4. Nearest neighbor classification using SAX+MINDIST") print("Correct classification rate:", accuracy_score(y_test, predicted_labels))
bsd-2-clause
martinggww/lucasenlights
ETF/lucas/src/getDf.py
2
15125
import sys, os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import my_config as config import numpy as np import talib as ta import pandas as pd import logging, json STICKERS = config.STICKERS logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__file__) #Append a dict as a row in df def appendDf(stickers, df, dict,data_frame): entry = [dict['DATE']] values = [] for sticker in stickers: if sticker == 'CASH': continue entry.append(dict[sticker]) if data_frame == 'daily': entry.append(dict['FUND_PERF']) df.loc[df.shape[0]] = entry return df #Must kee the same sequence, DATE, xxx_daily, yyy_daily,...., FUND_PERF def getQuantDfColumnNames(stickers, data_frame): column_names = [] column_names.append('DATE') for sticker in stickers: if sticker == 'CASH': continue column_names.append(sticker + '_' + data_frame) if data_frame == 'daily': column_names.append('FUND_PERF') return column_names #Return FeatureDFColumnNames def getFeatureDfColumnNames(stickers, features, rank_features): column_names = [] for sticker in stickers: if sticker == 'CASH': continue for feature in features.values(): column_names.append(sticker + feature) column_names.append(rank_features['_KD_RANK']) column_names.append(rank_features['_MFI_RANK']) return column_names #This is the columns names for Data frame, def getDfFeatures(data_frame): FEATURES = config.FEATURES RANK_FEATURES = config.RANK_FEATURES if data_frame == 'weekly': FEATURES = config.WEEKLY_FEATURES RANK_FEATURES = config.WEEKLY_RANK_FEATURES elif data_frame == 'monthly': FEATURES = config.MONTHLY_FEATURES RANK_FEATURES = config.MONTHLY_RANK_FEATURES return FEATURES, RANK_FEATURES def getStatFeatures(data_frame): FEATURES = config.STAT_FEATURES RANK_FEATURES = config.RANK_FEATURES if data_frame == 'weekly': FEATURES = config.WEEKLY_STAT_FEATURES RANK_FEATURES = config.WEEKLY_RANK_FEATURES elif data_frame == 'monthly': FEATURES = config.MONTHLY_STAT_FEATURES RANK_FEATURES = config.MONTHLY_RANK_FEATURES return FEATURES, RANK_FEATURES def getFeatureDf(): d, w, m = readCsvFiles() #ToDo, add a logic to check the last data d, d_hist_mom = getDailyFeatureDf(d) w, w_hist_mom = getWeeklyFeatureDf(w) d = d.dropna() w = w.dropna() d = d.reset_index(drop=True) w = w.reset_index(drop=True) return d, w, None ''' input: @sticker:string, sticker name output: @df:data frame. Read csv file as a data frame, 1)drop open, high, low, close, keep aclose and volume 2) add 3 more colummns xxx_st_slope_momentum, xxx_lt_slope_momentum, xxx_sm_slope_momentum 3) Set those three columns as zero ''' def readCsv(sticker, time_frame): file_name = None if time_frame == "daily": file_name = '../csv/' + sticker + '.csv' # timestamp, open, high, low, close, adjusted_close, volume, dividend_amount, split_coefficient df = pd.read_csv(file_name, sep=',', header=0, names=['date', sticker + '_open', sticker + '_high', \ sticker + '_low', sticker + '_org_close', \ sticker + '_close', \ sticker + '_volume', sticker + '_dividend_amount', \ sticker + '_split_coefficient']) return df elif time_frame == "weekly": file_name = '../csv/' + sticker + '.weekly' + '.csv' # timestamp, open, high, low, close, adjusted close, volume, dividend amount df = pd.read_csv(file_name, sep=',', header=0, names=['date', sticker + '_open', sticker + '_high', \ sticker + '_low', sticker + '_org_close', \ sticker + '_close', \ sticker + '_volume', sticker + '_dividend_amount']) return df return None # Read the original .csv dataframe def readCsvFilesTimeFrame(TimeFrame): dfs = [] #Read all symbol's trade data for sticker in STICKERS: df = readCsv(sticker, TimeFrame) dfs.append(df) df = dfs[0] for idx in xrange(1, len(dfs), 1): _ = dfs[idx] df = pd.merge(df, _, on='date', how='outer') # Reverse the dataframe df = df.iloc[::-1] df = df.dropna() df.drop(df.index[[0, 1]], inplace=True) df = df.reset_index(drop=True) return df ''' Read original .csv files, daily, weekly and monthly ''' def readCsvFiles(): df = readCsvFilesTimeFrame('daily') weekly_df = readCsvFilesTimeFrame('weekly') #monthly_df = readCsvFilesTimeFrame('monthly') return df, weekly_df, None#monthly_df '''Get ranks from high to low, descending...''' def getRanks(df, feature_name): sm_names = [sticker + feature_name for sticker in STICKERS] sm_names.append('CASH'+feature_name) df_sm = df.loc[:, sm_names] # For each row, sort the values by column name ranking_list = [] for index, row in df_sm.iterrows(): temp = row.sort_values(ascending=False, kind='quicksort', inplace=False) values = temp.to_frame().index.values.tolist() ranking_list.append([item.split('_')[0] for item in values]) return ranking_list def getDiv(v1, v2): result = [] for index in xrange(0, len(v1), 1): if v2[index] != 0: result.append(float(v1[index])/v2[index]) else: result.append(1.0) return np.array(result) ''' This function add feature names to feature Df ''' def AddFeatureToDf(df, data_frame): # Add the following columns for feature extraction. FEATURES, RANK_FEATURES = getDfFeatures(data_frame) feature_columns = getFeatureDfColumnNames(STICKERS, FEATURES, RANK_FEATURES) feature_df = pd.DataFrame(np.zeros((df.shape[0], len(feature_columns))), columns=feature_columns, dtype=float) feature_df['date'] = df.date df = pd.merge(df, feature_df, on='date', how='outer') df.replace([np.inf, -np.inf], np.nan, inplace=True) df.dropna(how='any', inplace=True) if df.isnull().any().any(): logger.error("After merge, has null") exit(1) #print df.columns.values #print df.head(10) return df def getWeeklyFeatureDf(df): # Add the following columns for feature extraction. df = AddFeatureToDf(df, 'weekly') FEATURES = config.WEEKLY_FEATURES RANK_FEATURES = config.WEEKLY_RANK_FEATURES hist_mom_dict = {} date = np.asarray(df['date'], dtype=str) total_len = len(date) for sticker in config.STICKERS: kd_date, k, d = extractKD(sticker, date, '_weekly_KD.json') mfi_date, mfi = extractMFI(sticker, date, '_weekly_MFI.json') k = postProcess(total_len, k) d = postProcess(total_len, d) mfi = postProcess(total_len, mfi) # get high, low, close and volume close = np.asarray(df[sticker + '_close'], dtype=float) #KD _column_kd = sticker + FEATURES['_KD'] temp = (d + k)/2.0 df[_column_kd] = temp _ssto_slope = ta.LINEARREG_SLOPE(temp, timeperiod=10) #KD_SLOPE _column_ssto_slope = sticker + FEATURES['_KD_SLOPE'] _ssto_slope[np.isnan(_ssto_slope)] = 0 df[_column_ssto_slope] = _ssto_slope #MFI SLOPE _column_mfi = sticker + FEATURES['_MFI'] _column_mfi_slope = sticker + FEATURES['_MFI_SLOPE'] mfi = np.array(mfi) _mfi_slope = ta.LINEARREG_SLOPE(mfi, timeperiod=10) _mfi_slope[np.isnan(_mfi_slope)] = 0 df[_column_mfi] = mfi df[_column_mfi_slope] = _mfi_slope #ROC _column_roc = sticker + FEATURES['_ROC'] _roc = ta.ROC(close, timeperiod=10) _roc[np.isnan(_roc)] = 0 df[_column_roc] = _roc df['CASH_weekly_MFI'] = 50.0 df['CASH_weekly_K'] = 50.0 df['CASH_weekly_D'] = 50.0 df['CASH_weekly_KD'] = 50.0 df['CASH_weekly_HIST_MOM'] = 1.0 df['CASH_weekly_KD_SLOPE'] = 0.0001 df['CASH_weekly_MFI_SLOPE'] = 0.0001 #From high to low, slope from high to low kd_rank = getRanks(df, '_weekly_KD_SLOPE') mfi_rank = getRanks(df, '_weekly_MFI_SLOPE') df[RANK_FEATURES['_KD_RANK']] = kd_rank df[RANK_FEATURES['_MFI_RANK']] = mfi_rank return df, hist_mom_dict def extractKD(sticker, dates,data_frame): kd = {} file_name = '../csv/' + sticker + data_frame with open(file_name) as json_data: kd = json.load(json_data) dict_list = kd['Technical Analysis: STOCH'] date_list=[] k = [] d = [] flag = False for date, value in sorted(dict_list.iteritems()): if date >= dates[0] and date <= dates[-1]: date_list.append(date) k.append(float(value['SlowK'])) d.append(float(value['SlowD'])) return date_list, np.asarray(k), np.asarray(d) def extractMFI(sticker, dates, data_frame): file_name = '../csv/' + sticker + data_frame with open(file_name) as json_data: mfi = json.load(json_data) dict_list = mfi['Technical Analysis: MFI'] date_list=[] mfi = [] flag = False for date, value in sorted(dict_list.iteritems()): if date >= dates[0] and date <= dates[-1]: date_list.append(date) mfi.append(float(value['MFI'])) return date_list, np.asarray(mfi) def postProcess(total_len, data): list_len = len(data) if list_len >= total_len: return data result = np.full(total_len - list_len, np.nan) result = np.concatenate([result, data]) return result def getDailyFeatureDf(df): # Add the following columns for feature extraction. df = AddFeatureToDf(df, 'daily') FEATURES = config.FEATURES RANK_FEATURES = config.RANK_FEATURES hist_mom_dict = {} date = np.asarray(df['date'], dtype=str) total_len = len(date) for sticker in config.STICKERS: kd_date, k, d = extractKD(sticker, date, '_daily_KD.json') mfi_date, mfi = extractMFI(sticker, date, '_daily_MFI.json') k = postProcess(total_len, k) d = postProcess(total_len, d) mfi = postProcess(total_len, mfi) # get high, low, close and volume close = np.asarray(df[sticker + '_close'], dtype=float) df[sticker + '_high'] = (df[sticker + '_close'] * df[sticker + '_high']) / df[sticker + '_org_close'] df[sticker + '_low'] = (df[sticker + '_close'] * df[sticker + '_low']) / df[sticker + '_org_close'] #20SMA _column_20_sma = sticker + FEATURES['_20_SMA'] _20_sma = ta.SMA(close, timeperiod=20) _20_sma[np.isnan(_20_sma)] = 0.0 df[_column_20_sma] = _20_sma #50SMA _column_50_sma = sticker + FEATURES['_50_SMA'] _50_sma = ta.SMA(close, timeperiod=50) _50_sma[np.isnan(_50_sma)] = 0.0 df[_column_50_sma] = _50_sma #100 SMA _column_100_sma = sticker + FEATURES['_100_SMA'] _100_sma = ta.SMA(close, timeperiod=100) _100_sma[np.isnan(_100_sma)] = 0.0 df[_column_100_sma] = _100_sma #K,D _column_kd = sticker + FEATURES['_KD'] temp = (d + k) / 2.0 df[_column_kd] = temp _ssto_slope = ta.LINEARREG_SLOPE(temp, timeperiod=10) #KD_SLOPE _column_ssto_slope = sticker + FEATURES['_KD_SLOPE'] #_ssto_slope[np.isnan(_ssto_slope)] = 0 df[_column_ssto_slope] = _ssto_slope #MFI _column_mfi = sticker + FEATURES['_MFI'] _column_mfi_slope = sticker + FEATURES['_MFI_SLOPE'] #MFI_SLOPE mfi = np.array(mfi) df[_column_mfi] = mfi _mfi_slope = ta.LINEARREG_SLOPE(mfi, timeperiod=10) #_mfi_slope[np.isnan(_mfi_slope)] = 0 df[_column_mfi_slope] = _mfi_slope #ROC _column_roc = sticker + FEATURES['_ROC'] _roc = ta.ROC(close, timeperiod=10) #_roc[np.isnan(_roc)] = 0.0 df[_column_roc] = _roc #Historical momentum _column_hist_mom = sticker + FEATURES['_HIST_MOM'] if sticker != 'CASH': _hist_mom = getDiv(df[sticker + '_close'].tolist(), df[sticker + '_daily_20_SMA'].tolist()) * \ getDiv(df[sticker + '_close'].tolist(), df[sticker + '_daily_50_SMA'].tolist()) * \ getDiv(df[sticker + '_close'].tolist(), df[sticker + '_daily_100_SMA'].tolist()) _hist_mom[np.isnan(_hist_mom)] = 1.0 df[_column_hist_mom] = _hist_mom hist_mom = {} hist_mom['min'] = df[_column_hist_mom].min() hist_mom['max'] = df[_column_hist_mom].max() hist_mom_dict[sticker] = hist_mom df['CASH_daily_K'] = 50.0 df['CASH_daily_D'] = 50.0 df['CASH_daily_KD'] = 50.0 df['CASH_daily_MFI'] = 50.0 df['CASH_daily_HIST_MOM'] = 1.0 df['CASH_daily_KD_SLOPE'] = 0.0001 df['CASH_daily_MFI_SLOPE'] = 0.0001 #From high to low, slope from high to low kd_rank = getRanks(df, '_daily_KD_SLOPE') mfi_rank = getRanks(df, '_daily_MFI_SLOPE') df[RANK_FEATURES['_KD_RANK']] = kd_rank df[RANK_FEATURES['_MFI_RANK']] = mfi_rank return df, hist_mom_dict def addFundPerf(df, data_frame): FEATURES = config.FUND_FEATURES if data_frame == "weekly": FEATURES = config.WEEKLY_FUND_FEATURES df[FEATURES['FUND_PERF']] = 0.0000001 df[FEATURES['FUND_MONEY_FLOW']] = 0.0000001 df[FEATURES['FUND_PRICE_FLOW']] = 0.0000001 df[FEATURES['FUND_HIST']] = 0.0000001 df.replace([np.inf, -np.inf], np.nan, inplace=True) df.dropna(how='any', inplace=True) if df.isnull().any().any(): logger.error("After calculation feature values, df has null") exit(1) df = df.reset_index(drop=True) return df def readStatics(): d = None w = None with open(config.DAILY_STATICS) as json_data: d = json.load(json_data) with open(config.WEEKLY_STATICS) as json_data: w = json.load(json_data) return d, w def dropOffTrade(d, first_date): index = 0 for index, row in d.iterrows(): if row['date'] == first_date: break d = d.drop(d.index[:index]) return d def dropOff(df, data_frame): drop_off_column_names = [] drops = config.DROP_OFF_COLUMN_NAMES if data_frame == 'weekly': drops = config.WEEKLY_DROP_OFF_COLUMN_NAMES if data_frame == 'monthly': drops = config.MONTHLY_DROP_OFF_COLUMN_NAMES for sticker in STICKERS: for drop in drops: drop_off_column_names.append(sticker + drop) df.drop(drop_off_column_names, axis=1, inplace=True) return df
cc0-1.0
nesterione/scikit-learn
sklearn/utils/tests/test_multiclass.py
128
12853
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formated as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that were'nt supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/pandas/tseries/tests/test_tslib.py
7
66821
import nose from distutils.version import LooseVersion import numpy as np from pandas import tslib, lib import pandas._period as period import datetime import pandas as pd from pandas.core.api import (Timestamp, Index, Series, Timedelta, Period, to_datetime) from pandas.tslib import get_timezone from pandas._period import period_asfreq, period_ordinal from pandas.tseries.index import date_range, DatetimeIndex from pandas.tseries.frequencies import ( get_freq, US_RESO, MS_RESO, S_RESO, H_RESO, D_RESO, T_RESO ) import pandas.tseries.tools as tools import pandas.tseries.offsets as offsets import pandas.util.testing as tm import pandas.compat as compat from pandas.compat.numpy import (np_datetime64_compat, np_array_datetime64_compat) from pandas.util.testing import assert_series_equal, _skip_if_has_locale class TestTsUtil(tm.TestCase): def test_try_parse_dates(self): from dateutil.parser import parse arr = np.array(['5/1/2000', '6/1/2000', '7/1/2000'], dtype=object) result = lib.try_parse_dates(arr, dayfirst=True) expected = [parse(d, dayfirst=True) for d in arr] self.assertTrue(np.array_equal(result, expected)) def test_min_valid(self): # Ensure that Timestamp.min is a valid Timestamp Timestamp(Timestamp.min) def test_max_valid(self): # Ensure that Timestamp.max is a valid Timestamp Timestamp(Timestamp.max) def test_to_datetime_bijective(self): # Ensure that converting to datetime and back only loses precision # by going from nanoseconds to microseconds. exp_warning = None if Timestamp.max.nanosecond == 0 else UserWarning with tm.assert_produces_warning(exp_warning, check_stacklevel=False): self.assertEqual( Timestamp(Timestamp.max.to_pydatetime()).value / 1000, Timestamp.max.value / 1000) exp_warning = None if Timestamp.min.nanosecond == 0 else UserWarning with tm.assert_produces_warning(exp_warning, check_stacklevel=False): self.assertEqual( Timestamp(Timestamp.min.to_pydatetime()).value / 1000, Timestamp.min.value / 1000) class TestTimestamp(tm.TestCase): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime.datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar self.assertEqual(calendar.timegm(base_dt.timetuple()) * 1000000000, base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime.datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime.datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] tm._skip_if_no_pytz() tm._skip_if_no_dateutil() import pytz import dateutil timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # re-creation shouldn't affect to internal value result = Timestamp(result) self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should preserve tz result = Timestamp(result) self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 self.assertEqual(result.value, expected_utc) self.assertEqual(tslib.pydt_to_i8(result), expected_utc) def test_constructor_with_stringoffset(self): # GH 7833 base_str = '2014-07-01 11:00:00+02:00' base_dt = datetime.datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar self.assertEqual(calendar.timegm(base_dt.timetuple()) * 1000000000, base_expected) tests = [(base_str, base_expected), ('2014-07-01 12:00:00+02:00', base_expected + 3600 * 1000000000), ('2014-07-01 11:00:00.000008000+02:00', base_expected + 8000), ('2014-07-01 11:00:00.000000005+02:00', base_expected + 5)] tm._skip_if_no_pytz() tm._skip_if_no_dateutil() import pytz import dateutil timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, expected in tests: for result in [Timestamp(date_str)]: # only with timestring self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # re-creation shouldn't affect to internal value result = Timestamp(result) self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # with timezone for tz, offset in timezones: result = Timestamp(date_str, tz=tz) expected_tz = expected self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should preserve tz result = Timestamp(result) self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected self.assertEqual(result.value, expected_utc) self.assertEqual(tslib.pydt_to_i8(result), expected_utc) # This should be 2013-11-01 05:00 in UTC # converted to Chicago tz result = Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago') self.assertEqual(result.value, Timestamp('2013-11-01 05:00').value) expected = "Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago')" # noqa self.assertEqual(repr(result), expected) self.assertEqual(result, eval(repr(result))) # This should be 2013-11-01 05:00 in UTC # converted to Tokyo tz (+09:00) result = Timestamp('2013-11-01 00:00:00-0500', tz='Asia/Tokyo') self.assertEqual(result.value, Timestamp('2013-11-01 05:00').value) expected = "Timestamp('2013-11-01 14:00:00+0900', tz='Asia/Tokyo')" self.assertEqual(repr(result), expected) self.assertEqual(result, eval(repr(result))) # GH11708 # This should be 2015-11-18 10:00 in UTC # converted to Asia/Katmandu result = Timestamp("2015-11-18 15:45:00+05:45", tz="Asia/Katmandu") self.assertEqual(result.value, Timestamp("2015-11-18 10:00").value) expected = "Timestamp('2015-11-18 15:45:00+0545', tz='Asia/Katmandu')" self.assertEqual(repr(result), expected) self.assertEqual(result, eval(repr(result))) # This should be 2015-11-18 10:00 in UTC # converted to Asia/Kolkata result = Timestamp("2015-11-18 15:30:00+05:30", tz="Asia/Kolkata") self.assertEqual(result.value, Timestamp("2015-11-18 10:00").value) expected = "Timestamp('2015-11-18 15:30:00+0530', tz='Asia/Kolkata')" self.assertEqual(repr(result), expected) self.assertEqual(result, eval(repr(result))) def test_constructor_invalid(self): with tm.assertRaisesRegexp(TypeError, 'Cannot convert input'): Timestamp(slice(2)) with tm.assertRaisesRegexp(ValueError, 'Cannot convert Period'): Timestamp(Period('1000-01-01')) def test_constructor_positional(self): # GH 10758 with tm.assertRaises(TypeError): Timestamp(2000, 1) with tm.assertRaises(ValueError): Timestamp(2000, 0, 1) with tm.assertRaises(ValueError): Timestamp(2000, 13, 1) with tm.assertRaises(ValueError): Timestamp(2000, 1, 0) with tm.assertRaises(ValueError): Timestamp(2000, 1, 32) # GH 11630 self.assertEqual( repr(Timestamp(2015, 11, 12)), repr(Timestamp('20151112'))) self.assertEqual( repr(Timestamp(2015, 11, 12, 1, 2, 3, 999999)), repr(Timestamp('2015-11-12 01:02:03.999999'))) self.assertIs(Timestamp(None), pd.NaT) def test_constructor_keyword(self): # GH 10758 with tm.assertRaises(TypeError): Timestamp(year=2000, month=1) with tm.assertRaises(ValueError): Timestamp(year=2000, month=0, day=1) with tm.assertRaises(ValueError): Timestamp(year=2000, month=13, day=1) with tm.assertRaises(ValueError): Timestamp(year=2000, month=1, day=0) with tm.assertRaises(ValueError): Timestamp(year=2000, month=1, day=32) self.assertEqual( repr(Timestamp(year=2015, month=11, day=12)), repr(Timestamp('20151112'))) self.assertEqual( repr(Timestamp(year=2015, month=11, day=12, hour=1, minute=2, second=3, microsecond=999999)), repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_fromordinal(self): base = datetime.datetime(2000, 1, 1) ts = Timestamp.fromordinal(base.toordinal(), freq='D') self.assertEqual(base, ts) self.assertEqual(ts.freq, 'D') self.assertEqual(base.toordinal(), ts.toordinal()) ts = Timestamp.fromordinal(base.toordinal(), tz='US/Eastern') self.assertEqual(pd.Timestamp('2000-01-01', tz='US/Eastern'), ts) self.assertEqual(base.toordinal(), ts.toordinal()) def test_constructor_offset_depr(self): # GH 12160 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): ts = Timestamp('2011-01-01', offset='D') self.assertEqual(ts.freq, 'D') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.assertEqual(ts.offset, 'D') msg = "Can only specify freq or offset, not both" with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01', offset='D', freq='D') def test_constructor_offset_depr_fromordinal(self): # GH 12160 base = datetime.datetime(2000, 1, 1) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): ts = Timestamp.fromordinal(base.toordinal(), offset='D') self.assertEqual(pd.Timestamp('2000-01-01'), ts) self.assertEqual(ts.freq, 'D') self.assertEqual(base.toordinal(), ts.toordinal()) msg = "Can only specify freq or offset, not both" with tm.assertRaisesRegexp(TypeError, msg): Timestamp.fromordinal(base.toordinal(), offset='D', freq='D') def test_conversion(self): # GH 9255 ts = Timestamp('2000-01-01') result = ts.to_pydatetime() expected = datetime.datetime(2000, 1, 1) self.assertEqual(result, expected) self.assertEqual(type(result), type(expected)) result = ts.to_datetime64() expected = np.datetime64(ts.value, 'ns') self.assertEqual(result, expected) self.assertEqual(type(result), type(expected)) self.assertEqual(result.dtype, expected.dtype) def test_repr(self): tm._skip_if_no_pytz() tm._skip_if_no_dateutil() dates = ['2014-03-07', '2014-01-01 09:00', '2014-01-01 00:00:00.000000001'] # dateutil zone change (only matters for repr) import dateutil if (dateutil.__version__ >= LooseVersion('2.3') and (dateutil.__version__ <= LooseVersion('2.4.0') or dateutil.__version__ >= LooseVersion('2.6.0'))): timezones = ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific'] else: timezones = ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/America/Los_Angeles'] freqs = ['D', 'M', 'S', 'N'] for date in dates: for tz in timezones: for freq in freqs: # avoid to match with timezone name freq_repr = "'{0}'".format(freq) if tz.startswith('dateutil'): tz_repr = tz.replace('dateutil', '') else: tz_repr = tz date_only = Timestamp(date) self.assertIn(date, repr(date_only)) self.assertNotIn(tz_repr, repr(date_only)) self.assertNotIn(freq_repr, repr(date_only)) self.assertEqual(date_only, eval(repr(date_only))) date_tz = Timestamp(date, tz=tz) self.assertIn(date, repr(date_tz)) self.assertIn(tz_repr, repr(date_tz)) self.assertNotIn(freq_repr, repr(date_tz)) self.assertEqual(date_tz, eval(repr(date_tz))) date_freq = Timestamp(date, freq=freq) self.assertIn(date, repr(date_freq)) self.assertNotIn(tz_repr, repr(date_freq)) self.assertIn(freq_repr, repr(date_freq)) self.assertEqual(date_freq, eval(repr(date_freq))) date_tz_freq = Timestamp(date, tz=tz, freq=freq) self.assertIn(date, repr(date_tz_freq)) self.assertIn(tz_repr, repr(date_tz_freq)) self.assertIn(freq_repr, repr(date_tz_freq)) self.assertEqual(date_tz_freq, eval(repr(date_tz_freq))) # this can cause the tz field to be populated, but it's redundant to # information in the datestring tm._skip_if_no_pytz() import pytz # noqa date_with_utc_offset = Timestamp('2014-03-13 00:00:00-0400', tz=None) self.assertIn('2014-03-13 00:00:00-0400', repr(date_with_utc_offset)) self.assertNotIn('tzoffset', repr(date_with_utc_offset)) self.assertIn('pytz.FixedOffset(-240)', repr(date_with_utc_offset)) expr = repr(date_with_utc_offset).replace("'pytz.FixedOffset(-240)'", 'pytz.FixedOffset(-240)') self.assertEqual(date_with_utc_offset, eval(expr)) def test_bounds_with_different_units(self): out_of_bounds_dates = ('1677-09-21', '2262-04-12', ) time_units = ('D', 'h', 'm', 's', 'ms', 'us') for date_string in out_of_bounds_dates: for unit in time_units: self.assertRaises(ValueError, Timestamp, np.datetime64( date_string, dtype='M8[%s]' % unit)) in_bounds_dates = ('1677-09-23', '2262-04-11', ) for date_string in in_bounds_dates: for unit in time_units: Timestamp(np.datetime64(date_string, dtype='M8[%s]' % unit)) def test_tz(self): t = '2014-02-01 09:00' ts = Timestamp(t) local = ts.tz_localize('Asia/Tokyo') self.assertEqual(local.hour, 9) self.assertEqual(local, Timestamp(t, tz='Asia/Tokyo')) conv = local.tz_convert('US/Eastern') self.assertEqual(conv, Timestamp('2014-01-31 19:00', tz='US/Eastern')) self.assertEqual(conv.hour, 19) # preserves nanosecond ts = Timestamp(t) + offsets.Nano(5) local = ts.tz_localize('Asia/Tokyo') self.assertEqual(local.hour, 9) self.assertEqual(local.nanosecond, 5) conv = local.tz_convert('US/Eastern') self.assertEqual(conv.nanosecond, 5) self.assertEqual(conv.hour, 19) def test_tz_localize_ambiguous(self): ts = Timestamp('2014-11-02 01:00') ts_dst = ts.tz_localize('US/Eastern', ambiguous=True) ts_no_dst = ts.tz_localize('US/Eastern', ambiguous=False) rng = date_range('2014-11-02', periods=3, freq='H', tz='US/Eastern') self.assertEqual(rng[1], ts_dst) self.assertEqual(rng[2], ts_no_dst) self.assertRaises(ValueError, ts.tz_localize, 'US/Eastern', ambiguous='infer') # GH 8025 with tm.assertRaisesRegexp(TypeError, 'Cannot localize tz-aware Timestamp, use ' 'tz_convert for conversions'): Timestamp('2011-01-01', tz='US/Eastern').tz_localize('Asia/Tokyo') with tm.assertRaisesRegexp(TypeError, 'Cannot convert tz-naive Timestamp, use ' 'tz_localize to localize'): Timestamp('2011-01-01').tz_convert('Asia/Tokyo') def test_tz_localize_nonexistent(self): # See issue 13057 from pytz.exceptions import NonExistentTimeError times = ['2015-03-08 02:00', '2015-03-08 02:30', '2015-03-29 02:00', '2015-03-29 02:30'] timezones = ['US/Eastern', 'US/Pacific', 'Europe/Paris', 'Europe/Belgrade'] for t, tz in zip(times, timezones): ts = Timestamp(t) self.assertRaises(NonExistentTimeError, ts.tz_localize, tz) self.assertRaises(NonExistentTimeError, ts.tz_localize, tz, errors='raise') self.assertIs(ts.tz_localize(tz, errors='coerce'), pd.NaT) def test_tz_localize_errors_ambiguous(self): # See issue 13057 from pytz.exceptions import AmbiguousTimeError ts = pd.Timestamp('2015-11-1 01:00') self.assertRaises(AmbiguousTimeError, ts.tz_localize, 'US/Pacific', errors='coerce') def test_tz_localize_roundtrip(self): for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific']: for t in ['2014-02-01 09:00', '2014-07-08 09:00', '2014-11-01 17:00', '2014-11-05 00:00']: ts = Timestamp(t) localized = ts.tz_localize(tz) self.assertEqual(localized, Timestamp(t, tz=tz)) with tm.assertRaises(TypeError): localized.tz_localize(tz) reset = localized.tz_localize(None) self.assertEqual(reset, ts) self.assertTrue(reset.tzinfo is None) def test_tz_convert_roundtrip(self): for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific']: for t in ['2014-02-01 09:00', '2014-07-08 09:00', '2014-11-01 17:00', '2014-11-05 00:00']: ts = Timestamp(t, tz='UTC') converted = ts.tz_convert(tz) reset = converted.tz_convert(None) self.assertEqual(reset, Timestamp(t)) self.assertTrue(reset.tzinfo is None) self.assertEqual(reset, converted.tz_convert('UTC').tz_localize(None)) def test_barely_oob_dts(self): one_us = np.timedelta64(1).astype('timedelta64[us]') # By definition we can't go out of bounds in [ns], so we # convert the datetime64s to [us] so we can go out of bounds min_ts_us = np.datetime64(Timestamp.min).astype('M8[us]') max_ts_us = np.datetime64(Timestamp.max).astype('M8[us]') # No error for the min/max datetimes Timestamp(min_ts_us) Timestamp(max_ts_us) # One us less than the minimum is an error self.assertRaises(ValueError, Timestamp, min_ts_us - one_us) # One us more than the maximum is an error self.assertRaises(ValueError, Timestamp, max_ts_us + one_us) def test_utc_z_designator(self): self.assertEqual(get_timezone( Timestamp('2014-11-02 01:00Z').tzinfo), 'UTC') def test_now(self): # #9000 ts_from_string = Timestamp('now') ts_from_method = Timestamp.now() ts_datetime = datetime.datetime.now() ts_from_string_tz = Timestamp('now', tz='US/Eastern') ts_from_method_tz = Timestamp.now(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily # small) delta = Timedelta(seconds=1) self.assertTrue(abs(ts_from_method - ts_from_string) < delta) self.assertTrue(abs(ts_datetime - ts_from_method) < delta) self.assertTrue(abs(ts_from_method_tz - ts_from_string_tz) < delta) self.assertTrue(abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) def test_today(self): ts_from_string = Timestamp('today') ts_from_method = Timestamp.today() ts_datetime = datetime.datetime.today() ts_from_string_tz = Timestamp('today', tz='US/Eastern') ts_from_method_tz = Timestamp.today(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily # small) delta = Timedelta(seconds=1) self.assertTrue(abs(ts_from_method - ts_from_string) < delta) self.assertTrue(abs(ts_datetime - ts_from_method) < delta) self.assertTrue(abs(ts_from_method_tz - ts_from_string_tz) < delta) self.assertTrue(abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) def test_asm8(self): np.random.seed(7960929) ns = [Timestamp.min.value, Timestamp.max.value, 1000, ] for n in ns: self.assertEqual(Timestamp(n).asm8.view('i8'), np.datetime64(n, 'ns').view('i8'), n) self.assertEqual(Timestamp('nat').asm8.view('i8'), np.datetime64('nat', 'ns').view('i8')) def test_fields(self): def check(value, equal): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) self.assertEqual(value, equal) # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) self.assertRaises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) def test_nat_fields(self): # GH 10050 ts = Timestamp('NaT') self.assertTrue(np.isnan(ts.year)) self.assertTrue(np.isnan(ts.month)) self.assertTrue(np.isnan(ts.day)) self.assertTrue(np.isnan(ts.hour)) self.assertTrue(np.isnan(ts.minute)) self.assertTrue(np.isnan(ts.second)) self.assertTrue(np.isnan(ts.microsecond)) self.assertTrue(np.isnan(ts.nanosecond)) self.assertTrue(np.isnan(ts.dayofweek)) self.assertTrue(np.isnan(ts.quarter)) self.assertTrue(np.isnan(ts.dayofyear)) self.assertTrue(np.isnan(ts.week)) self.assertTrue(np.isnan(ts.daysinmonth)) self.assertTrue(np.isnan(ts.days_in_month)) def test_pprint(self): # GH12622 import pprint nested_obj = {'foo': 1, 'bar': [{'w': {'a': Timestamp('2011-01-01')}}] * 10} result = pprint.pformat(nested_obj, width=50) expected = r"""{'bar': [{'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}, {'w': {'a': Timestamp('2011-01-01 00:00:00')}}], 'foo': 1}""" self.assertEqual(result, expected) def to_datetime_depr(self): # see gh-8254 ts = Timestamp('2011-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = datetime.datetime(2011, 1, 1) result = ts.to_datetime() self.assertEqual(result, expected) def to_pydatetime_nonzero_nano(self): ts = Timestamp('2011-01-01 9:00:00.123456789') # Warn the user of data loss (nanoseconds). with tm.assert_produces_warning(UserWarning, check_stacklevel=False): expected = datetime.datetime(2011, 1, 1, 9, 0, 0, 123456) result = ts.to_pydatetime() self.assertEqual(result, expected) class TestDatetimeParsingWrappers(tm.TestCase): def test_does_not_convert_mixed_integer(self): bad_date_strings = ('-50000', '999', '123.1234', 'm', 'T') for bad_date_string in bad_date_strings: self.assertFalse(tslib._does_string_look_like_datetime( bad_date_string)) good_date_strings = ('2012-01-01', '01/01/2012', 'Mon Sep 16, 2013', '01012012', '0101', '1-1', ) for good_date_string in good_date_strings: self.assertTrue(tslib._does_string_look_like_datetime( good_date_string)) def test_parsers(self): # https://github.com/dateutil/dateutil/issues/217 import dateutil yearfirst = dateutil.__version__ >= LooseVersion('2.5.0') cases = {'2011-01-01': datetime.datetime(2011, 1, 1), '2Q2005': datetime.datetime(2005, 4, 1), '2Q05': datetime.datetime(2005, 4, 1), '2005Q1': datetime.datetime(2005, 1, 1), '05Q1': datetime.datetime(2005, 1, 1), '2011Q3': datetime.datetime(2011, 7, 1), '11Q3': datetime.datetime(2011, 7, 1), '3Q2011': datetime.datetime(2011, 7, 1), '3Q11': datetime.datetime(2011, 7, 1), # quarterly without space '2000Q4': datetime.datetime(2000, 10, 1), '00Q4': datetime.datetime(2000, 10, 1), '4Q2000': datetime.datetime(2000, 10, 1), '4Q00': datetime.datetime(2000, 10, 1), '2000q4': datetime.datetime(2000, 10, 1), '2000-Q4': datetime.datetime(2000, 10, 1), '00-Q4': datetime.datetime(2000, 10, 1), '4Q-2000': datetime.datetime(2000, 10, 1), '4Q-00': datetime.datetime(2000, 10, 1), '00q4': datetime.datetime(2000, 10, 1), '2005': datetime.datetime(2005, 1, 1), '2005-11': datetime.datetime(2005, 11, 1), '2005 11': datetime.datetime(2005, 11, 1), '11-2005': datetime.datetime(2005, 11, 1), '11 2005': datetime.datetime(2005, 11, 1), '200511': datetime.datetime(2020, 5, 11), '20051109': datetime.datetime(2005, 11, 9), '20051109 10:15': datetime.datetime(2005, 11, 9, 10, 15), '20051109 08H': datetime.datetime(2005, 11, 9, 8, 0), '2005-11-09 10:15': datetime.datetime(2005, 11, 9, 10, 15), '2005-11-09 08H': datetime.datetime(2005, 11, 9, 8, 0), '2005/11/09 10:15': datetime.datetime(2005, 11, 9, 10, 15), '2005/11/09 08H': datetime.datetime(2005, 11, 9, 8, 0), "Thu Sep 25 10:36:28 2003": datetime.datetime(2003, 9, 25, 10, 36, 28), "Thu Sep 25 2003": datetime.datetime(2003, 9, 25), "Sep 25 2003": datetime.datetime(2003, 9, 25), "January 1 2014": datetime.datetime(2014, 1, 1), # GH 10537 '2014-06': datetime.datetime(2014, 6, 1), '06-2014': datetime.datetime(2014, 6, 1), '2014-6': datetime.datetime(2014, 6, 1), '6-2014': datetime.datetime(2014, 6, 1), '20010101 12': datetime.datetime(2001, 1, 1, 12), '20010101 1234': datetime.datetime(2001, 1, 1, 12, 34), '20010101 123456': datetime.datetime(2001, 1, 1, 12, 34, 56), } for date_str, expected in compat.iteritems(cases): result1, _, _ = tools.parse_time_string(date_str, yearfirst=yearfirst) result2 = to_datetime(date_str, yearfirst=yearfirst) result3 = to_datetime([date_str], yearfirst=yearfirst) # result5 is used below result4 = to_datetime(np.array([date_str], dtype=object), yearfirst=yearfirst) result6 = DatetimeIndex([date_str], yearfirst=yearfirst) # result7 is used below result8 = DatetimeIndex(Index([date_str]), yearfirst=yearfirst) result9 = DatetimeIndex(Series([date_str]), yearfirst=yearfirst) for res in [result1, result2]: self.assertEqual(res, expected) for res in [result3, result4, result6, result8, result9]: exp = DatetimeIndex([pd.Timestamp(expected)]) tm.assert_index_equal(res, exp) # these really need to have yearfist, but we don't support if not yearfirst: result5 = Timestamp(date_str) self.assertEqual(result5, expected) result7 = date_range(date_str, freq='S', periods=1, yearfirst=yearfirst) self.assertEqual(result7, expected) # NaT result1, _, _ = tools.parse_time_string('NaT') result2 = to_datetime('NaT') result3 = Timestamp('NaT') result4 = DatetimeIndex(['NaT'])[0] self.assertTrue(result1 is tslib.NaT) self.assertTrue(result1 is tslib.NaT) self.assertTrue(result1 is tslib.NaT) self.assertTrue(result1 is tslib.NaT) def test_parsers_quarter_invalid(self): cases = ['2Q 2005', '2Q-200A', '2Q-200', '22Q2005', '6Q-20', '2Q200.'] for case in cases: self.assertRaises(ValueError, tools.parse_time_string, case) def test_parsers_dayfirst_yearfirst(self): tm._skip_if_no_dateutil() # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2012-10-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # bug fix in 2.5.2 # 2.5.1 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # revert of bug in 2.5.2 # 2.5.1 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=1] -> month must be in 1..12 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 import dateutil is_lt_253 = dateutil.__version__ < LooseVersion('2.5.3') # str : dayfirst, yearfirst, expected cases = {'10-11-12': [(False, False, datetime.datetime(2012, 10, 11)), (True, False, datetime.datetime(2012, 11, 10)), (False, True, datetime.datetime(2010, 11, 12)), (True, True, datetime.datetime(2010, 12, 11))], '20/12/21': [(False, False, datetime.datetime(2021, 12, 20)), (True, False, datetime.datetime(2021, 12, 20)), (False, True, datetime.datetime(2020, 12, 21)), (True, True, datetime.datetime(2020, 12, 21))]} from dateutil.parser import parse for date_str, values in compat.iteritems(cases): for dayfirst, yearfirst, expected in values: # odd comparisons across version # let's just skip if dayfirst and yearfirst and is_lt_253: continue # compare with dateutil result dateutil_result = parse(date_str, dayfirst=dayfirst, yearfirst=yearfirst) self.assertEqual(dateutil_result, expected) result1, _, _ = tools.parse_time_string(date_str, dayfirst=dayfirst, yearfirst=yearfirst) # we don't support dayfirst/yearfirst here: if not dayfirst and not yearfirst: result2 = Timestamp(date_str) self.assertEqual(result2, expected) result3 = to_datetime(date_str, dayfirst=dayfirst, yearfirst=yearfirst) result4 = DatetimeIndex([date_str], dayfirst=dayfirst, yearfirst=yearfirst)[0] self.assertEqual(result1, expected) self.assertEqual(result3, expected) self.assertEqual(result4, expected) def test_parsers_timestring(self): tm._skip_if_no_dateutil() from dateutil.parser import parse # must be the same as dateutil result cases = {'10:15': (parse('10:15'), datetime.datetime(1, 1, 1, 10, 15)), '9:05': (parse('9:05'), datetime.datetime(1, 1, 1, 9, 5))} for date_str, (exp_now, exp_def) in compat.iteritems(cases): result1, _, _ = tools.parse_time_string(date_str) result2 = to_datetime(date_str) result3 = to_datetime([date_str]) result4 = Timestamp(date_str) result5 = DatetimeIndex([date_str])[0] # parse time string return time string based on default date # others are not, and can't be changed because it is used in # time series plot self.assertEqual(result1, exp_def) self.assertEqual(result2, exp_now) self.assertEqual(result3, exp_now) self.assertEqual(result4, exp_now) self.assertEqual(result5, exp_now) def test_parsers_time(self): # GH11818 _skip_if_has_locale() strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", datetime.time(14, 15)] expected = datetime.time(14, 15) for time_string in strings: self.assertEqual(tools.to_time(time_string), expected) new_string = "14.15" self.assertRaises(ValueError, tools.to_time, new_string) self.assertEqual(tools.to_time(new_string, format="%H.%M"), expected) arg = ["14:15", "20:20"] expected_arr = [datetime.time(14, 15), datetime.time(20, 20)] self.assertEqual(tools.to_time(arg), expected_arr) self.assertEqual(tools.to_time(arg, format="%H:%M"), expected_arr) self.assertEqual(tools.to_time(arg, infer_time_format=True), expected_arr) self.assertEqual(tools.to_time(arg, format="%I:%M%p", errors="coerce"), [None, None]) res = tools.to_time(arg, format="%I:%M%p", errors="ignore") self.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with tm.assertRaises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") self.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) self.assertIsInstance(res, list) self.assert_equal(res, expected_arr) def test_parsers_monthfreq(self): cases = {'201101': datetime.datetime(2011, 1, 1, 0, 0), '200005': datetime.datetime(2000, 5, 1, 0, 0)} for date_str, expected in compat.iteritems(cases): result1, _, _ = tools.parse_time_string(date_str, freq='M') self.assertEqual(result1, expected) def test_parsers_quarterly_with_freq(self): msg = ('Incorrect quarterly string is given, quarter ' 'must be between 1 and 4: 2013Q5') with tm.assertRaisesRegexp(tslib.DateParseError, msg): tools.parse_time_string('2013Q5') # GH 5418 msg = ('Unable to retrieve month information from given freq: ' 'INVLD-L-DEC-SAT') with tm.assertRaisesRegexp(tslib.DateParseError, msg): tools.parse_time_string('2013Q1', freq='INVLD-L-DEC-SAT') cases = {('2013Q2', None): datetime.datetime(2013, 4, 1), ('2013Q2', 'A-APR'): datetime.datetime(2012, 8, 1), ('2013-Q2', 'A-DEC'): datetime.datetime(2013, 4, 1)} for (date_str, freq), exp in compat.iteritems(cases): result, _, _ = tools.parse_time_string(date_str, freq=freq) self.assertEqual(result, exp) def test_parsers_timezone_minute_offsets_roundtrip(self): # GH11708 base = to_datetime("2013-01-01 00:00:00") dt_strings = [ ('2013-01-01 05:45+0545', "Asia/Katmandu", "Timestamp('2013-01-01 05:45:00+0545', tz='Asia/Katmandu')"), ('2013-01-01 05:30+0530', "Asia/Kolkata", "Timestamp('2013-01-01 05:30:00+0530', tz='Asia/Kolkata')") ] for dt_string, tz, dt_string_repr in dt_strings: dt_time = to_datetime(dt_string) self.assertEqual(base, dt_time) converted_time = dt_time.tz_localize('UTC').tz_convert(tz) self.assertEqual(dt_string_repr, repr(converted_time)) def test_parsers_iso8601(self): # GH 12060 # test only the iso parser - flexibility to different # separators and leadings 0s # Timestamp construction falls back to dateutil cases = {'2011-01-02': datetime.datetime(2011, 1, 2), '2011-1-2': datetime.datetime(2011, 1, 2), '2011-01': datetime.datetime(2011, 1, 1), '2011-1': datetime.datetime(2011, 1, 1), '2011 01 02': datetime.datetime(2011, 1, 2), '2011.01.02': datetime.datetime(2011, 1, 2), '2011/01/02': datetime.datetime(2011, 1, 2), '2011\\01\\02': datetime.datetime(2011, 1, 2), '2013-01-01 05:30:00': datetime.datetime(2013, 1, 1, 5, 30), '2013-1-1 5:30:00': datetime.datetime(2013, 1, 1, 5, 30)} for date_str, exp in compat.iteritems(cases): actual = tslib._test_parse_iso8601(date_str) self.assertEqual(actual, exp) # seperators must all match - YYYYMM not valid invalid_cases = ['2011-01/02', '2011^11^11', '201401', '201111', '200101', # mixed separated and unseparated '2005-0101', '200501-01', '20010101 12:3456', '20010101 1234:56', # HHMMSS must have two digits in each component # if unseparated '20010101 1', '20010101 123', '20010101 12345', '20010101 12345Z', # wrong separator for HHMMSS '2001-01-01 12-34-56'] for date_str in invalid_cases: with tm.assertRaises(ValueError): tslib._test_parse_iso8601(date_str) # If no ValueError raised, let me know which case failed. raise Exception(date_str) class TestArrayToDatetime(tm.TestCase): def test_parsing_valid_dates(self): arr = np.array(['01-01-2013', '01-02-2013'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr), np_array_datetime64_compat( [ '2013-01-01T00:00:00.000000000-0000', '2013-01-02T00:00:00.000000000-0000' ], dtype='M8[ns]' ) ) arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr), np_array_datetime64_compat( [ '2013-09-16T00:00:00.000000000-0000', '2013-09-17T00:00:00.000000000-0000' ], dtype='M8[ns]' ) ) def test_number_looking_strings_not_into_datetime(self): # #4601 # These strings don't look like datetimes so they shouldn't be # attempted to be converted arr = np.array(['-352.737091', '183.575577'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='ignore'), arr) arr = np.array(['1', '2', '3', '4', '5'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='ignore'), arr) def test_coercing_dates_outside_of_datetime64_ns_bounds(self): invalid_dates = [ datetime.date(1000, 1, 1), datetime.datetime(1000, 1, 1), '1000-01-01', 'Jan 1, 1000', np.datetime64('1000-01-01'), ] for invalid_date in invalid_dates: self.assertRaises(ValueError, tslib.array_to_datetime, np.array( [invalid_date], dtype='object'), errors='raise', ) self.assert_numpy_array_equal( tslib.array_to_datetime( np.array([invalid_date], dtype='object'), errors='coerce'), np.array([tslib.iNaT], dtype='M8[ns]') ) arr = np.array(['1/1/1000', '1/1/2000'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='coerce'), np_array_datetime64_compat( [ tslib.iNaT, '2000-01-01T00:00:00.000000000-0000' ], dtype='M8[ns]' ) ) def test_coerce_of_invalid_datetimes(self): arr = np.array(['01-01-2013', 'not_a_date', '1'], dtype=object) # Without coercing, the presence of any invalid dates prevents # any values from being converted self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='ignore'), arr) # With coercing, the invalid dates becomes iNaT self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='coerce'), np_array_datetime64_compat( [ '2013-01-01T00:00:00.000000000-0000', tslib.iNaT, tslib.iNaT ], dtype='M8[ns]' ) ) def test_parsing_timezone_offsets(self): # All of these datetime strings with offsets are equivalent # to the same datetime after the timezone offset is added dt_strings = [ '01-01-2013 08:00:00+08:00', '2013-01-01T08:00:00.000000000+0800', '2012-12-31T16:00:00.000000000-0800', '12-31-2012 23:00:00-01:00' ] expected_output = tslib.array_to_datetime(np.array( ['01-01-2013 00:00:00'], dtype=object)) for dt_string in dt_strings: self.assert_numpy_array_equal( tslib.array_to_datetime( np.array([dt_string], dtype=object) ), expected_output ) class TestTimestampNsOperations(tm.TestCase): def setUp(self): self.timestamp = Timestamp(datetime.datetime.utcnow()) def assert_ns_timedelta(self, modified_timestamp, expected_value): value = self.timestamp.value modified_value = modified_timestamp.value self.assertEqual(modified_value - value, expected_value) def test_timedelta_ns_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(-123, 'ns'), -123) def test_timedelta_ns_based_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64( 1234567898, 'ns'), 1234567898) def test_timedelta_us_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(-123, 'us'), -123000) def test_timedelta_ms_arithmetic(self): time = self.timestamp + np.timedelta64(-123, 'ms') self.assert_ns_timedelta(time, -123000000) def test_nanosecond_string_parsing(self): ts = Timestamp('2013-05-01 07:15:45.123456789') # GH 7878 expected_repr = '2013-05-01 07:15:45.123456789' expected_value = 1367392545123456789 self.assertEqual(ts.value, expected_value) self.assertIn(expected_repr, repr(ts)) ts = Timestamp('2013-05-01 07:15:45.123456789+09:00', tz='Asia/Tokyo') self.assertEqual(ts.value, expected_value - 9 * 3600 * 1000000000) self.assertIn(expected_repr, repr(ts)) ts = Timestamp('2013-05-01 07:15:45.123456789', tz='UTC') self.assertEqual(ts.value, expected_value) self.assertIn(expected_repr, repr(ts)) ts = Timestamp('2013-05-01 07:15:45.123456789', tz='US/Eastern') self.assertEqual(ts.value, expected_value + 4 * 3600 * 1000000000) self.assertIn(expected_repr, repr(ts)) # GH 10041 ts = Timestamp('20130501T071545.123456789') self.assertEqual(ts.value, expected_value) self.assertIn(expected_repr, repr(ts)) def test_nanosecond_timestamp(self): # GH 7610 expected = 1293840000000000005 t = Timestamp('2011-01-01') + offsets.Nano(5) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000005')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 5) t = Timestamp(t) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000005')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 5) t = Timestamp(np_datetime64_compat('2011-01-01 00:00:00.000000005Z')) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000005')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 5) expected = 1293840000000000010 t = t + offsets.Nano(5) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000010')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 10) t = Timestamp(t) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000010')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 10) t = Timestamp(np_datetime64_compat('2011-01-01 00:00:00.000000010Z')) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000010')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 10) def test_nat_arithmetic(self): # GH 6873 i = 2 f = 1.5 for (left, right) in [(pd.NaT, i), (pd.NaT, f), (pd.NaT, np.nan)]: self.assertIs(left / right, pd.NaT) self.assertIs(left * right, pd.NaT) self.assertIs(right * left, pd.NaT) with tm.assertRaises(TypeError): right / left # Timestamp / datetime t = Timestamp('2014-01-01') dt = datetime.datetime(2014, 1, 1) for (left, right) in [(pd.NaT, pd.NaT), (pd.NaT, t), (pd.NaT, dt)]: # NaT __add__ or __sub__ Timestamp-like (or inverse) returns NaT self.assertIs(right + left, pd.NaT) self.assertIs(left + right, pd.NaT) self.assertIs(left - right, pd.NaT) self.assertIs(right - left, pd.NaT) # timedelta-like # offsets are tested in test_offsets.py delta = datetime.timedelta(3600) td = Timedelta('5s') for (left, right) in [(pd.NaT, delta), (pd.NaT, td)]: # NaT + timedelta-like returns NaT self.assertIs(right + left, pd.NaT) self.assertIs(left + right, pd.NaT) self.assertIs(right - left, pd.NaT) self.assertIs(left - right, pd.NaT) # GH 11718 tm._skip_if_no_pytz() import pytz t_utc = Timestamp('2014-01-01', tz='UTC') t_tz = Timestamp('2014-01-01', tz='US/Eastern') dt_tz = pytz.timezone('Asia/Tokyo').localize(dt) for (left, right) in [(pd.NaT, t_utc), (pd.NaT, t_tz), (pd.NaT, dt_tz)]: # NaT __add__ or __sub__ Timestamp-like (or inverse) returns NaT self.assertIs(right + left, pd.NaT) self.assertIs(left + right, pd.NaT) self.assertIs(left - right, pd.NaT) self.assertIs(right - left, pd.NaT) # int addition / subtraction for (left, right) in [(pd.NaT, 2), (pd.NaT, 0), (pd.NaT, -3)]: self.assertIs(right + left, pd.NaT) self.assertIs(left + right, pd.NaT) self.assertIs(left - right, pd.NaT) self.assertIs(right - left, pd.NaT) def test_nat_arithmetic_index(self): # GH 11718 # datetime tm._skip_if_no_pytz() dti = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], name='x') exp = pd.DatetimeIndex([pd.NaT, pd.NaT], name='x') self.assert_index_equal(dti + pd.NaT, exp) self.assert_index_equal(pd.NaT + dti, exp) dti_tz = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz='US/Eastern', name='x') exp = pd.DatetimeIndex([pd.NaT, pd.NaT], name='x', tz='US/Eastern') self.assert_index_equal(dti_tz + pd.NaT, exp) self.assert_index_equal(pd.NaT + dti_tz, exp) exp = pd.TimedeltaIndex([pd.NaT, pd.NaT], name='x') for (left, right) in [(pd.NaT, dti), (pd.NaT, dti_tz)]: self.assert_index_equal(left - right, exp) self.assert_index_equal(right - left, exp) # timedelta tdi = pd.TimedeltaIndex(['1 day', '2 day'], name='x') exp = pd.DatetimeIndex([pd.NaT, pd.NaT], name='x') for (left, right) in [(pd.NaT, tdi)]: self.assert_index_equal(left + right, exp) self.assert_index_equal(right + left, exp) self.assert_index_equal(left - right, exp) self.assert_index_equal(right - left, exp) class TestTslib(tm.TestCase): def test_intraday_conversion_factors(self): self.assertEqual(period_asfreq( 1, get_freq('D'), get_freq('H'), False), 24) self.assertEqual(period_asfreq( 1, get_freq('D'), get_freq('T'), False), 1440) self.assertEqual(period_asfreq( 1, get_freq('D'), get_freq('S'), False), 86400) self.assertEqual(period_asfreq(1, get_freq( 'D'), get_freq('L'), False), 86400000) self.assertEqual(period_asfreq(1, get_freq( 'D'), get_freq('U'), False), 86400000000) self.assertEqual(period_asfreq(1, get_freq( 'D'), get_freq('N'), False), 86400000000000) self.assertEqual(period_asfreq( 1, get_freq('H'), get_freq('T'), False), 60) self.assertEqual(period_asfreq( 1, get_freq('H'), get_freq('S'), False), 3600) self.assertEqual(period_asfreq(1, get_freq('H'), get_freq('L'), False), 3600000) self.assertEqual(period_asfreq(1, get_freq( 'H'), get_freq('U'), False), 3600000000) self.assertEqual(period_asfreq(1, get_freq( 'H'), get_freq('N'), False), 3600000000000) self.assertEqual(period_asfreq( 1, get_freq('T'), get_freq('S'), False), 60) self.assertEqual(period_asfreq( 1, get_freq('T'), get_freq('L'), False), 60000) self.assertEqual(period_asfreq(1, get_freq( 'T'), get_freq('U'), False), 60000000) self.assertEqual(period_asfreq(1, get_freq( 'T'), get_freq('N'), False), 60000000000) self.assertEqual(period_asfreq( 1, get_freq('S'), get_freq('L'), False), 1000) self.assertEqual(period_asfreq(1, get_freq('S'), get_freq('U'), False), 1000000) self.assertEqual(period_asfreq(1, get_freq( 'S'), get_freq('N'), False), 1000000000) self.assertEqual(period_asfreq( 1, get_freq('L'), get_freq('U'), False), 1000) self.assertEqual(period_asfreq(1, get_freq('L'), get_freq('N'), False), 1000000) self.assertEqual(period_asfreq( 1, get_freq('U'), get_freq('N'), False), 1000) def test_period_ordinal_start_values(self): # information for 1.1.1970 self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('A'))) self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('M'))) self.assertEqual(1, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('D'))) self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('B'))) def test_period_ordinal_week(self): self.assertEqual(1, period_ordinal(1970, 1, 4, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(2, period_ordinal(1970, 1, 5, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(2284, period_ordinal(2013, 10, 6, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(2285, period_ordinal(2013, 10, 7, 0, 0, 0, 0, 0, get_freq('W'))) def test_period_ordinal_business_day(self): # Thursday self.assertEqual(11415, period_ordinal(2013, 10, 3, 0, 0, 0, 0, 0, get_freq('B'))) # Friday self.assertEqual(11416, period_ordinal(2013, 10, 4, 0, 0, 0, 0, 0, get_freq('B'))) # Saturday self.assertEqual(11417, period_ordinal(2013, 10, 5, 0, 0, 0, 0, 0, get_freq('B'))) # Sunday self.assertEqual(11417, period_ordinal(2013, 10, 6, 0, 0, 0, 0, 0, get_freq('B'))) # Monday self.assertEqual(11417, period_ordinal(2013, 10, 7, 0, 0, 0, 0, 0, get_freq('B'))) # Tuesday self.assertEqual(11418, period_ordinal(2013, 10, 8, 0, 0, 0, 0, 0, get_freq('B'))) def test_tslib_tz_convert(self): def compare_utc_to_local(tz_didx, utc_didx): f = lambda x: tslib.tz_convert_single(x, 'UTC', tz_didx.tz) result = tslib.tz_convert(tz_didx.asi8, 'UTC', tz_didx.tz) result_single = np.vectorize(f)(tz_didx.asi8) self.assert_numpy_array_equal(result, result_single) def compare_local_to_utc(tz_didx, utc_didx): f = lambda x: tslib.tz_convert_single(x, tz_didx.tz, 'UTC') result = tslib.tz_convert(utc_didx.asi8, tz_didx.tz, 'UTC') result_single = np.vectorize(f)(utc_didx.asi8) self.assert_numpy_array_equal(result, result_single) for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'Europe/Moscow']: # US: 2014-03-09 - 2014-11-11 # MOSCOW: 2014-10-26 / 2014-12-31 tz_didx = date_range('2014-03-01', '2015-01-10', freq='H', tz=tz) utc_didx = date_range('2014-03-01', '2015-01-10', freq='H') compare_utc_to_local(tz_didx, utc_didx) # local tz to UTC can be differ in hourly (or higher) freqs because # of DST compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2020-01-01', freq='D', tz=tz) utc_didx = date_range('2000-01-01', '2020-01-01', freq='D') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2100-01-01', freq='A', tz=tz) utc_didx = date_range('2000-01-01', '2100-01-01', freq='A') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) # Check empty array result = tslib.tz_convert(np.array([], dtype=np.int64), tslib.maybe_get_tz('US/Eastern'), tslib.maybe_get_tz('Asia/Tokyo')) self.assert_numpy_array_equal(result, np.array([], dtype=np.int64)) # Check all-NaT array result = tslib.tz_convert(np.array([tslib.iNaT], dtype=np.int64), tslib.maybe_get_tz('US/Eastern'), tslib.maybe_get_tz('Asia/Tokyo')) self.assert_numpy_array_equal(result, np.array( [tslib.iNaT], dtype=np.int64)) def test_shift_months(self): s = DatetimeIndex([Timestamp('2000-01-05 00:15:00'), Timestamp( '2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp( '2000-02-29'), Timestamp('2000-12-31')]) for years in [-1, 0, 1]: for months in [-2, 0, 2]: actual = DatetimeIndex(tslib.shift_months(s.asi8, years * 12 + months)) expected = DatetimeIndex([x + offsets.DateOffset( years=years, months=months) for x in s]) tm.assert_index_equal(actual, expected) def test_round(self): stamp = Timestamp('2000-01-05 05:09:15.13') def _check_round(freq, expected): result = stamp.round(freq=freq) self.assertEqual(result, expected) for freq, expected in [('D', Timestamp('2000-01-05 00:00:00')), ('H', Timestamp('2000-01-05 05:00:00')), ('S', Timestamp('2000-01-05 05:09:15'))]: _check_round(freq, expected) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): stamp.round('foo') class TestTimestampOps(tm.TestCase): def test_timestamp_and_datetime(self): self.assertEqual((Timestamp(datetime.datetime( 2013, 10, 13)) - datetime.datetime(2013, 10, 12)).days, 1) self.assertEqual((datetime.datetime(2013, 10, 12) - Timestamp(datetime.datetime(2013, 10, 13))).days, -1) def test_timestamp_and_series(self): timestamp_series = Series(date_range('2014-03-17', periods=2, freq='D', tz='US/Eastern')) first_timestamp = timestamp_series[0] delta_series = Series([np.timedelta64(0, 'D'), np.timedelta64(1, 'D')]) assert_series_equal(timestamp_series - first_timestamp, delta_series) assert_series_equal(first_timestamp - timestamp_series, -delta_series) def test_addition_subtraction_types(self): # Assert on the types resulting from Timestamp +/- various date/time # objects datetime_instance = datetime.datetime(2014, 3, 4) timedelta_instance = datetime.timedelta(seconds=1) # build a timestamp with a frequency, since then it supports # addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq='D')[0] self.assertEqual(type(timestamp_instance + 1), Timestamp) self.assertEqual(type(timestamp_instance - 1), Timestamp) # Timestamp + datetime not supported, though subtraction is supported # and yields timedelta more tests in tseries/base/tests/test_base.py self.assertEqual( type(timestamp_instance - datetime_instance), Timedelta) self.assertEqual( type(timestamp_instance + timedelta_instance), Timestamp) self.assertEqual( type(timestamp_instance - timedelta_instance), Timestamp) # Timestamp +/- datetime64 not supported, so not tested (could possibly # assert error raised?) timedelta64_instance = np.timedelta64(1, 'D') self.assertEqual( type(timestamp_instance + timedelta64_instance), Timestamp) self.assertEqual( type(timestamp_instance - timedelta64_instance), Timestamp) def test_addition_subtraction_preserve_frequency(self): timestamp_instance = date_range('2014-03-05', periods=1, freq='D')[0] timedelta_instance = datetime.timedelta(days=1) original_freq = timestamp_instance.freq self.assertEqual((timestamp_instance + 1).freq, original_freq) self.assertEqual((timestamp_instance - 1).freq, original_freq) self.assertEqual( (timestamp_instance + timedelta_instance).freq, original_freq) self.assertEqual( (timestamp_instance - timedelta_instance).freq, original_freq) timedelta64_instance = np.timedelta64(1, 'D') self.assertEqual( (timestamp_instance + timedelta64_instance).freq, original_freq) self.assertEqual( (timestamp_instance - timedelta64_instance).freq, original_freq) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], [D_RESO, D_RESO, D_RESO, D_RESO, H_RESO, T_RESO, S_RESO, MS_RESO, US_RESO]): for tz in [None, 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Eastern']: idx = date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) result = period.resolution(idx.asi8, idx.tz) self.assertEqual(result, expected) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
rrohan/scikit-learn
sklearn/svm/setup.py
321
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
simon-pepin/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
ywcui1990/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_agg.py
69
11729
""" An agg http://antigrain.com/ backend Features that are implemented * capstyles and join styles * dashes * linewidth * lines, rectangles, ellipses * clipping to a rectangle * output to RGBA and PNG * alpha blending * DPI scaling properly - everything scales properly (dashes, linewidths, etc) * draw polygon * freetype2 w/ ft2font TODO: * allow save to file handle * integrate screen dpi w/ ppi and text """ from __future__ import division import numpy as npy from matplotlib import verbose, rcParams from matplotlib.backend_bases import RendererBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like, maxdict from matplotlib.figure import Figure from matplotlib.font_manager import findfont from matplotlib.ft2font import FT2Font, LOAD_FORCE_AUTOHINT from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox from _backend_agg import RendererAgg as _RendererAgg from matplotlib import _png backend_version = 'v2.2' class RendererAgg(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles """ debug=1 texd = maxdict(50) # a cache of tex image rasters _fontd = maxdict(50) def __init__(self, width, height, dpi): if __debug__: verbose.report('RendererAgg.__init__', 'debug-annoying') RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height if __debug__: verbose.report('RendererAgg.__init__ width=%s, height=%s'%(width, height), 'debug-annoying') self._renderer = _RendererAgg(int(width), int(height), dpi, debug=False) if __debug__: verbose.report('RendererAgg.__init__ _RendererAgg done', 'debug-annoying') #self.draw_path = self._renderer.draw_path # see below self.draw_markers = self._renderer.draw_markers self.draw_path_collection = self._renderer.draw_path_collection self.draw_quad_mesh = self._renderer.draw_quad_mesh self.draw_image = self._renderer.draw_image self.copy_from_bbox = self._renderer.copy_from_bbox self.restore_region = self._renderer.restore_region self.tostring_rgba_minimized = self._renderer.tostring_rgba_minimized self.mathtext_parser = MathTextParser('Agg') self.bbox = Bbox.from_bounds(0, 0, self.width, self.height) if __debug__: verbose.report('RendererAgg.__init__ done', 'debug-annoying') def draw_path(self, gc, path, transform, rgbFace=None): nmax = rcParams['agg.path.chunksize'] # here at least for testing npts = path.vertices.shape[0] if nmax > 100 and npts > nmax and path.should_simplify and rgbFace is None: nch = npy.ceil(npts/float(nmax)) chsize = int(npy.ceil(npts/nch)) i0 = npy.arange(0, npts, chsize) i1 = npy.zeros_like(i0) i1[:-1] = i0[1:] - 1 i1[-1] = npts for ii0, ii1 in zip(i0, i1): v = path.vertices[ii0:ii1,:] c = path.codes if c is not None: c = c[ii0:ii1] c[0] = Path.MOVETO # move to end of last chunk p = Path(v, c) self._renderer.draw_path(gc, p, transform, rgbFace) else: self._renderer.draw_path(gc, path, transform, rgbFace) def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ if __debug__: verbose.report('RendererAgg.draw_mathtext', 'debug-annoying') ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) x = int(x) + ox y = int(y) - oy self._renderer.draw_text_image(font_image, x, y + 1, angle, gc) def draw_text(self, gc, x, y, s, prop, angle, ismath): """ Render the text """ if __debug__: verbose.report('RendererAgg.draw_text', 'debug-annoying') if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) font = self._get_agg_font(prop) if font is None: return None if len(s) == 1 and ord(s) > 127: font.load_char(ord(s), flags=LOAD_FORCE_AUTOHINT) else: # We pass '0' for angle here, since it will be rotated (in raster # space) in the following call to draw_text_image). font.set_text(s, 0, flags=LOAD_FORCE_AUTOHINT) font.draw_glyphs_to_bitmap() #print x, y, int(x), int(y) self._renderer.draw_text_image(font.get_image(), int(x), int(y) + 1, angle, gc) def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop # passing rgb is a little hack to make cacheing in the # texmanager more efficient. It is not meant to be used # outside the backend """ if ismath=='TeX': # todo: handle props size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) m,n = Z.shape # TODO: descent of TeX text (I am imitating backend_ps here -JKS) return n, m, 0 if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent font = self._get_agg_font(prop) font.set_text(s, 0.0, flags=LOAD_FORCE_AUTOHINT) # the width and height of unrotated string w, h = font.get_width_height() d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def draw_tex(self, gc, x, y, s, prop, angle): # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) if im is None: Z = texmanager.get_grey(s, size, self.dpi) Z = npy.array(Z * 255.0, npy.uint8) self._renderer.draw_text_image(Z, x, y, angle, gc) def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def _get_agg_font(self, prop): """ Get the font for text instance t, cacheing for efficiency """ if __debug__: verbose.report('RendererAgg._get_agg_font', 'debug-annoying') key = hash(prop) font = self._fontd.get(key) if font is None: fname = findfont(prop) font = self._fontd.get(fname) if font is None: font = FT2Font(str(fname)) self._fontd[fname] = font self._fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def points_to_pixels(self, points): """ convert point measures to pixes using dpi and the pixels per inch of the display """ if __debug__: verbose.report('RendererAgg.points_to_pixels', 'debug-annoying') return points*self.dpi/72.0 def tostring_rgb(self): if __debug__: verbose.report('RendererAgg.tostring_rgb', 'debug-annoying') return self._renderer.tostring_rgb() def tostring_argb(self): if __debug__: verbose.report('RendererAgg.tostring_argb', 'debug-annoying') return self._renderer.tostring_argb() def buffer_rgba(self,x,y): if __debug__: verbose.report('RendererAgg.buffer_rgba', 'debug-annoying') return self._renderer.buffer_rgba(x,y) def clear(self): self._renderer.clear() def option_image_nocomposite(self): # It is generally faster to composite each image directly to # the Figure, and there's no file size benefit to compositing # with the Agg backend return True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if __debug__: verbose.report('backend_agg.new_figure_manager', 'debug-annoying') FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasAgg(thisFig) manager = FigureManagerBase(canvas, num) return manager class FigureCanvasAgg(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def copy_from_bbox(self, bbox): renderer = self.get_renderer() return renderer.copy_from_bbox(bbox) def restore_region(self, region): renderer = self.get_renderer() return renderer.restore_region(region) def draw(self): """ Draw the figure using the renderer """ if __debug__: verbose.report('FigureCanvasAgg.draw', 'debug-annoying') self.renderer = self.get_renderer() self.figure.draw(self.renderer) def get_renderer(self): l, b, w, h = self.figure.bbox.bounds key = w, h, self.figure.dpi try: self._lastKey, self.renderer except AttributeError: need_new_renderer = True else: need_new_renderer = (self._lastKey != key) if need_new_renderer: self.renderer = RendererAgg(w, h, self.figure.dpi) self._lastKey = key return self.renderer def tostring_rgb(self): if __debug__: verbose.report('FigureCanvasAgg.tostring_rgb', 'debug-annoying') return self.renderer.tostring_rgb() def tostring_argb(self): if __debug__: verbose.report('FigureCanvasAgg.tostring_argb', 'debug-annoying') return self.renderer.tostring_argb() def buffer_rgba(self,x,y): if __debug__: verbose.report('FigureCanvasAgg.buffer_rgba', 'debug-annoying') return self.renderer.buffer_rgba(x,y) def get_default_filetype(self): return 'png' def print_raw(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() original_dpi = renderer.dpi renderer.dpi = self.figure.dpi if is_string_like(filename_or_obj): filename_or_obj = file(filename_or_obj, 'wb') renderer._renderer.write_rgba(filename_or_obj) renderer.dpi = original_dpi print_rgba = print_raw def print_png(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() original_dpi = renderer.dpi renderer.dpi = self.figure.dpi if is_string_like(filename_or_obj): filename_or_obj = file(filename_or_obj, 'wb') _png.write_png(renderer._renderer.buffer_rgba(0, 0), renderer.width, renderer.height, filename_or_obj, self.figure.dpi) renderer.dpi = original_dpi
agpl-3.0
pySTEPS/pysteps
examples/plot_cascade_decomposition.py
1
4579
#!/bin/env python """ Cascade decomposition ===================== This example script shows how to compute and plot the cascade decompositon of a single radar precipitation field in pysteps. """ from matplotlib import cm, pyplot as plt import numpy as np import os from pprint import pprint from pysteps.cascade.bandpass_filters import filter_gaussian from pysteps import io, rcparams from pysteps.cascade.decomposition import decomposition_fft from pysteps.utils import conversion, transformation from pysteps.visualization import plot_precip_field ############################################################################### # Read precipitation field # ------------------------ # # First thing, the radar composite is imported and transformed in units # of dB. # Import the example radar composite root_path = rcparams.data_sources["fmi"]["root_path"] filename = os.path.join( root_path, "20160928", "201609281600_fmi.radar.composite.lowest_FIN_SUOMI1.pgm.gz" ) R, _, metadata = io.import_fmi_pgm(filename, gzipped=True) # Convert to rain rate R, metadata = conversion.to_rainrate(R, metadata) # Nicely print the metadata pprint(metadata) # Plot the rainfall field plot_precip_field(R, geodata=metadata) plt.show() # Log-transform the data R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0) ############################################################################### # 2D Fourier spectrum # -------------------- # # Compute and plot the 2D Fourier power spectrum of the precipitaton field. # Set Nans as the fill value R[~np.isfinite(R)] = metadata["zerovalue"] # Compute the Fourier transform of the input field F = abs(np.fft.fftshift(np.fft.fft2(R))) # Plot the power spectrum M, N = F.shape fig, ax = plt.subplots() im = ax.imshow( np.log(F ** 2), vmin=4, vmax=24, cmap=cm.jet, extent=(-N / 2, N / 2, -M / 2, M / 2) ) cb = fig.colorbar(im) ax.set_xlabel("Wavenumber $k_x$") ax.set_ylabel("Wavenumber $k_y$") ax.set_title("Log-power spectrum of R") plt.show() ############################################################################### # Cascade decomposition # --------------------- # # First, construct a set of Gaussian bandpass filters and plot the corresponding # 1D filters. num_cascade_levels = 7 # Construct the Gaussian bandpass filters filter = filter_gaussian(R.shape, num_cascade_levels) # Plot the bandpass filter weights L = max(N, M) fig, ax = plt.subplots() for k in range(num_cascade_levels): ax.semilogx( np.linspace(0, L / 2, len(filter["weights_1d"][k, :])), filter["weights_1d"][k, :], "k-", basex=pow(0.5 * L / 3, 1.0 / (num_cascade_levels - 2)), ) ax.set_xlim(1, L / 2) ax.set_ylim(0, 1) xt = np.hstack([[1.0], filter["central_wavenumbers"][1:]]) ax.set_xticks(xt) ax.set_xticklabels(["%.2f" % cf for cf in filter["central_wavenumbers"]]) ax.set_xlabel("Radial wavenumber $|\mathbf{k}|$") ax.set_ylabel("Normalized weight") ax.set_title("Bandpass filter weights") plt.show() ############################################################################### # Finally, apply the 2D Gaussian filters to decompose the radar rainfall field # into a set of cascade levels of decreasing spatial scale and plot them. decomp = decomposition_fft(R, filter, compute_stats=True) # Plot the normalized cascade levels for i in range(num_cascade_levels): mu = decomp["means"][i] sigma = decomp["stds"][i] decomp["cascade_levels"][i] = (decomp["cascade_levels"][i] - mu) / sigma fig, ax = plt.subplots(nrows=2, ncols=4) ax[0, 0].imshow(R, cmap=cm.RdBu_r, vmin=-5, vmax=5) ax[0, 1].imshow(decomp["cascade_levels"][0], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[0, 2].imshow(decomp["cascade_levels"][1], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[0, 3].imshow(decomp["cascade_levels"][2], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[1, 0].imshow(decomp["cascade_levels"][3], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[1, 1].imshow(decomp["cascade_levels"][4], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[1, 2].imshow(decomp["cascade_levels"][5], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[1, 3].imshow(decomp["cascade_levels"][6], cmap=cm.RdBu_r, vmin=-3, vmax=3) ax[0, 0].set_title("Observed") ax[0, 1].set_title("Level 1") ax[0, 2].set_title("Level 2") ax[0, 3].set_title("Level 3") ax[1, 0].set_title("Level 4") ax[1, 1].set_title("Level 5") ax[1, 2].set_title("Level 6") ax[1, 3].set_title("Level 7") for i in range(2): for j in range(4): ax[i, j].set_xticks([]) ax[i, j].set_yticks([]) plt.tight_layout() plt.show() # sphinx_gallery_thumbnail_number = 4
bsd-3-clause
AFMD/smallProjects
nanowire-network-simulations/manningp3plot.py
1
17973
""" Created on Mon Jun 15 15:42:23 2020 @author: sturdzal """ #@title Imports from shapely.geometry import LineString, MultiLineString, MultiPoint, Point from shapely.ops import cascaded_union from scipy.special import comb from itertools import product import scipy.stats as stats import matplotlib.pyplot as plt import matplotlib.patches as patches import math import numpy as np from itertools import islice from cvxopt import matrix, solvers from cvxopt.base import sparse from cvxopt.base import matrix as m from cvxopt.lapack import * from cvxopt.blas import * import cvxopt.misc as misc #from pykrylov.symmlq import symmlq #from pykrylov.symmlq import * #from symmlq import * #import symmlq import networkx as nx from itertools import islice, combinations from collections import Counter, defaultdict #from pykrylov.linop import PysparseLinearOperator #from pykrylov.symmlq import * import scipy from scipy.sparse.linalg import * from scipy.sparse import csc_matrix from scipy.sparse.linalg import minres import os.path import time import os import matplotlib.pyplot as plt import random from statistics import mean #------------------Parameter-------------------- R_junc = 1.0 # 100100 #R_junc_list = [1000, 10000, 100000, 10000000, 10000000] rho0 = 0.314 #0.0790 #0.8 #0.0790 #0.0226 #rho0_list = [0.000314, 0.00314, 0.0314, 0.314, 3.14, 31.4, 314] wire_diameter = 2 #30.0 wire_length= 1.0 #6.0 extinction_coeff = 4 #0.2 box_length = 5 #15.0 5x wire length gives good results independent of tol for e-9 to e-15 samples = 1 elec_length = box_length box_y = box_length lead_sep = box_length n_min = 0.16411 nstep = 10*n_min n_initial = 40*n_min #1.90079+30*nstep #0.16411 n_final = 80*n_min #1.90079+31*nstep percentage_chance = 0.0 distl = False lower_l = 2.2 upper_l = np.inf sigmal = 2.0 lmean = wire_length A0 = math.pi*((wire_diameter*0.001)/2)**2 # End ---------- Parameters block ------------- # ---------- Parameters for symmlq routine ------------- tol=1e-10 show=False maxit=None #----------- Parameters for Calculation time display -------- start_time = time.process_time() # ---------- Output file ------------- res_file = "output2.txt" if os.path.exists(res_file)==False: open(res_file, "w").write("Density AF Transmittance Average_resistance resStdev Junct_density R_junc rho0 wire_diameter wire_length box_length samples nstep n_initial n_final tolerance_minres distl lower_l upper_l sigmal junctions_removal calctime\n") #res_dist = open(res_file,"a") # ---------- Auxiliary lists for ensemble calculation ------------- res_list=[] short_sep_list=[] junc_dens=[] dens_temp=[] avg_res_temp=[] st_dev_temp=[] resistancelist=[] transmittancelist=[] for wire_diameter in np.arange(0.5, 0.6, 0.1): for density in np.arange(n_initial,n_final,nstep): for sample in range(samples): while True: try: area = box_length**2 # box area (in um^2) box_x = box_length # box width (in um) box_y = box_length # box length (in um) num_junc = 0 # junction counter nwires = area*density # total number of nanowires # Start ---------- Creation of random stick coordinates and electrodes ------------- # a single wire is represented by a set of initial and final coordinates as [(x1,y1),(x2,y2)]. x1 = np.random.rand(int(nwires))*box_x y1 = np.random.rand(int(nwires))*box_y length_array = np.zeros(int(nwires)) if distl == True: lengths = stats.truncnorm((lower_l - lmean) / sigmal, (upper_l - lmean) / sigmal, loc=lmean, scale=sigmal) length_array = lengths.rvs(size=nwires) else: length_array.fill(wire_length) # Sorting the angles that define the wire orientation (in radians from 0 to 2 *pi). theta1 = np.random.rand(int(nwires))*2.0*math.pi x2 = length_array * np.cos(theta1) + x1 y2 = length_array * np.sin(theta1) + y1 # Adding to the coordinate list (x1,y1) the points corresponding to the contact leads. x1 = np.insert(x1, 0, 0.0) x1 = np.insert(x1, 0,0) # Adding to the coordinate list (x2,y2) the points corresponding to the contact leads. x2 = np.insert(x2, 0, 0.0) x2 = np.insert(x2, 0,0) ypostop = box_y/2 + elec_length/2 yposbot = box_y/2 - elec_length/2 y1 = np.insert(y1, 0,ypostop) y1 = np.insert(y1, 0,ypostop) y2 = np.insert(y2, 0,yposbot) y2 = np.insert(y2, 0, yposbot) xposleft = box_x/2-lead_sep/2 xposright = box_x/2+lead_sep/2 x1[0]= xposleft x2[0] = xposleft x1[1] = xposright x2[1] = xposright # Merging [(x1,y1),(x2,y2)] in accordance to shapely format. # coords1 = zip(x1,y1) # coords2 = zip(x2,y2) # coords = zip(coords1,coords2) coords1 = list(zip(x1,y1)) coords2 = list(zip(x2,y2)) coords = list(zip(coords1,coords2)) mlines = MultiLineString(coords) nwires_plus_leads = int(nwires+2) # End ---------- Creation of random stick coordinates and electrodes ------------- # Start ---------- Identifying intersections between wires ------------- # all pair wire combination lines_comb = combinations(mlines, 2) # list storing True or False for pair intersection intersection_check = [pair[0].intersects(pair[1]) for pair in lines_comb] # list storing the indexes of intersection_check where the intersection between two wires is TRUE intersections = [i for i, x in enumerate(intersection_check) if x and random.random() > percentage_chance] # full list containing all non-repeated combinations of wires combination_index = list((i,j) for ((i,_),(j,_)) in combinations(enumerate(mlines), 2)) # list storing the connection (wire_i, wire_j) intersection_index = [combination_index[intersections[i]] for i in range(len(intersections))] # checking the coordinates for interesection points inter_point_coll = [pair[0].intersection(pair[1]) for pair in combinations(mlines, 2)] # eliminating empty shapely points from the previous list no_empty_inter_point_coll = [inter_point_coll[intersections[i]] for i in range(len(intersections))] # total number of intersections nintersections = len(intersection_index) # End ---------- Identifying intersections between wires ------------- # Start ---------- MNR nodal mapping ------------- # dictionary containing wire index: [list of wires connected to a given wire] wire_touch_list = defaultdict(list) for k, v in intersection_index: wire_touch_list[k].append(v) wire_touch_list[v].append(k) # dictionary containing wire index: [label nodes following MNR mapping] wire_touch_label_list = defaultdict(list) each_wire_inter_point_storage = defaultdict(list) label = 2 # Assigning new node labelling according to MNR mapping for i in iter(wire_touch_list.items()): for j in range(len(i[1])): cpoint = mlines[i[0]].intersection(mlines[i[1][j]]) npoint = (cpoint.x,cpoint.y) each_wire_inter_point_storage[i[0]].append(npoint) if i[0] > 1: wire_touch_label_list[i[0]].append(label) label += 1 else: wire_touch_label_list[i[0]].append(i[0]) maxl = label # dimension of the resistance matrix # flattening intersection_index for counting the amount of occurances of wire i flat = list(sum(intersection_index, ())) conn_per_wire = Counter(flat) # checking for isolated wires complete_list = range(nwires_plus_leads) isolated_wires = [x for x in complete_list if not x in flat] # list containing the length segments of each wire (if it has a junction) each_wire_length_storage = [[] for _ in range(nwires_plus_leads)] # Routine that obtains the segment lengths on each wire for i in each_wire_inter_point_storage: point_ini = Point(mlines[i].coords[0]) point_fin = Point(mlines[i].coords[1]) wlength = point_ini.distance(point_fin) wire_points = each_wire_inter_point_storage[i] dist = [0.0]*(len(wire_points)+1) for j in range(len(wire_points)): point = Point(wire_points[j]) dist[j] = point_ini.distance(point) dist[-1] = wlength dist.sort() dist_sep = [0.0]*len(dist) dist_sep[0] = dist[0] dist_sep[1:len(dist)] = [dist[k]-dist[k-1] for k in range(1,len(dist))] each_wire_length_storage[i].append(dist_sep) # End ---------- MNR nodal mapping ------------- # The MNR mapping associated to the NWN is also converted into a mathematical graph given by G. # G contains 2*nintersections nodes and we conventioned that left and right electrodes are labelled as node 0 and 1, respectively. G = nx.Graph() G.add_nodes_from(range(2*nintersections)) mr_matrix_plus = np.zeros((2*nintersections,2*nintersections)) inner_count = 0 inter_count = 0 #nx.draw(G) #nx.draw_random(G) #nx.draw_circular(G) nx.draw_spectral(G, node_size= 10) ##nx.draw_networkx_nodes(G) plt.show() # Start ---------- Building resistance matrix ------------- for iwire in range(nwires_plus_leads): if each_wire_inter_point_storage[iwire]: for j, pointj in enumerate(each_wire_inter_point_storage[iwire]): point = Point(pointj) for i, pointw in enumerate(each_wire_inter_point_storage[iwire]): comp_pointw = Point(pointw) inter_dist = point.distance(comp_pointw) round_inter_dist = round(inter_dist, 4) for il in each_wire_length_storage[iwire][0]: value = float(il) value = round(value,4) if value == round_inter_dist and value != 0: inner_resis = (float(value) * rho0 / A0) if iwire != 0 and iwire != 1 and mr_matrix_plus[wire_touch_label_list[iwire][i], wire_touch_label_list[iwire][j]] == 0.0: mr_matrix_plus[wire_touch_label_list[iwire][i], wire_touch_label_list[iwire][j]] = -1.0/inner_resis mr_matrix_plus[wire_touch_label_list[iwire][j], wire_touch_label_list[iwire][i]] = -1.0/inner_resis G.add_edge(wire_touch_label_list[iwire][i],wire_touch_label_list[iwire][j]) inner_count += 1 for k, label in enumerate(wire_touch_list[iwire]): for kk, pointk in enumerate(each_wire_inter_point_storage[label]): pointk = Point(pointk) inter_dist = point.distance(pointk) round_inter_dist = round(inter_dist, 4) if round_inter_dist == 0 and mr_matrix_plus[wire_touch_label_list[iwire][j], wire_touch_label_list[label][kk]] == 0: G.add_edge(wire_touch_label_list[label][kk],wire_touch_label_list[iwire][j]) r0 = -1/R_junc mr_matrix_plus[wire_touch_label_list[iwire][j], wire_touch_label_list[label][kk]] = r0 mr_matrix_plus[wire_touch_label_list[label][kk], wire_touch_label_list[iwire][j]] = r0 sum_rows_mr_plus = mr_matrix_plus.sum(1) np.fill_diagonal(mr_matrix_plus, abs(sum_rows_mr_plus)) mr_nozero_rows_plus = mr_matrix_plus[~(mr_matrix_plus==0).all(1),:] # nonconnected wires are eliminated from the resistance matrix mr_nonconnected_plus = mr_nozero_rows_plus[:,~(mr_nozero_rows_plus==0).all(0)] # End ---------- Building resistance matrix ------------- # input current vector i0 = 1.0 # absolute value of the current (in Amp) ic = np.zeros(mr_nonconnected_plus.shape[0]) ic[0] = +i0 ic[1] = -i0 Imatrix = m(ic) # Solving Ohm's law in matrix form, R^(-1)V = I. Resulting voltages are in Volts. #Amatrix = m(mr_nonconnected_plus) #Amatrix = np.array(mr_nonconnected_plus) #ks = Symmlq(Imatrix) #elec_pot_mr = ks.solve(Gfun) #print Gfun #print Imatrix #or #ks = Symmlq(Gfun) #print Amatrix #elec_pot_mr = ks.solve(Imatrix) Amatrix = csc_matrix(mr_nonconnected_plus) elec_pot_mr = minres(Amatrix, Imatrix, tol=tol) #elec_pot_mr = Symmlq(Imatrix, Gfun, show=show, rtol=tol, maxit=maxit) #elec_pot_mr = minres(Imatrix, Amatrix) # Sheet resistance resistance = ((elec_pot_mr[0][0] - elec_pot_mr[0][1]))/i0 # Checking if there is a path connecting electrodes at nodes 0 and 1 if nx.has_path(G,0,1): separation_short = nx.shortest_path_length(G,0,1) res_list.append(resistance) short_sep_list.append(separation_short) junc_dens.append(float(nintersections)/area) except IndexError: continue break AF = density*wire_diameter*wire_length*0.001 transmittance = round(math.exp(-AF*extinction_coeff), 4) junc_avg = np.mean(junc_dens) resAvg = np.mean(res_list) resStd = np.std(res_list) short = np.mean(short_sep_list) dens_temp.append(junc_avg) avg_res_temp.append(resAvg) st_dev_temp.append(resStd) open(res_file,"a").write("%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n" %(density,AF,transmittance,resAvg,resStd,junc_avg,R_junc,rho0,wire_diameter,wire_length,box_length,samples,nstep,n_initial,n_final,tol,distl,lower_l,upper_l,sigmal,percentage_chance,round(time.process_time() - start_time, 5))) print("Density: %s, Transmittance: %s, Average resistance: %s, Standard deviation: %s, Junction density: %s, Junctions removed: %s" %(density,transmittance,round(resAvg, 6),round(resStd, 4),round(junc_avg, 4), percentage_chance)) print("runtime was", round(time.process_time() - start_time, 5), "seconds") transmittancelist.append((transmittance**(-1/2))-1) resistancelist.append(resAvg) res_list=[] short_sep_list=[] junc_dens=[] print(transmittancelist) print(resistancelist) #plot T^(-1/2)-1 vs Rs import matplotlib.pyplot as plt plt.plot(resistancelist,transmittancelist,'bo') plt.title('T^(-1/2)-1 vs Rs Log-Log Scale') plt.ylabel('T^(-1/2)-1') plt.xlabel('Rs') plt.yscale('log') plt.xscale('log') plt.show() #line fit of loglog plot xs = np.log10(np.array(resistancelist, dtype=np.float64)) ys = np.log10(np.array(transmittancelist, dtype=np.float64)) def best_fit_slope_and_intercept(xs,ys): m = (((mean(xs)*mean(ys)) - mean(xs*ys)) / ((mean(xs)*mean(xs)) - mean(xs*xs))) b = mean(ys) - m*mean(xs) return m, b m, b = best_fit_slope_and_intercept(xs,ys) print(m,b) #plot best fit line on graph regression_line = [(m*x)+b for x in xs] import matplotlib.pyplot as plt from matplotlib import style import matplotlib.patches as mpatches style.use('ggplot') plt.plot(xs,ys,'bo') plt.plot(xs, regression_line,'r-') plt.title('T^(-1/2)-1 vs Rs Log-Log Scale with Line Fit') plt.ylabel('T^(-1/2)-1') plt.xlabel('Rs') red_patch = mpatches.Patch(color='red', label='Line Fit y = %s x + %s' %(round(m,3),round(b,3))) plt.legend(handles=[red_patch]) plt.show() open(res_file,"a").close() duration = 0.1 freq = 1100
gpl-2.0
regardscitoyens/Collaborateurs-Senat
bin/convert.py
1
8575
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys, re, json filepath = sys.argv[1] with open(filepath, 'r') as xml_file: xml = xml_file.read() drawMap = False if len(sys.argv) > 2: drawMap = True minl = 100 mint = 200 maxt = 1100 l1 = 300 parls_type = "senateurs" parls_first = True if "senateurs_collaborateurs" in filepath: mint = 220 elif "collaborateurs_senateurs" in filepath: parls_first = False elif "deputes_collaborateurs" in filepath: parls_type = "deputes" minl = 50 mint = 220 maxt = 800 l1 = 75 l2 = 150 l3 = 250 l4 = 275 l5 = 350 parl_type = parls_type.rstrip("s") with open("data/%s.json" % parls_type, 'r') as f: parls = [p[parl_type] for p in json.load(f)[parls_type]] Mme = r"^M[.mle]+\s+" clean_Mme = re.compile(Mme) re_clean_bal = re.compile(r'<[^>]+>') re_clean_dash = re.compile(r'\s*-\s*') re_clean_spaces = re.compile(r'\s+') clean = lambda x: re_clean_spaces.sub(' ', re_clean_dash.sub('-', re_clean_bal.sub('', x))).strip() regexps = [(re.compile(r), s) for r, s in [ (u'[àÀâÂ]', 'a'), (u'[éÉèÈêÊëË]', 'e'), (u'[îÎïÏ]', 'i'), (u'[ôÔöÔ]', 'o'), (u'[ùÙûÛüÜ]', 'u'), (u'[çÇ]', 'c'), ]] def clean_accents(t): if not isinstance(t, unicode): t = t.decode('utf-8') for r, s in regexps: t = r.sub(s, t) return t checker = lambda x: clean(clean_accents(x)).lower().strip() reorder = lambda p: checker("%s %s" % (p['nom'].replace("%s " % p['prenom'], ""), p['prenom'])) maj = ur"A-ZÀÂÉÈÊËÎÏÔÖÙÛÜÇ" particule = r"d(?:(?:e l)?'|[iu] |e(?:[ls]| la)? )" re_name = re.compile(ur"(%s)((?:(?:%s)?[%s'\-]+\s+)+)([%s][a-zàâéèêëîïôöùûüç].*)$" % (Mme, particule, maj, maj)) def split_name(name): match = re_name.search(name.decode('utf-8')) if not match: sys.stderr.write("WARNING: could not split name %s\n" % name) return name, "", "" sexe = "H" if "." in match.group(1) else "F" nom = match.group(2).strip() prenom = match.group(3).strip() return nom, prenom, sexe def split_collab(record): if record[4].endswith("*"): record[4] = record[4].rstrip(" *") record[10] = "Congé sans solde" else: record[10] = "" record[5], record[6], record[7] = split_name(record[4]) exceptions = [ ("deromedi jacqueline", "deromedi jacky"), ("yonnet-salvator evelyne", "yonnet evelyne"), ("laufoaulu lopeleto", "laufoaulu robert"), ("azerot bruno", "azerot bruno nestor"), ("de la verpillere charles", "de la verpilliere charles"), ("debre bernard andre", "debre bernard"), ("le borgn pierre-yves", "le borgn' pierre-yves"), ("vlody jean-jacques", "vlody jean jacques"), ("destans jean louis", "destans jean-louis"), ("goasgen claude", "goasguen claude"), ("zimmermann marie jo", "zimmermann marie-jo") ] def find_parl(record, splitted=False): nom = checker(clean_Mme.sub('', record[0])) for bad, gd in exceptions: nom = nom.replace(bad, gd) if not splitted: record[1], record[2], record[3] = split_name(record[0]) for parl in parls: if reorder(parl) == nom: record[0] = parl["nom"] #record[1] = parl["nom_de_famille"] #record[2] = parl["prenom"] #record[3] = parl["sexe"] record[8] = parl["url_nos%s_api" % parls_type].replace('json', 'xml') record[9] = parl.get("url_institution", parl.get("url_an", "")) return sys.stderr.write("Could not find %s -> %s\n" % (record[0], nom.encode('utf-8'))) # Reorder xml lines xml_ordered = "" page_lines = [] re_ordline = re.compile(r'<text top="(\d+)" left="(\d+)"[^>]', re.I) def ordline(l): y, x = re_ordline.search(l).groups() y = int(y) x = int(x) if parls_type == "deputes" and x < l3: y -= 3 return (y, x) for line in (xml).split("\n"): if line.startswith('<text'): page_lines.append(line) elif line.startswith('</page'): xml_ordered += "\n".join(sorted(page_lines, key=ordline)) page_lines = [] topvals = {} leftvals = {} maxtop = 0 maxleft = 0 results = [] headers = ['parlementaire', 'nom_parlementaire', 'prénom_parlementaire', 'sexe_parlementaire', 'collaborateur', 'nom_collaborateur', 'prénom_collaborateur', 'sexe_collaborateur', 'url_api_RC', 'url_institution', 'information complémentaire'] record = ["", "", "", "", "", "", "", "", "", "", ""] re_line = re.compile(r'<page number|text top="(\d+)" left="(\d+)"[^>]*font="(\d+)">(.*)</text>', re.I) re_tosplit = re.compile(r'^(.*) ((?:M.|Mme) .*)$') re_collabtosplit = re.compile(r'^\s*(M\.|Mme) (.+)$') sexize = lambda val: "H" if val == "M." else "F" for line in (xml_ordered).split("\n"): #print >> sys.stderr, "DEBUG %s" % line line = line.replace(" ", " ") attrs = re_line.search(line) if not attrs or not attrs.groups(): raise Exception("WARNING : line detected with good font but wrong format %s" % line) font = int(attrs.group(3)) top = int(attrs.group(1)) if top > maxtop: maxtop = top if not font in topvals: topvals[font] = [] topvals[font].append(top) left = int(attrs.group(2)) if left > maxleft: maxleft = left if not font in leftvals: leftvals[font] = [] leftvals[font].append(left) if drawMap: continue #print "DEBUG %s %s %s %s" % (font, left, top, text) if top < mint or top > maxt: continue if left < minl: continue text = attrs.group(4).replace("&amp;", "&") # Handle députés if parls_type == "deputes": val = clean(text) if left < l1: record[3] = val.replace(" .", ".") elif left < l2: record[2] = val elif left < l3: record[1] = val record[0] = record[3] + " " + record[1] + " " + record[2] find_parl(record, splitted=True) record[3] = sexize(record[3]) elif left < l4: splitted = re_collabtosplit.search(val) if splitted: record[7] = splitted.group(1) record[6] = splitted.group(2) else: record[7] = val.replace(" .", ".") elif left < l5: record[6] = val else: record[5] = val record[4] = record[7] + " " + record[5] + " " + record[6] record[7] = sexize(record[7]) results.append(list(record)) continue # Handle sénateurs if left < l1: val = clean(text) idx = 0 if parls_first else 4 tosplit = re_tosplit.search(val) if tosplit: sys.stderr.write("WARNING: splitting %s\n" % val) idx2 = 4 if parls_first else 0 record[idx], record[idx2] = tosplit.groups() find_parl(record) split_collab(record) results.append(list(record)) continue record[idx] = val if parls_first: find_parl(record) else: split_collab(record) else: idx = 4 if parls_first else 0 record[idx] = clean(text) if not parls_first: find_parl(record) else: split_collab(record) results.append(list(record)) if not drawMap: print ",".join(['"%s"' % h for h in headers]) for i in sorted(results, key=lambda x: ("%s %s - %s %s" % (x[1], x[2], x[5], x[6])).lower()): for j in range(len(i)): i[j] = clean(i[j]) try: i[j] = i[j].encode('utf-8') except: pass print ",".join([str(i[a]) if isinstance(i[a], int) else "\"%s\"" % i[a].replace('"', '""') for a,_ in enumerate(i)]) else: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from matplotlib import cm fig = plt.figure(figsize=(8.5, 12)) ax = fig.add_subplot(111) ax.grid(True, fillstyle='left') nf = len(leftvals) for font in leftvals: color = cm.jet(1.5*font/nf) ax.plot(leftvals[font], topvals[font], 'ro', color=color, marker=".") plt.figtext((font+1.)/(nf+1), 0.95, "font %d" % font, color=color) plt.xticks(np.arange(0, maxleft + 50, 50)) plt.yticks(np.arange(0, maxtop + 50, 50)) plt.xlim(0, maxleft + 50) plt.ylim(0, maxtop + 50) plt.gca().invert_yaxis() mappath = filepath.replace(".xml", ".png").replace("pdfs/", "pdfmaps/") fig.savefig(mappath) fig.clf() plt.close(fig)
agpl-3.0
sofianehaddad/otmorris
python/src/plot_sensitivity.py
1
3422
""" Plot Morris elementary effects """ import openturns as ot import numpy as np import matplotlib import pylab as plt import warnings matplotlib.rc('text', usetex=True) matplotlib.rcParams['text.latex.preamble'] = [r"\usepackage{amsmath}"] class PlotEE(object): """ Plot elementary effects ----------------------- The class perform the plot of sensitivity indices issued from Morris class. Parameters ---------- morris: :class:`~otmorris.Morris` A Morris object. output_marginal: int Index of output marginal of interest. Default value is 0 absolute_mean: bool Interest is mean of absolute elementary effects . Default value is True title: str Title for the graph """ def __init__(self, result, output_marginal=0, absolute_mean=True, title="Elementary effects", **kwargs): # set figure self._fig, self._ax = plt.subplots() # Check input object type if not (hasattr(result, 'getStandardDeviationElementaryEffects') and hasattr(result, 'getClassName')): raise TypeError(" `result` should be of class Morris ") if absolute_mean: mean = result.getMeanAbsoluteElementaryEffects(output_marginal) else: mean = result.getMeanElementaryEffects(output_marginal) sigma = result.getStandardDeviationElementaryEffects(output_marginal) dim = len(sigma) input_description = map(lambda x: "X" + str(x + 1), range(dim)) # Plot effects self._ax.plot(mean, sigma, 'bo') # Annotate points dmu = (plt.np.max(mean) - plt.np.min(mean)) / len(mean) dsg = (plt.np.max(sigma) - plt.np.min(sigma)) / len(sigma) for i, txt in enumerate(input_description): self._ax.annotate( txt, (mean[i] + 0.05 * dmu, sigma[i] + 0.05 * dsg)) self._ax.set_xlabel(r"$\boldsymbol{\mu}$", fontsize=14) self._ax.set_ylabel(r"$\boldsymbol{\sigma}$", fontsize=14) self._ax.legend(loc=0) self._ax.grid(True) self._fig.suptitle(title, fontsize=18) def show(self, **kwargs): """ Display the graph on screen. Parameters ---------- kwargs: block: bool, optional If true (default), block until the graph is closed. These parameters are passed to matplotlib.pyplot.show() """ self._fig.show(**kwargs) def save(self, fname, **kwargs): """ Save the graph as file. Parameters ---------- fname: bool, optional A string containing a path to a filename from which file format is deduced. kwargs: Refer to matplotlib.figure.Figure.savefig documentation for valid keyword arguments. """ self._fig.savefig(fname, **kwargs) def getFigure(self): """ Accessor to the underlying figure object. Refer to matplotlib.figure.Figure for further information. """ return self._fig def getAxes(self): """ Get the list of Axes objects. Refer to matplotlib.axes.Axes for further information. """ return self._ax def close(self): """Close the figure.""" plt.close(self._fig)
lgpl-3.0
mph-/lcapy
lcapy/texpr.py
1
7057
"""This module provides the TimeDomainExpression class to represent time domain expressions. Copyright 2014--2021 Michael Hayes, UCECE """ from __future__ import division from .domains import TimeDomain from .expr import Expr, expr_make from .functions import exp from .sym import fsym, ssym, tsym, j, oo from .laplace import laplace_transform from .fourier import fourier_transform from .units import u as uu from sympy import Heaviside, Integral, limit, Expr as symExpr __all__ = ('texpr', ) class TimeDomainExpression(TimeDomain, Expr): """t-domain expression or symbol.""" var = tsym def __init__(self, val, **assumptions): check = assumptions.pop('check', True) assumptions['real'] = True super(TimeDomainExpression, self).__init__(val, **assumptions) expr = self.expr if check and expr.has(ssym) and not expr.has(Integral): raise ValueError( 't-domain expression %s cannot depend on s' % expr) if check and expr.has(fsym) and not expr.has(Integral): raise ValueError( 't-domain expression %s cannot depend on f' % expr) def _mul_compatible_domains(self, x): if self.domain == x.domain: return True return x.is_constant_domain def _div_compatible_domains(self, x): if self.domain == x.domain: return True return x.is_constant_domain @property def abs(self): """Return absolute value.""" return self.__class__(abs(self.expr), **self.assumptions) def as_expr(self): return TimeDomainExpression(self) def infer_assumptions(self): self.assumptions.infer_from_expr(self) def LT(self, evaluate=True, **assumptions): """Determine one-sided Laplace transform with 0- as the lower limit. This is an alias for laplace.""" return self.laplace(evaluate, **assumptions) def laplace(self, evaluate=True, **assumptions): """Determine one-sided Laplace transform with 0- as the lower limit.""" assumptions = self.assumptions.merge_and_infer(self, **assumptions) result = laplace_transform(self.expr, self.var, ssym, evaluate=evaluate) return self.change(result, domain='laplace', units_scale=uu.s, **assumptions) def phasor(self, **assumptions): """Convert to phasor domain.""" from .phasor import PhasorTimeDomainExpression return PhasorTimeDomainExpression.from_time(self, **assumptions) def FT(self, var=None, evaluate=True, **assumptions): """Attempt Fourier transform. X(f) = \int_{-\infty}^{\infty} x(t) exp(-j 2\pi f t) dt.""" from .symbols import f, omega, Omega, F if var is None: var = f if id(var) not in (id(f), id(F), id(omega), id(Omega)): raise ValueError('FT requires var to be f, F, omega, or Omega`, not %s' % var) assumptions = self.assumptions.merge_and_infer(self, **assumptions) result = fourier_transform(self.expr, self.var, fsym, evaluate=evaluate) result = self.change(result, domain='fourier', units_scale=uu.s, **assumptions) result = result(var) result = result.expand(diracdelta=True, wrt=var) result = result.simplify() return result def fourier(self, var=None, evaluate=True, **assumptions): """Attempt Fourier transform. This is an alias for FT.""" return self.FT(var, evaluate, **assumptions) def angular_fourier(self, evaluate=True, **assumptions): """Attempt angular Fourier transform.""" from .symbols import omega return self.FT(omega, evaluate, **assumptions) def norm_angular_fourier(self, evaluate=True, **assumptions): """Attempt normalized angular Fourier transform.""" from .symbols import Omega return self.FT(Omega, evaluate, **assumptions) def time(self, **assumptions): return self def plot(self, t=None, **kwargs): """Plot the time waveform. If t is not specified, it defaults to the range (-0.2, 2). t can be a vector of specified instants, a tuple specifing the range, or a constant specifying the maximum value with the minimum value set to 0. kwargs include: axes - the plot axes to use otherwise a new figure is created xlabel - the x-axis label ylabel - the y-axis label xscale - the x-axis scaling, say for plotting as ms yscale - the y-axis scaling, say for plotting mV in addition to those supported by the matplotlib plot command. The plot axes are returned.""" from .plot import plot_time return plot_time(self, t, **kwargs) def sample(self, t): """Return a discrete-time signal evaluated at time values specified by vector t. """ return self.evaluate(t) def initial_value(self): """Determine value at t = 0. See also pre_initial_value and post_initial_value""" return self.subs(0) def pre_initial_value(self): """Determine value at t = 0-. See also initial_value and post_initial_value""" return self.limit(self.var, 0, dir='-') def post_initial_value(self): """Determine value at t = 0+. See also pre_initial_value and initial_value""" return self.limit(self.var, 0, dir='+') def final_value(self): """Determine value at t = oo.""" return self.limit(self.var, oo) def remove_condition(self): """Remove the piecewise condition from the expression. See also force_causal.""" if not self.is_conditional: return self expr = self.expr expr = expr.args[0].args[0] return self.__class__(expr) def force_causal(self): """Remove the piecewise condition from the expression and multiply by Heaviside function. See also remove_condition.""" if self.is_causal: return self expr = self.expr if self.is_conditional: expr = expr.args[0].args[0] expr = expr * Heaviside(t) return self.__class__(expr) class TimeDomainImpulseResponse(TimeDomainExpression): """Time-domain impulse response.""" # TODO, check attributes. quantity = 'transfer' quantity_label = 'Impulse response' domain_units = uu.Hz is_transfer = True def texpr(arg, **assumptions): """Create TimeDomainExpression object. If `arg` is tsym return t""" if arg is tsym: return t return expr_make('time', arg, **assumptions) from .expressionclasses import expressionclasses classes = expressionclasses.register('time', TimeDomainExpression) TimeDomainVoltage = classes['voltage'] TimeDomainCurrent = classes['current'] t = TimeDomainExpression('t') t.units = uu.s
lgpl-2.1
mlyundin/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
imaculate/scikit-learn
doc/conf.py
5
8468
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', 'sphinx.ext.doctest', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2016, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
cuauv/software
hydrocode/scripts/dft_plot.py
1
3121
#!/usr/bin/env python3 #Script for drawing plots of the correct DFT bin amplitude and ratio between successive amplitudes with respect to time. Also shows trigger point. Read Hydrophones Code wiki entry. import socket, struct, numpy, math import matplotlib.pyplot as plt import os.path try: from cv2 import imread except ImportError: from scipy.misc import imread DFT_PLOT_LENGTH = 3500 #length of the dft plot (in samples) MAXIMUM_AMPLITUDE = DFT_PLOT_LENGTH #maximum signal amplitude (plot is square because the penguin meme is a square image) UDP_ADDRESS = "127.0.0.1" #local host because we receive plots from hydromathd on the same machine UDP_PAYLOAD_SIZE = 512 #size of the UDP plot packets (in bytes) UDP_PORT = 9003 #hydromathd sends dft plots to this port #initializing UDP networking sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind((UDP_ADDRESS, UDP_PORT)) #initializing the plot window fig = plt.figure(figsize = (7, 7)) #setting the plot labels plt.title("Correct DFT bin Amplitudes and Amplitude Ratios w/ Trigger Point") plt.xlabel("Packet Number") plt.ylabel("Amplitudes White, Ratios Blue") #displaying the penguin meme background img = imread(os.path.join(os.path.dirname(os.path.realpath(__file__)), "katy.jpg")) plt.imshow(img, extent = [0, DFT_PLOT_LENGTH - 1, 0, MAXIMUM_AMPLITUDE - 1]) #creating the axes and setting the maximum values. removing axis ticks ax = plt.gca() ax.set_xlim((0, DFT_PLOT_LENGTH - 1)) ax.set_ylim((0, MAXIMUM_AMPLITUDE - 1)) ax.axes.yaxis.set_ticks([]) #initializing the graphs and trigger cursor with arbitrary numbers x = numpy.arange(0, DFT_PLOT_LENGTH) y = x trigger_cursor = plt.axvline(x = 0, color = "yellow", ymin = 0.95) (line_0, line_1) = ax.plot(x, y, 'w-', x, y, 'b-', linewidth = '0.2', marker = '.', markersize = '2') #'w-' for white and 'b-' for blue #preparing a decode strings for unpacking the received bytes arrays into values. we need 'f' for floats. the trigger point array contains a single value decode_string = str(DFT_PLOT_LENGTH) + 'f' trigger_decode_string = str(1) + 'f' while 1: #initializing the graph values list line_values = list() #amplitudes are received first, then ratios for i in range(2): data = bytes() #receiving the full packets and the final possibly partially filled packet for j in range(int(math.ceil(float(DFT_PLOT_LENGTH) * 4.0 / UDP_PAYLOAD_SIZE))): (data_packet, address) = sock.recvfrom(UDP_PAYLOAD_SIZE * 4) data += data_packet #unpacking the received bytes array into values line_values.append(numpy.asarray(struct.unpack(decode_string, data))) #receiving the trigger point number (data_packet, address) = sock.recvfrom(1 * 4) #unpacking the trigger point number trigger_point = struct.unpack(trigger_decode_string, data_packet)[0] print("received dft amplitude plot") #updating the graphs line_0.set_ydata(line_values[0]) #amplitudes line_1.set_ydata(line_values[1]) #ratios trigger_cursor.set_xdata(trigger_point) #trigger packet number #not pausing after drawing a plot breaks things for some reason plt.draw() plt.pause(0.1) #in seconds
bsd-3-clause
rew4332/tensorflow
tensorflow/examples/skflow/out_of_core_data_classification.py
5
2461
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of loading karge data sets into out-of-core dataframe.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics # pylint: disable=g-bad-import-order import dask.dataframe as dd import pandas as pd from tensorflow.contrib import learn # pylint: enable=g-bad-import-order # Sometimes when your dataset is too large to hold in the memory # you may want to load it into a out-of-core dataframe as provided by dask # library to firstly draw sample batches and then load into memory for training. # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # Note that we use iris here just for demo purposes # You can load your own large dataset into a out-of-core dataframe # using dask's methods, e.g. read_csv() in dask # details please see: http://dask.pydata.org/en/latest/dataframe.html # We firstly load them into pandas dataframe and then convert into dask # dataframe. x_train, y_train, x_test, y_test = [ pd.DataFrame(data) for data in [x_train, y_train, x_test, y_test]] x_train, y_train, x_test, y_test = [ dd.from_pandas(data, npartitions=2) for data in [x_train, y_train, x_test, y_test]] # Initialize a TensorFlow linear classifier classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(x_train), n_classes=3) # Fit the model using training set. classifier.fit(x_train, y_train) # Make predictions on each partitions of testing data predictions = x_test.map_partitions(classifier.predict).compute() # Calculate accuracy score = metrics.accuracy_score(y_test.compute(), predictions)
apache-2.0
MohammedWasim/scikit-learn
benchmarks/bench_plot_neighbors.py
287
6433
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) pl.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
fredhusser/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
169
8809
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_class_weights(): # Test class weights. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None, random_state=100) clf.fit(X2, y2) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight={1: 0.001}, random_state=100) clf.fit(X2, y2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_partial_fit_weight_class_balanced(): # partial_fit with class_weight='balanced' not supported clf = PassiveAggressiveClassifier(class_weight="balanced") assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y)) def test_equal_class_weight(): X2 = [[1, 0], [1, 0], [0, 1], [0, 1]] y2 = [0, 0, 1, 1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None) clf.fit(X2, y2) # Already balanced, so "balanced" weights should have no effect clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight="balanced") clf_balanced.fit(X2, y2) clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X2, y2) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2) def test_wrong_class_weight_label(): # ValueError due to wrong class_weight label. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight={0: 0.5}) assert_raises(ValueError, clf.fit, X2, y2) def test_wrong_class_weight_format(): # ValueError due to wrong class_weight argument type. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight=[0.5]) assert_raises(ValueError, clf.fit, X2, y2) clf = PassiveAggressiveClassifier(class_weight="the larch") assert_raises(ValueError, clf.fit, X2, y2) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
MPTCP-smartphone-thesis/pcap-measurement
summary_imc.py
1
106944
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2015 Matthieu Baerts & Quentin De Coninck # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # To install on this machine: matplotlib, numpy from __future__ import print_function ################################################## ## IMPORTS ## ################################################## import argparse import common as co from math import ceil import matplotlib # Do not use any X11 backend matplotlib.use('Agg') import matplotlib.pyplot as plt import mptcp import numpy as np import os import os.path import pickle import sys import tcp import time ################################################## ## ARGUMENTS ## ################################################## parser = argparse.ArgumentParser( description="Summarize stat files generated by analyze") parser.add_argument("-s", "--stat", help="directory where the stat files are stored", default=co.DEF_STAT_DIR+'_'+co.DEF_IFACE) parser.add_argument('-S', "--sums", help="directory where the summary graphs will be stored", default=co.DEF_SUMS_DIR+'_'+co.DEF_IFACE) parser.add_argument("-d", "--dirs", help="list of directories to aggregate", nargs="+") parser.add_argument("-r", "--remove", help="if set, remove outliers from dataset", action="store_true") args = parser.parse_args() stat_dir_exp = os.path.abspath(os.path.expanduser(args.stat)) sums_dir_exp = os.path.abspath(os.path.expanduser(args.sums)) co.check_directory_exists(sums_dir_exp) ################################################## ## GET THE DATA ## ################################################## def check_in_list(dirpath, dirs): """ Check if dirpath is one of the dir in dirs, True if dirs is empty """ if not dirs: return True return os.path.basename(dirpath) in dirs def fetch_data(dir_exp): co.check_directory_exists(dir_exp) dico = {} for dirpath, dirnames, filenames in os.walk(dir_exp): if check_in_list(dirpath, args.dirs): for fname in filenames: try: stat_file = open(os.path.join(dirpath, fname), 'r') dico[fname] = pickle.load(stat_file) stat_file.close() except IOError as e: print(str(e) + ': skip stat file ' + fname, file=sys.stderr) return dico connections = fetch_data(stat_dir_exp) def ensures_smartphone_to_proxy(): for fname in connections.keys(): for conn_id in connections[fname].keys(): if isinstance(connections[fname][conn_id], mptcp.MPTCPConnection): inside = True for flow_id, flow in connections[fname][conn_id].flows.iteritems(): if not flow.attr[co.DADDR].startswith('172.17.') and not flow.attr[co.DADDR] == co.IP_PROXY: connections[fname].pop(conn_id, None) inside = False break if inside: for direction in co.DIRECTIONS: # This is a fix for wrapping seq num if connections[fname][conn_id].attr[direction][co.BYTES_MPTCPTRACE] < -1: connections[fname][conn_id].attr[direction][co.BYTES_MPTCPTRACE] = 2**32 + connections[fname][conn_id].attr[direction][co.BYTES_MPTCPTRACE] ensures_smartphone_to_proxy() def get_multiflow_connections(connections): multiflow_connections = {} singleflow_connections = {} for fname, conns_fname in connections.iteritems(): for conn_id, conn in conns_fname.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): if len(conn.flows) > 1: if fname not in multiflow_connections: multiflow_connections[fname] = {} multiflow_connections[fname][conn_id] = conn else: if fname not in singleflow_connections: singleflow_connections[fname] = {} singleflow_connections[fname][conn_id] = conn return multiflow_connections, singleflow_connections multiflow_connections, singleflow_connections = get_multiflow_connections(connections) def filter_connections(connections, min_bytes=None, max_bytes=None): filtered = {} for fname, data in connections.iteritems(): filtered[fname] = {} for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): mptcp_bytes = conn.attr[co.S2D].get(co.BYTES_MPTCPTRACE, 0) + conn.attr[co.D2S].get(co.BYTES_MPTCPTRACE, 0) if (min_bytes and mptcp_bytes >= min_bytes) or (max_bytes and mptcp_bytes <= max_bytes): filtered[fname][conn_id] = conn return filtered # connections = filter_connections(connections) ################################################## ## PLOTTING RESULTS ## ################################################## def fog_plot_with_bytes_wifi_cell_per_condition(log_file=sys.stdout): data = {co.S2D: {'all': {'Connections': []}}, co.D2S: {'all': {'Connections': []}}} color = {'Connections': 'orange'} base_graph_name = "fog_bytes" for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): if co.BYTES in conn.attr[co.S2D]: data[co.S2D]['all']['Connections'].append([conn.attr[co.S2D][co.BYTES].get(co.WIFI, 0), conn.attr[co.S2D][co.BYTES].get(co.CELL, 0)]) if co.BYTES in conn.attr[co.D2S]: data[co.D2S]['all']['Connections'].append([conn.attr[co.D2S][co.BYTES].get(co.WIFI, 0), conn.attr[co.D2S][co.BYTES].get(co.CELL, 0)]) co.scatter_plot_with_direction(data, "Bytes on Wi-Fi", "Bytes on cellular", color, sums_dir_exp, base_graph_name) def fog_plot_with_packs_wifi_cell_per_condition(log_file=sys.stdout): data = {co.S2D: {'all': {'Connections': []}}, co.D2S: {'all': {'Connections': []}}} color = {'Connections': 'orange'} base_graph_name = "fog_packs" for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # conn is then a MPTCPConnection, be still better to be sure of if isinstance(conn, mptcp.MPTCPConnection): packs = {co.S2D: {co.CELL: 0, co.WIFI: 0, '?': 0}, co.D2S: {co.CELL: 0, co.WIFI: 0, '?': 0}} for flow_id, flow in conn.flows.iteritems(): if co.S2D not in flow.attr: continue if co.PACKS not in flow.attr[co.S2D] or co.PACKS not in flow.attr[co.D2S]: break interface = flow.attr[co.IF] packs[co.S2D][interface] += flow.attr[co.S2D][co.PACKS] packs[co.D2S][interface] += flow.attr[co.D2S][co.PACKS] if packs[co.S2D][co.CELL] == 0 and packs[co.S2D][co.WIFI] == 0 and packs[co.D2S][co.CELL] == 0 and packs[co.D2S][co.WIFI] == 0: continue data[co.S2D]['all']['Connections'].append([packs[co.S2D][co.WIFI], packs[co.S2D][co.CELL]]) data[co.D2S]['all']['Connections'].append([packs[co.D2S][co.WIFI], packs[co.D2S][co.CELL]]) co.scatter_plot_with_direction(data, "Packets on wifi", "Packets on cellular", color, sums_dir_exp, base_graph_name) def fog_duration_bytes(log_file=sys.stdout): data = {'all': {'Connections': []}} color = {'Connections': 'orange'} base_graph_name = "fog_duration_bytes" for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): if isinstance(conn, tcp.TCPConnection): duration = conn.flow.attr[co.DURATION] elif isinstance(conn, mptcp.MPTCPConnection): duration = conn.attr[co.DURATION] nb_bytes = 0 if co.BYTES in conn.attr[co.S2D]: nb_bytes = conn.attr[co.S2D][co.BYTES].get(co.WIFI, 0) + conn.attr[co.S2D][co.BYTES].get(co.CELL, 0) + conn.attr[co.S2D][co.BYTES].get('?', 0) if co.BYTES in conn.attr[co.D2S]: nb_bytes += conn.attr[co.D2S][co.BYTES].get(co.WIFI, 0) + conn.attr[co.D2S][co.BYTES].get(co.CELL, 0) + conn.attr[co.D2S][co.BYTES].get('?', 0) data['all']['Connections'].append([duration, nb_bytes]) co.scatter_plot(data, "Duration [s]", "Bytes on connection", color, sums_dir_exp, base_graph_name, plot_identity=False) def cdf_duration(log_file=sys.stdout): data_duration = {'all': {co.DURATION: []}} color = ['red'] base_graph_name_duration = "summary_cdf_duration" base_graph_path_duration = os.path.join(sums_dir_exp, base_graph_name_duration) base_graph_name_duration_hist = "summary_hist_duration" base_graph_path_duration_hist = os.path.join(sums_dir_exp, base_graph_name_duration_hist) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): if isinstance(conn, tcp.TCPConnection): duration = conn.flow.attr[co.DURATION] elif isinstance(conn, mptcp.MPTCPConnection): duration = conn.attr[co.DURATION] data_duration['all'][co.DURATION].append(duration) co.plot_cdfs_natural(data_duration, color, 'Seconds [s]', base_graph_path_duration) co.plot_cdfs_natural(data_duration, color, 'Seconds [s]', base_graph_path_duration + '_log', xlog=True) # weights = [] # for dataset_results in data_duration['all'][co.DURATION]: # weights.append(np.ones_like(dataset_results) / len(data_duration['all'][co.DURATION])) plt.figure() plt.hist(data_duration['all'][co.DURATION], bins=np.logspace(-3, 5, 81), log=True) plt.xlabel("Duration of connections [s]", fontsize=18) plt.ylabel("Connections", fontsize=18) plt.gca().set_xscale("log") plt.savefig(base_graph_path_duration_hist + "_log.pdf") plt.close() plt.figure() plt.hist(data_duration['all'][co.DURATION], bins=np.logspace(-3, 5, 81)) plt.xlabel("Duration of connections [s]", fontsize=18) plt.ylabel("Connections", fontsize=18) plt.gca().set_xscale("log") plt.savefig(base_graph_path_duration_hist + ".pdf") plt.close() print("50th percentile", np.percentile(data_duration['all'][co.DURATION], 50), file=log_file) print("60th percentile", np.percentile(data_duration['all'][co.DURATION], 60), file=log_file) print("70th percentile", np.percentile(data_duration['all'][co.DURATION], 70), file=log_file) def cdfs_bytes(log_file=sys.stdout): data_bytes = {'all': {co.BYTES: []}} data_bytes_with_dir = {co.S2D: {'all': {co.BYTES: []}}, co.D2S: {'all': {co.BYTES: []}}} color = ['red'] base_graph_name_bytes = "summary_cdf_bytes" base_graph_path_bytes = os.path.join(sums_dir_exp, base_graph_name_bytes) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # An alternative version could be written with the bytes returned by mptcptrace, it would then be # nb_bytes_s2d = conn.attr[co.S2D][co.BYTES_MPTCPTRACE] # nb_bytes_d2s = conn.attr[co.D2S][co.BYTES_MPTCPTRACE] if co.BYTES in conn.attr[co.S2D]: nb_bytes_s2d = conn.attr[co.S2D][co.BYTES].get(co.WIFI, 0) + conn.attr[co.S2D][co.BYTES].get(co.CELL, 0) if co.BYTES in conn.attr[co.D2S]: nb_bytes_d2s = conn.attr[co.D2S][co.BYTES].get(co.WIFI, 0) + conn.attr[co.D2S][co.BYTES].get(co.CELL, 0) data_bytes['all'][co.BYTES].append(nb_bytes_s2d + nb_bytes_d2s) data_bytes_with_dir[co.S2D]['all'][co.BYTES].append(nb_bytes_s2d) data_bytes_with_dir[co.D2S]['all'][co.BYTES].append(nb_bytes_d2s) co.plot_cdfs_natural(data_bytes, color, 'Bytes', base_graph_path_bytes) co.plot_cdfs_with_direction(data_bytes_with_dir, color, 'Bytes', base_graph_path_bytes, natural=True) def cdf_number_subflows(log_file=sys.stdout): subflows = {'all': {'Subflows': []}} nb_subflows = {} color = ['red'] base_graph_name_subflows = "cdf_number_subflows" base_graph_path_subflows = os.path.join(sums_dir_exp, base_graph_name_subflows) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # Make sure we have MPTCPConnections, but it should always be the case if isinstance(conn, mptcp.MPTCPConnection): subflows['all']['Subflows'].append(len(conn.flows)) if len(conn.flows) not in nb_subflows: nb_subflows[len(conn.flows)] = 1 else: nb_subflows[len(conn.flows)] += 1 elif isinstance(conn, tcp.TCPConnection): print("WARNING: there is a TCPConnection!") co.plot_cdfs_natural(subflows, color, '# of subflows', base_graph_path_subflows) print(nb_subflows, file=log_file) def count_unused_subflows(log_file=sys.stdout): count = 0 count_total = 0 for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # Still make sure it's MPTCPConnections if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): unused_subflow = True for direction in co.DIRECTIONS: # Count data bytes if flow.attr[direction].get(co.BYTES_DATA, 0) > 0: unused_subflow = False count_total += 1 if unused_subflow: count += 1 count_multiflow = 0 count_unused_multiflow = 0 count_unused_additional = 0 count_unused_best_avg_rtt = 0 count_multiflow_additional = 0 bytes_when_unused = [] duration_when_unused = [] for fname, conns, in multiflow_connections.iteritems(): for conn_id, conn in conns.iteritems(): # Still make sure it's MPTCPConnections if isinstance(conn, mptcp.MPTCPConnection): start_time = float('inf') for flow_id, flow in conn.flows.iteritems(): start_time = min(start_time, flow.attr.get(co.START, float('inf'))) if start_time == float('inf'): continue for flow_id, flow in conn.flows.iteritems(): unused_subflow = True for direction in co.DIRECTIONS: # Count data bytes if flow.attr[direction].get(co.BYTES_DATA, 0) > 0: unused_subflow = False if unused_subflow: count_unused_multiflow += 1 count_multiflow += 1 if not start_time == flow.attr.get(co.START, float('inf')): count_multiflow_additional += 1 if unused_subflow: count_unused_additional += 1 min_rtt_avg = float('inf') for fid, fl in conn.flows.iteritems(): if co.RTT_AVG in flow.attr[co.D2S]: min_rtt_avg = min(min_rtt_avg, fl.attr[co.D2S].get(co.RTT_AVG, float('inf'))) if co.RTT_AVG in flow.attr[co.D2S] and flow.attr[co.D2S][co.RTT_AVG] == min_rtt_avg: count_unused_best_avg_rtt += 1 bytes_when_unused.append(conn.attr[co.D2S].get(co.BYTES_MPTCPTRACE, 0)) if co.DURATION in conn.attr: duration_when_unused.append(conn.attr[co.DURATION]) print("Number of unused subflows:", count, file=log_file) print("Number of total subflows:", count_total, file=log_file) print("Number of subflows in multiflow connections", count_multiflow, file=log_file) print("Number of additional subflows in multiflow connections", count_multiflow_additional, file=log_file) print("Number of unused subflows on multiflow connections", count_unused_multiflow, file=log_file) print("Number of unused additional subflows on multiflow connections", count_unused_additional, file=log_file) print("Number of unused additional subflows on multiflow connections with best RTT", count_unused_best_avg_rtt, file=log_file) print(np.min(bytes_when_unused), np.percentile(bytes_when_unused, 50), np.mean(bytes_when_unused), np.percentile(bytes_when_unused, 75), np.percentile(bytes_when_unused, 90), np.percentile(bytes_when_unused, 95), np.percentile(bytes_when_unused, 96), np.percentile(bytes_when_unused, 97), np.percentile(bytes_when_unused, 98), np.percentile(bytes_when_unused, 99), np.max(bytes_when_unused), file=log_file) print(np.min(duration_when_unused), np.percentile(duration_when_unused, 50), np.mean(duration_when_unused), np.percentile(duration_when_unused, 75), np.percentile(duration_when_unused, 90), np.percentile(duration_when_unused, 95), np.percentile(duration_when_unused, 96), np.percentile(duration_when_unused, 97), np.percentile(duration_when_unused, 98), np.percentile(duration_when_unused, 99), np.max(duration_when_unused), file=log_file) def textual_summary(log_file=sys.stdout): data = {'all': {'<1s': 0, ">=1s<10K": 0, ">=1s>=10K": 0, "<9s": 0, ">=9s<10K": 0, ">=9s>=10K": 0, '<10K': 0, '<1K': 0, '1B': 0, '2B': 0, '>=100s': 0, '<10s': 0, '>=1M': 0}} count = {'all': {'<1s': 0, ">=1s<10K": 0, ">=1s>=10K": 0, "<9s": 0, ">=9s<10K": 0, ">=9s>=10K": 0, '<10K': 0, '<1K': 0, '1B': 0, '2B': 0, '>=100s': 0, '<10s': 0, '>=1M': 0}} tot_count = {'all': 0.0} total_bytes = {'all': {co.S2D: 0, co.D2S: 0}} for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): if isinstance(conn, tcp.TCPConnection): duration = conn.flow.attr[co.DURATION] elif isinstance(conn, mptcp.MPTCPConnection): duration = conn.attr[co.DURATION] nb_bytes_s2d = 0 nb_bytes_d2s = 0 # An alternative version could be written with the bytes returned by mptcptrace, it would then be nb_bytes_s2d = conn.attr[co.S2D][co.BYTES_MPTCPTRACE] nb_bytes_d2s = conn.attr[co.D2S][co.BYTES_MPTCPTRACE] # if co.BYTES in conn.attr[co.S2D]: # nb_bytes_s2d = conn.attr[co.S2D][co.BYTES].get(co.WIFI, 0) + conn.attr[co.S2D][co.BYTES].get(co.CELL, 0) + conn.attr[co.S2D][co.BYTES].get('?', 0) # if co.BYTES in conn.attr[co.D2S]: # nb_bytes_d2s = conn.attr[co.D2S][co.BYTES].get(co.WIFI, 0) + conn.attr[co.D2S][co.BYTES].get(co.CELL, 0) + conn.attr[co.D2S][co.BYTES].get('?', 0) if duration < 1: data['all']['<1s'] += nb_bytes_s2d + nb_bytes_d2s count['all']['<1s'] += 1 else: if nb_bytes_s2d + nb_bytes_d2s < 10000: data['all'][">=1s<10K"] += nb_bytes_s2d + nb_bytes_d2s count['all'][">=1s<10K"] += 1 else: data['all'][">=1s>=10K"] += nb_bytes_s2d + nb_bytes_d2s count['all'][">=1s>=10K"] += 1 if duration >= 100.0: count['all']['>=100s'] += 1 data['all']['>=100s'] += nb_bytes_s2d + nb_bytes_d2s elif duration < 10.0: count['all']['<10s'] += 1 data['all']['<10s'] += nb_bytes_s2d + nb_bytes_d2s if nb_bytes_s2d + nb_bytes_d2s == 2: count['all']['2B'] += 1 data['all']['2B'] += nb_bytes_s2d + nb_bytes_d2s elif nb_bytes_s2d + nb_bytes_d2s == 1: count['all']['1B'] += 1 data['all']['1B'] += nb_bytes_s2d + nb_bytes_d2s if nb_bytes_s2d + nb_bytes_d2s < 1000: count['all']['<1K'] += 1 data['all']['<1K'] += nb_bytes_s2d + nb_bytes_d2s if nb_bytes_s2d + nb_bytes_d2s < 10000: count['all']['<10K'] += 1 data['all']['<10K'] += nb_bytes_s2d + nb_bytes_d2s elif nb_bytes_s2d + nb_bytes_d2s >= 1000000: count['all']['>=1M'] += 1 data['all']['>=1M'] += nb_bytes_s2d + nb_bytes_d2s if duration < 9: data['all']["<9s"] += nb_bytes_s2d + nb_bytes_d2s count['all']["<9s"] += 1 else: if nb_bytes_s2d + nb_bytes_d2s < 10000: data['all'][">=9s<10K"] += nb_bytes_s2d + nb_bytes_d2s count['all'][">=9s<10K"] += 1 else: data['all'][">=9s>=10K"] += nb_bytes_s2d + nb_bytes_d2s count['all'][">=9s>=10K"] += 1 tot_count['all'] += 1 total_bytes['all'][co.S2D] += nb_bytes_s2d total_bytes['all'][co.D2S] += nb_bytes_d2s for cond, data_cond in data.iteritems(): print(cond + " with " + str(tot_count[cond]) + "connections:", file=log_file) print("TOTAL BYTES S2D", total_bytes['all'][co.S2D], file=log_file) print("TOTAL BYTES D2S", total_bytes['all'][co.D2S], file=log_file) for dur_type, value in data_cond.iteritems(): print(dur_type + " (has " + str(count[cond][dur_type]) + " with " + str(count[cond][dur_type] * 100 / (tot_count[cond] + 0.00001)) + "%): " + str(value) + " bytes (" + str(value * 100 / (total_bytes[cond][co.S2D] + total_bytes[cond][co.D2S] + 0.00001)) + "%)", file=log_file) def count_ip_type(log_file=sys.stdout): results = {co.IPv4: [], co.IPv6: []} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): ip_type = flow.attr[co.TYPE] if flow.attr[co.SADDR] not in results[ip_type]: results[ip_type].append(flow.attr[co.SADDR]) print("IPv4", file=log_file) print(results[co.IPv4], file=log_file) print("IPv6", file=log_file) print(results[co.IPv6], file=log_file) print("IPv4", len(results[co.IPv4]), "IPv6", len(results[co.IPv6]), file=log_file) def count_packet(log_file=sys.stdout): count = {co.S2D: 0, co.D2S: 0} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): for direction in co.DIRECTIONS: count[direction] += flow.attr[direction].get(co.PACKS, 0) print("NB PACKETS S2D", count[co.S2D], "NB PACKETS D2S", count[co.D2S], file=log_file) def count_ports(log_file=sys.stdout): count = {co.SPORT: {}, co.DPORT: {}} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): for port in [co.SPORT, co.DPORT]: if flow.attr[port] in count[port]: count[port][flow.attr[port]] += 1 else: count[port][flow.attr[port]] = 1 print("PORT SOURCE", file=log_file) print(count[co.SPORT], file=log_file) print("PORT DEST", file=log_file) print(count[co.DPORT], file=log_file) def count_ports_mptcp(log_file=sys.stdout): count_mptcp = {} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): if conn.flows['0'].attr[co.DPORT] in count_mptcp: count_mptcp[conn.flows['0'].attr[co.DPORT]] += 1 else: count_mptcp[conn.flows['0'].attr[co.DPORT]] = 1 print("PORT DEST MPTCP", file=log_file) print(count_mptcp, file=log_file) def count_on_filtered(min_bytes=1000000, log_file=sys.stdout): count_bytes = {co.S2D: 0, co.D2S: 0} count_packs = {co.S2D: 0, co.D2S: 0} count_conn = 0 ports = {co.SPORT: {}, co.DPORT: {}} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): mptcp_bytes = conn.attr[co.S2D].get(co.BYTES_MPTCPTRACE, 0) + conn.attr[co.D2S].get(co.BYTES_MPTCPTRACE, 0) if mptcp_bytes >= min_bytes: count_conn += 1 for direction in co.DIRECTIONS: count_bytes[direction] += conn.attr[direction].get(co.BYTES_MPTCPTRACE, 0) for flow_id, flow in conn.flows.iteritems(): for port in [co.SPORT, co.DPORT]: if flow.attr[port] in ports[port]: ports[port][flow.attr[port]] += 1 else: ports[port][flow.attr[port]] = 1 for direction in co.DIRECTIONS: count_packs[direction] += flow.attr[direction].get(co.PACKS, 0) print("NB CONN FILTERED", count_conn, file=log_file) print("BYTES S2D FILTERED", count_bytes[co.S2D], "BYTES D2S FILTERED", count_bytes[co.D2S], file=log_file) print("PACKS S2D FILTERED", count_packs[co.S2D], "PACKS D2S FILTERED", count_packs[co.D2S], file=log_file) print("PORT SOURCE FILTER", file=log_file) print(ports[co.SPORT], file=log_file) print("PORT DEST FILTER", file=log_file) print(ports[co.DPORT], file=log_file) def box_plot_cellular_percentage(log_file=sys.stdout, limit_duration=0, limit_bytes=0): base_graph_name_bytes = "summary_fraction_cellular" base_graph_path_bytes = os.path.join(sums_dir_exp, base_graph_name_bytes) fog_base_graph_name_bytes = "fog_cellular" fog_base_graph_path_bytes = os.path.join(sums_dir_exp, fog_base_graph_name_bytes) color = {'Connections': 'orange'} data_bytes = {'all': {}} data_frac = {'all': {}} nb_zero = {'all': {}} bytes_zero = {'all': {}} nb_one = {'all': {}} bytes_one = {'all': {}} tot_conn = {'all': {}} tot_bytes = {'all': {}} for cond in data_frac: data_frac[cond] = {co.S2D: {}, co.D2S: {}} for cond in data_bytes: data_bytes[cond] = {co.S2D: {}, co.D2S: {}} for cond in nb_zero: nb_zero[cond] = {co.S2D: {}, co.D2S: {}} for cond in bytes_zero: bytes_zero[cond] = {co.S2D: {}, co.D2S: {}} for cond in nb_one: nb_one[cond] = {co.S2D: {}, co.D2S: {}} for cond in bytes_one: bytes_one[cond] = {co.S2D: {}, co.D2S: {}} for cond in tot_conn: tot_conn[cond] = {co.S2D: {}, co.D2S: {}} for cond in tot_bytes: tot_bytes[cond] = {co.S2D: {}, co.D2S: {}} for fname, data in connections.iteritems(): app = "Connections" for conn_id, conn in data.iteritems(): if app not in data_frac['all'][co.S2D]: for direction in data_frac['all'].keys(): data_frac['all'][direction][app] = [] data_bytes['all'][direction][app] = [] nb_zero['all'][direction][app] = 0 bytes_zero['all'][direction][app] = 0 nb_one['all'][direction][app] = 0 bytes_one['all'][direction][app] = 0 tot_conn['all'][direction][app] = 0 tot_bytes['all'][direction][app] = 0 # Only interested on MPTCP connections if isinstance(conn, mptcp.MPTCPConnection): if conn.attr[co.DURATION] < limit_duration: continue conn_bytes_s2d = {'cellular': 0, 'wifi': 0, '?': 0} conn_bytes_d2s = {'cellular': 0, 'wifi': 0, '?': 0} if co.BYTES in conn.attr[co.S2D]: for interface in conn.attr[co.S2D][co.BYTES]: conn_bytes_s2d[interface] += conn.attr[co.S2D][co.BYTES][interface] if co.BYTES in conn.attr[co.D2S]: for interface in conn.attr[co.D2S][co.BYTES]: conn_bytes_d2s[interface] += conn.attr[co.D2S][co.BYTES][interface] for flow_id, flow in conn.flows.iteritems(): if co.S2D not in flow.attr or co.D2S not in flow.attr or co.REINJ_ORIG_BYTES not in flow.attr[co.S2D] or co.REINJ_ORIG_BYTES not in flow.attr[co.D2S]: break interface = flow.attr[co.IF] conn_bytes_s2d[interface] -= flow.attr[co.S2D][co.REINJ_ORIG_BYTES] conn_bytes_d2s[interface] -= flow.attr[co.D2S][co.REINJ_ORIG_BYTES] if conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi'] > limit_bytes: frac_cell_s2d = (max(0.0, min(1.0, (conn_bytes_s2d['cellular'] + 0.0) / (conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi'])))) if frac_cell_s2d == 0: nb_zero['all'][co.S2D][app] += 1 bytes_zero['all'][co.S2D][app] += conn_bytes_s2d['wifi'] elif frac_cell_s2d == 1: nb_one['all'][co.S2D][app] += 1 bytes_one['all'][co.S2D][app] += conn_bytes_s2d['cellular'] data_frac['all'][co.S2D][app].append(frac_cell_s2d) data_bytes['all'][co.S2D][app].append(conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi']) tot_conn['all'][co.S2D][app] += 1 tot_bytes['all'][co.S2D][app] += conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi'] if conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi'] > limit_bytes: frac_cell_d2s = max(0.0, min(1.0, ((conn_bytes_d2s['cellular'] + 0.0) / (conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi'])))) if frac_cell_d2s == 0: nb_zero['all'][co.D2S][app] += 1 bytes_zero['all'][co.D2S][app] += conn_bytes_d2s['wifi'] elif frac_cell_d2s == 1: nb_one['all'][co.D2S][app] += 1 bytes_one['all'][co.D2S][app] += conn_bytes_d2s['cellular'] data_frac['all'][co.D2S][app].append(frac_cell_d2s) data_bytes['all'][co.D2S][app].append(conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi']) tot_conn['all'][co.D2S][app] += 1 tot_bytes['all'][co.D2S][app] += conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi'] data_scatter = {co.S2D: {}, co.D2S: {}} for condition in data_bytes: for direction in data_bytes[condition]: nb_zeros = 0. bytes_zeros = 0. nb_ones = 0. bytes_ones = 0. total_conn = 0. total_bytes = 0. data_scatter[direction][condition] = {} for app in data_bytes[condition][direction]: data_scatter[direction][condition][app] = zip(data_bytes[condition][direction][app], data_frac[condition][direction][app]) print(condition, direction, app, "NB ZERO", nb_zero[condition][direction][app], "BYTES ZERO", bytes_zero[condition][direction][app], "NB ONE", nb_one[condition][direction][app], "BYTES ONE", bytes_one[condition][direction][app], file=log_file) nb_zeros += nb_zero[condition][direction][app] bytes_zeros += bytes_zero[condition][direction][app] nb_ones += nb_one[condition][direction][app] bytes_ones += bytes_one[condition][direction][app] total_conn += tot_conn[condition][direction][app] total_bytes += tot_bytes[condition][direction][app] if total_bytes > 0 and total_bytes > 0: print("TOTAL:", nb_zeros, "zero conns over", total_conn, nb_zeros / total_conn * 100., "%", bytes_zeros, "zero bytes over", total_bytes, bytes_zeros / total_bytes * 100., "%", nb_ones, "connections full cellular", nb_ones / total_conn * 100., "%", bytes_ones, "bytes cellular", bytes_ones / total_bytes * 100., "%", file=log_file) co.scatter_plot_with_direction(data_scatter, "Bytes on connection", "Fraction of bytes on cellular", color, sums_dir_exp, fog_base_graph_path_bytes, plot_identity=False, log_scale_y=False, y_to_one=True, label_order=['Dailymotion', 'Drive', 'Dropbox', 'Facebook', 'Firefox', 'Messenger', 'Spotify', 'Youtube']) for cond, data_cond in data_frac.iteritems(): for direction, data_dir in data_cond.iteritems(): plt.figure() fig, ax = plt.subplots() apps = data_dir.keys() to_plot = [] for app in apps: for point in data_frac[cond][direction][app]: to_plot.append(point) if to_plot: plt.hist(to_plot, bins=50) plt.xlabel("Fraction of bytes on cellular", fontsize=18) plt.ylabel("Number of connections", fontsize=18) plt.xlim([0.0, 1.0]) plt.savefig(base_graph_path_bytes + "_hist_" + cond + "_" + direction + ".pdf") plt.close() for cond, data_cond in data_frac.iteritems(): for direction, data_dir in data_cond.iteritems(): plt.figure() fig, ax = plt.subplots() apps = data_dir.keys() to_plot = [] for app in apps: to_plot.append(data_frac[cond][direction][app]) if to_plot: plt.boxplot(to_plot) plt.xticks(range(1, len(apps) + 1), apps) plt.tick_params(axis='both', which='major', labelsize=10) plt.tick_params(axis='both', which='minor', labelsize=8) plt.ylabel("Fraction of bytes on cellular", fontsize=18) plt.ylim([0.0, 1.0]) plt.savefig(base_graph_path_bytes + "_" + cond + "_" + direction + ".pdf") plt.close() def cdf_bytes_all(log_file=sys.stdout): base_graph_name_bytes = "cdf_bytes_all" base_graph_path_bytes = os.path.join(sums_dir_exp, base_graph_name_bytes) tot_bytes = {'all': {'bytes': []}} data_frac = {'all': {}} for cond in data_frac: data_frac[cond] = {co.S2D: {}, co.D2S: {}} for fname, data in connections.iteritems(): app = 'all' for conn_id, conn in data.iteritems(): if app not in data_frac['all'][co.S2D]: for direction in data_frac['all'].keys(): data_frac['all'][direction][app] = [] # Only interested on MPTCP connections elif isinstance(conn, mptcp.MPTCPConnection): conn_bytes_s2d = {'cellular': 0, 'wifi': 0, '?': 0} conn_bytes_d2s = {'cellular': 0, 'wifi': 0, '?': 0} if co.BYTES in conn.attr[co.S2D]: for interface in conn.attr[co.S2D][co.BYTES]: conn_bytes_s2d[interface] += conn.attr[co.S2D][co.BYTES][interface] if co.BYTES in conn.attr[co.D2S]: for interface in conn.attr[co.D2S][co.BYTES]: conn_bytes_d2s[interface] += conn.attr[co.D2S][co.BYTES][interface] for flow_id, flow in conn.flows.iteritems(): if co.REINJ_ORIG_BYTES not in flow.attr[co.S2D] or co.REINJ_ORIG_BYTES not in flow.attr[co.D2S]: break interface = flow.attr[co.IF] conn_bytes_s2d[interface] -= flow.attr[co.S2D][co.REINJ_ORIG_BYTES] conn_bytes_d2s[interface] -= flow.attr[co.D2S][co.REINJ_ORIG_BYTES] tot_bytes['all']['bytes'].append(conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi']) co.plot_cdfs_natural(tot_bytes, ['r'], "Bytes", base_graph_path_bytes) def cdf_rtt_s2d_all(log_file=sys.stdout, min_samples=5, min_bytes=100): wifi = "wifi" cell = "cellular" aggl_res = {'all': {wifi: [], cell: [], '?': []}} graph_fname = "rtt_avg_s2d_all.pdf" graph_full_path = os.path.join(sums_dir_exp, graph_fname) for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): if co.S2D not in flow.attr or co.RTT_SAMPLES not in flow.attr[co.S2D]: break if flow.attr[co.S2D][co.RTT_SAMPLES] >= min_samples and flow.attr[co.S2D][co.BYTES] >= min_bytes: aggl_res['all'][flow.attr[co.IF]] += [(flow.attr[co.S2D][co.RTT_AVG], fname)] elif isinstance(conn, tcp.TCPConnection): if co.S2D not in conn.flow.attr or co.RTT_SAMPLES not in conn.flow.attr[co.S2D]: break if conn.flow.attr[co.S2D][co.RTT_SAMPLES] >= min_samples and conn.flow.attr[co.S2D][co.BYTES] >= min_bytes: aggl_res['all'][conn.flow.attr[co.IF]] += [(conn.flow.attr[co.S2D][co.RTT_AVG], fname)] aggl_res['all'].pop('?', None) co.log_outliers(aggl_res, remove=args.remove) co.plot_cdfs_natural(aggl_res, ['red', 'blue', 'green', 'black'], 'RTT (ms)', graph_full_path) co.plot_cdfs_natural(aggl_res, ['red', 'blue', 'green', 'black'], 'RTT (ms)', os.path.splitext(graph_full_path)[0] + '_cut.pdf', xlim=1000) def cdf_rtt_d2s_all(log_file=sys.stdout, min_samples=5): wifi = "wifi" cell = "cellular" aggl_res = {'all': {wifi: [], cell: [], '?': []}} graph_fname = "rtt_avg_d2s_all.pdf" graph_full_path = os.path.join(sums_dir_exp, graph_fname) for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): if co.D2S not in flow.attr or co.RTT_SAMPLES not in flow.attr[co.D2S]: break if flow.attr[co.D2S][co.RTT_SAMPLES] >= min_samples: aggl_res['all'][flow.attr[co.IF]] += [(flow.attr[co.D2S][co.RTT_AVG], fname)] elif isinstance(conn, tcp.TCPConnection): if co.D2S not in conn.flow.attr or co.RTT_SAMPLES not in conn.flow.attr[co.D2S]: break if conn.flow.attr[co.D2S][co.RTT_SAMPLES] >= min_samples: aggl_res['all'][conn.flow.attr[co.IF]] += [(conn.flow.attr[co.D2S][co.RTT_AVG], fname)] aggl_res['all'].pop('?', None) co.log_outliers(aggl_res, remove=args.remove) co.plot_cdfs_natural(aggl_res, ['red', 'blue', 'green', 'black'], 'RTT (ms)', os.path.splitext(graph_full_path)[0] + '.pdf') co.plot_cdfs_natural(aggl_res, ['red', 'blue', 'green', 'black'], 'RTT (ms)', os.path.splitext(graph_full_path)[0] + '_cut.pdf', xlim=1000) def difference_rtt_d2s(log_file=sys.stdout, min_bytes=1000000): # Computed only on MPTCP connections with 2 subflows and at least 1MB results = {'two_sf': {'diff': []}} graph_fname = "rtt_avg_diff_2sf.pdf" graph_full_path = os.path.join(sums_dir_exp, graph_fname) for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): if len(conn.flows) == 2: if conn.attr[co.D2S].get(co.BYTES_MPTCPTRACE, 0) >= min_bytes: is_ok = True for flow_id, flow in conn.flows.iteritems(): if co.START not in flow.attr: is_ok = False if not is_ok: continue time_init_sf = float('inf') rtt_init_sf = -1.0 rtt_second_sf = -1.0 for flow_id, flow in conn.flows.iteritems(): if flow.attr[co.START] < time_init_sf: time_init_sf = flow.attr[co.START] rtt_second_sf = rtt_init_sf rtt_init_sf = flow.attr[co.D2S][co.RTT_AVG] else: rtt_second_sf = flow.attr[co.D2S][co.RTT_AVG] results['two_sf']['diff'].append(rtt_init_sf - rtt_second_sf) co.plot_cdfs_natural(results, ['red', 'blue', 'green', 'black'], 'Initial SF AVG RTT - Second SF AVG RTT', os.path.splitext(graph_full_path)[0] + '.pdf') def reinject_plot(log_file=sys.stdout, min_bytes=0.0): base_graph_fname = "reinject_bytes" base_graph_full_path = os.path.join(sums_dir_exp, base_graph_fname) results = {co.S2D: {'all': {'all': []}}, co.D2S: {'all': {'all': []}}} results_packs = {co.S2D: {'all': {'all': []}}, co.D2S: {'all': {'all': []}}} for fname, data in multiflow_connections.iteritems(): for conn_id, conn in data.iteritems(): reinject_bytes_s2d = 0.0 reinject_bytes_d2s = 0.0 reinject_packs_s2d = 0.0 reinject_packs_d2s = 0.0 bytes_s2d = 0.0 bytes_d2s = 0.0 packs_s2d = 0.0 packs_d2s = 0.0 for flow_id, flow in conn.flows.iteritems(): if co.S2D in flow.attr and co.D2S in flow.attr: if co.REINJ_ORIG_BYTES in flow.attr[co.S2D] and co.REINJ_ORIG_BYTES in flow.attr[co.D2S]: if co.BYTES in flow.attr[co.S2D]: bytes_s2d += flow.attr[co.S2D][co.BYTES] else: continue if co.BYTES in flow.attr[co.D2S]: bytes_d2s += flow.attr[co.D2S][co.BYTES] else: continue reinject_bytes_s2d += flow.attr[co.S2D][co.REINJ_ORIG_BYTES] reinject_bytes_d2s += flow.attr[co.D2S][co.REINJ_ORIG_BYTES] reinject_packs_s2d += flow.attr[co.S2D][co.REINJ_ORIG_PACKS] reinject_packs_d2s += flow.attr[co.D2S][co.REINJ_ORIG_PACKS] packs_s2d += flow.attr[co.S2D][co.PACKS] packs_d2s += flow.attr[co.D2S][co.PACKS] if bytes_s2d > min_bytes and packs_s2d > 0: results[co.S2D]['all']['all'].append(reinject_bytes_s2d / bytes_s2d) results_packs[co.S2D]['all']['all'].append(reinject_packs_s2d / packs_s2d) if bytes_d2s > min_bytes and packs_d2s > 0: if (reinject_bytes_d2s / bytes_d2s) >= 0.5: print("reinj: " + str(reinject_bytes_d2s) + " tot: " + str(bytes_d2s) + " " + fname + " " + conn_id) results[co.D2S]['all']['all'].append(reinject_bytes_d2s / bytes_d2s) results_packs[co.D2S]['all']['all'].append(reinject_packs_d2s / packs_d2s) for direction in results: for condition in results[direction]: plt.figure() fig, ax = plt.subplots() apps = results[direction][condition].keys() to_plot = [] for app in apps: to_plot.append(results[direction][condition][app]) if to_plot: plt.boxplot(to_plot) plt.xticks(range(1, len(apps) + 1), apps) plt.tick_params(axis='both', which='major', labelsize=10) plt.tick_params(axis='both', which='minor', labelsize=8) plt.ylabel("Fraction of bytes reinjected", fontsize=18) plt.savefig(base_graph_full_path + "_" + condition + "_" + direction + ".pdf") plt.close() packs_base_graph_fname = "reinject_packs" packs_base_graph_full_path = os.path.join(sums_dir_exp, packs_base_graph_fname) plt.figure() fig, ax = plt.subplots() apps = results_packs[direction][condition].keys() to_plot = [] for app in apps: to_plot.append(results_packs[direction][condition][app]) if to_plot: plt.boxplot(to_plot) plt.xticks(range(1, len(apps) + 1), apps) plt.tick_params(axis='both', which='major', labelsize=10) plt.tick_params(axis='both', which='minor', labelsize=8) plt.ylabel("Fraction of packs reinjected", fontsize=18) plt.savefig(packs_base_graph_full_path + "_" + condition + "_" + direction + ".pdf") plt.close() def retrans_plot(log_file=sys.stdout, min_bytes=0.0): base_graph_fname = "retrans_bytes" base_graph_full_path = os.path.join(sums_dir_exp, base_graph_fname) results = {co.S2D: {'all': {'all': []}}, co.D2S: {'all': {'all': []}}} results_packs = {co.S2D: {'all': {'all': []}}, co.D2S: {'all': {'all': []}}} for fname, data in singleflow_connections.iteritems(): for conn_id, conn in data.iteritems(): bytes_retrans_s2d = 0.0 bytes_retrans_d2s = 0.0 packs_retrans_s2d = 0.0 packs_retrans_d2s = 0.0 bytes_s2d = 0.0 bytes_d2s = 0.0 packs_s2d = 0.0 packs_d2s = 0.0 for flow_id, flow in conn.flows.iteritems(): if co.S2D in flow.attr and co.D2S in flow.attr: if co.BYTES_RETRANS in flow.attr[co.S2D] and co.BYTES_RETRANS in flow.attr[co.D2S]: if co.BYTES in flow.attr[co.S2D]: bytes_s2d += flow.attr[co.S2D][co.BYTES] else: continue if co.BYTES in flow.attr[co.D2S]: bytes_d2s += flow.attr[co.D2S][co.BYTES] else: continue bytes_retrans_d2s += flow.attr[co.D2S][co.BYTES_RETRANS] bytes_retrans_s2d += flow.attr[co.S2D][co.BYTES_RETRANS] packs_retrans_s2d += flow.attr[co.S2D][co.PACKS_RETRANS] packs_retrans_d2s += flow.attr[co.D2S][co.PACKS_RETRANS] packs_s2d += flow.attr[co.S2D][co.PACKS] packs_d2s += flow.attr[co.D2S][co.PACKS] if bytes_s2d > min_bytes and packs_s2d > 0: results[co.S2D]['all']['all'].append(bytes_retrans_s2d / bytes_s2d) results_packs[co.S2D]['all']['all'].append(bytes_retrans_s2d / packs_s2d) if bytes_d2s > min_bytes and packs_d2s > 0: if (bytes_retrans_d2s / bytes_d2s) >= 0.5: print("retrans: " + str(bytes_retrans_d2s) + " tot: " + str(bytes_d2s) + " " + fname + " " + conn_id) results[co.D2S]['all']['all'].append(bytes_retrans_d2s / bytes_d2s) results_packs[co.D2S]['all']['all'].append(bytes_retrans_d2s / packs_d2s) for direction in results: for condition in results[direction]: plt.figure() fig, ax = plt.subplots() apps = results[direction][condition].keys() to_plot = [] for app in apps: to_plot.append(results[direction][condition][app]) if to_plot: plt.boxplot(to_plot) plt.xticks(range(1, len(apps) + 1), apps) plt.tick_params(axis='both', which='major', labelsize=10) plt.tick_params(axis='both', which='minor', labelsize=8) plt.ylabel("Fraction of bytes retransmitted", fontsize=18) plt.savefig(base_graph_full_path + "_" + condition + "_" + direction + ".pdf") plt.close() packs_base_graph_fname = "retrans_packs" packs_base_graph_full_path = os.path.join(sums_dir_exp, packs_base_graph_fname) plt.figure() fig, ax = plt.subplots() apps = results_packs[direction][condition].keys() to_plot = [] for app in apps: to_plot.append(results_packs[direction][condition][app]) if to_plot: plt.boxplot(to_plot) plt.xticks(range(1, len(apps) + 1), apps) plt.tick_params(axis='both', which='major', labelsize=10) plt.tick_params(axis='both', which='minor', labelsize=8) plt.ylabel("Fraction of packs retransmitted", fontsize=18) plt.savefig(packs_base_graph_full_path + "_" + condition + "_" + direction + ".pdf") plt.close() def reinject_plot_relative_to_data(log_file=sys.stdout, min_bytes=0.0): base_graph_fname = "reinject_data_bytes" base_graph_full_path = os.path.join(sums_dir_exp, base_graph_fname) results = {co.S2D: {'all': {'all': []}}, co.D2S: {'all': {'all': []}}} for fname, data in multiflow_connections.iteritems(): for conn_id, conn in data.iteritems(): if co.S2D not in conn.attr or co.D2S not in conn.attr: continue reinject_bytes_s2d = 0.0 reinject_bytes_d2s = 0.0 bytes_s2d = 0.0 bytes_d2s = 0.0 if co.BYTES_MPTCPTRACE in conn.attr[co.S2D]: bytes_s2d = conn.attr[co.S2D][co.BYTES_MPTCPTRACE] if co.BYTES_MPTCPTRACE in conn.attr[co.D2S]: bytes_d2s = conn.attr[co.D2S][co.BYTES_MPTCPTRACE] # reinject_bytes_s2d = 0 # reinject_bytes_d2s = 0 # reinject_packs_s2d = 0 # reinject_packs_d2s = 0 for flow_id, flow in conn.flows.iteritems(): if co.S2D in flow.attr and co.D2S in flow.attr: if co.REINJ_ORIG_BYTES in flow.attr[co.S2D] and co.REINJ_ORIG_BYTES in flow.attr[co.D2S]: reinject_bytes_s2d += flow.attr[co.S2D][co.REINJ_ORIG_BYTES] reinject_bytes_d2s += flow.attr[co.S2D][co.REINJ_ORIG_BYTES] if bytes_s2d > min_bytes: results[co.S2D]['all']['all'].append(reinject_bytes_s2d / bytes_s2d) if bytes_d2s > min_bytes: if (reinject_bytes_d2s / bytes_d2s) >= 0.5: print("reinj: " + str(reinject_bytes_d2s) + " tot: " + str(bytes_d2s) + " " + fname + " " + conn_id) results[co.D2S]['all']['all'].append(reinject_bytes_d2s / bytes_d2s) for direction in results: for condition in results[direction]: plt.figure() fig, ax = plt.subplots() apps = results[direction][condition].keys() to_plot = [] for app in apps: to_plot.append(results[direction][condition][app]) if to_plot: plt.boxplot(to_plot) plt.xticks(range(1, len(apps) + 1), apps) plt.tick_params(axis='both', which='major', labelsize=10) plt.tick_params(axis='both', which='minor', labelsize=8) plt.ylabel("Fraction of bytes reinjected from all data bytes", fontsize=18) plt.savefig(base_graph_full_path + "_" + condition + "_" + direction + ".pdf") plt.close() def fog_plot_cellular_percentage_rtt_wifi(log_file=sys.stdout, limit_duration=0, limit_bytes=0): fog_base_graph_name_bytes = "fog_cellular_rtt_wifi" fog_base_graph_path_bytes = os.path.join(sums_dir_exp, fog_base_graph_name_bytes) color = {'Connections': 'orange'} data_rtt = {'all': {}} data_frac = {'all': {}} for cond in data_frac: data_frac[cond] = {co.S2D: {}, co.D2S: {}} for cond in data_rtt: data_rtt[cond] = {co.S2D: {}, co.D2S: {}} for fname, data in connections.iteritems(): app = 'Connections' for conn_id, conn in data.iteritems(): if app not in data_frac['all'][co.S2D]: for direction in data_frac['all']: data_frac['all'][direction][app] = [] data_rtt['all'][direction][app] = [] # Only interested on MPTCP connections if isinstance(conn, mptcp.MPTCPConnection): if conn.attr[co.DURATION] < limit_duration: continue conn_bytes_s2d = {'cellular': 0, 'wifi': 0, '?': 0} conn_bytes_d2s = {'cellular': 0, 'wifi': 0, '?': 0} rtt_max_wifi_s2d = None rtt_max_wifi_d2s = None if co.BYTES in conn.attr[co.S2D]: for interface in conn.attr[co.S2D][co.BYTES]: conn_bytes_s2d[interface] += conn.attr[co.S2D][co.BYTES][interface] if co.BYTES in conn.attr[co.D2S]: for interface in conn.attr[co.D2S][co.BYTES]: conn_bytes_d2s[interface] += conn.attr[co.D2S][co.BYTES][interface] for flow_id, flow in conn.flows.iteritems(): if co.S2D not in flow.attr or co.D2S not in flow.attr: continue if co.REINJ_ORIG_BYTES not in flow.attr[co.S2D] or co.REINJ_ORIG_BYTES not in flow.attr[co.D2S]: break interface = flow.attr[co.IF] conn_bytes_s2d[interface] -= flow.attr[co.S2D][co.REINJ_ORIG_BYTES] conn_bytes_d2s[interface] -= flow.attr[co.D2S][co.REINJ_ORIG_BYTES] if interface == co.WIFI: if co.RTT_MAX in flow.attr[co.S2D]: rtt_max_wifi_s2d = flow.attr[co.S2D][co.RTT_MAX] if co.RTT_MAX in flow.attr[co.D2S]: rtt_max_wifi_d2s = flow.attr[co.D2S][co.RTT_MAX] if conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi'] > limit_bytes: # if (conn_bytes_s2d['cellular'] + 0.0) / (conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi']) > 0.6: # print("S2D: " + str((conn_bytes_s2d['cellular'] + 0.0) / (conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi'])) + " " + str(conn_bytes_s2d['cellular']) + " " + str(conn_bytes_s2d['wifi']) + " " + fname + " " + conn_id + " " + str(conn.attr[co.DURATION]) + " " + conn.flows['0'].attr[co.IF] + " " + str(conn.flows['0'].attr[co.S2D][co.RTT_STDEV]) + " " + conn.flows['1'].attr[co.IF] + " " + str(conn.flows['1'].attr[co.S2D][co.RTT_STDEV])) frac_cell_s2d = (min(1.0, (conn_bytes_s2d['cellular'] + 0.0) / (conn_bytes_s2d['cellular'] + conn_bytes_s2d['wifi']))) data_frac['all'][co.S2D][app].append(frac_cell_s2d) data_rtt['all'][co.S2D][app].append(rtt_max_wifi_s2d) if conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi'] > limit_bytes: # if (conn_bytes_d2s['cellular'] + 0.0) / (conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi']) > 0.6: # print("D2S: " + str((conn_bytes_d2s['cellular'] + 0.0) / (conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi'])) + " " + str(conn_bytes_d2s['cellular']) + " " + str(conn_bytes_d2s['wifi']) + " " + fname + " " + conn_id + " " + str(conn.attr[co.DURATION]) + " " + conn.flows['0'].attr[co.IF] + " " + str(conn.flows['0'].attr[co.D2S][co.RTT_STDEV]) + " " + conn.flows['1'].attr[co.IF] + " " + str(conn.flows['1'].attr[co.D2S][co.RTT_STDEV])) frac_cell_d2s = min(1.0, ((conn_bytes_d2s['cellular'] + 0.0) / (conn_bytes_d2s['cellular'] + conn_bytes_d2s['wifi']))) data_frac['all'][co.D2S][app].append(frac_cell_d2s) data_rtt['all'][co.D2S][app].append(rtt_max_wifi_d2s) data_scatter = {co.S2D: {}, co.D2S: {}} for condition in data_rtt: for direction in data_rtt[condition]: data_scatter[direction][condition] = {} for app in data_rtt[condition][direction]: data_scatter[direction][condition][app] = zip(data_rtt[condition][direction][app], data_frac[condition][direction][app]) co.scatter_plot_with_direction(data_scatter, "Max RTT on Wi-Fi (ms)", "Fraction of bytes on cellular", color, sums_dir_exp, fog_base_graph_path_bytes, plot_identity=False, log_scale_y=False, log_scale_x=False) def check_ok(value): if value < 0 or value >= 100000000: return 0 return value def textual_summary_global(log_file=sys.stdout): conn_number = {'all': 0} tests_number = {'all': 0} bytes_number = {'all': {co.S2D: {co.CELL: 0, co.WIFI: 0, '?': 0}, co.D2S: {co.CELL: 0, co.WIFI: 0, '?': 0}}} for fname, data in connections.iteritems(): conn_number['all'] += len(data) tests_number['all'] += 1 for conn_id, conn in data.iteritems(): if isinstance(conn, tcp.TCPConnection): ith = conn.flow.attr[co.IF] if ith not in bytes_number['all'][co.S2D]: continue for direction in co.DIRECTIONS: bytes_number['all'][direction][ith] += check_ok(conn.flow.attr[direction][co.BYTES]) elif isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): ith = flow.attr[co.IF] for direction in co.DIRECTIONS: reinjected = 0 if direction in flow.attr: if co.REINJ_ORIG in flow.attr[direction]: for start_seq, stop_seq in flow.attr[direction][co.REINJ_ORIG]: reinjected += stop_seq - start_seq if co.BYTES in flow.attr[direction]: bytes_number['all'][direction][ith] += check_ok(flow.attr[direction][co.BYTES] - reinjected) total = 0 total_tests = 0 total_s2d = 0 total_d2s = 0 for cond, cond_num in conn_number.iteritems(): print(cond + ": ", cond_num, " connections with ", tests_number[cond], " tests;", file=log_file) total += cond_num total_tests += tests_number[cond] for direction in co.DIRECTIONS: ratio = (bytes_number[cond][direction][co.CELL] + 0.0) / (bytes_number[cond][direction][co.WIFI] + bytes_number[cond][direction][co.CELL]) * 100 if bytes_number[cond][direction][co.WIFI] + bytes_number[cond][direction][co.CELL] > 0 else 0 print(direction, bytes_number[cond][direction][co.CELL], " bytes cell and ", bytes_number[cond][direction][co.WIFI], "bytes wifi (", ratio, "% cell)", file=log_file) for ith in [co.WIFI, co.CELL, '?']: total_s2d += bytes_number[cond][co.S2D][ith] total_d2s += bytes_number[cond][co.D2S][ith] total_ratio = (total_s2d + 0.0) / (total_s2d + total_d2s) * 100 if total_s2d + total_d2s > 0 else 0 print("Total: " + str(total) + " connections with " + str(total_tests) + " tests; " + str(total_s2d) + " bytes S2D and " + str(total_d2s) + " D2S (" + str(total_ratio) + " % s2d)", file=log_file) def cdf_overhead_retrans_reinj(log_file=sys.stdout): results = {co.S2D: {'all': {'Reinjection': [], 'Retransmission': []}}, co.D2S: {'all': {'Reinjection': [], 'Retransmission': []}}} results_two = {co.S2D: {'all': []}, co.D2S: {'all': []}} graph_fname = "overhead_retrans_reinj_multiflow.pdf" graph_full_path = os.path.join(sums_dir_exp, graph_fname) count_conn = {co.S2D: 0, co.D2S: 0} count_reinj = {co.S2D: 0, co.D2S: 0} count_reinj_20 = {co.S2D: 0, co.D2S: 0} count_retrans_50 = {co.S2D: 0, co.D2S: 0} count_retrans = {co.S2D: 0, co.D2S: 0} for fname, data in multiflow_connections.iteritems(): for conn_id, conn in data.iteritems(): retrans_bytes = {co.S2D: 0, co.D2S: 0} reinj_bytes = {co.S2D: 0, co.D2S: 0} total_bytes = {co.S2D: 0, co.D2S: 0} total_data_bytes = {co.S2D: 0, co.D2S: 0} reinj_data_bytes = {co.S2D: 0, co.D2S: 0} for flow_id, flow in conn.flows.iteritems(): for direction in co.DIRECTIONS: if direction not in flow.attr: continue if co.BYTES in flow.attr[direction]: # total_bytes[direction] += flow.attr[direction][co.BYTES_FRAMES_TOTAL] total_bytes[direction] = total_bytes[direction] + flow.attr[direction][co.BYTES] # retrans_bytes[direction] += flow.attr[direction].get(co.BYTES_FRAMES_RETRANS, 0) retrans_bytes[direction] = retrans_bytes[direction] + flow.attr[direction].get(co.BYTES_RETRANS, 0) # reinj_bytes[direction] += flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) + (flow.attr[direction].get(co.REINJ_ORIG_PACKS, 0) * co.FRAME_MPTCP_OVERHEAD) reinj_bytes[direction] = reinj_bytes[direction] + flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) total_data_bytes[direction] = total_data_bytes[direction] + flow.attr[direction].get(co.BYTES, 0) reinj_data_bytes[direction] = reinj_data_bytes[direction] + flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) for direction in co.DIRECTIONS: if total_bytes[direction] > 0: count_conn[direction] += 1 results[direction]['all']['Retransmission'].append((retrans_bytes[direction] + 0.0) / total_data_bytes[direction]) if (retrans_bytes[direction] + 0.0) / total_data_bytes[direction] > 0.0: count_retrans[direction] += 1 if (retrans_bytes[direction] + 0.0) / total_data_bytes[direction] >= 0.5: count_retrans_50[direction] += 1 results[direction]['all']['Reinjection'].append((reinj_data_bytes[direction] + 0.0) / total_data_bytes[direction]) if (reinj_data_bytes[direction] + 0.0) / total_data_bytes[direction] > 0.0: count_reinj[direction] += 1 if (reinj_data_bytes[direction] + 0.0) / total_data_bytes[direction] >= 0.2: count_reinj_20[direction] += 1 results_two[direction]['all'].append([total_data_bytes[direction], reinj_data_bytes[direction]]) for direction in co.DIRECTIONS: print("COUNT FOR DIRECTION", direction, file=log_file) print("TOTAL", count_conn[direction], file=log_file) print("REINJ", count_reinj[direction], file=log_file) print("REINJ 20", count_reinj_20[direction], file=log_file) print("RETRA", count_retrans[direction], file=log_file) print("RETRA 50", count_retrans_50[direction], file=log_file) co.plot_cdfs_with_direction(results, ['red', 'blue'], 'Fraction of total bytes', graph_full_path, natural=True, ylim=0.8) co.plot_cdfs_with_direction(results, ['red', 'blue'], 'Fraction of total bytes', os.path.splitext(graph_full_path)[0] + '_cut.pdf', natural=True, ylim=0.8, xlim=1) for direction in results_two: for condition in results_two[direction]: sorted_data = sorted(results_two[direction][condition], key=lambda elem: elem[0]) to_plot = [[], []] i = 0 for point in sorted_data: to_plot[0].append([i, point[0]]) to_plot[1].append([i, point[1]]) i += 1 tot_graph_full_path = os.path.splitext(graph_full_path)[0] + "_details_" + direction + "_" + condition + ".pdf" co.plot_line_graph(to_plot, ['Total', 'Reinjections'], ['b', 'r'], 'Connections', 'Number of data bytes', '', tot_graph_full_path, y_log=True) def list_bytes_all(log_file=sys.stdout): graph_fname = "list_bytes.pdf" graph_full_path = os.path.join(sums_dir_exp, graph_fname) results_two = {'both': {'all': []}} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): total_data_bytes = 0 for direction in co.DIRECTIONS: if direction not in conn.attr: continue if conn.attr[direction].get(co.BYTES_MPTCPTRACE, 0) > 0: total_data_bytes += conn.attr[direction].get(co.BYTES_MPTCPTRACE, 0) results_two['both']['all'].append(total_data_bytes) for direction in results_two: for condition in results_two[direction]: sorted_data = sorted(results_two[direction][condition]) to_plot = [[]] i = 0 for point in sorted_data: to_plot[0].append([i, point]) i += 1 tot_graph_full_path = os.path.splitext(graph_full_path)[0] + "_" + direction + "_" + condition + ".pdf" co.plot_line_graph(to_plot, ['Total'], ['b'], 'Connections', 'Number of data bytes', '', tot_graph_full_path, y_log=True) def cdf_overhead_retrans_reinj_singleflow(log_file=sys.stdout): results = {co.S2D: {'all': {'Reinjection': [], 'Retransmission': []}}, co.D2S: {'all': {'Reinjection': [], 'Retransmission': []}}} results_two = {co.S2D: {'all': []}, co.D2S: {'all': []}} graph_fname = "overhead_retrans_reinj_singleflow.pdf" graph_full_path = os.path.join(sums_dir_exp, graph_fname) for fname, data in singleflow_connections.iteritems(): for conn_id, conn in data.iteritems(): retrans_bytes = {co.S2D: 0, co.D2S: 0} reinj_bytes = {co.S2D: 0, co.D2S: 0} total_bytes = {co.S2D: 0, co.D2S: 0} total_data_bytes = {co.S2D: 0, co.D2S: 0} reinj_data_bytes = {co.S2D: 0, co.D2S: 0} for flow_id, flow in conn.flows.iteritems(): for direction in co.DIRECTIONS: if direction not in flow.attr: continue if co.BYTES in flow.attr[direction]: # total_bytes[direction] += flow.attr[direction][co.BYTES_FRAMES_TOTAL] total_bytes[direction] = total_bytes[direction] + flow.attr[direction][co.BYTES] # retrans_bytes[direction] += flow.attr[direction].get(co.BYTES_FRAMES_RETRANS, 0) retrans_bytes[direction] = retrans_bytes[direction] + flow.attr[direction].get(co.BYTES_RETRANS, 0) # reinj_bytes[direction] += flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) + (flow.attr[direction].get(co.REINJ_ORIG_PACKS, 0) * co.FRAME_MPTCP_OVERHEAD) reinj_bytes[direction] = reinj_bytes[direction] + flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) total_data_bytes[direction] = total_data_bytes[direction] + flow.attr[direction].get(co.BYTES, 0) reinj_data_bytes[direction] = reinj_data_bytes[direction] + flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) for direction in co.DIRECTIONS: if total_bytes[direction] > 0: results[direction]['all']['Retransmission'].append((retrans_bytes[direction] + 0.0) / total_data_bytes[direction]) results[direction]['all']['Reinjection'].append((reinj_data_bytes[direction] + 0.0) / total_data_bytes[direction]) results_two[direction]['all'].append([total_data_bytes[direction], retrans_bytes[direction]]) co.plot_cdfs_with_direction(results, ['red', 'blue'], 'Fraction of total bytes', graph_full_path, natural=True, ylim=0.8) co.plot_cdfs_with_direction(results, ['red', 'blue'], 'Fraction of total bytes', os.path.splitext(graph_full_path)[0] + '_cut.pdf', natural=True, ylim=0.8, xlim=1) for direction in results_two: for condition in results_two[direction]: sorted_data = sorted(results_two[direction][condition], key=lambda elem: elem[0]) to_plot = [[], []] i = 0 for point in sorted_data: to_plot[0].append([i, point[0]]) to_plot[1].append([i, point[1]]) i += 1 tot_graph_full_path = os.path.splitext(graph_full_path)[0] + "_details_" + direction + "_" + condition + ".pdf" co.plot_line_graph(to_plot, ['Total', 'Retransmissions'], ['b', 'r'], 'Connections', 'Number of data bytes', '', tot_graph_full_path, y_log=True) def plot_total_bytes_reinj_bytes(log_file=sys.stdout): results = {co.S2D: {'all': [[], []]}, co.D2S: {'all': [[], []]}} results_raw = {co.S2D: {'all': []}, co.D2S: {'all': []}} graph_fname = "total_bytes_reinj_bytes" graph_full_path = os.path.join(sums_dir_exp, graph_fname) for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): if isinstance(conn, mptcp.MPTCPConnection): reinj_bytes = {co.S2D: 0, co.D2S: 0} total_bytes = {co.S2D: 0, co.D2S: 0} for flow_id, flow in conn.flows.iteritems(): for direction in co.DIRECTIONS: if direction not in flow.attr: continue if co.BYTES in flow.attr[direction]: total_bytes[direction] += flow.attr[direction][co.BYTES] reinj_bytes[direction] += flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) for direction in co.DIRECTIONS: results_raw[direction]['all'].append([total_bytes[direction], reinj_bytes[direction]]) for direction in results_raw: for condition in results_raw[direction]: results_raw[direction][condition] = sorted(results_raw[direction][condition], key=lambda elem: elem[0]) i = 0 for point in results_raw[direction][condition]: results[direction][condition][0].append([i, point[0]]) results[direction][condition][1].append([i, point[1]]) i += 1 tot_graph_full_path = graph_full_path + "_" + direction + "_" + condition + ".pdf" co.plot_line_graph(results[direction][condition], ['Total', 'Reinjections'], ['b', 'r'], 'Connections', 'Number of data bytes', '', tot_graph_full_path, y_log=True) def fog_plot_cellular_percentage_all(log_file=sys.stdout, limit_duration=0, limit_bytes=0): fog_base_graph_name_bytes = "fog_cellular_all" fog_base_graph_path_bytes = os.path.join(sums_dir_exp, fog_base_graph_name_bytes) color = {'Connections': 'orange'} data_frac = {'all': {}} data_bytes = {'all': {}} for fname, data in connections.iteritems(): app = 'Connections' for conn_id, conn in data.iteritems(): if app not in data_frac['all']: data_frac['all'][app] = [] data_bytes['all'][app] = [] # Only interested on MPTCP connections if isinstance(conn, mptcp.MPTCPConnection): if conn.attr[co.DURATION] < limit_duration: continue conn_bytes = {'cellular': 0, 'wifi': 0, '?': 0} if co.BYTES in conn.attr[co.S2D]: for interface in conn.attr[co.S2D][co.BYTES]: conn_bytes[interface] += conn.attr[co.S2D][co.BYTES][interface] if co.BYTES in conn.attr[co.D2S]: for interface in conn.attr[co.D2S][co.BYTES]: conn_bytes[interface] += conn.attr[co.D2S][co.BYTES][interface] for flow_id, flow in conn.flows.iteritems(): if co.S2D not in flow.attr or co.D2S not in flow.attr or co.REINJ_ORIG_BYTES not in flow.attr[co.S2D] or co.REINJ_ORIG_BYTES not in flow.attr[co.D2S]: break interface = flow.attr[co.IF] conn_bytes[interface] -= flow.attr[co.S2D][co.REINJ_ORIG_BYTES] conn_bytes[interface] -= flow.attr[co.D2S][co.REINJ_ORIG_BYTES] if conn_bytes['cellular'] + conn_bytes['wifi'] > limit_bytes: frac_cell = (max(0.0, min(1.0, (conn_bytes['cellular'] + 0.0) / (conn_bytes['cellular'] + conn_bytes['wifi'])))) data_frac['all'][app].append(frac_cell) data_bytes['all'][app].append(conn_bytes['cellular'] + conn_bytes['wifi']) data_scatter = {} for condition in data_bytes: data_scatter[condition] = {} for app in data_bytes[condition]: data_scatter[condition][app] = zip(data_bytes[condition][app], data_frac[condition][app]) co.scatter_plot(data_scatter, "Bytes on connection", "Fraction of bytes on cellular", color, sums_dir_exp, fog_base_graph_path_bytes, plot_identity=False, log_scale_y=False, y_to_one=True, label_order=['Dailymotion', 'Drive', 'Dropbox', 'Facebook', 'Firefox', 'Messenger', 'Spotify', 'Youtube']) def count_mptcp_best_rtt_flow(log_file=sys.stdout): wifi_best_avg_rtt = {'all': {co.S2D: 0, co.D2S: 0}} cell_best_avg_rtt = {'all': {co.S2D: 0, co.D2S: 0}} wifi_best_max_rtt = {'all': {co.S2D: 0, co.D2S: 0}} cell_best_max_rtt = {'all': {co.S2D: 0, co.D2S: 0}} for fname, data in connections.iteritems(): for conn_id, conn in data.iteritems(): # Only interested on MPTCP connections if isinstance(conn, mptcp.MPTCPConnection): for direction in co.DIRECTIONS: avg_rtt = {co.WIFI: 100000., co.CELL: 100000.} max_rtt = {co.WIFI: 100000., co.CELL: 100000.} for flow_id, flow in conn.flows.iteritems(): if direction not in flow.attr or co.RTT_AVG not in flow.attr[direction] or co.RTT_MAX not in flow.attr[direction]: continue avg_rtt[flow.attr[co.IF]] = flow.attr[direction][co.RTT_AVG] max_rtt[flow.attr[co.IF]] = flow.attr[direction][co.RTT_MAX] if avg_rtt[co.WIFI] == 100000. and avg_rtt[co.CELL] == 100000.: continue if avg_rtt[co.WIFI] <= avg_rtt[co.CELL]: wifi_best_avg_rtt['all'][direction] += 1 else: cell_best_avg_rtt['all'][direction] += 1 if max_rtt[co.WIFI] <= max_rtt[co.CELL]: wifi_best_max_rtt['all'][direction] += 1 else: cell_best_max_rtt['all'][direction] += 1 for condition in wifi_best_avg_rtt: for direction in co.DIRECTIONS: print(condition, direction, (wifi_best_avg_rtt[condition][direction] + 0.) / (wifi_best_avg_rtt[condition][direction] + cell_best_avg_rtt[condition][direction]) * 100, "% where WiFi is better on average", (wifi_best_max_rtt[condition][direction] + 0.0) / (wifi_best_max_rtt[condition][direction] + cell_best_max_rtt[condition][direction]) * 100 , "% where WiFi is better on max", file=log_file) def time_reinjection(log_file=sys.stdout): location_time = {co.S2D: {'all': {co.REINJ_ORIG_TIMESTAMP: []}}, co.D2S: {'all': {co.REINJ_ORIG_TIMESTAMP: []}}} location_time_nocorrect = {co.S2D: {'all': {co.REINJ_ORIG_TIMESTAMP: []}}, co.D2S: {'all': {co.REINJ_ORIG_TIMESTAMP: []}}} reinj_first_sec = [] color = ['red'] graph_fname = "time_reinjection" base_graph_path = os.path.join(sums_dir_exp, graph_fname) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): start_time = float('inf') duration = conn.attr[co.DURATION] if duration <= 0.001: continue start_time = conn.attr.get(co.START, float('inf')) if start_time == float('inf'): continue start_time_int = int(start_time) start_time_dec = float(str(start_time - start_time_int)[1:]) start_time_dec = ceil(start_time_dec * 1000000) / 1000000.0 warning_reinj = open(os.path.join(sums_dir_exp, 'warning_reinj.txt'), 'w') look_95 = open(os.path.join(sums_dir_exp, 'look95.txt'), 'w') look_100 = open(os.path.join(sums_dir_exp, 'look100.txt'), 'w') for direction in [co.D2S]: for flow_id, flow in conn.flows.iteritems(): if co.REINJ_ORIG_TIMESTAMP in flow.attr[direction] and co.START in flow.attr: for ts in flow.attr[direction][co.REINJ_ORIG_TIMESTAMP]: # Some tricks to avoid floating errors ts_int = int(ts) ts_dec = float(str(ts - ts_int)[1:]) ts_dec = ceil(ts_dec * 1000000) / 1000000.0 ts_dec_delta = ts_dec - start_time_dec ts_fix = ts_int - start_time_int + ts_dec_delta location_time[direction]['all'][co.REINJ_ORIG_TIMESTAMP].append(max(min(ts_fix / duration, 1.0), 0.0)) location_time_nocorrect[direction]['all'][co.REINJ_ORIG_TIMESTAMP].append(ts_fix / duration) if direction == co.D2S and ts_fix / duration < 0.0 or ts_fix / duration > 1.0: print(fname, conn_id, flow_id, ts_fix / duration, ts, start_time, ts_fix, duration, file=warning_reinj) if direction == co.D2S and ts_fix <= 1.0: reinj_first_sec.append((conn_id, flow_id)) if direction == co.D2S and ts_fix / duration >= 0.92 and ts_fix / duration <= 0.97: print(fname, conn_id, flow_id, ts_fix / duration, ts, start_time, ts_fix, duration, file=look_95) if direction == co.D2S and ts_fix / duration >= 0.99: print(fname, conn_id, flow_id, ts_fix / duration, ts, start_time, ts_fix, duration, file=look_100) co.plot_cdfs_with_direction(location_time, color, 'Fraction of connection duration', base_graph_path, natural=True) co.plot_cdfs_with_direction(location_time_nocorrect, color, 'Fraction of connection duration', base_graph_path + '_nocorrect', natural=True) print(reinj_first_sec, file=log_file) print(len(reinj_first_sec), "reinjections in 1 second", file=log_file) warning_reinj.close() look_95.close() look_100.close() def time_retransmission(log_file=sys.stdout): location_time = {co.S2D: {'all': {co.TIMESTAMP_RETRANS: []}}, co.D2S: {'all': {co.TIMESTAMP_RETRANS: []}}} location_time_no_correct = {co.S2D: {'all': {co.TIMESTAMP_RETRANS: []}}, co.D2S: {'all': {co.TIMESTAMP_RETRANS: []}}} color = ['red'] graph_fname = "time_retransmission" base_graph_path = os.path.join(sums_dir_exp, graph_fname) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): start_time = float('inf') duration = conn.attr[co.DURATION] if duration <= 0.001: continue start_time = conn.attr.get(co.START, float('inf')) for direction in co.DIRECTIONS: for flow_id, flow in conn.flows.iteritems(): if co.TIMESTAMP_RETRANS in flow.attr[direction] and co.START in flow.attr: start_flow_time = flow.attr[co.START] time_diff = start_flow_time - start_time for ts in flow.attr[direction][co.TIMESTAMP_RETRANS]: location_time[direction]['all'][co.TIMESTAMP_RETRANS].append(min((ts + time_diff) / duration, 1.0)) location_time_no_correct[direction]['all'][co.TIMESTAMP_RETRANS].append((ts + time_diff) / duration) if direction == co.D2S and (ts + time_diff) / duration < 0.0 or (ts + time_diff) / duration > 1.0: print("WARNING retrans", fname, conn_id, flow_id, ts / duration, file=log_file) co.plot_cdfs_with_direction(location_time, color, 'Fraction of connection duration', base_graph_path, natural=True, xlim=1.0) co.plot_cdfs_with_direction(location_time, color, 'Fraction of connection duration', base_graph_path + '_nocorrect', natural=True) def merge_time_reinjection_retransmission(log_file=sys.stdout): location_time = {co.S2D: {'all': {"Reinjections": [], "Retransmissions": []}}, co.D2S: {'all': {"Reinjections": [], "Retransmissions": []}}} location_time_nocorrect = {co.S2D: {'all': {"Reinjections": [], "Retransmissions": []}}, co.D2S: {'all': {"Reinjections": [], "Retransmissions": []}}} reinj_first_sec = [] color = ['red', 'blue'] graph_fname = "merge_time_reinjection_retranmission" base_graph_path = os.path.join(sums_dir_exp, graph_fname) count_duration = {co.S2D: 0, co.D2S: 0} count_low_duration = {co.S2D: 0, co.D2S: 0} for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): start_time = float('inf') duration = conn.attr[co.DURATION] if duration <= 0.001: continue start_time = conn.attr.get(co.START, float('inf')) if start_time == float('inf'): continue start_time_int = int(start_time) start_time_dec = float(str(start_time - start_time_int)[1:]) start_time_dec = ceil(start_time_dec * 1000000) / 1000000.0 warning_reinj = open(os.path.join(sums_dir_exp, 'warning_reinj.txt'), 'w') look_95 = open(os.path.join(sums_dir_exp, 'look95.txt'), 'w') look_100 = open(os.path.join(sums_dir_exp, 'look100.txt'), 'w') warning_retrans = open(os.path.join(sums_dir_exp, 'warning_retrans.txt'), 'w') for direction in [co.D2S]: for flow_id, flow in conn.flows.iteritems(): if co.REINJ_ORIG_TIMESTAMP in flow.attr[direction] and co.START in flow.attr: for ts in flow.attr[direction][co.REINJ_ORIG_TIMESTAMP]: # Some tricks to avoid floating errors ts_int = int(ts) ts_dec = float(str(ts - ts_int)[1:]) ts_dec = ceil(ts_dec * 1000000) / 1000000.0 ts_dec_delta = ts_dec - start_time_dec ts_fix = ts_int - start_time_int + ts_dec_delta location_time[direction]['all']["Reinjections"].append(max(min(ts_fix / duration, 1.0), 0.0)) location_time_nocorrect[direction]['all']["Reinjections"].append(ts_fix / duration) if direction == co.D2S and ts_fix / duration < 0.0 or ts_fix / duration > 1.0: print(fname, conn_id, flow_id, ts_fix / duration, ts, start_time, ts_fix, duration, file=warning_reinj) if direction == co.D2S and ts_fix <= 1.0: reinj_first_sec.append((conn_id, flow_id)) if direction == co.D2S and ts_fix / duration >= 0.92 and ts_fix / duration <= 0.97: print(fname, conn_id, flow_id, ts_fix / duration, ts, start_time, ts_fix, duration, file=look_95) if direction == co.D2S and ts_fix / duration >= 0.99: print("LOOK 100", fname, conn_id, flow_id, ts_fix / duration, ts, start_time, ts_fix, duration, file=log_file) start_time = float('inf') duration = conn.attr[co.DURATION] if duration <= 0.001: continue start_time = conn.attr.get(co.START, float('inf')) for direction in co.DIRECTIONS: for flow_id, flow in conn.flows.iteritems(): if co.TIMESTAMP_RETRANS in flow.attr[direction] and co.START in flow.attr: start_flow_time = flow.attr[co.START] time_diff = start_flow_time - start_time for ts in flow.attr[direction][co.TIMESTAMP_RETRANS]: location_time[direction]['all']["Retransmissions"].append(max(min((ts + time_diff) / duration, 1.0), 0.0)) location_time_nocorrect[direction]['all']["Retransmissions"].append((ts + time_diff) / duration) if direction == co.D2S and (ts + time_diff) / duration >= 0.99: print("LOOK RETRANS", fname, conn_id, flow_id, duration, (ts + time_diff) / duration, file=log_file) count_duration[direction] += 1 if duration < 3.0: count_low_duration[direction] += 1 # if direction == co.D2S and (ts + time_diff) / duration < 0.0 or (ts + time_diff) / duration > 1.0: # print(fname, conn_id, flow_id, ts / duration, file=warning_retrans) co.plot_cdfs_with_direction(location_time, color, 'Fraction of connection duration', base_graph_path, natural=True) co.plot_cdfs_with_direction(location_time_nocorrect, color, 'Fraction of connection duration', base_graph_path + '_nocorrect', natural=True) print(reinj_first_sec, file=log_file) print(len(reinj_first_sec), "reinjections in 1 second", file=log_file) warning_reinj.close() look_95.close() look_100.close() warning_retrans.close() for direction in co.DIRECTIONS: print("DURATION", count_duration[direction], count_low_duration[direction], file=log_file) def total_retrans_reinj(log_file=sys.stdout): reinject = {co.S2D: 0, co.D2S: 0} reinject_packs = {co.S2D: 0, co.D2S: 0} retrans = {co.S2D: 0, co.D2S: 0} retrans_packs = {co.S2D: 0, co.D2S: 0} reinject_list = {} for fname, conns in connections.iteritems(): reinject_list[fname] = [] for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): for flow_id, flow in conn.flows.iteritems(): added = False for direction in co.DIRECTIONS: if direction in flow.attr: if flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) > 0: if not added: reinject_list[fname].append(conn_id) added = True reinject[direction] += flow.attr[direction].get(co.REINJ_ORIG_BYTES, 0) reinject_packs[direction] += flow.attr[direction].get(co.REINJ_ORIG_PACKS, 0) if flow.attr[direction].get(co.BYTES_RETRANS, 0) > 0: retrans[direction] += flow.attr[direction].get(co.BYTES_RETRANS, 0) retrans_packs[direction] += flow.attr[direction].get(co.PACKS_RETRANS, 0) for direction in co.DIRECTIONS: print("REINJECT", direction, reinject[direction], file=log_file) print("REINJECT PACKS", direction, reinject_packs[direction], file=log_file) print("RETRANS", direction, retrans[direction], file=log_file) print("RETRANS PACKS", direction, retrans_packs[direction], file=log_file) print("LIST OF REINJECTION CONNECTIONS", file=log_file) print(reinject_list, file=log_file) def bursts_mptcp(log_file=sys.stdout): bursts_mb = {co.S2D: {'all': {'Connections': []}}, co.D2S: {'all': {'Connections': []}}} bursts_sec = {co.S2D: {'all': {'Connections': []}}, co.D2S: {'all': {'Connections': []}}} bursts_pck = {co.S2D: {'all': {'Connections': []}}, co.D2S: {'all': {'Connections': []}}} color = ['red'] graph_fname_mb = "bursts_mb" base_graph_path_mb = os.path.join(sums_dir_exp, graph_fname_mb) graph_fname_sec = "bursts_sec" base_graph_path_sec = os.path.join(sums_dir_exp, graph_fname_sec) graph_fname_pck = "packs_bursts" base_graph_path_pck = os.path.join(sums_dir_exp, graph_fname_pck) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): if conn.attr[co.DURATION] > 0.0 and len(conn.flows) >= 2: duration = conn.attr[co.DURATION] if duration == 0.0: continue for direction in co.DIRECTIONS: if conn.attr[direction].get(co.BYTES_MPTCPTRACE, 0) < 1000000: continue nb_packs = 0 for flow_id, flow in conn.flows.iteritems(): nb_packs += flow.attr[direction].get(co.PACKS, 0) if conn.attr[direction][co.BYTES_MPTCPTRACE] > 1 and co.BURSTS in conn.attr[direction] and len(conn.attr[direction][co.BURSTS]) > 0: tot_bytes = conn.attr[direction][co.BYTES_MPTCPTRACE] / 1000000.0 # For MBytes bursts_mb[direction]['all']['Connections'].append((len(conn.attr[direction][co.BURSTS]) - 1.0) / tot_bytes) bursts_sec[direction]['all']['Connections'].append((len(conn.attr[direction][co.BURSTS]) - 1.0) / duration) bursts_pck[direction]['all']['Connections'].append(nb_packs / len(conn.attr[direction][co.BURSTS])) co.plot_cdfs_with_direction(bursts_mb, color, '# switches / MB of data', base_graph_path_mb, natural=True) co.plot_cdfs_with_direction(bursts_sec, color, '# switches / second', base_graph_path_sec, natural=True) co.plot_cdfs_with_direction(bursts_pck, color, '# packets / # bursts', base_graph_path_pck, natural=True) co.plot_cdfs_with_direction(bursts_mb, color, '# switches / MB of data', base_graph_path_mb + "_cut", xlim=5000, natural=True) co.plot_cdfs_with_direction(bursts_sec, color, '# switches / second', base_graph_path_sec + "_cut", xlim=200, natural=True) co.plot_cdfs_with_direction(bursts_pck, color, '# packets / # bursts', base_graph_path_pck + "_cut", xlim=1000, natural=True) co.plot_cdfs_with_direction(bursts_mb, color, '# switches / MB of data', base_graph_path_mb + "_ccdf", natural=True, xlog=True, ylog=True, ccdf=True) co.plot_cdfs_with_direction(bursts_sec, color, '# switches / second', base_graph_path_sec + "_ccdf", natural=True, xlog=True, ylog=True, ccdf=True) co.plot_cdfs_with_direction(bursts_pck, color, '# packets / # bursts', base_graph_path_pck + "_ccdf", natural=True, xlog=True, ylog=True, ccdf=True) def detect_handover(log_file=sys.stdout): handover_conns = {} for fname, conns in connections.iteritems(): handover_conns[fname] = [] for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): start_time = float('inf') for flow_id, flow in conn.flows.iteritems(): if co.START not in flow.attr: continue start_time = min(start_time, flow.attr[co.START]) for flow_id, flow in conn.flows.iteritems(): if co.START in flow.attr and flow.attr[co.START] - start_time >= 2.0: handover_conns[fname].append(conn_id) print(handover_conns, file=log_file) def delay_mpcapable_mpjoin_quantify_handover(log_file=sys.stdout, threshold_handover=2.0): syn_additional_sfs = [] handover_conns = {} # Look only at multiple subflows connections for fname, conns in multiflow_connections.iteritems(): handover_conns[fname] = {} for conn_id, conn in conns.iteritems(): # First find initial subflow timestamp initial_sf_ts = float('inf') for flow_id, flow in conn.flows.iteritems(): if co.START not in flow.attr: continue if flow.attr[co.START] < initial_sf_ts: initial_sf_ts = flow.attr[co.START] if initial_sf_ts == float('inf'): continue # Now store the delta and record connections with handover handover_detected = False for flow_id, flow in conn.flows.iteritems(): if co.START not in flow.attr: continue delta = flow.attr[co.START] - initial_sf_ts if delta > 0.0: syn_additional_sfs.append(delta) if delta >= threshold_handover and not handover_detected: handover_detected = True handover_conns[fname][conn_id] = conn if delta >= 50000: print("HUGE DELTA", fname, conn_id, flow_id, delta, file=log_file) # Do a first CDF plot of the delta between initial SYN and additional ones base_graph_path = os.path.join(sums_dir_exp, 'cdf_delta_addtitional_syns') co.plot_cdfs_natural({'multiflow': {'delta': syn_additional_sfs}}, ['red'], 'Seconds', base_graph_path + '_log', xlog=True) co.plot_cdfs_natural({'multiflow': {'delta': syn_additional_sfs}}, ['red'], 'Seconds', base_graph_path) co.plot_cdfs_natural({'multiflow': {'delta': syn_additional_sfs}}, ['red'], 'Seconds', base_graph_path + '_cut', xlim=5.0) co.plot_cdfs_natural({'multiflow': {'delta': syn_additional_sfs}}, ['red'], 'Seconds', base_graph_path + '_cut_15', xlim=15.0) # Now quantify in handover connections the amount of data not on the initial subflows bytes_init_sf = 0.0 bytes_init_sfs = 0.0 bytes_total = 0.0 for fname, conns in handover_conns.iteritems(): for conn_id, conn in conns.iteritems(): # First find initial subflow timestamp initial_sf_ts = float('inf') for flow_id, flow in conn.flows.iteritems(): if co.START not in flow.attr: continue if flow.attr[co.START] < initial_sf_ts: initial_sf_ts = flow.attr[co.START] # Now collect the amount of data on all subflows for flow_id, flow in conn.flows.iteritems(): if co.START not in flow.attr: continue delta = flow.attr[co.START] - initial_sf_ts for direction in co.DIRECTIONS: bytes_total += flow.attr[direction].get(co.BYTES, 0) if bytes_total >= 1000000000: print("WARNING!!!", fname, conn_id, flow_id, bytes_total, file=log_file) if delta < threshold_handover: # Initial subflows bytes_init_sfs += flow.attr[direction].get(co.BYTES, 0) if delta == 0.0: # Initial subflow bytes_init_sf += flow.attr[direction].get(co.BYTES, 0) # Log those values in the log file print("QUANTIFY HANDOVER", file=log_file) print(bytes_init_sf, "BYTES ON INIT SF", bytes_init_sf * 100 / bytes_total, "%", file=log_file) print(bytes_init_sfs, "BYTES ON INIT SFS", bytes_init_sfs * 100 / bytes_total, "%", file=log_file) print("TOTAL BYTES", bytes_total, file=log_file) def table_rtt_d2s(log_file=sys.stdout): MPTCP = "MPTCP" TCP = "TCP" rtt_min = {MPTCP: [], TCP: []} rtt_med = {MPTCP: [], TCP: []} rtt_avg = {MPTCP: [], TCP: []} rtt_75 = {MPTCP: [], TCP: []} rtt_90 = {MPTCP: [], TCP: []} rtt_95 = {MPTCP: [], TCP: []} rtt_97 = {MPTCP: [], TCP: []} rtt_98 = {MPTCP: [], TCP: []} rtt_99 = {MPTCP: [], TCP: []} rtt_max = {MPTCP: [], TCP: []} rtt_diff = {MPTCP: [], TCP: []} for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): if conn.attr[co.D2S].get(co.BYTES_MPTCPTRACE, 0) < 1000000: continue data_mptcp = conn.attr[co.D2S] if co.RTT_MIN in data_mptcp and co.RTT_AVG in data_mptcp and co.RTT_MED in data_mptcp and co.RTT_99P in data_mptcp: rtt_min[MPTCP].append(data_mptcp[co.RTT_MIN]) rtt_med[MPTCP].append(data_mptcp[co.RTT_MED]) rtt_avg[MPTCP].append(data_mptcp[co.RTT_AVG]) rtt_75[MPTCP].append(data_mptcp[co.RTT_75P]) rtt_90[MPTCP].append(data_mptcp[co.RTT_90P]) rtt_95[MPTCP].append(data_mptcp[co.RTT_95P]) rtt_97[MPTCP].append(data_mptcp[co.RTT_97P]) rtt_98[MPTCP].append(data_mptcp[co.RTT_98P]) rtt_99[MPTCP].append(data_mptcp[co.RTT_99P]) rtt_max[MPTCP].append(data_mptcp[co.RTT_MAX]) rtt_diff[MPTCP].append(data_mptcp[co.RTT_MAX] - data_mptcp[co.RTT_MIN]) for flow_id, flow in conn.flows.iteritems(): if flow.attr[co.D2S].get(co.BYTES, 0) < 250000: continue data = flow.attr[co.D2S] if co.RTT_MIN in data and co.RTT_AVG in data and co.RTT_MED in data and co.RTT_99P in data: rtt_min[TCP].append(data[co.RTT_MIN]) rtt_med[TCP].append(data[co.RTT_MED]) rtt_avg[TCP].append(data[co.RTT_AVG]) rtt_75[TCP].append(data[co.RTT_75P]) rtt_90[TCP].append(data[co.RTT_90P]) rtt_95[TCP].append(data[co.RTT_95P]) rtt_97[TCP].append(data[co.RTT_97P]) rtt_98[TCP].append(data[co.RTT_98P]) rtt_99[TCP].append(data[co.RTT_99P]) rtt_max[TCP].append(data[co.RTT_MAX]) rtt_diff[TCP].append(data[co.RTT_MAX] - data[co.RTT_MIN]) print("TABLE RTT", file=log_file) print("\hline", file=log_file) print("Protocol & Min & Med & Avg & 75^{th} & 90^{th} & 95^{th} & 97^{th} & 98^{th} & 99^{th} & Max & Max - Min \\ ", file=log_file) print("\hline", file=log_file) print("\hline", file=log_file) for protocol in [MPTCP, TCP]: print(protocol, "&", np.mean(rtt_min[protocol]), "&", np.mean(rtt_med[protocol]), "&", np.mean(rtt_avg[protocol]), "&", np.mean(rtt_75[protocol]), "&", np.mean(rtt_90[protocol]), "&", np.mean(rtt_95[protocol]), "&", np.mean(rtt_97[protocol]), "&", np.mean(rtt_98[protocol]), "&", np.mean(rtt_99[protocol]), "&", np.mean(rtt_max[protocol]), "&", np.mean(rtt_diff[protocol]), "\\", file=log_file) print(protocol, "&", np.median(rtt_min[protocol]), "&", np.median(rtt_med[protocol]), "&", np.median(rtt_avg[protocol]), "&", np.median(rtt_75[protocol]), "&", np.median(rtt_90[protocol]), "&", np.median(rtt_95[protocol]), "&", np.median(rtt_97[protocol]), "&", np.median(rtt_98[protocol]), "&", np.median(rtt_99[protocol]), "&", np.median(rtt_max[protocol]), "&", np.median(rtt_diff[protocol]), "\\", file=log_file) print(protocol, "&", np.percentile(rtt_min[protocol], 75), "&", np.percentile(rtt_med[protocol], 75), "&", np.percentile(rtt_avg[protocol], 75), "&", np.percentile(rtt_75[protocol], 75), "&", np.percentile(rtt_90[protocol], 75), "&", np.percentile(rtt_95[protocol], 75), "&", np.percentile(rtt_97[protocol], 75), "&", np.percentile(rtt_98[protocol], 75), "&", np.percentile(rtt_99[protocol], 75), "&", np.percentile(rtt_max[protocol], 75), "&", np.percentile(rtt_diff[protocol], 75), "\\", file=log_file) print(protocol, "&", np.percentile(rtt_min[protocol], 90), "&", np.percentile(rtt_med[protocol], 90), "&", np.percentile(rtt_avg[protocol], 90), "&", np.percentile(rtt_75[protocol], 90), "&", np.percentile(rtt_90[protocol], 90), "&", np.percentile(rtt_95[protocol], 90), "&", np.percentile(rtt_97[protocol], 90), "&", np.percentile(rtt_98[protocol], 90), "&", np.percentile(rtt_99[protocol], 90), "&", np.percentile(rtt_max[protocol], 90), "&", np.percentile(rtt_diff[protocol], 90), "\\", file=log_file) print(protocol, "&", np.percentile(rtt_min[protocol], 95), "&", np.percentile(rtt_med[protocol], 95), "&", np.percentile(rtt_avg[protocol], 95), "&", np.percentile(rtt_75[protocol], 95), "&", np.percentile(rtt_90[protocol], 95), "&", np.percentile(rtt_95[protocol], 95), "&", np.percentile(rtt_97[protocol], 95), "&", np.percentile(rtt_98[protocol], 95), "&", np.percentile(rtt_99[protocol], 95), "&", np.percentile(rtt_max[protocol], 95), "&", np.percentile(rtt_diff[protocol], 95), "\\", file=log_file) print("\hline", file=log_file) def plot_rtt_d2s(log_file=sys.stdout): rtt_min = [] rtt_avg = [] rtt_max = [] rtt_diff = [] graph_fname_rtt = "rtt_d2s" base_graph_path_rtt = os.path.join(sums_dir_exp, graph_fname_rtt) for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): # We never know, still check if isinstance(conn, mptcp.MPTCPConnection): count_flow = 0 max_flow = 0.0 min_flow = float('inf') for flow_id, flow in conn.flows.iteritems(): if flow.attr[co.D2S].get(co.BYTES, 0) < 100000: continue data = flow.attr[co.D2S] if co.RTT_MIN in data and co.RTT_AVG in data: rtt_min.append(data[co.RTT_MIN]) rtt_avg.append(data[co.RTT_AVG]) rtt_max.append(data[co.RTT_MAX]) count_flow += 1 max_flow = max(max_flow, data[co.RTT_AVG]) min_flow = min(min_flow, data[co.RTT_AVG]) if data[co.RTT_MIN] < 1.0: print("LOW RTT", fname, conn_id, flow_id, data[co.RTT_MIN], data[co.RTT_AVG], data[co.RTT_MAX], flow.attr[co.D2S].get(co.RTT_3WHS, 0), flow.attr[co.D2S].get(co.BYTES, 0), flow.attr[co.D2S].get(co.RTT_SAMPLES, 0), flow.attr[co.DADDR], file=log_file) if count_flow >= 2: rtt_diff.append(max_flow - min_flow) co.plot_cdfs_natural({'all': {"min RTT": rtt_min, "avg RTT": rtt_avg, "max RTT": rtt_max, "max RTT - min RTT": rtt_diff}}, ['red', 'green', 'blue', 'magenta'], "RTT of subflows larger than 100KB (ms)", base_graph_path_rtt, label_order=["min RTT", "avg RTT", "max RTT", "max RTT - min RTT"], xlog=True) millis = int(round(time.time() * 1000)) log_file = open(os.path.join(sums_dir_exp, 'log_summary-' + str(millis) + '.txt'), 'w') print("Summary plots", file=log_file) # fog_plot_with_bytes_wifi_cell_per_condition(log_file=log_file) # fog_plot_with_packs_wifi_cell_per_condition(log_file=log_file) # fog_duration_bytes(log_file=log_file) cdf_duration(log_file=log_file) cdfs_bytes(log_file=log_file) cdf_number_subflows(log_file=log_file) textual_summary(log_file=log_file) box_plot_cellular_percentage(log_file=log_file, limit_bytes=0) cdf_bytes_all(log_file=log_file) # cdf_rtt_s2d_all(log_file=log_file, min_samples=5) cdf_rtt_d2s_all(log_file=log_file, min_samples=5) # reinject_plot(log_file=log_file, min_bytes=9999.9) # reinject_plot_relative_to_data(log_file=log_file, min_bytes=9999.9) # retrans_plot(log_file=log_file) # fog_plot_cellular_percentage_rtt_wifi(log_file=log_file) # textual_summary_global(log_file=log_file) cdf_overhead_retrans_reinj(log_file=log_file) cdf_overhead_retrans_reinj_singleflow(log_file=log_file) plot_total_bytes_reinj_bytes(log_file=log_file) fog_plot_cellular_percentage_all(log_file=log_file) count_mptcp_best_rtt_flow(log_file=log_file) count_ip_type(log_file=log_file) count_packet(log_file=log_file) count_ports(log_file=log_file) count_ports_mptcp(log_file=log_file) count_on_filtered(log_file=log_file) # time_reinjection(log_file=log_file) # time_retransmission(log_file=log_file) merge_time_reinjection_retransmission(log_file=log_file) bursts_mptcp(log_file=log_file) detect_handover(log_file=log_file) list_bytes_all(log_file=log_file) difference_rtt_d2s(log_file=log_file) delay_mpcapable_mpjoin_quantify_handover(log_file=log_file, threshold_handover=1.0) count_unused_subflows(log_file=log_file) total_retrans_reinj(log_file=log_file) # table_rtt_d2s(log_file=log_file) plot_rtt_d2s(log_file=log_file) log_file.close() print("End of summary")
gpl-3.0
rs2/pandas
pandas/tests/tools/test_to_datetime.py
1
90242
""" test to_datetime """ import calendar from collections import deque from datetime import datetime, timedelta import locale from dateutil.parser import parse from dateutil.tz.tz import tzoffset import numpy as np import pytest import pytz from pandas._libs import tslib from pandas._libs.tslibs import iNaT, parsing from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_datetime64_ns_dtype import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, NaT, Series, Timestamp, date_range, isna, to_datetime, ) import pandas._testing as tm from pandas.core.arrays import DatetimeArray from pandas.core.tools import datetimes as tools class TestTimeConversionFormats: @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format(self, cache): values = ["1/1/2000", "1/2/2000", "1/3/2000"] results1 = [Timestamp("20000101"), Timestamp("20000201"), Timestamp("20000301")] results2 = [Timestamp("20000101"), Timestamp("20000102"), Timestamp("20000103")] for vals, expecteds in [ (values, (Index(results1), Index(results2))), (Series(values), (Series(results1), Series(results2))), (values[0], (results1[0], results2[0])), (values[1], (results1[1], results2[1])), (values[2], (results1[2], results2[2])), ]: for i, fmt in enumerate(["%d/%m/%Y", "%m/%d/%Y"]): result = to_datetime(vals, format=fmt, cache=cache) expected = expecteds[i] if isinstance(expected, Series): tm.assert_series_equal(result, Series(expected)) elif isinstance(expected, Timestamp): assert result == expected else: tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_YYYYMMDD(self, cache): s = Series([19801222, 19801222] + [19810105] * 5) expected = Series([Timestamp(x) for x in s.apply(str)]) result = to_datetime(s, format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) result = to_datetime(s.apply(str), format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) # with NaT expected = Series( [Timestamp("19801222"), Timestamp("19801222")] + [Timestamp("19810105")] * 5 ) expected[2] = np.nan s[2] = np.nan result = to_datetime(s, format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) # string with NaT s = s.apply(str) s[2] = "nat" result = to_datetime(s, format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) # coercion # GH 7930 s = Series([20121231, 20141231, 99991231]) result = pd.to_datetime(s, format="%Y%m%d", errors="ignore", cache=cache) expected = Series( [datetime(2012, 12, 31), datetime(2014, 12, 31), datetime(9999, 12, 31)], dtype=object, ) tm.assert_series_equal(result, expected) result = pd.to_datetime(s, format="%Y%m%d", errors="coerce", cache=cache) expected = Series(["20121231", "20141231", "NaT"], dtype="M8[ns]") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input_s", [ # Null values with Strings ["19801222", "20010112", None], ["19801222", "20010112", np.nan], ["19801222", "20010112", pd.NaT], ["19801222", "20010112", "NaT"], # Null values with Integers [19801222, 20010112, None], [19801222, 20010112, np.nan], [19801222, 20010112, pd.NaT], [19801222, 20010112, "NaT"], ], ) def test_to_datetime_format_YYYYMMDD_with_none(self, input_s): # GH 30011 # format='%Y%m%d' # with None expected = Series([Timestamp("19801222"), Timestamp("20010112"), pd.NaT]) result = Series(pd.to_datetime(input_s, format="%Y%m%d")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input_s, expected", [ # NaN before strings with invalid date values [ Series(["19801222", np.nan, "20010012", "10019999"]), Series([Timestamp("19801222"), np.nan, np.nan, np.nan]), ], # NaN after strings with invalid date values [ Series(["19801222", "20010012", "10019999", np.nan]), Series([Timestamp("19801222"), np.nan, np.nan, np.nan]), ], # NaN before integers with invalid date values [ Series([20190813, np.nan, 20010012, 20019999]), Series([Timestamp("20190813"), np.nan, np.nan, np.nan]), ], # NaN after integers with invalid date values [ Series([20190813, 20010012, np.nan, 20019999]), Series([Timestamp("20190813"), np.nan, np.nan, np.nan]), ], ], ) def test_to_datetime_format_YYYYMMDD_overflow(self, input_s, expected): # GH 25512 # format='%Y%m%d', errors='coerce' result = pd.to_datetime(input_s, format="%Y%m%d", errors="coerce") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_integer(self, cache): # GH 10178 s = Series([2000, 2001, 2002]) expected = Series([Timestamp(x) for x in s.apply(str)]) result = to_datetime(s, format="%Y", cache=cache) tm.assert_series_equal(result, expected) s = Series([200001, 200105, 200206]) expected = Series([Timestamp(x[:4] + "-" + x[4:]) for x in s.apply(str)]) result = to_datetime(s, format="%Y%m", cache=cache) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "int_date, expected", [ # valid date, length == 8 [20121030, datetime(2012, 10, 30)], # short valid date, length == 6 [199934, datetime(1999, 3, 4)], # long integer date partially parsed to datetime(2012,1,1), length > 8 [2012010101, 2012010101], # invalid date partially parsed to datetime(2012,9,9), length == 8 [20129930, 20129930], # short integer date partially parsed to datetime(2012,9,9), length < 8 [2012993, 2012993], # short invalid date, length == 4 [2121, 2121], ], ) def test_int_to_datetime_format_YYYYMMDD_typeerror(self, int_date, expected): # GH 26583 result = to_datetime(int_date, format="%Y%m%d", errors="ignore") assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_microsecond(self, cache): # these are locale dependent lang, _ = locale.getlocale() month_abbr = calendar.month_abbr[4] val = f"01-{month_abbr}-2011 00:00:01.978" format = "%d-%b-%Y %H:%M:%S.%f" result = to_datetime(val, format=format, cache=cache) exp = datetime.strptime(val, format) assert result == exp @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_time(self, cache): data = [ ["01/10/2010 15:20", "%m/%d/%Y %H:%M", Timestamp("2010-01-10 15:20")], ["01/10/2010 05:43", "%m/%d/%Y %I:%M", Timestamp("2010-01-10 05:43")], [ "01/10/2010 13:56:01", "%m/%d/%Y %H:%M:%S", Timestamp("2010-01-10 13:56:01"), ] # , # ['01/10/2010 08:14 PM', '%m/%d/%Y %I:%M %p', # Timestamp('2010-01-10 20:14')], # ['01/10/2010 07:40 AM', '%m/%d/%Y %I:%M %p', # Timestamp('2010-01-10 07:40')], # ['01/10/2010 09:12:56 AM', '%m/%d/%Y %I:%M:%S %p', # Timestamp('2010-01-10 09:12:56')] ] for s, format, dt in data: assert to_datetime(s, format=format, cache=cache) == dt @td.skip_if_has_locale @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_with_non_exact(self, cache): # GH 10834 # 8904 # exact kw s = Series( ["19MAY11", "foobar19MAY11", "19MAY11:00:00:00", "19MAY11 00:00:00Z"] ) result = to_datetime(s, format="%d%b%y", exact=False, cache=cache) expected = to_datetime( s.str.extract(r"(\d+\w+\d+)", expand=False), format="%d%b%y", cache=cache ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_parse_nanoseconds_with_formula(self, cache): # GH8989 # truncating the nanoseconds when a format was provided for v in [ "2012-01-01 09:00:00.000000001", "2012-01-01 09:00:00.000001", "2012-01-01 09:00:00.001", "2012-01-01 09:00:00.001000", "2012-01-01 09:00:00.001000000", ]: expected = pd.to_datetime(v, cache=cache) result = pd.to_datetime(v, format="%Y-%m-%d %H:%M:%S.%f", cache=cache) assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_weeks(self, cache): data = [ ["2009324", "%Y%W%w", Timestamp("2009-08-13")], ["2013020", "%Y%U%w", Timestamp("2013-01-13")], ] for s, format, dt in data: assert to_datetime(s, format=format, cache=cache) == dt @pytest.mark.parametrize( "fmt,dates,expected_dates", [ [ "%Y-%m-%d %H:%M:%S %Z", ["2010-01-01 12:00:00 UTC"] * 2, [pd.Timestamp("2010-01-01 12:00:00", tz="UTC")] * 2, ], [ "%Y-%m-%d %H:%M:%S %Z", [ "2010-01-01 12:00:00 UTC", "2010-01-01 12:00:00 GMT", "2010-01-01 12:00:00 US/Pacific", ], [ pd.Timestamp("2010-01-01 12:00:00", tz="UTC"), pd.Timestamp("2010-01-01 12:00:00", tz="GMT"), pd.Timestamp("2010-01-01 12:00:00", tz="US/Pacific"), ], ], [ "%Y-%m-%d %H:%M:%S%z", ["2010-01-01 12:00:00+0100"] * 2, [pd.Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(60))] * 2, ], [ "%Y-%m-%d %H:%M:%S %z", ["2010-01-01 12:00:00 +0100"] * 2, [pd.Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(60))] * 2, ], [ "%Y-%m-%d %H:%M:%S %z", ["2010-01-01 12:00:00 +0100", "2010-01-01 12:00:00 -0100"], [ pd.Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(60)), pd.Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(-60)), ], ], [ "%Y-%m-%d %H:%M:%S %z", ["2010-01-01 12:00:00 Z", "2010-01-01 12:00:00 Z"], [ pd.Timestamp( "2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(0) ), # pytz coerces to UTC pd.Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(0)), ], ], ], ) def test_to_datetime_parse_tzname_or_tzoffset(self, fmt, dates, expected_dates): # GH 13486 result = pd.to_datetime(dates, format=fmt) expected = pd.Index(expected_dates) tm.assert_equal(result, expected) def test_to_datetime_parse_tzname_or_tzoffset_different_tz_to_utc(self): # GH 32792 dates = [ "2010-01-01 12:00:00 +0100", "2010-01-01 12:00:00 -0100", "2010-01-01 12:00:00 +0300", "2010-01-01 12:00:00 +0400", ] expected_dates = [ "2010-01-01 11:00:00+00:00", "2010-01-01 13:00:00+00:00", "2010-01-01 09:00:00+00:00", "2010-01-01 08:00:00+00:00", ] fmt = "%Y-%m-%d %H:%M:%S %z" result = pd.to_datetime(dates, format=fmt, utc=True) expected = pd.DatetimeIndex(expected_dates) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "offset", ["+0", "-1foo", "UTCbar", ":10", "+01:000:01", ""] ) def test_to_datetime_parse_timezone_malformed(self, offset): fmt = "%Y-%m-%d %H:%M:%S %z" date = "2010-01-01 12:00:00 " + offset with pytest.raises(ValueError): pd.to_datetime([date], format=fmt) def test_to_datetime_parse_timezone_keeps_name(self): # GH 21697 fmt = "%Y-%m-%d %H:%M:%S %z" arg = pd.Index(["2010-01-01 12:00:00 Z"], name="foo") result = pd.to_datetime(arg, format=fmt) expected = pd.DatetimeIndex(["2010-01-01 12:00:00"], tz="UTC", name="foo") tm.assert_index_equal(result, expected) class TestToDatetime: @pytest.mark.parametrize( "s, _format, dt", [ ["2015-1-1", "%G-%V-%u", datetime(2014, 12, 29, 0, 0)], ["2015-1-4", "%G-%V-%u", datetime(2015, 1, 1, 0, 0)], ["2015-1-7", "%G-%V-%u", datetime(2015, 1, 4, 0, 0)], ], ) def test_to_datetime_iso_week_year_format(self, s, _format, dt): # See GH#16607 assert to_datetime(s, format=_format) == dt @pytest.mark.parametrize( "msg, s, _format", [ [ "ISO week directive '%V' must be used with the ISO year directive " "'%G' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 50", "%Y %V", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 51", "%G %V", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 Monday", "%G %A", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 Mon", "%G %a", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 6", "%G %w", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 6", "%G %u", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "2051", "%G", ], [ "Day of the year directive '%j' is not compatible with ISO year " "directive '%G'. Use '%Y' instead.", "1999 51 6 256", "%G %V %u %j", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 Sunday", "%Y %V %A", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 Sun", "%Y %V %a", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 1", "%Y %V %w", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 1", "%Y %V %u", ], [ "ISO week directive '%V' must be used with the ISO year directive " "'%G' and a weekday directive '%A', '%a', '%w', or '%u'.", "20", "%V", ], ], ) def test_error_iso_week_year(self, msg, s, _format): # See GH#16607 # This test checks for errors thrown when giving the wrong format # However, as discussed on PR#25541, overriding the locale # causes a different error to be thrown due to the format being # locale specific, but the test data is in english. # Therefore, the tests only run when locale is not overwritten, # as a sort of solution to this problem. if locale.getlocale() != ("zh_CN", "UTF-8") and locale.getlocale() != ( "it_IT", "UTF-8", ): with pytest.raises(ValueError, match=msg): to_datetime(s, format=_format) @pytest.mark.parametrize("tz", [None, "US/Central"]) def test_to_datetime_dtarr(self, tz): # DatetimeArray dti = date_range("1965-04-03", periods=19, freq="2W", tz=tz) arr = DatetimeArray(dti) result = to_datetime(arr) assert result is arr result = to_datetime(arr) assert result is arr def test_to_datetime_pydatetime(self): actual = pd.to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) def test_to_datetime_YYYYMMDD(self): actual = pd.to_datetime("20080115") assert actual == datetime(2008, 1, 15) def test_to_datetime_unparseable_ignore(self): # unparseable s = "Month 1, 1999" assert pd.to_datetime(s, errors="ignore") == s @td.skip_if_windows # `tm.set_timezone` does not work in windows def test_to_datetime_now(self): # See GH#18666 with tm.set_timezone("US/Eastern"): npnow = np.datetime64("now").astype("datetime64[ns]") pdnow = pd.to_datetime("now") pdnow2 = pd.to_datetime(["now"])[0] # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdnow.value - npnow.astype(np.int64)) < 1e10 assert abs(pdnow2.value - npnow.astype(np.int64)) < 1e10 assert pdnow.tzinfo is None assert pdnow2.tzinfo is None @td.skip_if_windows # `tm.set_timezone` does not work in windows def test_to_datetime_today(self): # See GH#18666 # Test with one timezone far ahead of UTC and another far behind, so # one of these will _almost_ always be in a different day from UTC. # Unfortunately this test between 12 and 1 AM Samoa time # this both of these timezones _and_ UTC will all be in the same day, # so this test will not detect the regression introduced in #18666. with tm.set_timezone("Pacific/Auckland"): # 12-13 hours ahead of UTC nptoday = np.datetime64("today").astype("datetime64[ns]").astype(np.int64) pdtoday = pd.to_datetime("today") pdtoday2 = pd.to_datetime(["today"])[0] tstoday = pd.Timestamp("today") tstoday2 = pd.Timestamp.today() # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdtoday.normalize().value - nptoday) < 1e10 assert abs(pdtoday2.normalize().value - nptoday) < 1e10 assert abs(pdtoday.value - tstoday.value) < 1e10 assert abs(pdtoday.value - tstoday2.value) < 1e10 assert pdtoday.tzinfo is None assert pdtoday2.tzinfo is None with tm.set_timezone("US/Samoa"): # 11 hours behind UTC nptoday = np.datetime64("today").astype("datetime64[ns]").astype(np.int64) pdtoday = pd.to_datetime("today") pdtoday2 = pd.to_datetime(["today"])[0] # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdtoday.normalize().value - nptoday) < 1e10 assert abs(pdtoday2.normalize().value - nptoday) < 1e10 assert pdtoday.tzinfo is None assert pdtoday2.tzinfo is None def test_to_datetime_today_now_unicode_bytes(self): to_datetime(["now"]) to_datetime(["today"]) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_dt64s(self, cache): in_bound_dts = [np.datetime64("2000-01-01"), np.datetime64("2000-01-02")] for dt in in_bound_dts: assert pd.to_datetime(dt, cache=cache) == Timestamp(dt) @pytest.mark.parametrize( "dt", [np.datetime64("1000-01-01"), np.datetime64("5000-01-02")] ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_dt64s_out_of_bounds(self, cache, dt): msg = f"Out of bounds nanosecond timestamp: {dt}" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dt, errors="raise") with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp(dt) assert pd.to_datetime(dt, errors="coerce", cache=cache) is NaT @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize("unit", ["s", "D"]) def test_to_datetime_array_of_dt64s(self, cache, unit): # https://github.com/pandas-dev/pandas/issues/31491 # Need at least 50 to ensure cache is used. dts = [ np.datetime64("2000-01-01", unit), np.datetime64("2000-01-02", unit), ] * 30 # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing tm.assert_index_equal( pd.to_datetime(dts, cache=cache), pd.DatetimeIndex([Timestamp(x).asm8 for x in dts]), ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64("9999-01-01")] msg = "Out of bounds nanosecond timestamp: 9999-01-01 00:00:00" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dts_with_oob, errors="raise") tm.assert_index_equal( pd.to_datetime(dts_with_oob, errors="coerce", cache=cache), pd.DatetimeIndex( [Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8] * 30 + [pd.NaT], ), ) # With errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date tm.assert_index_equal( pd.to_datetime(dts_with_oob, errors="ignore", cache=cache), pd.Index([dt.item() for dt in dts_with_oob]), ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_tz(self, cache): # xref 8260 # uniform returns a DatetimeIndex arr = [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ] result = pd.to_datetime(arr, cache=cache) expected = DatetimeIndex( ["2013-01-01 13:00:00", "2013-01-02 14:00:00"], tz="US/Pacific" ) tm.assert_index_equal(result, expected) # mixed tzs will raise arr = [ pd.Timestamp("2013-01-01 13:00:00", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00", tz="US/Eastern"), ] msg = ( "Tz-aware datetime.datetime cannot be " "converted to datetime64 unless utc=True" ) with pytest.raises(ValueError, match=msg): pd.to_datetime(arr, cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_different_offsets(self, cache): # inspired by asv timeseries.ToDatetimeNONISO8601 benchmark # see GH-26097 for more ts_string_1 = "March 1, 2018 12:00:00+0400" ts_string_2 = "March 1, 2018 12:00:00+0500" arr = [ts_string_1] * 5 + [ts_string_2] * 5 expected = pd.Index([parse(x) for x in arr]) result = pd.to_datetime(arr, cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_tz_pytz(self, cache): # see gh-8260 us_eastern = pytz.timezone("US/Eastern") arr = np.array( [ us_eastern.localize( datetime(year=2000, month=1, day=1, hour=3, minute=0) ), us_eastern.localize( datetime(year=2000, month=6, day=1, hour=3, minute=0) ), ], dtype=object, ) result = pd.to_datetime(arr, utc=True, cache=cache) expected = DatetimeIndex( ["2000-01-01 08:00:00+00:00", "2000-06-01 07:00:00+00:00"], dtype="datetime64[ns, UTC]", freq=None, ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize( "init_constructor, end_constructor, test_method", [ (Index, DatetimeIndex, tm.assert_index_equal), (list, DatetimeIndex, tm.assert_index_equal), (np.array, DatetimeIndex, tm.assert_index_equal), (Series, Series, tm.assert_series_equal), ], ) def test_to_datetime_utc_true( self, cache, init_constructor, end_constructor, test_method ): # See gh-11934 & gh-6415 data = ["20100102 121314", "20100102 121315"] expected_data = [ pd.Timestamp("2010-01-02 12:13:14", tz="utc"), pd.Timestamp("2010-01-02 12:13:15", tz="utc"), ] result = pd.to_datetime( init_constructor(data), format="%Y%m%d %H%M%S", utc=True, cache=cache ) expected = end_constructor(expected_data) test_method(result, expected) # Test scalar case as well for scalar, expected in zip(data, expected_data): result = pd.to_datetime( scalar, format="%Y%m%d %H%M%S", utc=True, cache=cache ) assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_utc_true_with_series_single_value(self, cache): # GH 15760 UTC=True with Series ts = 1.5e18 result = pd.to_datetime(pd.Series([ts]), utc=True, cache=cache) expected = pd.Series([pd.Timestamp(ts, tz="utc")]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_utc_true_with_series_tzaware_string(self, cache): ts = "2013-01-01 00:00:00-01:00" expected_ts = "2013-01-01 01:00:00" data = pd.Series([ts] * 3) result = pd.to_datetime(data, utc=True, cache=cache) expected = pd.Series([pd.Timestamp(expected_ts, tz="utc")] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize( "date, dtype", [ ("2013-01-01 01:00:00", "datetime64[ns]"), ("2013-01-01 01:00:00", "datetime64[ns, UTC]"), ], ) def test_to_datetime_utc_true_with_series_datetime_ns(self, cache, date, dtype): expected = pd.Series([pd.Timestamp("2013-01-01 01:00:00", tz="UTC")]) result = pd.to_datetime(pd.Series([date], dtype=dtype), utc=True, cache=cache) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) @td.skip_if_no("psycopg2") def test_to_datetime_tz_psycopg2(self, cache): # xref 8260 import psycopg2 # misc cases tz1 = psycopg2.tz.FixedOffsetTimezone(offset=-300, name=None) tz2 = psycopg2.tz.FixedOffsetTimezone(offset=-240, name=None) arr = np.array( [ datetime(2000, 1, 1, 3, 0, tzinfo=tz1), datetime(2000, 6, 1, 3, 0, tzinfo=tz2), ], dtype=object, ) result = pd.to_datetime(arr, errors="coerce", utc=True, cache=cache) expected = DatetimeIndex( ["2000-01-01 08:00:00+00:00", "2000-06-01 07:00:00+00:00"], dtype="datetime64[ns, UTC]", freq=None, ) tm.assert_index_equal(result, expected) # dtype coercion i = pd.DatetimeIndex( ["2000-01-01 08:00:00"], tz=psycopg2.tz.FixedOffsetTimezone(offset=-300, name=None), ) assert is_datetime64_ns_dtype(i) # tz coercion result = pd.to_datetime(i, errors="coerce", cache=cache) tm.assert_index_equal(result, i) result = pd.to_datetime(i, errors="coerce", utc=True, cache=cache) expected = pd.DatetimeIndex( ["2000-01-01 13:00:00"], dtype="datetime64[ns, UTC]" ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_datetime_bool(self, cache): # GH13176 with pytest.raises(TypeError): to_datetime(False) assert to_datetime(False, errors="coerce", cache=cache) is NaT assert to_datetime(False, errors="ignore", cache=cache) is False with pytest.raises(TypeError): to_datetime(True) assert to_datetime(True, errors="coerce", cache=cache) is NaT assert to_datetime(True, errors="ignore", cache=cache) is True with pytest.raises(TypeError): to_datetime([False, datetime.today()], cache=cache) with pytest.raises(TypeError): to_datetime(["20130101", True], cache=cache) tm.assert_index_equal( to_datetime([0, False, NaT, 0.0], errors="coerce", cache=cache), DatetimeIndex( [to_datetime(0, cache=cache), NaT, NaT, to_datetime(0, cache=cache)] ), ) def test_datetime_invalid_datatype(self): # GH13176 with pytest.raises(TypeError): pd.to_datetime(bool) with pytest.raises(TypeError): pd.to_datetime(pd.to_datetime) @pytest.mark.parametrize("value", ["a", "00:01:99"]) @pytest.mark.parametrize("infer", [True, False]) @pytest.mark.parametrize("format", [None, "H%:M%:S%"]) def test_datetime_invalid_scalar(self, value, format, infer): # GH24763 res = pd.to_datetime( value, errors="ignore", format=format, infer_datetime_format=infer ) assert res == value res = pd.to_datetime( value, errors="coerce", format=format, infer_datetime_format=infer ) assert res is pd.NaT with pytest.raises(ValueError): pd.to_datetime( value, errors="raise", format=format, infer_datetime_format=infer ) @pytest.mark.parametrize("value", ["3000/12/11 00:00:00"]) @pytest.mark.parametrize("infer", [True, False]) @pytest.mark.parametrize("format", [None, "H%:M%:S%"]) def test_datetime_outofbounds_scalar(self, value, format, infer): # GH24763 res = pd.to_datetime( value, errors="ignore", format=format, infer_datetime_format=infer ) assert res == value res = pd.to_datetime( value, errors="coerce", format=format, infer_datetime_format=infer ) assert res is pd.NaT if format is not None: with pytest.raises(ValueError): pd.to_datetime( value, errors="raise", format=format, infer_datetime_format=infer ) else: with pytest.raises(OutOfBoundsDatetime): pd.to_datetime( value, errors="raise", format=format, infer_datetime_format=infer ) @pytest.mark.parametrize("values", [["a"], ["00:01:99"], ["a", "b", "99:00:00"]]) @pytest.mark.parametrize("infer", [True, False]) @pytest.mark.parametrize("format", [None, "H%:M%:S%"]) def test_datetime_invalid_index(self, values, format, infer): # GH24763 res = pd.to_datetime( values, errors="ignore", format=format, infer_datetime_format=infer ) tm.assert_index_equal(res, pd.Index(values)) res = pd.to_datetime( values, errors="coerce", format=format, infer_datetime_format=infer ) tm.assert_index_equal(res, pd.DatetimeIndex([pd.NaT] * len(values))) with pytest.raises(ValueError): pd.to_datetime( values, errors="raise", format=format, infer_datetime_format=infer ) @pytest.mark.parametrize("utc", [True, None]) @pytest.mark.parametrize("format", ["%Y%m%d %H:%M:%S", None]) @pytest.mark.parametrize("constructor", [list, tuple, np.array, pd.Index, deque]) def test_to_datetime_cache(self, utc, format, constructor): date = "20130101 00:00:00" test_dates = [date] * 10 ** 5 data = constructor(test_dates) result = pd.to_datetime(data, utc=utc, format=format, cache=True) expected = pd.to_datetime(data, utc=utc, format=format, cache=False) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "listlike", [ (deque([pd.Timestamp("2010-06-02 09:30:00")] * 51)), ([pd.Timestamp("2010-06-02 09:30:00")] * 51), (tuple([pd.Timestamp("2010-06-02 09:30:00")] * 51)), ], ) def test_no_slicing_errors_in_should_cache(self, listlike): # GH 29403 assert tools.should_cache(listlike) is True def test_to_datetime_from_deque(self): # GH 29403 result = pd.to_datetime(deque([pd.Timestamp("2010-06-02 09:30:00")] * 51)) expected = pd.to_datetime([pd.Timestamp("2010-06-02 09:30:00")] * 51) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("utc", [True, None]) @pytest.mark.parametrize("format", ["%Y%m%d %H:%M:%S", None]) def test_to_datetime_cache_series(self, utc, format): date = "20130101 00:00:00" test_dates = [date] * 10 ** 5 data = pd.Series(test_dates) result = pd.to_datetime(data, utc=utc, format=format, cache=True) expected = pd.to_datetime(data, utc=utc, format=format, cache=False) tm.assert_series_equal(result, expected) def test_to_datetime_cache_scalar(self): date = "20130101 00:00:00" result = pd.to_datetime(date, cache=True) expected = pd.Timestamp("20130101 00:00:00") assert result == expected @pytest.mark.parametrize( "date, format", [ ("2017-20", "%Y-%W"), ("20 Sunday", "%W %A"), ("20 Sun", "%W %a"), ("2017-21", "%Y-%U"), ("20 Sunday", "%U %A"), ("20 Sun", "%U %a"), ], ) def test_week_without_day_and_calendar_year(self, date, format): # GH16774 msg = "Cannot use '%W' or '%U' without day and year" with pytest.raises(ValueError, match=msg): pd.to_datetime(date, format=format) def test_to_datetime_coerce(self): # GH 26122 ts_strings = [ "March 1, 2018 12:00:00+0400", "March 1, 2018 12:00:00+0500", "20100240", ] result = to_datetime(ts_strings, errors="coerce") expected = Index( [ datetime(2018, 3, 1, 12, 0, tzinfo=tzoffset(None, 14400)), datetime(2018, 3, 1, 12, 0, tzinfo=tzoffset(None, 18000)), NaT, ] ) tm.assert_index_equal(result, expected) def test_to_datetime_coerce_malformed(self): # GH 28299 ts_strings = ["200622-12-31", "111111-24-11"] result = to_datetime(ts_strings, errors="coerce") expected = Index([NaT, NaT]) tm.assert_index_equal(result, expected) def test_iso_8601_strings_with_same_offset(self): # GH 17697, 11736 ts_str = "2015-11-18 15:30:00+05:30" result = to_datetime(ts_str) expected = Timestamp(ts_str) assert result == expected expected = DatetimeIndex([Timestamp(ts_str)] * 2) result = to_datetime([ts_str] * 2) tm.assert_index_equal(result, expected) result = DatetimeIndex([ts_str] * 2) tm.assert_index_equal(result, expected) def test_iso_8601_strings_with_different_offsets(self): # GH 17697, 11736 ts_strings = ["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30", NaT] result = to_datetime(ts_strings) expected = np.array( [ datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 19800)), datetime(2015, 11, 18, 16, 30, tzinfo=tzoffset(None, 23400)), NaT, ], dtype=object, ) # GH 21864 expected = Index(expected) tm.assert_index_equal(result, expected) result = to_datetime(ts_strings, utc=True) expected = DatetimeIndex( [Timestamp(2015, 11, 18, 10), Timestamp(2015, 11, 18, 10), NaT], tz="UTC" ) tm.assert_index_equal(result, expected) def test_iso8601_strings_mixed_offsets_with_naive(self): # GH 24992 result = pd.to_datetime( [ "2018-11-28T00:00:00", "2018-11-28T00:00:00+12:00", "2018-11-28T00:00:00", "2018-11-28T00:00:00+06:00", "2018-11-28T00:00:00", ], utc=True, ) expected = pd.to_datetime( [ "2018-11-28T00:00:00", "2018-11-27T12:00:00", "2018-11-28T00:00:00", "2018-11-27T18:00:00", "2018-11-28T00:00:00", ], utc=True, ) tm.assert_index_equal(result, expected) items = ["2018-11-28T00:00:00+12:00", "2018-11-28T00:00:00"] result = pd.to_datetime(items, utc=True) expected = pd.to_datetime(list(reversed(items)), utc=True)[::-1] tm.assert_index_equal(result, expected) def test_mixed_offsets_with_native_datetime_raises(self): # GH 25978 s = pd.Series( [ "nan", pd.Timestamp("1990-01-01"), "2015-03-14T16:15:14.123-08:00", "2019-03-04T21:56:32.620-07:00", None, ] ) with pytest.raises(ValueError, match="Tz-aware datetime.datetime"): pd.to_datetime(s) def test_non_iso_strings_with_tz_offset(self): result = to_datetime(["March 1, 2018 12:00:00+0400"] * 2) expected = DatetimeIndex( [datetime(2018, 3, 1, 12, tzinfo=pytz.FixedOffset(240))] * 2 ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "ts, expected", [ (Timestamp("2018-01-01"), Timestamp("2018-01-01", tz="UTC")), ( Timestamp("2018-01-01", tz="US/Pacific"), Timestamp("2018-01-01 08:00", tz="UTC"), ), ], ) def test_timestamp_utc_true(self, ts, expected): # GH 24415 result = to_datetime(ts, utc=True) assert result == expected @pytest.mark.parametrize("dt_str", ["00010101", "13000101", "30000101", "99990101"]) def test_to_datetime_with_format_out_of_bounds(self, dt_str): # GH 9107 with pytest.raises(OutOfBoundsDatetime): pd.to_datetime(dt_str, format="%Y%m%d") def test_to_datetime_utc(self): arr = np.array([parse("2012-06-13T01:39:00Z")], dtype=object) result = to_datetime(arr, utc=True) assert result.tz is pytz.utc def test_to_datetime_fixed_offset(self): from pandas.tests.indexes.datetimes.test_timezones import fixed_off dates = [ datetime(2000, 1, 1, tzinfo=fixed_off), datetime(2000, 1, 2, tzinfo=fixed_off), datetime(2000, 1, 3, tzinfo=fixed_off), ] result = to_datetime(dates) assert result.tz == fixed_off class TestToDatetimeUnit: @pytest.mark.parametrize("cache", [True, False]) def test_unit(self, cache): # GH 11758 # test proper behavior with errors with pytest.raises(ValueError): to_datetime([1], unit="D", format="%Y%m%d", cache=cache) values = [11111111, 1, 1.0, iNaT, NaT, np.nan, "NaT", ""] result = to_datetime(values, unit="D", errors="ignore", cache=cache) expected = Index( [ 11111111, Timestamp("1970-01-02"), Timestamp("1970-01-02"), NaT, NaT, NaT, NaT, NaT, ], dtype=object, ) tm.assert_index_equal(result, expected) result = to_datetime(values, unit="D", errors="coerce", cache=cache) expected = DatetimeIndex( ["NaT", "1970-01-02", "1970-01-02", "NaT", "NaT", "NaT", "NaT", "NaT"] ) tm.assert_index_equal(result, expected) with pytest.raises(tslib.OutOfBoundsDatetime): to_datetime(values, unit="D", errors="raise", cache=cache) values = [1420043460000, iNaT, NaT, np.nan, "NaT"] result = to_datetime(values, errors="ignore", unit="s", cache=cache) expected = Index([1420043460000, NaT, NaT, NaT, NaT], dtype=object) tm.assert_index_equal(result, expected) result = to_datetime(values, errors="coerce", unit="s", cache=cache) expected = DatetimeIndex(["NaT", "NaT", "NaT", "NaT", "NaT"]) tm.assert_index_equal(result, expected) with pytest.raises(tslib.OutOfBoundsDatetime): to_datetime(values, errors="raise", unit="s", cache=cache) # if we have a string, then we raise a ValueError # and NOT an OutOfBoundsDatetime for val in ["foo", Timestamp("20130101")]: try: to_datetime(val, errors="raise", unit="s", cache=cache) except tslib.OutOfBoundsDatetime as err: raise AssertionError("incorrect exception raised") from err except ValueError: pass @pytest.mark.parametrize("cache", [True, False]) def test_unit_consistency(self, cache): # consistency of conversions expected = Timestamp("1970-05-09 14:25:11") result = pd.to_datetime(11111111, unit="s", errors="raise", cache=cache) assert result == expected assert isinstance(result, Timestamp) result = pd.to_datetime(11111111, unit="s", errors="coerce", cache=cache) assert result == expected assert isinstance(result, Timestamp) result = pd.to_datetime(11111111, unit="s", errors="ignore", cache=cache) assert result == expected assert isinstance(result, Timestamp) @pytest.mark.parametrize("cache", [True, False]) def test_unit_with_numeric(self, cache): # GH 13180 # coercions from floats/ints are ok expected = DatetimeIndex(["2015-06-19 05:33:20", "2015-05-27 22:33:20"]) arr1 = [1.434692e18, 1.432766e18] arr2 = np.array(arr1).astype("int64") for errors in ["ignore", "raise", "coerce"]: result = pd.to_datetime(arr1, errors=errors, cache=cache) tm.assert_index_equal(result, expected) result = pd.to_datetime(arr2, errors=errors, cache=cache) tm.assert_index_equal(result, expected) # but we want to make sure that we are coercing # if we have ints/strings expected = DatetimeIndex(["NaT", "2015-06-19 05:33:20", "2015-05-27 22:33:20"]) arr = ["foo", 1.434692e18, 1.432766e18] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) expected = DatetimeIndex( ["2015-06-19 05:33:20", "2015-05-27 22:33:20", "NaT", "NaT"] ) arr = [1.434692e18, 1.432766e18, "foo", "NaT"] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_unit_mixed(self, cache): # mixed integers/datetimes expected = DatetimeIndex(["2013-01-01", "NaT", "NaT"]) arr = [pd.Timestamp("20130101"), 1.434692e18, 1.432766e18] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) with pytest.raises(ValueError): pd.to_datetime(arr, errors="raise", cache=cache) expected = DatetimeIndex(["NaT", "NaT", "2013-01-01"]) arr = [1.434692e18, 1.432766e18, pd.Timestamp("20130101")] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) with pytest.raises(ValueError): pd.to_datetime(arr, errors="raise", cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_unit_rounding(self, cache): # GH 14156 & GH 20445: argument will incur floating point errors # but no premature rounding result = pd.to_datetime(1434743731.8770001, unit="s", cache=cache) expected = pd.Timestamp("2015-06-19 19:55:31.877000192") assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_unit_ignore_keeps_name(self, cache): # GH 21697 expected = pd.Index([15e9] * 2, name="name") result = pd.to_datetime(expected, errors="ignore", unit="s", cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_dataframe(self, cache): df = DataFrame( { "year": [2015, 2016], "month": [2, 3], "day": [4, 5], "hour": [6, 7], "minute": [58, 59], "second": [10, 11], "ms": [1, 1], "us": [2, 2], "ns": [3, 3], } ) result = to_datetime( {"year": df["year"], "month": df["month"], "day": df["day"]}, cache=cache ) expected = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160305 00:0:00")] ) tm.assert_series_equal(result, expected) # dict-like result = to_datetime(df[["year", "month", "day"]].to_dict(), cache=cache) tm.assert_series_equal(result, expected) # dict but with constructable df2 = df[["year", "month", "day"]].to_dict() df2["month"] = 2 result = to_datetime(df2, cache=cache) expected2 = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160205 00:0:00")] ) tm.assert_series_equal(result, expected2) # unit mappings units = [ { "year": "years", "month": "months", "day": "days", "hour": "hours", "minute": "minutes", "second": "seconds", }, { "year": "year", "month": "month", "day": "day", "hour": "hour", "minute": "minute", "second": "second", }, ] for d in units: result = to_datetime(df[list(d.keys())].rename(columns=d), cache=cache) expected = Series( [Timestamp("20150204 06:58:10"), Timestamp("20160305 07:59:11")] ) tm.assert_series_equal(result, expected) d = { "year": "year", "month": "month", "day": "day", "hour": "hour", "minute": "minute", "second": "second", "ms": "ms", "us": "us", "ns": "ns", } result = to_datetime(df.rename(columns=d), cache=cache) expected = Series( [ Timestamp("20150204 06:58:10.001002003"), Timestamp("20160305 07:59:11.001002003"), ] ) tm.assert_series_equal(result, expected) # coerce back to int result = to_datetime(df.astype(str), cache=cache) tm.assert_series_equal(result, expected) # passing coerce df2 = DataFrame({"year": [2015, 2016], "month": [2, 20], "day": [4, 5]}) msg = ( "cannot assemble the datetimes: time data .+ does not " r"match format '%Y%m%d' \(match\)" ) with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) result = to_datetime(df2, errors="coerce", cache=cache) expected = Series([Timestamp("20150204 00:00:00"), NaT]) tm.assert_series_equal(result, expected) # extra columns msg = r"extra keys have been passed to the datetime assemblage: \[foo\]" with pytest.raises(ValueError, match=msg): df2 = df.copy() df2["foo"] = 1 to_datetime(df2, cache=cache) # not enough msg = ( r"to assemble mappings requires at least that \[year, month, " r"day\] be specified: \[.+\] is missing" ) for c in [ ["year"], ["year", "month"], ["year", "month", "second"], ["month", "day"], ["year", "day", "second"], ]: with pytest.raises(ValueError, match=msg): to_datetime(df[c], cache=cache) # duplicates msg = "cannot assemble with duplicate keys" df2 = DataFrame({"year": [2015, 2016], "month": [2, 20], "day": [4, 5]}) df2.columns = ["year", "year", "day"] with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) df2 = DataFrame( {"year": [2015, 2016], "month": [2, 20], "day": [4, 5], "hour": [4, 5]} ) df2.columns = ["year", "month", "day", "day"] with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_dataframe_dtypes(self, cache): # #13451 df = DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) # int16 result = to_datetime(df.astype("int16"), cache=cache) expected = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160305 00:00:00")] ) tm.assert_series_equal(result, expected) # mixed dtypes df["month"] = df["month"].astype("int8") df["day"] = df["day"].astype("int8") result = to_datetime(df, cache=cache) expected = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160305 00:00:00")] ) tm.assert_series_equal(result, expected) # float df = DataFrame({"year": [2000, 2001], "month": [1.5, 1], "day": [1, 1]}) with pytest.raises(ValueError): to_datetime(df, cache=cache) def test_dataframe_utc_true(self): # GH 23760 df = pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) result = pd.to_datetime(df, utc=True) expected = pd.Series( np.array(["2015-02-04", "2016-03-05"], dtype="datetime64[ns]") ).dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_to_datetime_errors_ignore_utc_true(self): # GH 23758 result = pd.to_datetime([1], unit="s", utc=True, errors="ignore") expected = DatetimeIndex(["1970-01-01 00:00:01"], tz="UTC") tm.assert_index_equal(result, expected) # TODO: this is moved from tests.series.test_timeseries, may be redundant def test_to_datetime_unit(self): epoch = 1370745748 s = Series([epoch + t for t in range(20)]) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] ) tm.assert_series_equal(result, expected) s = Series([epoch + t for t in range(20)]).astype(float) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] ) tm.assert_series_equal(result, expected) s = Series([epoch + t for t in range(20)] + [iNaT]) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] + [NaT] ) tm.assert_series_equal(result, expected) s = Series([epoch + t for t in range(20)] + [iNaT]).astype(float) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] + [NaT] ) tm.assert_series_equal(result, expected) # GH13834 s = Series([epoch + t for t in np.arange(0, 2, 0.25)] + [iNaT]).astype(float) result = to_datetime(s, unit="s") expected = Series( [ Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in np.arange(0, 2, 0.25) ] + [NaT] ) # GH20455 argument will incur floating point errors but no premature rounding result = result.round("ms") tm.assert_series_equal(result, expected) s = pd.concat( [Series([epoch + t for t in range(20)]).astype(float), Series([np.nan])], ignore_index=True, ) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] + [NaT] ) tm.assert_series_equal(result, expected) result = to_datetime([1, 2, "NaT", pd.NaT, np.nan], unit="D") expected = DatetimeIndex( [Timestamp("1970-01-02"), Timestamp("1970-01-03")] + ["NaT"] * 3 ) tm.assert_index_equal(result, expected) msg = "non convertible value foo with the unit 'D'" with pytest.raises(ValueError, match=msg): to_datetime([1, 2, "foo"], unit="D") msg = "cannot convert input 111111111 with the unit 'D'" with pytest.raises(OutOfBoundsDatetime, match=msg): to_datetime([1, 2, 111111111], unit="D") # coerce we can process expected = DatetimeIndex( [Timestamp("1970-01-02"), Timestamp("1970-01-03")] + ["NaT"] * 1 ) result = to_datetime([1, 2, "foo"], unit="D", errors="coerce") tm.assert_index_equal(result, expected) result = to_datetime([1, 2, 111111111], unit="D", errors="coerce") tm.assert_index_equal(result, expected) class TestToDatetimeMisc: def test_to_datetime_barely_out_of_bounds(self): # GH#19529 # GH#19382 close enough to bounds that dropping nanos would result # in an in-bounds datetime arr = np.array(["2262-04-11 23:47:16.854775808"], dtype=object) with pytest.raises(OutOfBoundsDatetime): to_datetime(arr) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_iso8601(self, cache): result = to_datetime(["2012-01-01 00:00:00"], cache=cache) exp = Timestamp("2012-01-01 00:00:00") assert result[0] == exp result = to_datetime(["20121001"], cache=cache) # bad iso 8601 exp = Timestamp("2012-10-01") assert result[0] == exp @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_default(self, cache): rs = to_datetime("2001", cache=cache) xp = datetime(2001, 1, 1) assert rs == xp # dayfirst is essentially broken # to_datetime('01-13-2012', dayfirst=True) # pytest.raises(ValueError, to_datetime('01-13-2012', # dayfirst=True)) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_on_datetime64_series(self, cache): # #2699 s = Series(date_range("1/1/2000", periods=10)) result = to_datetime(s, cache=cache) assert result[0] == s[0] @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_with_space_in_series(self, cache): # GH 6428 s = Series(["10/18/2006", "10/18/2008", " "]) msg = r"(\(')?String does not contain a date(:', ' '\))?" with pytest.raises(ValueError, match=msg): to_datetime(s, errors="raise", cache=cache) result_coerce = to_datetime(s, errors="coerce", cache=cache) expected_coerce = Series([datetime(2006, 10, 18), datetime(2008, 10, 18), NaT]) tm.assert_series_equal(result_coerce, expected_coerce) result_ignore = to_datetime(s, errors="ignore", cache=cache) tm.assert_series_equal(result_ignore, s) @td.skip_if_has_locale @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_with_apply(self, cache): # this is only locale tested with US/None locales # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(["May 04", "Jun 02", "Dec 11"], index=[1, 2, 3]) expected = pd.to_datetime(td, format="%b %y", cache=cache) result = td.apply(pd.to_datetime, format="%b %y", cache=cache) tm.assert_series_equal(result, expected) td = pd.Series(["May 04", "Jun 02", ""], index=[1, 2, 3]) msg = r"time data '' does not match format '%b %y' \(match\)" with pytest.raises(ValueError, match=msg): pd.to_datetime(td, format="%b %y", errors="raise", cache=cache) with pytest.raises(ValueError, match=msg): td.apply(pd.to_datetime, format="%b %y", errors="raise", cache=cache) expected = pd.to_datetime(td, format="%b %y", errors="coerce", cache=cache) result = td.apply( lambda x: pd.to_datetime(x, format="%b %y", errors="coerce", cache=cache) ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_types(self, cache): # empty string result = to_datetime("", cache=cache) assert result is NaT result = to_datetime(["", ""], cache=cache) assert isna(result).all() # ints result = Timestamp(0) expected = to_datetime(0, cache=cache) assert result == expected # GH 3888 (strings) expected = to_datetime(["2012"], cache=cache)[0] result = to_datetime("2012", cache=cache) assert result == expected # array = ['2012','20120101','20120101 12:01:01'] array = ["20120101", "20120101 12:01:01"] expected = list(to_datetime(array, cache=cache)) result = [Timestamp(date_str) for date_str in array] tm.assert_almost_equal(result, expected) # currently fails ### # result = Timestamp('2012') # expected = to_datetime('2012') # assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_unprocessable_input(self, cache): # GH 4928 # GH 21864 result = to_datetime([1, "1"], errors="ignore", cache=cache) expected = Index(np.array([1, "1"], dtype="O")) tm.assert_equal(result, expected) msg = "invalid string coercion to datetime" with pytest.raises(TypeError, match=msg): to_datetime([1, "1"], errors="raise", cache=cache) def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view("M8[us]") as_obj = scalar.astype("O") index = DatetimeIndex([scalar]) assert index[0] == scalar.astype("O") value = Timestamp(scalar) assert value == as_obj def test_to_datetime_list_of_integers(self): rng = date_range("1/1/2000", periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) tm.assert_index_equal(rng, result) def test_to_datetime_overflow(self): # gh-17637 # we are overflowing Timedelta range here with pytest.raises(OverflowError): date_range(start="1/1/1700", freq="B", periods=100000) @pytest.mark.parametrize("cache", [True, False]) def test_string_na_nat_conversion(self, cache): # GH #999, #858 strings = np.array( ["1/1/2000", "1/2/2000", np.nan, "1/4/2000, 12:34:56"], dtype=object ) expected = np.empty(4, dtype="M8[ns]") for i, val in enumerate(strings): if isna(val): expected[i] = iNaT else: expected[i] = parse(val) result = tslib.array_to_datetime(strings)[0] tm.assert_almost_equal(result, expected) result2 = to_datetime(strings, cache=cache) assert isinstance(result2, DatetimeIndex) tm.assert_numpy_array_equal(result, result2.values) malformed = np.array(["1/100/2000", np.nan], dtype=object) # GH 10636, default is now 'raise' msg = r"Unknown string format:|day is out of range for month" with pytest.raises(ValueError, match=msg): to_datetime(malformed, errors="raise", cache=cache) result = to_datetime(malformed, errors="ignore", cache=cache) # GH 21864 expected = Index(malformed) tm.assert_index_equal(result, expected) with pytest.raises(ValueError, match=msg): to_datetime(malformed, errors="raise", cache=cache) idx = ["a", "b", "c", "d", "e"] series = Series( ["1/1/2000", np.nan, "1/3/2000", np.nan, "1/5/2000"], index=idx, name="foo" ) dseries = Series( [ to_datetime("1/1/2000", cache=cache), np.nan, to_datetime("1/3/2000", cache=cache), np.nan, to_datetime("1/5/2000", cache=cache), ], index=idx, name="foo", ) result = to_datetime(series, cache=cache) dresult = to_datetime(dseries, cache=cache) expected = Series(np.empty(5, dtype="M8[ns]"), index=idx) for i in range(5): x = series[i] if isna(x): expected[i] = pd.NaT else: expected[i] = to_datetime(x, cache=cache) tm.assert_series_equal(result, expected, check_names=False) assert result.name == "foo" tm.assert_series_equal(dresult, expected, check_names=False) assert dresult.name == "foo" @pytest.mark.parametrize( "dtype", [ "datetime64[h]", "datetime64[m]", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) @pytest.mark.parametrize("cache", [True, False]) def test_dti_constructor_numpy_timeunits(self, cache, dtype): # GH 9114 base = pd.to_datetime( ["2000-01-01T00:00", "2000-01-02T00:00", "NaT"], cache=cache ) values = base.values.astype(dtype) tm.assert_index_equal(DatetimeIndex(values), base) tm.assert_index_equal(to_datetime(values, cache=cache), base) @pytest.mark.parametrize("cache", [True, False]) def test_dayfirst(self, cache): # GH 5917 arr = ["10/02/2014", "11/02/2014", "12/02/2014"] expected = DatetimeIndex( [datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)] ) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True, cache=cache) idx4 = to_datetime(np.array(arr), dayfirst=True, cache=cache) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) tm.assert_index_equal(expected, idx1) tm.assert_index_equal(expected, idx2) tm.assert_index_equal(expected, idx3) tm.assert_index_equal(expected, idx4) tm.assert_index_equal(expected, idx5) tm.assert_index_equal(expected, idx6) @pytest.mark.parametrize("klass", [DatetimeIndex, DatetimeArray]) def test_to_datetime_dta_tz(self, klass): # GH#27733 dti = date_range("2015-04-05", periods=3).rename("foo") expected = dti.tz_localize("UTC") obj = klass(dti) expected = klass(expected) result = to_datetime(obj, utc=True) tm.assert_equal(result, expected) class TestGuessDatetimeFormat: @td.skip_if_not_us_locale def test_guess_datetime_format_for_array(self): expected_format = "%Y-%m-%d %H:%M:%S.%f" dt_string = datetime(2011, 12, 30, 0, 0, 0).strftime(expected_format) test_arrays = [ np.array([dt_string, dt_string, dt_string], dtype="O"), np.array([np.nan, np.nan, dt_string], dtype="O"), np.array([dt_string, "random_string"], dtype="O"), ] for test_array in test_arrays: assert tools._guess_datetime_format_for_array(test_array) == expected_format format_for_string_of_nans = tools._guess_datetime_format_for_array( np.array([np.nan, np.nan, np.nan], dtype="O") ) assert format_for_string_of_nans is None class TestToDatetimeInferFormat: @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_consistent_format(self, cache): s = pd.Series(pd.date_range("20000101", periods=50, freq="H")) test_formats = ["%m-%d-%Y", "%m/%d/%Y %H:%M:%S.%f", "%Y-%m-%dT%H:%M:%S.%f"] for test_format in test_formats: s_as_dt_strings = s.apply(lambda x: x.strftime(test_format)) with_format = pd.to_datetime( s_as_dt_strings, format=test_format, cache=cache ) no_infer = pd.to_datetime( s_as_dt_strings, infer_datetime_format=False, cache=cache ) yes_infer = pd.to_datetime( s_as_dt_strings, infer_datetime_format=True, cache=cache ) # Whether the format is explicitly passed, it is inferred, or # it is not inferred, the results should all be the same tm.assert_series_equal(with_format, no_infer) tm.assert_series_equal(no_infer, yes_infer) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_inconsistent_format(self, cache): s = pd.Series( np.array( ["01/01/2011 00:00:00", "01-02-2011 00:00:00", "2011-01-03T00:00:00"] ) ) # When the format is inconsistent, infer_datetime_format should just # fallback to the default parsing tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) s = pd.Series(np.array(["Jan/01/2011", "Feb/01/2011", "Mar/01/2011"])) tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_series_with_nans(self, cache): s = pd.Series( np.array(["01/01/2011 00:00:00", np.nan, "01/03/2011 00:00:00", np.nan]) ) tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_series_start_with_nans(self, cache): s = pd.Series( np.array( [ np.nan, np.nan, "01/01/2011 00:00:00", "01/02/2011 00:00:00", "01/03/2011 00:00:00", ] ) ) tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) @pytest.mark.parametrize( "tz_name, offset", [("UTC", 0), ("UTC-3", 180), ("UTC+3", -180)] ) def test_infer_datetime_format_tz_name(self, tz_name, offset): # GH 33133 s = pd.Series([f"2019-02-02 08:07:13 {tz_name}"]) result = to_datetime(s, infer_datetime_format=True) expected = pd.Series( [pd.Timestamp("2019-02-02 08:07:13").tz_localize(pytz.FixedOffset(offset))] ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_iso8601_noleading_0s(self, cache): # GH 11871 s = pd.Series(["2014-1-1", "2014-2-2", "2015-3-3"]) expected = pd.Series( [ pd.Timestamp("2014-01-01"), pd.Timestamp("2014-02-02"), pd.Timestamp("2015-03-03"), ] ) tm.assert_series_equal(pd.to_datetime(s, cache=cache), expected) tm.assert_series_equal( pd.to_datetime(s, format="%Y-%m-%d", cache=cache), expected ) class TestDaysInMonth: # tests for issue #10154 @pytest.mark.parametrize("cache", [True, False]) def test_day_not_in_month_coerce(self, cache): assert isna(to_datetime("2015-02-29", errors="coerce", cache=cache)) assert isna( to_datetime("2015-02-29", format="%Y-%m-%d", errors="coerce", cache=cache) ) assert isna( to_datetime("2015-02-32", format="%Y-%m-%d", errors="coerce", cache=cache) ) assert isna( to_datetime("2015-04-31", format="%Y-%m-%d", errors="coerce", cache=cache) ) @pytest.mark.parametrize("cache", [True, False]) def test_day_not_in_month_raise(self, cache): msg = "day is out of range for month" with pytest.raises(ValueError, match=msg): to_datetime("2015-02-29", errors="raise", cache=cache) msg = "time data 2015-02-29 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime("2015-02-29", errors="raise", format="%Y-%m-%d", cache=cache) msg = "time data 2015-02-32 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime("2015-02-32", errors="raise", format="%Y-%m-%d", cache=cache) msg = "time data 2015-04-31 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime("2015-04-31", errors="raise", format="%Y-%m-%d", cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_day_not_in_month_ignore(self, cache): assert to_datetime("2015-02-29", errors="ignore", cache=cache) == "2015-02-29" assert ( to_datetime("2015-02-29", errors="ignore", format="%Y-%m-%d", cache=cache) == "2015-02-29" ) assert ( to_datetime("2015-02-32", errors="ignore", format="%Y-%m-%d", cache=cache) == "2015-02-32" ) assert ( to_datetime("2015-04-31", errors="ignore", format="%Y-%m-%d", cache=cache) == "2015-04-31" ) class TestDatetimeParsingWrappers: @pytest.mark.parametrize( "date_str,expected", list( { "2011-01-01": datetime(2011, 1, 1), "2Q2005": datetime(2005, 4, 1), "2Q05": datetime(2005, 4, 1), "2005Q1": datetime(2005, 1, 1), "05Q1": datetime(2005, 1, 1), "2011Q3": datetime(2011, 7, 1), "11Q3": datetime(2011, 7, 1), "3Q2011": datetime(2011, 7, 1), "3Q11": datetime(2011, 7, 1), # quarterly without space "2000Q4": datetime(2000, 10, 1), "00Q4": datetime(2000, 10, 1), "4Q2000": datetime(2000, 10, 1), "4Q00": datetime(2000, 10, 1), "2000q4": datetime(2000, 10, 1), "2000-Q4": datetime(2000, 10, 1), "00-Q4": datetime(2000, 10, 1), "4Q-2000": datetime(2000, 10, 1), "4Q-00": datetime(2000, 10, 1), "00q4": datetime(2000, 10, 1), "2005": datetime(2005, 1, 1), "2005-11": datetime(2005, 11, 1), "2005 11": datetime(2005, 11, 1), "11-2005": datetime(2005, 11, 1), "11 2005": datetime(2005, 11, 1), "200511": datetime(2020, 5, 11), "20051109": datetime(2005, 11, 9), "20051109 10:15": datetime(2005, 11, 9, 10, 15), "20051109 08H": datetime(2005, 11, 9, 8, 0), "2005-11-09 10:15": datetime(2005, 11, 9, 10, 15), "2005-11-09 08H": datetime(2005, 11, 9, 8, 0), "2005/11/09 10:15": datetime(2005, 11, 9, 10, 15), "2005/11/09 08H": datetime(2005, 11, 9, 8, 0), "Thu Sep 25 10:36:28 2003": datetime(2003, 9, 25, 10, 36, 28), "Thu Sep 25 2003": datetime(2003, 9, 25), "Sep 25 2003": datetime(2003, 9, 25), "January 1 2014": datetime(2014, 1, 1), # GHE10537 "2014-06": datetime(2014, 6, 1), "06-2014": datetime(2014, 6, 1), "2014-6": datetime(2014, 6, 1), "6-2014": datetime(2014, 6, 1), "20010101 12": datetime(2001, 1, 1, 12), "20010101 1234": datetime(2001, 1, 1, 12, 34), "20010101 123456": datetime(2001, 1, 1, 12, 34, 56), }.items() ), ) @pytest.mark.parametrize("cache", [True, False]) def test_parsers(self, date_str, expected, cache): # dateutil >= 2.5.0 defaults to yearfirst=True # https://github.com/dateutil/dateutil/issues/217 yearfirst = True result1, _ = parsing.parse_time_string(date_str, yearfirst=yearfirst) result2 = to_datetime(date_str, yearfirst=yearfirst) result3 = to_datetime([date_str], yearfirst=yearfirst) # result5 is used below result4 = to_datetime( np.array([date_str], dtype=object), yearfirst=yearfirst, cache=cache ) result6 = DatetimeIndex([date_str], yearfirst=yearfirst) # result7 is used below result8 = DatetimeIndex(Index([date_str]), yearfirst=yearfirst) result9 = DatetimeIndex(Series([date_str]), yearfirst=yearfirst) for res in [result1, result2]: assert res == expected for res in [result3, result4, result6, result8, result9]: exp = DatetimeIndex([pd.Timestamp(expected)]) tm.assert_index_equal(res, exp) # these really need to have yearfirst, but we don't support if not yearfirst: result5 = Timestamp(date_str) assert result5 == expected result7 = date_range(date_str, freq="S", periods=1, yearfirst=yearfirst) assert result7 == expected @pytest.mark.parametrize("cache", [True, False]) def test_na_values_with_cache( self, cache, unique_nulls_fixture, unique_nulls_fixture2 ): # GH22305 expected = Index([NaT, NaT], dtype="datetime64[ns]") result = to_datetime([unique_nulls_fixture, unique_nulls_fixture2], cache=cache) tm.assert_index_equal(result, expected) def test_parsers_nat(self): # Test that each of several string-accepting methods return pd.NaT result1, _ = parsing.parse_time_string("NaT") result2 = to_datetime("NaT") result3 = Timestamp("NaT") result4 = DatetimeIndex(["NaT"])[0] assert result1 is NaT assert result2 is NaT assert result3 is NaT assert result4 is NaT @pytest.mark.parametrize("cache", [True, False]) def test_parsers_dayfirst_yearfirst(self, cache): # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2012-10-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # bug fix in 2.5.2 # 2.5.1 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # revert of bug in 2.5.2 # 2.5.1 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=1] -> month must be in 1..12 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # str : dayfirst, yearfirst, expected cases = { "10-11-12": [ (False, False, datetime(2012, 10, 11)), (True, False, datetime(2012, 11, 10)), (False, True, datetime(2010, 11, 12)), (True, True, datetime(2010, 12, 11)), ], "20/12/21": [ (False, False, datetime(2021, 12, 20)), (True, False, datetime(2021, 12, 20)), (False, True, datetime(2020, 12, 21)), (True, True, datetime(2020, 12, 21)), ], } for date_str, values in cases.items(): for dayfirst, yearfirst, expected in values: # compare with dateutil result dateutil_result = parse( date_str, dayfirst=dayfirst, yearfirst=yearfirst ) assert dateutil_result == expected result1, _ = parsing.parse_time_string( date_str, dayfirst=dayfirst, yearfirst=yearfirst ) # we don't support dayfirst/yearfirst here: if not dayfirst and not yearfirst: result2 = Timestamp(date_str) assert result2 == expected result3 = to_datetime( date_str, dayfirst=dayfirst, yearfirst=yearfirst, cache=cache ) result4 = DatetimeIndex( [date_str], dayfirst=dayfirst, yearfirst=yearfirst )[0] assert result1 == expected assert result3 == expected assert result4 == expected @pytest.mark.parametrize("cache", [True, False]) def test_parsers_timestring(self, cache): # must be the same as dateutil result cases = { "10:15": (parse("10:15"), datetime(1, 1, 1, 10, 15)), "9:05": (parse("9:05"), datetime(1, 1, 1, 9, 5)), } for date_str, (exp_now, exp_def) in cases.items(): result1, _ = parsing.parse_time_string(date_str) result2 = to_datetime(date_str) result3 = to_datetime([date_str]) result4 = Timestamp(date_str) result5 = DatetimeIndex([date_str])[0] # parse time string return time string based on default date # others are not, and can't be changed because it is used in # time series plot assert result1 == exp_def assert result2 == exp_now assert result3 == exp_now assert result4 == exp_now assert result5 == exp_now @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize( "dt_string, tz, dt_string_repr", [ ( "2013-01-01 05:45+0545", pytz.FixedOffset(345), "Timestamp('2013-01-01 05:45:00+0545', tz='pytz.FixedOffset(345)')", ), ( "2013-01-01 05:30+0530", pytz.FixedOffset(330), "Timestamp('2013-01-01 05:30:00+0530', tz='pytz.FixedOffset(330)')", ), ], ) def test_parsers_timezone_minute_offsets_roundtrip( self, cache, dt_string, tz, dt_string_repr ): # GH11708 base = to_datetime("2013-01-01 00:00:00", cache=cache) base = base.tz_localize("UTC").tz_convert(tz) dt_time = to_datetime(dt_string, cache=cache) assert base == dt_time assert dt_string_repr == repr(dt_time) @pytest.fixture(params=["D", "s", "ms", "us", "ns"]) def units(request): """Day and some time units. * D * s * ms * us * ns """ return request.param @pytest.fixture def epoch_1960(): """Timestamp at 1960-01-01.""" return Timestamp("1960-01-01") @pytest.fixture def units_from_epochs(): return list(range(5)) @pytest.fixture(params=["timestamp", "pydatetime", "datetime64", "str_1960"]) def epochs(epoch_1960, request): """Timestamp at 1960-01-01 in various forms. * pd.Timestamp * datetime.datetime * numpy.datetime64 * str """ assert request.param in {"timestamp", "pydatetime", "datetime64", "str_1960"} if request.param == "timestamp": return epoch_1960 elif request.param == "pydatetime": return epoch_1960.to_pydatetime() elif request.param == "datetime64": return epoch_1960.to_datetime64() else: return str(epoch_1960) @pytest.fixture def julian_dates(): return pd.date_range("2014-1-1", periods=10).to_julian_date().values class TestOrigin: def test_to_basic(self, julian_dates): # gh-11276, gh-11745 # for origin as julian result = Series(pd.to_datetime(julian_dates, unit="D", origin="julian")) expected = Series( pd.to_datetime(julian_dates - pd.Timestamp(0).to_julian_date(), unit="D") ) tm.assert_series_equal(result, expected) result = Series(pd.to_datetime([0, 1, 2], unit="D", origin="unix")) expected = Series( [Timestamp("1970-01-01"), Timestamp("1970-01-02"), Timestamp("1970-01-03")] ) tm.assert_series_equal(result, expected) # default result = Series(pd.to_datetime([0, 1, 2], unit="D")) expected = Series( [Timestamp("1970-01-01"), Timestamp("1970-01-02"), Timestamp("1970-01-03")] ) tm.assert_series_equal(result, expected) def test_julian_round_trip(self): result = pd.to_datetime(2456658, origin="julian", unit="D") assert result.to_julian_date() == 2456658 # out-of-bounds with pytest.raises(ValueError): pd.to_datetime(1, origin="julian", unit="D") def test_invalid_unit(self, units, julian_dates): # checking for invalid combination of origin='julian' and unit != D if units != "D": with pytest.raises(ValueError): pd.to_datetime(julian_dates, unit=units, origin="julian") def test_invalid_origin(self): # need to have a numeric specified with pytest.raises(ValueError): pd.to_datetime("2005-01-01", origin="1960-01-01") with pytest.raises(ValueError): pd.to_datetime("2005-01-01", origin="1960-01-01", unit="D") def test_epoch(self, units, epochs, epoch_1960, units_from_epochs): expected = Series( [pd.Timedelta(x, unit=units) + epoch_1960 for x in units_from_epochs] ) result = Series(pd.to_datetime(units_from_epochs, unit=units, origin=epochs)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "origin, exc", [ ("random_string", ValueError), ("epoch", ValueError), ("13-24-1990", ValueError), (datetime(1, 1, 1), tslib.OutOfBoundsDatetime), ], ) def test_invalid_origins(self, origin, exc, units, units_from_epochs): with pytest.raises(exc): pd.to_datetime(units_from_epochs, unit=units, origin=origin) def test_invalid_origins_tzinfo(self): # GH16842 with pytest.raises(ValueError): pd.to_datetime(1, unit="D", origin=datetime(2000, 1, 1, tzinfo=pytz.utc)) @pytest.mark.parametrize("format", [None, "%Y-%m-%d %H:%M:%S"]) def test_to_datetime_out_of_bounds_with_format_arg(self, format): # see gh-23830 msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): to_datetime("2417-10-27 00:00:00", format=format) def test_processing_order(self): # make sure we handle out-of-bounds *before* # constructing the dates result = pd.to_datetime(200 * 365, unit="D") expected = Timestamp("2169-11-13 00:00:00") assert result == expected result = pd.to_datetime(200 * 365, unit="D", origin="1870-01-01") expected = Timestamp("2069-11-13 00:00:00") assert result == expected result = pd.to_datetime(300 * 365, unit="D", origin="1870-01-01") expected = Timestamp("2169-10-20 00:00:00") assert result == expected @pytest.mark.parametrize( "offset,utc,exp", [ ["Z", True, "2019-01-01T00:00:00.000Z"], ["Z", None, "2019-01-01T00:00:00.000Z"], ["-01:00", True, "2019-01-01T01:00:00.000Z"], ["-01:00", None, "2019-01-01T00:00:00.000-01:00"], ], ) def test_arg_tz_ns_unit(self, offset, utc, exp): # GH 25546 arg = "2019-01-01T00:00:00.000" + offset result = to_datetime([arg], unit="ns", utc=utc) expected = to_datetime([exp]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "listlike,do_caching", [([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], False), ([1, 1, 1, 1, 4, 5, 6, 7, 8, 9], True)], ) def test_should_cache(listlike, do_caching): assert ( tools.should_cache(listlike, check_count=len(listlike), unique_share=0.7) == do_caching ) @pytest.mark.parametrize( "unique_share,check_count, err_message", [ (0.5, 11, r"check_count must be in next bounds: \[0; len\(arg\)\]"), (10, 2, r"unique_share must be in next bounds: \(0; 1\)"), ], ) def test_should_cache_errors(unique_share, check_count, err_message): arg = [5] * 10 with pytest.raises(AssertionError, match=err_message): tools.should_cache(arg, unique_share, check_count) def test_nullable_integer_to_datetime(): # Test for #30050 ser = pd.Series([1, 2, None, 2 ** 61, None]) ser = ser.astype("Int64") ser_copy = ser.copy() res = pd.to_datetime(ser, unit="ns") expected = pd.Series( [ np.datetime64("1970-01-01 00:00:00.000000001"), np.datetime64("1970-01-01 00:00:00.000000002"), np.datetime64("NaT"), np.datetime64("2043-01-25 23:56:49.213693952"), np.datetime64("NaT"), ] ) tm.assert_series_equal(res, expected) # Check that ser isn't mutated tm.assert_series_equal(ser, ser_copy) @pytest.mark.parametrize("klass", [np.array, list]) def test_na_to_datetime(nulls_fixture, klass): result = pd.to_datetime(klass([nulls_fixture])) assert result[0] is pd.NaT
bsd-3-clause
TobyRoseman/SFrame
oss_src/unity/python/sframe/test/test_sframe.py
5
134915
''' Copyright (C) 2016 Turi All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' # from nose import with_setup from ..data_structures.sframe import SFrame from ..data_structures.sarray import SArray from ..data_structures.image import Image from ..connect import main as glconnect from ..util import _assert_sframe_equal, generate_random_sframe from .. import _launch, load_sframe, aggregate from . import util import pandas as pd from ..util.timezone import GMT from pandas.util.testing import assert_frame_equal import unittest import datetime as dt import tempfile import os import csv import gzip import string import time import numpy as np import array import math import random import shutil import functools import sys import mock import sqlite3 from .dbapi2_mock import dbapi2_mock HAS_PYSPARK = True try: from pyspark import SparkContext, SQLContext except: HAS_PYSPARK = False ####################################################### # Metrics tracking tests are in test_usage_metrics.py # ####################################################### # Taken from http://stackoverflow.com/questions/1151658/python-hashable-dicts # by Alex Martelli class hashabledict(dict): def __key(self): return tuple((k,self[k]) for k in sorted(self)) def __hash__(self): return hash(self.__key()) def __eq__(self, other): return self.__key() == other.__key() class SFrameTest(unittest.TestCase): def setUp(self): self.int_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.float_data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.] self.string_data = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] self.a_to_z = [str(chr(97 + i)) for i in range(0, 26)] self.dataframe = pd.DataFrame({'int_data': self.int_data, 'float_data': self.float_data, 'string_data': self.string_data}) self.url = "http://s3-us-west-2.amazonaws.com/testdatasets/a_to_z.txt.gz" self.int_data2 = range(50,60) self.float_data2 = [1.0 * i for i in range(50,60)] self.string_data2 = [str(i) for i in range(50,60)] self.dataframe2 = pd.DataFrame({'int_data': self.int_data2, 'float_data': self.float_data2, 'string_data': self.string_data2}) self.vec_data = [array.array('d', [i, i+1]) for i in self.int_data] self.list_data = [[i, str(i), i * 1.0] for i in self.int_data] self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] self.datetime_data = [dt.datetime(2013, 5, 7, 10, 4, 10), dt.datetime(1902, 10, 21, 10, 34, 10).replace(tzinfo=GMT(0.0))] self.all_type_cols = [self.int_data, self.float_data, self.string_data, self.vec_data, self.list_data, self.dict_data, self.datetime_data*5] self.sf_all_types = SFrame({"X"+str(i[0]):i[1] for i in zip(range(1,8), self.all_type_cols)}) # Taken from http://en.wikipedia.org/wiki/Join_(SQL) for fun. self.employees_sf = SFrame() self.employees_sf.add_column(SArray(['Rafferty','Jones','Heisenberg','Robinson','Smith','John']), 'last_name') self.employees_sf.add_column(SArray([31,33,33,34,34,None]), 'dep_id') # XXX: below are only used by one test! self.departments_sf = SFrame() self.departments_sf.add_column(SArray([31,33,34,35]), 'dep_id') self.departments_sf.add_column(SArray(['Sales','Engineering','Clerical','Marketing']), 'dep_name') def __assert_sarray_equal(self, sa1, sa2): l1 = list(sa1) l2 = list(sa2) self.assertEquals(len(l1), len(l2)) for i in range(len(l1)): v1 = l1[i] v2 = l2[i] if v1 == None: self.assertEqual(v2, None) else: if type(v1) == dict: self.assertEquals(len(v1), len(v2)) for key in v1: self.assertTrue(key in v1) self.assertEqual(v1[key], v2[key]) elif (hasattr(v1, "__iter__")): self.assertEquals(len(v1), len(v2)) for j in range(len(v1)): t1 = v1[j]; t2 = v2[j] if (type(t1) == float): if (math.isnan(t1)): self.assertTrue(math.isnan(t2)) else: self.assertEquals(t1, t2) else: self.assertEquals(t1, t2) else: self.assertEquals(v1, v2) def test_split_datetime(self): from_zone = GMT(0) to_zone = GMT(4.5) utc = dt.datetime.strptime('2011-01-21 02:37:21', '%Y-%m-%d %H:%M:%S') utc = utc.replace(tzinfo=from_zone) central = utc.astimezone(to_zone) sa = SArray([utc,central]) expected = SFrame() expected ['X.year'] = [2011,2011] expected ['X.month'] = [1,1] expected ['X.day'] = [21,21] expected ['X.hour'] = [2,7] expected ['X.minute'] = [37,7] expected ['X.second'] = [21,21] expected ['X.tzone'] = [0.0,4.5] result = sa.split_datetime(tzone=True) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # column names expected = SFrame() expected ['ttt.year'] = [2011,2011] expected ['ttt.minute'] = [37,7] expected ['ttt.second'] = [21,21] result = sa.split_datetime(column_name_prefix='ttt',limit=['year','minute','second']); self.assertEqual(result.column_names(), ['ttt.year', 'ttt.minute', 'ttt.second']) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) sf = SFrame({'datetime': sa}) result = sf.split_datetime('datetime', column_name_prefix='ttt',limit=['year','minute','second']); self.assertEqual(result.column_names(), ['ttt.year', 'ttt.minute', 'ttt.second']) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) def __test_equal(self, sf, df): self.assertEquals(sf.num_rows(), df.shape[0]) self.assertEquals(sf.num_cols(), df.shape[1]) assert_frame_equal(sf.to_dataframe(), df) def __create_test_df(self, size): int_data = [] float_data = [] string_data = [] for i in range(0,size): int_data.append(i) float_data.append(float(i)) string_data.append(str(i)) return pd.DataFrame({'int_data': int_data, 'float_data': float_data, 'string_data': string_data}) # Test if the rows are all the same...row order does not matter. # (I do expect column order to be the same) def __assert_join_results_equal(self, sf, expected_sf): _assert_sframe_equal(sf, expected_sf, check_row_order=False) def test_creation_from_dataframe(self): # created from empty dataframe sf_empty = SFrame(data=pd.DataFrame()) self.__test_equal(sf_empty, pd.DataFrame()) sf = SFrame(data=self.dataframe, format='dataframe') self.__test_equal(sf, self.dataframe) sf = SFrame(data=self.dataframe, format='auto') self.__test_equal(sf, self.dataframe) original_p = pd.DataFrame({'a':[1.0, float('nan')]}) effective_p = pd.DataFrame({'a':[1.0, None]}) sf = SFrame(data=original_p) self.__test_equal(sf, effective_p) original_p = pd.DataFrame({'a':['a',None,'b']}) sf = SFrame(data=original_p) self.__test_equal(sf, original_p) def test_auto_parse_csv(self): with tempfile.NamedTemporaryFile(mode='w', delete=False) as csvfile: df = pd.DataFrame({'float_data': self.float_data, 'int_data': self.int_data, 'string_data': self.a_to_z[:len(self.int_data)]}) df.to_csv(csvfile, index=False) csvfile.close() sf = SFrame.read_csv(csvfile.name, header=True) self.assertEqual(sf.dtype(), [float, int, str]) self.__test_equal(sf, df) def test_parse_csv(self): with tempfile.NamedTemporaryFile(mode='w', delete=False) as csvfile: self.dataframe.to_csv(csvfile, index=False) csvfile.close() # list type hints sf = SFrame.read_csv(csvfile.name, column_type_hints=[int, int, str]) self.assertEqual(sf.dtype(), [int, int, str]) sf['int_data'] = sf['int_data'].astype(int) sf['float_data'] = sf['float_data'].astype(float) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, self.dataframe) # list type hints, incorrect number of columns self.assertRaises(RuntimeError, lambda: SFrame.read_csv(csvfile.name, column_type_hints=[int, float])) # dictionary type hints sf = SFrame.read_csv(csvfile.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}) self.__test_equal(sf, self.dataframe) # partial dictionary type hints sf = SFrame.read_csv(csvfile.name, column_type_hints={'float_data': float, 'string_data': str}) self.__test_equal(sf, self.dataframe) # single value type hints sf = SFrame.read_csv(csvfile.name, column_type_hints=str) self.assertEqual(sf.dtype(), [str, str, str]) all_string_column_df = self.dataframe.apply(lambda x: [str(ele) for ele in x]) self.__test_equal(sf, all_string_column_df) # single value type hints row limit sf = SFrame.read_csv(csvfile.name, column_type_hints=str, nrows=5) self.assertEqual(sf.dtype(), [str, str, str]) all_string_column_df = self.dataframe.apply(lambda x: [str(ele) for ele in x]) self.assertEqual(len(sf), 5) self.__test_equal(sf, all_string_column_df[0:len(sf)]) sf = SFrame.read_csv(csvfile.name) sf2 = SFrame(csvfile.name, format='csv') self.__test_equal(sf2, sf.to_dataframe()) f = open(csvfile.name, "w") f.write('a,b,c\n') f.write('NA,PIKA,CHU\n') f.write('1.0,2,3\n') f.close() sf = SFrame.read_csv(csvfile.name, na_values=['NA','PIKA','CHU'], column_type_hints={'a':float,'b':int,'c':str}) t = list(sf['a']) self.assertEquals(t[0], None) self.assertEquals(t[1], 1.0) t = list(sf['b']) self.assertEquals(t[0], None) self.assertEquals(t[1], 2) t = list(sf['c']) self.assertEquals(t[0], None) self.assertEquals(t[1], "3") def test_save_load_file_cleanup(self): # when some file is in use, file should not be deleted with util.TempDirectory() as f: sf = SFrame() sf['a'] = SArray(range(1,1000000)) sf.save(f) # many for each sarray, 1 sframe_idx, 1 object.bin, 1 ini file_count = len(os.listdir(f)) self.assertTrue(file_count > 3); # sf1 now references the on disk file sf1 = SFrame(f); # create another SFrame and save to the same location sf2 = SFrame() sf2['b'] = SArray([str(i) for i in range(1,100000)]) sf2['c'] = SArray(range(1, 100000)) sf2.save(f) file_count = len(os.listdir(f)) self.assertTrue(file_count > 3); # now sf1 should still be accessible self.__test_equal(sf1, sf.to_dataframe()) # and sf2 is correct too sf3 = SFrame(f) self.__test_equal(sf3, sf2.to_dataframe()) # when sf1 goes out of scope, the tmp files should be gone sf1 = 1 time.sleep(1) # give time for the files being deleted file_count = len(os.listdir(f)) self.assertTrue(file_count > 3); def test_save_load(self): # Check top level load function, with no suffix with util.TempDirectory() as f: sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f) sf2 = load_sframe(f) self.__test_equal(sf2, self.dataframe) # Check individual formats with the SFrame constructor formats = ['.csv'] for suffix in formats: f = tempfile.NamedTemporaryFile(suffix=suffix, delete=False) sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f.name) sf2 = SFrame(f.name) sf2['int_data'] = sf2['int_data'].astype(int) sf2['float_data'] = sf2['float_data'].astype(float) sf2['string_data'] = sf2['string_data'].astype(str) self.__test_equal(sf2, self.dataframe) g=SArray([['a','b',3],[{'a':'b'}],[1,2,3]]) g2=SFrame() g2['x']=g g2.save(f.name) g3=SFrame.read_csv(f.name,column_type_hints=list) self.__test_equal(g2, g3.to_dataframe()) f.close() os.unlink(f.name) # Make sure this file don't exist before testing self.assertRaises(IOError, lambda: SFrame(data='__no_such_file__.frame_idx', format='sframe')) if sys.platform != 'win32': # Bad permission test_dir = 'test_dir' if os.path.exists(test_dir): os.removedirs(test_dir) os.makedirs(test_dir, mode=0000) with self.assertRaises(IOError): sf.save(os.path.join(test_dir, 'bad.frame_idx')) # Permissions will affect this test first, so no need # to write something here with self.assertRaises(IOError): sf2 = SFrame(os.path.join(test_dir, 'bad.frame_idx')) # cleanup os.removedirs(test_dir) del sf2 def test_save_load_reference(self): # Check top level load function, with no suffix with util.TempDirectory() as f: sf = SFrame(data=self.dataframe, format='dataframe') originallen = len(sf) sf.save(f) del sf sf = SFrame(f) # make a new column of "1s and save it back int_data2 = sf['int_data'] + 1 int_data2.__materialize__() sf['int_data2'] = int_data2 sf._save_reference(f) del sf sf = SFrame(f) self.assertTrue(((sf['int_data2'] - sf['int_data']) == 1).all()) # try to append and save reference expected = sf.to_dataframe() sf = sf.append(sf) sf._save_reference(f) sf = SFrame(f) self.assertTrue(((sf['int_data2'] - sf['int_data']) == 1).all()) self.assertEquals(2 * originallen, len(sf)) assert_frame_equal(sf[originallen:].to_dataframe(), expected) assert_frame_equal(sf[:originallen].to_dataframe(), expected) def test_save_to_csv(self): f = tempfile.NamedTemporaryFile(suffix='.csv', delete=False) sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f.name, format='csv') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}) self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False) self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) import csv sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'', quote_level=csv.QUOTE_MINIMAL) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'', quote_level=csv.QUOTE_ALL) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'', quote_level=csv.QUOTE_NONE) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) # Pandas compatibility options sf.export_csv(f.name, sep=':', lineterminator='\r\n', doublequote=False, quotechar='\'', quote_level=csv.QUOTE_NONE) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, sep=':', lineterminator='\r\n', doublequote=False, quotechar='\'') self.__test_equal(sf2, self.dataframe) f.close() os.unlink(f.name) def test_save_to_json(self): f = tempfile.NamedTemporaryFile(suffix='.json', delete=False) sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f.name, format='json') sf2 = SFrame.read_json(f.name) # the float column will be parsed as integer sf2['float_data'] = sf2['float_data'].astype(float) self.__test_equal(sf2, self.dataframe) sf = SFrame(data=self.dataframe, format='dataframe') sf.export_json(f.name) sf2 = SFrame.read_json(f.name) sf2['float_data'] = sf2['float_data'].astype(float) self.__test_equal(sf2, self.dataframe) sf = SFrame(data=self.dataframe, format='dataframe') sf.export_json(f.name, orient='lines') sf2 = SFrame.read_json(f.name, orient='lines') sf2['float_data'] = sf2['float_data'].astype(float) self.__test_equal(sf2, self.dataframe) f.close() os.unlink(f.name) def _remove_sframe_files(self, prefix): filelist = [ f for f in os.listdir(".") if f.startswith(prefix) ] for f in filelist: os.remove(f) def test_creation_from_txt(self): f = tempfile.NamedTemporaryFile(suffix='.txt', delete=False) df = self.dataframe[['string_data']] df.to_csv(f.name, index=False) sf = SFrame(f.name) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, df) fgzip = tempfile.NamedTemporaryFile(suffix='.txt.gz', delete=False) f_in = open(f.name, 'rb') f_out = gzip.open(fgzip.name, 'wb') f_out.writelines(f_in) f_out.close() f_in.close() sf = SFrame(fgzip.name) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, df) fgzip.close() os.unlink(fgzip.name) f.close() os.unlink(f.name) def test_creation_from_csv_on_local(self): if os.path.exists('./foo.csv'): os.remove('./foo.csv') with open('./foo.csv', 'w') as f: url = f.name basesf = SFrame(self.dataframe) basesf.save(url, format="csv") f.close() sf = SFrame('./foo.csv') self.assertEquals(sf['float_data'].dtype(), int) sf['float_data'] = sf['float_data'].astype(float) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, self.dataframe) sf = SFrame(url) self.assertEquals(sf['float_data'].dtype(), int) sf['float_data'] = sf['float_data'].astype(float) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, self.dataframe) os.remove(url) def test_alternate_line_endings(self): # test Windows line endings if os.path.exists('./windows_lines.csv'): os.remove('./windows_lines.csv') windows_file_url = None with open('./windows_lines.csv', 'w') as f: windows_file_url = f.name def_writer = csv.writer(f, dialect='excel') column_list = ['numbers'] def_writer.writerow(column_list) for i in self.int_data: def_writer.writerow([i]) sf = SFrame.read_csv('./windows_lines.csv', column_type_hints={'numbers':int}) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.column_types(), [int]) self.assertEquals(list(sf['numbers'].head()), self.int_data) sf = SFrame.read_csv('./windows_lines.csv', column_type_hints={'numbers':list}, error_bad_lines=False) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.num_rows(), 0) os.remove(windows_file_url) def test_skip_rows(self): # test line skippng if os.path.exists('./skip_lines.csv'): os.remove('./skip_lines.csv') skip_file_url = None with open('./skip_lines.csv', 'w') as f: f.write("trash\n"); f.write("junk\n"); skip_file_url = f.name def_writer = csv.writer(f, dialect='excel') column_list = ['numbers'] def_writer.writerow(column_list) for i in self.int_data: def_writer.writerow([i]) sf = SFrame.read_csv('./skip_lines.csv', skiprows=2, column_type_hints={'numbers':int}) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.column_types(), [int]) self.assertEquals(list(sf['numbers'].head()), self.int_data) sf = SFrame.read_csv('./skip_lines.csv', skiprows=2, column_type_hints={'numbers':list}, error_bad_lines=False) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.num_rows(), 0) os.remove(skip_file_url) def test_creation_from_csv_on_http(self): pass # sf = SFrame(data=self.url, use_header=False) # self.__test_equal(sf, pd.DataFrame({'1': self.a_to_z})) def test_creation_from_csv_on_s3(self): # Requires s3 account for jenkins # sf = SFrame(data='s3://graphlab-testdata/foo.csv') # print sf.head(sf.num_rows()) pass def test_creation_from_csv_dir_local(self): csv_dir = "./csv_dir" if os.path.exists(csv_dir): shutil.rmtree(csv_dir) os.mkdir(csv_dir) for i in range(0, 100): with open(os.path.join(csv_dir, 'foo.%d.csv' % i), 'w') as f: url = f.name self.dataframe.to_csv(url, index=False) f.close() singleton_sf = SFrame.read_csv(os.path.join(csv_dir, "foo.0.csv")) self.assertEquals(singleton_sf.num_rows(), 10) many_sf = SFrame.read_csv(csv_dir) self.assertEquals(many_sf.num_rows(), 1000) glob_sf = SFrame.read_csv(os.path.join(csv_dir, "foo.*2.csv")) self.assertEquals(glob_sf.num_rows(), 100) with self.assertRaises(RuntimeError): SFrame.read_csv("missingdirectory") with self.assertRaises(ValueError): SFrame.read_csv("") shutil.rmtree(csv_dir) def test_creation_from_iterable(self): # Normal dict of lists the_dict = {'ints':self.int_data,'floats':self.float_data,'strings':self.string_data} sf = SFrame(the_dict) df = pd.DataFrame(the_dict) self.__test_equal(sf, df) # Test that a missing value does not change the data type the_dict['ints'][0] = None sf = SFrame(the_dict) self.assertEquals(sf['ints'].dtype(), int) # numpy.nan is actually a float, so it should cast the column to float the_dict['ints'][0] = np.nan sf = SFrame(the_dict) self.assertEquals(sf['ints'].dtype(), float) # Just a single list sf = SFrame(self.int_data) df = pd.DataFrame(self.int_data) df.columns = ['X1'] self.__test_equal(sf, df) # Normal list of lists list_of_lists = [[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]] sf = SFrame(list_of_lists) cntr = 0 for i in sf: self.assertEquals(list_of_lists[cntr], list(i['X1'])) cntr += 1 self.assertEquals(sf.num_columns(), 1) the_dict = {'ints':self.int_data,'floats':self.float_data,'strings':self.string_data} sf = SFrame(the_dict) sf2 = SFrame({'ints':sf['ints'],'floats':sf['floats'],'strings':sf['strings']}) df = pd.DataFrame(the_dict) self.__test_equal(sf2, df) sf2 = SFrame([sf['ints'],sf['floats'],sf['strings']]) self.assertEquals(['X1','X2','X3'],sf2.column_names()) sf2.rename({'X1':'ints','X2':'floats','X3':'strings'}) sf2=sf2[['floats','ints','strings']] self.__test_equal(sf2, df) sf = SFrame({'text': ('foo', 'bar', 'biz')}) df = pd.DataFrame({'text': ['foo', 'bar', 'biz']}) self.__test_equal(sf, df) def test_head_tail(self): sf = SFrame(data=self.dataframe) assert_frame_equal(sf.head(4).to_dataframe(), self.dataframe.head(4)) # Cannot test for equality the same way because of dataframe indices taildf = sf.tail(4) for i in range(0, 4): self.assertEqual(taildf['int_data'][i], self.dataframe['int_data'][i+6]) self.assertEqual(taildf['float_data'][i], self.dataframe['float_data'][i+6]) self.assertEqual(taildf['string_data'][i], self.dataframe['string_data'][i+6]) def test_head_tail_edge_case(self): sf = SFrame() self.assertEquals(sf.head().num_columns(), 0) self.assertEquals(sf.tail().num_columns(), 0) self.assertEquals(sf.head().num_rows(), 0) self.assertEquals(sf.tail().num_rows(), 0) sf = SFrame() sf['a'] = [] self.assertEquals(sf.head().num_columns(), 1) self.assertEquals(sf.tail().num_columns(), 1) self.assertEquals(sf.head().num_rows(), 0) self.assertEquals(sf.tail().num_rows(), 0) def test_transform(self): sf = SFrame(data=self.dataframe) for i in range(sf.num_cols()): colname = sf.column_names()[i] sa = sf.apply(lambda x: x[colname], sf.column_types()[i]) self.__assert_sarray_equal(sa, sf[sf.column_names()[i]]) sa = sf.apply(lambda x: x['int_data'] + x['float_data'], float) self.__assert_sarray_equal(sf['int_data'] + sf['float_data'], sa) def test_transform_with_recursion(self): sf = SFrame(data={'a':[0,1,2,3,4], 'b':['0','1','2','3','4']}) # this should be the equivalent to sf.apply(lambda x:x since a is # equivalent to range(4) sa = sf.apply(lambda x: sf[x['a']]) sb = sf.apply(lambda x: x) self.__assert_sarray_equal(sa, sb) def test_transform_with_type_inference(self): sf = SFrame(data=self.dataframe) for i in range(sf.num_cols()): colname = sf.column_names()[i] sa = sf.apply(lambda x: x[colname]) self.__assert_sarray_equal(sa, sf[sf.column_names()[i]]) sa = sf.apply(lambda x: x['int_data'] + x['float_data']) self.__assert_sarray_equal(sf['int_data'] + sf['float_data'], sa) # SFrame apply returns list of vector of numeric should be vector, not list sa = sf.apply(lambda x: [x['int_data'], x['float_data']]) self.assertEqual(sa.dtype(), array.array); def test_transform_with_exception(self): sf = SFrame(data=self.dataframe) self.assertRaises(KeyError, lambda: sf.apply(lambda x: x['some random key'])) # cannot find the key self.assertRaises(TypeError, lambda: sf.apply(lambda x: sum(x.values()))) # lambda cannot sum int and str self.assertRaises(ZeroDivisionError, lambda: sf.apply(lambda x: x['int_data'] / 0)) # divide by 0 error self.assertRaises(IndexError, lambda: sf.apply(lambda x: list(x.values())[10])) # index out of bound error def test_empty_transform(self): sf = SFrame() b = sf.apply(lambda x:x) self.assertEquals(len(b.head()), 0) def test_flatmap(self): # Correctness of typical usage n = 10 sf = SFrame({'id': range(n)}) new_sf = sf.flat_map(["id_range"], lambda x: [[str(i)] for i in range(x['id'])]) self.assertEqual(new_sf.column_names(), ["id_range"]) self.assertEqual(new_sf.column_types(), [str]) expected_col = [str(x) for i in range(n) for x in range(i)] self.assertListEqual(list(new_sf['id_range']), expected_col) # Empty SFrame, without explicit column types sf = SFrame() with self.assertRaises(TypeError): new_sf = sf.flat_map(['id_range'], lambda x: [[i] for i in range(x['id'])]) # Empty rows successfully removed sf = SFrame({'id': range(15)}) new_sf = sf.flat_map(['id'], lambda x: [[x['id']]] if x['id'] > 8 else []) self.assertEqual(new_sf.num_rows(), 6) # First ten rows are empty raises error with self.assertRaises(TypeError): new_sf = sf.flat_map(['id'], lambda x: [[x['id']]] if x['id'] > 9 else []) def test_select_column(self): sf = SFrame(data=self.dataframe) sub_sf = sf.select_columns(['int_data', 'string_data']) exp_df = pd.DataFrame({'int_data': self.int_data, 'string_data': self.string_data}) self.__test_equal(sub_sf, exp_df) with self.assertRaises(ValueError): sf.select_columns(['int_data', 'string_data', 'int_data']) # test indexing sub_col = sf['float_data'] self.assertEqual(list(sub_col.head(10)), self.float_data) with self.assertRaises(TypeError): sub_sf = sf.select_columns(['duh',1]) with self.assertRaises(TypeError): sub_sf = sf.select_columns(0) with self.assertRaises(RuntimeError): sub_sf = sf.select_columns(['not_a_column']) self.assertEqual(sf.select_columns([int]).column_names(), ['int_data']) self.assertEqual(sf.select_columns([int, str]).column_names(), ['int_data', 'string_data']) self.assertEqual(sf[int].column_names(), ['int_data']) self.assertEqual(sf[[int, str]].column_names(), ['int_data', 'string_data']) self.assertEqual(sf[int, str].column_names(), ['int_data', 'string_data']) self.assertEqual(sf['int_data', 'string_data'].column_names(), ['int_data', 'string_data']) self.assertEqual(sf['string_data', 'int_data'].column_names(), ['string_data', 'int_data']) sf = SFrame() with self.assertRaises(RuntimeError): sf.select_column('x') with self.assertRaises(RuntimeError): sf.select_columns(['x']) sf.add_column(SArray(), 'x') # does not throw sf.select_column('x') sf.select_columns(['x']) with self.assertRaises(RuntimeError): sf.select_column('y') with self.assertRaises(RuntimeError): sf.select_columns(['y']) def test_topk(self): sf = SFrame(data=self.dataframe) # Test that order is preserved df2 = sf.topk('int_data').to_dataframe() df2_expected = self.dataframe.sort('int_data', ascending=False) df2_expected.index = range(df2.shape[0]) assert_frame_equal(df2, df2_expected) df2 = sf.topk('float_data', 3).to_dataframe() df2_expected = self.dataframe.sort('float_data', ascending=False).head(3) df2_expected.index = range(3) assert_frame_equal(df2, df2_expected) df2 = sf.topk('string_data', 3).to_dataframe() for i in range(0, 3): self.assertEqual(df2['int_data'][2-i], i + 7) with self.assertRaises(TypeError): sf.topk(2,3) sf = SFrame() sf.add_column(SArray([1,2,3,4,5]), 'a') sf.add_column(SArray([1,2,3,4,5]), 'b') sf.topk('a', 1) # should not fail def test_filter(self): sf = SFrame(data=self.dataframe) filter_sa = SArray([1,1,1,0,0,0,0,1,1,1]) sf2 = sf[filter_sa] exp_df = sf.head(3).append(sf.tail(3)) self.__test_equal(sf2, exp_df.to_dataframe()) # filter by 1s sf2 = sf[SArray(self.int_data)] exp_df = sf.head(10).to_dataframe() self.__test_equal(sf2, exp_df) # filter by 0s sf2 = sf[SArray([0,0,0,0,0,0,0,0,0,0])] exp_df = sf.head(0).to_dataframe() self.__test_equal(sf2, exp_df) # wrong size with self.assertRaises(IndexError): sf2 = sf[SArray([0,1,205])] # slightly bigger size sf = SFrame() n = 1000000 sf['a'] = range(n) result = sf[sf['a'] == -1] self.assertEquals(len(result), 0) result = sf[sf['a'] > n - 123] self.assertEquals(len(result), 122) l = list(result['a']) for i in range(len(result)): self.assertEquals(i + n - 122, l[i]) result = sf[sf['a'] < 2000] self.assertEquals(len(result), 2000) l = list(result['a']) for i in range(len(result)): self.assertEquals(i, l[i]) def test_sample_split(self): sf = SFrame(data=self.__create_test_df(100)) entry_list = set() for i in sf: entry_list.add(str(i)) sample_sf = sf.sample(.12, 9) sample_sf2 = sf.sample(.12, 9) self.assertEqual(len(sample_sf), len(sample_sf2)) assert_frame_equal(sample_sf.head().to_dataframe(), sample_sf2.head().to_dataframe()) for i in sample_sf: self.assertTrue(str(i) in entry_list) with self.assertRaises(ValueError): sf.sample(3) sample_sf = SFrame().sample(.12, 9) self.assertEqual(len(sample_sf), 0) a_split = sf.random_split(.12, 9) first_split_entries = set() for i in a_split[0]: first_split_entries.add(str(i)) for i in a_split[1]: self.assertTrue(str(i) in entry_list) self.assertTrue(str(i) not in first_split_entries) with self.assertRaises(ValueError): sf.random_split(3) self.assertEqual(len(SFrame().random_split(.4)[0]), 0) self.assertEqual(len(SFrame().random_split(.4)[1]), 0) # tests add_column, rename def test_edit_column_ops(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.float_data)) sf.add_column(SArray(self.string_data)) # Make sure auto names work names = sf.column_names() cntr = 1 for i in names: self.assertEquals("X"+str(cntr), i) cntr = cntr + 1 # Remove a column del sf['X2'] # names names = sf.column_names() self.assertEquals(len(names), 2) self.assertEquals('X1', names[0]) self.assertEquals('X3', names[1]) # check content self.assertEquals(list(sf['X1'].head(10)), self.int_data) self.assertEquals(list(sf['X3'].head(10)), self.string_data) # check that a new automatically named column will not conflict sf.add_column(SArray(self.string_data)) names = sf.column_names() self.assertEquals(len(names), 3) uniq_set = set() for i in names: uniq_set.add(i) if len(uniq_set) == 1: self.assertEquals(list(sf[i].head(10)), self.int_data) else: self.assertEquals(list(sf[i].head(10)), self.string_data) self.assertEquals(len(uniq_set), 3) # replacing columns preserves order names = sf.column_names() for n in names: sf[n] = sf[n].apply(lambda x: x) self.assertEquals(sf.column_names(), names) # do it again! del sf['X1'] sf.add_column(SArray(self.string_data)) names = sf.column_names() self.assertEquals(len(names), 3) uniq_set = set() for i in names: uniq_set.add(i) self.assertEquals(list(sf[i].head(10)), self.string_data) self.assertEquals(len(uniq_set), len(names)) # standard rename rename_dict = {'X3':'data','X3.1':'more_data','X3.2':'even_more'} sf.rename(rename_dict) self.assertEquals(sf.column_names(), ['data','more_data','even_more']) # rename a column to a name that's already taken with self.assertRaises(RuntimeError): sf.rename({'data':'more_data'}) # try to rename a column that doesn't exist with self.assertRaises(ValueError): sf.rename({'foo':'bar'}) # pass something other than a dict with self.assertRaises(TypeError): sf.rename('foo') # Setting a column to const preserves order names = sf.column_names() for n in names: sf[n] = 1 self.assertEquals(sf.column_names(), names) def test_duplicate_add_column_failure(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data), "hello") with self.assertRaises(RuntimeError): sf.add_column(SArray(self.float_data), "hello") def test_remove_column(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.float_data)) sf.add_column(SArray(self.string_data)) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) sf2 = sf.remove_column('X3') assert sf is sf2 self.assertEquals(sf.column_names(), ['X1', 'X2', 'X4', 'X5']) sf2 = sf.remove_columns(['X2', 'X5']) assert sf is sf2 self.assertEquals(sf.column_names(), ['X1', 'X4']) # with a generator expression sf2 = sf.remove_columns((n for n in ['X1', 'X5'] if n in sf.column_names())) assert sf is sf2 self.assertEquals(sf.column_names(), ['X4']) def test_remove_bad_column(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.float_data)) sf.add_column(SArray(self.string_data)) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) self.assertRaises(KeyError, lambda: sf.remove_column('bad')) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) self.assertRaises(KeyError, lambda: sf.remove_columns(['X1', 'X2', 'X3', 'bad', 'X4'])) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) def __generate_synthetic_sframe__(self, num_users): """ synthetic collaborative data. generate 1000 users, user i watched movie 0, ... i-1. rating(i, j) = i + j length(i, j) = i - j """ sf = SFrame() sparse_matrix = {} for i in range(1, num_users + 1): sparse_matrix[i] = [(j, i + j, i - j) for j in range(1, i + 1)] user_ids = [] movie_ids = [] ratings = [] length_of_watching = [] for u in sparse_matrix: user_ids += [u] * len(sparse_matrix[u]) movie_ids += [x[0] for x in sparse_matrix[u]] ratings += [x[1] for x in sparse_matrix[u]] length_of_watching += [x[2] for x in sparse_matrix[u]] # typical add column stuff sf['user_id'] = (SArray(user_ids, int)) sf['movie_id'] = (SArray(movie_ids, str)) sf['rating'] = (SArray(ratings, float)) sf['length'] = (SArray(length_of_watching, int)) return sf def test_aggregate_ops(self): """ Test builtin groupby aggregators """ for m in [1, 10, 20, 50, 100]: values = range(m) vector_values = [[random.randint(1,100) for num in range(10)] \ for y in range(m)] sf = SFrame() sf['key'] = [1] * m sf['value'] = values sf['vector_values'] = vector_values sf.__materialize__() built_ins = [aggregate.COUNT(), aggregate.SUM('value'), aggregate.AVG('value'), aggregate.MIN('value'), aggregate.MAX('value'), aggregate.VAR('value'), aggregate.STDV('value'), aggregate.SUM('vector_values'), aggregate.MEAN('vector_values'), aggregate.COUNT_DISTINCT('value'), aggregate.DISTINCT('value'), aggregate.FREQ_COUNT('value')] sf2 = sf.groupby('key', built_ins) self.assertEquals(len(sf2), 1) self.assertEqual(sf2['Count'][0], m) self.assertEqual(sf2['Sum of value'][0], sum(values)) self.assertAlmostEqual(sf2['Avg of value'][0], np.mean(values)) self.assertEqual(sf2['Min of value'][0], min(values)) self.assertEqual(sf2['Max of value'][0], max(values)) self.assertAlmostEqual(sf2['Var of value'][0], np.var(values)) self.assertAlmostEqual(sf2['Stdv of value'][0], np.std(values)) np.testing.assert_almost_equal(list(sf2['Vector Sum of vector_values'][0]), list(np.sum(vector_values, axis=0))) np.testing.assert_almost_equal(list(sf2['Vector Avg of vector_values'][0]), list(np.mean(vector_values, axis=0))) self.assertEqual(sf2['Count Distinct of value'][0], len(np.unique(values))) self.assertEqual(sorted(sf2['Distinct of value'][0]), sorted(list(np.unique(values)))) self.assertEqual(sf2['Frequency Count of value'][0], {k:1 for k in np.unique(values)}) # For vectors def test_min_max_with_missing_values(self): """ Test builtin groupby aggregators """ sf = SFrame() sf['key'] = [1,1,1,1,1,1,2,2,2,2] sf['value'] = [1,None,None,None,None,None, None,None,None,None] built_ins = [aggregate.COUNT(), aggregate.SUM('value'), aggregate.AVG('value'), aggregate.MIN('value'), aggregate.MAX('value'), aggregate.VAR('value'), aggregate.STDV('value'), aggregate.COUNT_DISTINCT('value'), aggregate.DISTINCT('value'), aggregate.FREQ_COUNT('value')] sf2 = sf.groupby('key', built_ins).sort('key') self.assertEqual(list(sf2['Count']), [6,4]) self.assertEqual(list(sf2['Sum of value']), [1, 0]) self.assertEqual(list(sf2['Avg of value']), [1, None]) self.assertEqual(list(sf2['Min of value']), [1, None]) self.assertEqual(list(sf2['Max of value']), [1, None]) self.assertEqual(list(sf2['Var of value']), [0, 0]) self.assertEqual(list(sf2['Stdv of value']), [0, 0]) self.assertEqual(list(sf2['Count Distinct of value']), [2, 1]) self.assertEqual(set(sf2['Distinct of value'][0]), set([1, None])) self.assertEqual(set(sf2['Distinct of value'][1]), set([None])) self.assertEqual(sf2['Frequency Count of value'][0], {1:1, None:5}) self.assertEqual(sf2['Frequency Count of value'][1], {None:4}) def test_aggregate_ops_on_lazy_frame(self): """ Test builtin groupby aggregators """ for m in [1, 10, 20, 50, 100]: values = range(m) vector_values = [[random.randint(1,100) for num in range(10)] \ for y in range(m)] sf = SFrame() sf['key'] = [1] * m sf['value'] = values sf['vector_values'] = vector_values sf['value'] = sf['value'] + 0 built_ins = [aggregate.COUNT(), aggregate.SUM('value'), aggregate.AVG('value'), aggregate.MIN('value'), aggregate.MAX('value'), aggregate.VAR('value'), aggregate.STDV('value'), aggregate.SUM('vector_values'), aggregate.MEAN('vector_values'), aggregate.COUNT_DISTINCT('value'), aggregate.DISTINCT('value')] sf2 = sf.groupby('key', built_ins) self.assertEquals(len(sf2), 1) self.assertEqual(sf2['Count'][0], m) self.assertEqual(sf2['Sum of value'][0], sum(values)) self.assertAlmostEqual(sf2['Avg of value'][0], np.mean(values)) self.assertEqual(sf2['Min of value'][0], min(values)) self.assertEqual(sf2['Max of value'][0], max(values)) self.assertAlmostEqual(sf2['Var of value'][0], np.var(values)) self.assertAlmostEqual(sf2['Stdv of value'][0], np.std(values)) np.testing.assert_almost_equal(list(sf2['Vector Sum of vector_values'][0]), list(np.sum(vector_values, axis=0))) np.testing.assert_almost_equal(list(sf2['Vector Avg of vector_values'][0]), list(np.mean(vector_values, axis=0))) self.assertEqual(sf2['Count Distinct of value'][0], len(np.unique(values))) self.assertEqual(sorted(sf2['Distinct of value'][0]), sorted(np.unique(values))) def test_aggregate_ops2(self): """ Test builtin groupby aggregators using explicit named columns """ for m in [1, 10, 20, 50, 100]: values = range(m) vector_values = [[random.randint(1,100) for num in range(10)] \ for y in range(m)] sf = SFrame() sf['key'] = [1] * m sf['value'] = values sf['vector_values'] = vector_values built_ins = {'count':aggregate.COUNT, 'sum':aggregate.SUM('value'), 'avg':aggregate.AVG('value'), 'avg2':aggregate.MEAN('value'), 'min':aggregate.MIN('value'), 'max':aggregate.MAX('value'), 'var':aggregate.VAR('value'), 'var2':aggregate.VARIANCE('value'), 'stdv':aggregate.STD('value'), 'stdv2':aggregate.STDV('value'), 'vector_sum': aggregate.SUM('vector_values'), 'vector_mean': aggregate.MEAN('vector_values'), 'count_unique':aggregate.COUNT_DISTINCT('value'), 'unique':aggregate.DISTINCT('value'), 'frequency':aggregate.FREQ_COUNT('value')} sf2 = sf.groupby('key', built_ins) self.assertEquals(len(sf2), 1) self.assertEqual(sf2['count'][0], m) self.assertEqual(sf2['sum'][0], sum(values)) self.assertAlmostEqual(sf2['avg'][0], np.mean(values)) self.assertAlmostEqual(sf2['avg2'][0], np.mean(values)) self.assertEqual(sf2['min'][0], min(values)) self.assertEqual(sf2['max'][0], max(values)) self.assertAlmostEqual(sf2['var'][0], np.var(values)) self.assertAlmostEqual(sf2['var2'][0], np.var(values)) self.assertAlmostEqual(sf2['stdv'][0], np.std(values)) self.assertAlmostEqual(sf2['stdv2'][0], np.std(values)) np.testing.assert_almost_equal(sf2['vector_sum'][0], list(np.sum(vector_values, axis=0))) np.testing.assert_almost_equal(sf2['vector_mean'][0], list(np.mean(vector_values, axis=0))) self.assertEqual(sf2['count_unique'][0], len(np.unique(values))) self.assertEqual(sorted(sf2['unique'][0]), sorted(np.unique(values))) self.assertEqual(sf2['frequency'][0], {k:1 for k in np.unique(values)}) def test_groupby(self): """ Test builtin groupby and aggregate on different column types """ num_users = 500 sf = self.__generate_synthetic_sframe__(num_users=num_users) built_ins = [aggregate.COUNT(), aggregate.SUM('rating'), aggregate.AVG('rating'), aggregate.MIN('rating'), aggregate.MAX('rating'), aggregate.VAR('rating'), aggregate.STDV('rating')] built_in_names = ['Sum', 'Avg', 'Min', 'Max', 'Var', 'Stdv'] """ Test groupby user_id and aggregate on rating """ sf_user_rating = sf.groupby('user_id', built_ins) actual = sf_user_rating.column_names() expected = ['%s of rating' % v for v in built_in_names] \ + ['user_id'] + ['Count'] self.assertSetEqual(set(actual), set(expected)) for row in sf_user_rating: uid = row['user_id'] mids = range(1, uid + 1) ratings = [uid + i for i in mids] expected = [len(ratings), sum(ratings), np.mean(ratings), min(ratings), max(ratings), np.var(ratings), np.sqrt(np.var(ratings))] actual = [row['Count']] + [row['%s of rating' % op] \ for op in built_in_names] for i in range(len(actual)): self.assertAlmostEqual(actual[i], expected[i]) """ Test that count can be applied on empty aggregate column. """ sf_user_rating = sf.groupby("user_id", {'counter': aggregate.COUNT()}) actual = {x['user_id']: x['counter'] for x in sf_user_rating} expected = {i: i for i in range(1, num_users + 1)} self.assertDictEqual(actual, expected) """ Test groupby movie_id and aggregate on length_of_watching """ built_ins = [aggregate.COUNT(), aggregate.SUM('length'), aggregate.AVG('length'), aggregate.MIN('length'), aggregate.MAX('length'), aggregate.VAR('length'), aggregate.STDV('length')] sf_movie_length = sf.groupby('movie_id', built_ins) actual = sf_movie_length.column_names() expected = ['%s of length' % v for v in built_in_names] \ + ['movie_id'] + ['Count'] self.assertSetEqual(set(actual), set(expected)) for row in sf_movie_length: mid = row['movie_id'] uids = range(int(mid), num_users + 1) values = [i - int(mid) for i in uids] expected = [len(values), sum(values), np.mean(values), min(values), max(values), np.var(values), np.std(values)] actual = [row['Count']] + [row['%s of length' % op] \ for op in built_in_names] for i in range(len(actual)): self.assertAlmostEqual(actual[i], expected[i]) def test_quantile_groupby(self): sf = self.__generate_synthetic_sframe__(num_users=500) # max and min rating for each user g = sf.groupby('user_id', [aggregate.MIN('rating'), aggregate.MAX('rating'), aggregate.QUANTILE('rating', 0, 1)]) self.assertEquals(len(g), 500) for row in g: minrating = row['Min of rating'] maxrating = row['Max of rating'] arr = list(row['Quantiles of rating']) self.assertEquals(len(arr), 2) self.assertEquals(arr[0], minrating) self.assertEquals(arr[1], maxrating) def test_argmax_argmin_groupby(self): sf = self.__generate_synthetic_sframe__(num_users=500) sf_ret = sf.groupby('user_id', {'movie with max rating' : aggregate.ARGMAX('rating','movie_id'), 'movie with min rating' : aggregate.ARGMIN('rating','movie_id')}) self.assertEquals(len(sf_ret), 500) self.assertEqual(sf_ret["movie with max rating"].dtype(), str) self.assertEqual(sf_ret["movie with min rating"].dtype(), str) self.assertEqual(sf_ret["user_id"].dtype(), int) # make sure we have computed correctly. max_d = {} min_d = {} for i in sf: key = i['user_id'] if key not in max_d: max_d[key] = (i['movie_id'],i['rating']) min_d[key] = (i['movie_id'],i['rating']) else: if max_d[key][1] < i['rating']: max_d[key] = (i['movie_id'],i['rating']) if min_d[key][1] > i['rating']: min_d[key] = (i['movie_id'],i['rating']) for i in sf_ret: key = i['user_id'] self.assertEqual(i["movie with max rating"],max_d[key][0]) self.assertEqual(i["movie with min rating"],min_d[key][0]) def test_multicolumn_groupby(self): sf = self.__generate_synthetic_sframe__(num_users=500) sf_um = sf.groupby(["user_id", "movie_id"], aggregate.COUNT) # I can query it t = sf_um.to_dataframe() self.assertEqual(sf_um["user_id"].dtype(), int) self.assertEqual(sf_um["movie_id"].dtype(), str) # make sure we have counted correctly d = {} for i in sf: key = str(i['user_id']) + "," + i["movie_id"] if key not in d: d[key] = 0 d[key] = d[key] + 1 for i in sf_um: key = str(i['user_id']) + "," + i["movie_id"] self.assertTrue(key in d) self.assertEqual(i['Count'], d[key]) sf_um = sf.groupby(["movie_id", "user_id"], aggregate.COUNT()) # I can query it t = sf_um.to_dataframe() self.assertEqual(sf_um["user_id"].dtype(), int) self.assertEqual(sf_um["movie_id"].dtype(), str) # make sure we have counted correctly d = {} for i in sf: key = str(i['user_id']) + "," + i["movie_id"] if key not in d: d[key] = 0 d[key] = d[key] + 1 for i in sf_um: key = str(i['user_id']) + "," + i["movie_id"] self.assertTrue(key in d) self.assertEqual(i['Count'], d[key]) def __assert_concat_result_equal(self, result, expected, list_columns): self.assertEqual(result.num_columns(), expected.num_columns()) for column in result.column_names(): c1 = result[column] c2 = expected[column] self.assertEqual(c1.dtype(), c2.dtype()) self.assertEqual(c1.size(), c2.size()) if (column in list_columns): for i in range(len(c1)): if (c1[i] == None): self.assertTrue(c2[i] == None) continue if (c1.dtype() == dict): for k in c1[i]: self.assertEqual(c2[i][k], c1[i][k]) else: s1 = list(c1[i]); if s1 != None: s1.sort() s2 = list(c2[i]); if s2 != None: s2.sort() self.assertEqual(s1, s2) else: self.assertEqual(list(c1),list(c2)) def test_groupby_dict_key(self): t = SFrame({'a':[{1:2},{3:4}]}) with self.assertRaises(TypeError): t.groupby('a', {}) def test_concat(self): sf = SFrame() sf['a'] = [1,1,1,1, 2,2,2, 3, 4,4, 5] sf['b'] = [1,2,1,2, 3,3,1, 4, None, 2, None] sf['c'] = ['a','b','a','b', 'e','e', None, 'h', 'i','j', 'k'] sf['d'] = [1.0,2.0,1.0,2.0, 3.0,3.0,1.0, 4.0, None, 2.0, None] sf['e'] = [{'x': 1}] * len(sf['a']) print(sf['b'].dtype()) result = sf.groupby('a', aggregate.CONCAT('b')) expected_result = SFrame({ 'a': [1,2,3,4, 5], 'List of b': [[1.,1.,2.,2.],[1.,3.,3.],[4.],[2.], []] }) expected_result['List of b'] = expected_result['List of b'].astype(list) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['List of b']) result = sf.groupby('a', aggregate.CONCAT('d')) expected_result = SFrame({ 'a': [1,2,3,4, 5], 'List of d': [[1,1,2,2],[1,3,3],[4],[2], []] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['List of d']) result = sf.groupby('a', {'c_c' :aggregate.CONCAT('c')}) expected_result = SFrame({ 'a': [1,2,3,4, 5], 'c_c': [['a','b','a','b'],['e','e'],['h'],['i','j'], ['k']] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['c_c']) result = sf.groupby('a', aggregate.CONCAT('b','c')) expected_result = SFrame({ 'a': [1,2,3,4,5], 'Dict of b_c': [{1:'a',2:'b'},{3:'e', 1: None},{4:'h'},{2:'j'}, {}] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['Dict of b_c']) result = sf.groupby('a', {'c_b':aggregate.CONCAT('c','b')}) expected_result = SFrame({ 'a': [1,2,3,4,5], 'c_b': [{'a':1, 'b':2},{'e':3},{'h':4},{'i':None, 'j':2},{'k':None}] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['c_b']) result = sf.groupby('a', {'cs':aggregate.CONCAT('c'), 'bs':aggregate.CONCAT('b')}) expected_result = SFrame({ 'a': [1,2,3,4,5], 'bs': [[1,1,2,2],[1,3,3],[4],[2], []], 'cs': [['a','b','a','b'],['e','e'],['h'],['i','j'], ['k']] }) expected_result['bs'] = expected_result['bs'].astype(list) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['bs','cs']) #exception fail if there is not column with self.assertRaises(TypeError): sf.groupby('a', aggregate.CONCAT()) with self.assertRaises(KeyError): sf.groupby('a', aggregate.CONCAT('nonexist')) with self.assertRaises(TypeError): sf.groupby('a', aggregate.CONCAT('e', 'a')) def test_select_one(self): sf = SFrame({'a':[1,1,2,2,3,3,4,4,5,5],'b':[1,2,3,4,5,6,7,8,9,10]}) res = list(sf.groupby('a', {'b':aggregate.SELECT_ONE('b')})) self.assertEqual(len(res), 5) for i in res: self.assertTrue(i['b'] == 2 * i['a'] or i['b'] == 2 * i['a'] - 1) def test_unique(self): sf = SFrame({'a':[1,1,2,2,3,3,4,4,5,5],'b':[1,2,3,4,5,6,7,8,9,10]}) self.assertEqual(len(sf.unique()), 10) vals = [1,1,2,2,3,3,4,4, None, None] sf = SFrame({'a':vals,'b':vals}) res = sf.unique() self.assertEqual(len(res), 5) self.assertEqual(set(res['a']), set([1,2,3,4,None])) self.assertEqual(set(res['b']), set([1,2,3,4,None])) def test_append_empty(self): sf_with_data = SFrame(data=self.dataframe) empty_sf = SFrame() self.assertFalse(sf_with_data.append(empty_sf) is sf_with_data) self.assertFalse(empty_sf.append(sf_with_data) is sf_with_data) self.assertFalse(empty_sf.append(empty_sf) is empty_sf) def test_append_all_match(self): sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) new_sf = sf1.append(sf2) assert_frame_equal(self.dataframe.append(self.dataframe2, ignore_index=True), new_sf.to_dataframe()) def test_append_lazy(self): sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) new_sf = sf1.append(sf2) self.assertTrue(new_sf.__is_materialized__()) filter_sf1 = SArray([1 for i in range(sf1.num_rows())] + [0 for i in range(sf2.num_rows())]) filter_sf2 = SArray([0 for i in range(sf1.num_rows())] + [1 for i in range(sf2.num_rows())]) new_sf1 = new_sf[filter_sf1] new_sf2 = new_sf[filter_sf2] assert_frame_equal(self.dataframe.append(self.dataframe2, ignore_index=True), new_sf.to_dataframe()) assert_frame_equal(sf1.to_dataframe(), new_sf1.to_dataframe()) assert_frame_equal(sf2.to_dataframe(), new_sf2.to_dataframe()) row = sf1.head(1) sf = SFrame() for i in range(10): sf = sf.append(row) df = sf.to_dataframe() for i in range(10): self.assertEqual(list(df.iloc[[i]]), list(sf.head(1).to_dataframe().iloc[[0]])) def test_recursive_append(self): sf = SFrame() for i in range(200): sf = sf.append(SFrame(data = self.dataframe)) #consume sf.__materialize__() def test_print_sframe(self): sf = SFrame() def _test_print(): sf.__repr__() sf._repr_html_() try: from StringIO import StringIO except ImportError: from io import StringIO output = StringIO() sf.print_rows(output_file=output) n = 20 sf['int'] = [i for i in range(n)] sf['float'] = [float(i) for i in range(n)] sf['str'] = [str(i) for i in range(n)] uc = '\xe5\xa4\xa7\xe5\xa4\xb4' # dato pronounced in chinese, big head sf['unicode'] = [uc for i in range(n)] sf['array'] = [array.array('d', [i]) for i in range(n)] sf['list'] = [[i, float(i), [i]] for i in range(n)] utc = dt.datetime.strptime('2011-01-21 02:37:21', '%Y-%m-%d %H:%M:%S') sf['dt'] = [utc for i in range(n)] sf['img'] = [Image() for i in range(n)] sf['long_str'] = ["".join([str(i)] * 50) for i in range(n)] sf['long_unicode'] = ["".join([uc] * 50) for i in range(n)] sf['bad_unicode'] = ['\x9d' + uc for i in range(n)] _test_print() def test_print_lazy_sframe(self): sf1 = SFrame(data=self.dataframe) self.assertTrue(sf1.__is_materialized__()) sf2 = sf1[sf1['int_data'] > 3] sf2.__repr__() sf2.__str__() self.assertFalse(sf2.__is_materialized__()) len(sf2) self.assertTrue(sf2.__is_materialized__()) def test_append_order_diff(self): # name match but column order not match sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) sf2.swap_columns('int_data', 'string_data') new_sf = sf1.append(sf2) assert_frame_equal(self.dataframe.append(self.dataframe2, ignore_index=True), new_sf.to_dataframe()) def test_append_empty_sframe(self): sf = SFrame(data=self.dataframe) other = SFrame() # non empty append empty assert_frame_equal(sf.append(other).to_dataframe(), self.dataframe) # empty append non empty assert_frame_equal(other.append(sf).to_dataframe(), self.dataframe) #empty append empty assert_frame_equal(other.append(other).to_dataframe(), pd.DataFrame()) def test_append_exception(self): sf = SFrame(data=self.dataframe) # column number not match other = SFrame() other.add_column(SArray(), "test") self.assertRaises(RuntimeError, lambda: sf.append(other)) # column not the same # column name not match other = SFrame() names = sf.column_names() for name in sf.column_names(): other.add_column(SArray(), name) names[0] = 'some name not match' self.assertRaises(RuntimeError, lambda: sf.append(other)) # name match but column type order not match sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) #change one column type sf1["int_data"] = sf2.select_column("int_data").astype(float) self.assertRaises(RuntimeError, lambda: sf.append(other)) def test_simple_joins(self): inner_expected = SFrame() inner_expected.add_column(SArray(['Robinson','Jones','Smith','Heisenberg','Rafferty']), 'last_name') inner_expected.add_column(SArray([34,33,34,33,31]), 'dep_id') inner_expected.add_column(SArray(['Clerical','Engineering','Clerical','Engineering','Sales']), 'dep_name') # Tests the "natural join" case beg = time.time() res = self.employees_sf.join(self.departments_sf) end = time.time() print("Really small join: " + str(end-beg) + " s") self.__assert_join_results_equal(res, inner_expected) left_join_row = SFrame() left_join_row.add_column(SArray(['John']), 'last_name') left_join_row.add_column(SArray([None], int), 'dep_id') left_join_row.add_column(SArray([None], str), 'dep_name') left_expected = inner_expected.append(left_join_row) # Left outer join, passing string to 'on' res = self.employees_sf.join(self.departments_sf, how='left', on='dep_id') self.__assert_join_results_equal(res, left_expected) right_join_row = SFrame() right_join_row.add_column(SArray([None], str), 'last_name') right_join_row.add_column(SArray([35]), 'dep_id') right_join_row.add_column(SArray(['Marketing']), 'dep_name') right_expected = inner_expected.append(right_join_row) # Right outer join, passing list to 'on' res = self.employees_sf.join(self.departments_sf, how='right', on=['dep_id']) self.__assert_join_results_equal(res, right_expected) outer_expected = left_expected.append(right_join_row) # Full outer join, passing dict to 'on' res = self.employees_sf.join(self.departments_sf, how='outer', on={'dep_id':'dep_id'}) self.__assert_join_results_equal(res, outer_expected) # Test a join on non-matching key res = self.employees_sf.join(self.departments_sf, on={'last_name':'dep_name'}) self.assertEquals(res.num_rows(), 0) self.assertEquals(res.num_cols(), 3) self.assertEquals(res.column_names(), ['last_name', 'dep_id', 'dep_id.1']) # Test a join on a non-unique key bad_departments = SFrame() bad_departments['dep_id'] = SArray([33,33,31,31]) bad_departments['dep_name'] = self.departments_sf['dep_name'] no_pk_expected = SFrame() no_pk_expected['last_name'] = SArray(['Rafferty','Rafferty','Heisenberg','Jones','Heisenberg','Jones']) no_pk_expected['dep_id'] = SArray([31,31,33,33,33,33]) no_pk_expected['dep_name'] = SArray(['Clerical','Marketing','Sales','Sales','Engineering','Engineering']) res = self.employees_sf.join(bad_departments, on='dep_id') self.__assert_join_results_equal(res, no_pk_expected) # Left join on non-unique key bad_departments = bad_departments.append(right_join_row[['dep_id', 'dep_name']]) bad_departments = bad_departments.append(right_join_row[['dep_id', 'dep_name']]) no_pk_expected = no_pk_expected.append(right_join_row) no_pk_expected = no_pk_expected.append(right_join_row) no_pk_expected = no_pk_expected[['dep_id', 'dep_name', 'last_name']] res = bad_departments.join(self.employees_sf, on='dep_id', how='left') self.__assert_join_results_equal(res, no_pk_expected) def test_big_composite_join(self): # Create a semi large SFrame with composite primary key (letter, number) letter_keys = [] number_keys = [] data = [] for i in string.ascii_lowercase: for j in range(0,100): letter_keys.append(i) number_keys.append(j) which = j % 3 if which == 0: data.append(string.ascii_uppercase) elif which == 1: data.append(string.digits) elif which == 2: data.append(string.hexdigits) pk_gibberish = SFrame() pk_gibberish['letter'] = SArray(letter_keys, str) pk_gibberish['number'] = SArray(number_keys, int) pk_gibberish['data'] = SArray(data, str) # Some rows that won't match more_data = [] more_letter_keys = [] more_number_keys = [] for i in range(0,40000): more_data.append('fish') more_letter_keys.append('A') more_number_keys.append(200) for i in range(0,80): for j in range(100,1000): more_data.append('waffles') more_letter_keys.append(letter_keys[j]) more_number_keys.append(number_keys[j]) # Non-matching row in this stretch if j == 147: more_letter_keys[-1] = 'A' for i in range(0,5000): more_data.append('pizza') more_letter_keys.append('Z') more_number_keys.append(400) join_with_gibberish = SFrame() join_with_gibberish['data'] = SArray(more_data, str) join_with_gibberish['moredata'] = SArray(more_data, str) join_with_gibberish['a_number'] = SArray(more_number_keys, int) join_with_gibberish['a_letter'] = SArray(more_letter_keys, str) expected_answer = SFrame() exp_letter = [] exp_number = [] exp_data = [] for i in range(0,80): exp_letter.extend(letter_keys[100:147]) exp_number.extend(number_keys[100:147]) exp_letter.extend(letter_keys[148:1000]) exp_number.extend(number_keys[148:1000]) exp_data.extend(data[100:147]) exp_data.extend(data[148:1000]) expected_answer['letter'] = SArray(exp_letter, str) expected_answer['number'] = SArray(exp_number, int) expected_answer['data'] = SArray(exp_data, str) expected_answer['data.1'] = 'waffles' expected_answer['moredata'] = 'waffles' beg = time.time() res = pk_gibberish.join(join_with_gibberish, on={'letter':'a_letter','number':'a_number'}) end = time.time() print("Join took " + str(end-beg) + " seconds") self.__assert_join_results_equal(res, expected_answer) def test_convert_dataframe_empty(self): sf = SFrame() sf['a'] = SArray([], int) df = sf.to_dataframe() self.assertEqual(df['a'].dtype, int) sf1 = SFrame(df) self.assertEquals(sf1['a'].dtype(), int) self.assertEqual(sf1.num_rows(), 0) def test_replace_one_column(self): sf = SFrame() sf['a'] = [1,2,3] self.assertEquals(list(sf['a']), [1,2,3]) # this should succeed as we are replacing a new column sf['a'] = [1,2] self.assertEquals(list(sf['a']), [1,2]) # failed to add new column should revert original sframe with self.assertRaises(TypeError): sf['a'] = [1,2,'a'] self.assertEquals(list(sf['a']), [1,2]) # add a column with different length should fail if there are more than one column sf = SFrame() sf['a'] = [1,2,3] sf['b'] = ['a', 'b', 'c'] with self.assertRaises(RuntimeError): sf['a'] = [1,2] def test_filter_by(self): # Set up SFrame to filter by sf = SFrame() sf.add_column(SArray(self.int_data), "ints") sf.add_column(SArray(self.float_data), "floats") sf.add_column(SArray(self.string_data), "strings") # Normal cases res = sf.filter_by(SArray(self.int_data), "ints") self.__assert_join_results_equal(res, sf) res = sf.filter_by(SArray(self.int_data), "ints", exclude=True) self.assertEquals(list(res), []) res = sf.filter_by([5,6], "ints") exp = SFrame() exp.add_column(SArray(self.int_data[4:6]), "ints") exp.add_column(SArray(self.float_data[4:6]), "floats") exp.add_column(SArray(self.string_data[4:6]), "strings") self.__assert_join_results_equal(res, exp) exp_opposite = SFrame() exp_opposite.add_column(SArray(self.int_data[:4]+self.int_data[6:]), "ints") exp_opposite.add_column(SArray(self.float_data[:4]+self.float_data[6:]), "floats") exp_opposite.add_column(SArray(self.string_data[:4]+self.string_data[6:]), "strings") res = sf.filter_by([5,6], "ints", exclude=True) self.__assert_join_results_equal(res, exp_opposite) exp_one = SFrame() exp_one.add_column(SArray(self.int_data[4:5]), "ints") exp_one.add_column(SArray(self.float_data[4:5]), "floats") exp_one.add_column(SArray(self.string_data[4:5]), "strings") exp_all_but_one = SFrame() exp_all_but_one.add_column(SArray(self.int_data[:4]+self.int_data[5:]), "ints") exp_all_but_one.add_column(SArray(self.float_data[:4]+self.float_data[5:]), "floats") exp_all_but_one.add_column(SArray(self.string_data[:4]+self.string_data[5:]), "strings") res = sf.filter_by(5, "ints") self.__assert_join_results_equal(res, exp_one) res = sf.filter_by(5, "ints", exclude=True) self.__assert_join_results_equal(res, exp_all_but_one) res = sf.filter_by("5", "strings") self.__assert_join_results_equal(res, exp_one) res = sf.filter_by(5, "ints", exclude=True) self.__assert_join_results_equal(res, exp_all_but_one) # Only missing values res = sf.filter_by([77,77,88,88], "ints") # Test against empty SFrame with correct columns/types self.__assert_join_results_equal(res, exp_one[exp_one['ints'] == 9000]) res = sf.filter_by([77,77,88,88], "ints", exclude=True) self.__assert_join_results_equal(res, sf) # Duplicate values res = sf.filter_by([6,6,5,5,6,5,5,6,5,5,5], "ints") self.__assert_join_results_equal(res, exp) res = sf.filter_by([6,6,5,5,6,5,5,6,5,5,5], "ints", exclude=True) self.__assert_join_results_equal(res, exp_opposite) # Duplicate and missing res = sf.filter_by([11,12,46,6,6,55,5,5], "ints") self.__assert_join_results_equal(res, exp) res = sf.filter_by([11,12,46,6,6,55,5,5], "ints", exclude=True) self.__assert_join_results_equal(res, exp_opposite) # Type mismatch with self.assertRaises(TypeError): res = sf.filter_by(["hi"], "ints") # Column doesn't exist with self.assertRaises(KeyError): res = sf.filter_by([1,2], "intssss") # Something that can't be turned into an SArray with self.assertRaises(Exception): res = sf.filter_by({1:2,3:4}, "ints") # column_name not given as string with self.assertRaises(TypeError): res = sf.filter_by(1,2) # Duplicate column names after join. Should be last because of the # renames. sf.rename({'ints':'id','floats':'id1','strings':'id11'}) exp.rename({'ints':'id','floats':'id1','strings':'id11'}) exp_opposite.rename({'ints':'id','floats':'id1','strings':'id11'}) res = sf.filter_by([5,6], "id") self.__assert_join_results_equal(res, exp) res = sf.filter_by([5,6], "id", exclude=True) self.__assert_join_results_equal(res, exp_opposite) # XXXXXX: should be inner function def __test_to_from_dataframe(self, data, type): sf = SFrame() sf['a'] = data df = sf.to_dataframe() sf1 = SFrame(df) self.assertTrue(sf1.dtype()[0]== type) df = pd.DataFrame({'val': data}) sf1 = SFrame(df) self.assertTrue(sf1.dtype()[0]== type) def test_to_from_dataframe(self): self.__test_to_from_dataframe([1,2,3], int) self.__test_to_from_dataframe(['a', 'b', 'c'], str) self.__test_to_from_dataframe([1.0, 2.0, 3.0], float) self.__test_to_from_dataframe([[1, 'b', {'a': 1}], [1,2,3]], list) self.__test_to_from_dataframe([{'a':1, 1:None}, {'b':2}], dict) self.__test_to_from_dataframe([[1,2],[1,2],[]], array.array) def test_pack_columns_exception(self): sf = SFrame() sf['a'] = [1, 2, 3, None, None] sf['b'] = [None, '2', '3', None, '5'] sf['c'] = [None, 2.0, 3.0, None, 5.0] # cannot pack non array value into array with self.assertRaises(TypeError): sf.pack_columns(dtype=array.array) # cannnot given non numeric na vlaue to array with self.assertRaises(ValueError): sf.pack_columns(dtype=array.array, fill_na='c') # cannot pack non exist columns with self.assertRaises(ValueError): sf.pack_columns(['d','a']) # dtype has to be dict/array/list with self.assertRaises(ValueError): sf.pack_columns(dtype=str) # pack duplicate columns with self.assertRaises(ValueError): sf.pack_columns(['a','a']) # pack partial columns to array, should fail if for columns that are not numeric with self.assertRaises(TypeError): sf.pack_columns(['a','b'], dtype=array.array) with self.assertRaises(TypeError): sf.pack_columns(column_prefix = 1) with self.assertRaises(ValueError): sf.pack_columns(column_prefix = '1') with self.assertRaises(ValueError): sf.pack_columns(column_prefix = 'c', columns=['a', 'b']) def test_pack_columns2(self): sf = SFrame() sf['id'] = [1, 2, 3, 4] sf['category.a'] = [None, '2', '3', None] sf['category.b'] = [None, 2.0, None, 4.0] expected = SArray([ [None, None], ['2', 2.0], ['3', None], [None, 4.0]]) result = sf.pack_columns(column_prefix='category') self.assertEqual(result.column_names(), ['id', 'category']) self.__assert_sarray_equal(result['id'], sf['id']) self.__assert_sarray_equal(result['category'], expected) result = sf.pack_columns(column_prefix='category', new_column_name="new name") self.assertEqual(result.column_names(), ['id', 'new name']) self.__assert_sarray_equal(result['id'], sf['id']) self.__assert_sarray_equal(result['new name'], expected) # default dtype is list result = sf.pack_columns(column_prefix='category', dtype=list) self.assertEqual(result.column_names(), ['id', 'category']) self.__assert_sarray_equal(result['category'], expected) # remove prefix == True by default expected = SArray([ {}, {'a':'2', 'b':2.0}, {'a':'3'}, {'b':4.0} ]) result = sf.pack_columns(column_prefix='category', dtype=dict) self.__assert_sarray_equal(result['category'], expected) # remove prefix == False expected = SArray([ {}, {'category.a':'2', 'category.b':2.0}, {'category.a':'3'}, {'category.b':4.0} ]) result = sf.pack_columns(column_prefix='category', dtype=dict, remove_prefix=False) self.assertEqual(result.column_names(), ['id', 'category']) self.__assert_sarray_equal(result['category'], expected) # fill_na expected = SArray([ {'a':1, 'b':1}, {'a':'2', 'b':2.0}, {'a':'3', 'b':1}, {'a':1, 'b':4.0} ]) result = sf.pack_columns(column_prefix='category', dtype=dict, fill_na = 1) self.__assert_sarray_equal(result['category'], expected) expected = SArray([ [1], [2], [3], [4]], list) result = sf.pack_columns(['id'], new_column_name='id') self.assertEqual(sorted(result.column_names()), sorted(['id', 'category.a', 'category.b'])) self.__assert_sarray_equal(result['id'], expected) def test_pack_columns(self): sf = SFrame() sf['id'] = [1, 2, 3, 4, 5] sf['b'] = [None, '2', '3', None, '5'] sf['c'] = [None, 2.0, 3.0, None, 5.0] expected_all_default = SArray([ [1, None, None], [2, '2', 2.0], [3, '3', 3.0], [4, None, None], [5, '5', 5.0] ]) # pack all columns, all default values self.__assert_sarray_equal(sf.pack_columns()['X1'], expected_all_default) expected_ab_default = SArray([ [1, None], [2, '2'], [3, '3'], [4, None], [5, '5'] ]) expected_all_fillna_1 = SArray([ [1, -1, -1], [2, '2', 2.0], [3, '3', 3.0], [4, -1, -1], [5, '5', 5.0] ]) # pack all columns do not drop na and also fill with some value result = sf.pack_columns(fill_na=-1) self.assertEqual(result.column_names(), ['X1']) self.__assert_sarray_equal(result['X1'], expected_all_fillna_1) # pack partial columns, all default value result = sf.pack_columns(['id','b']) self.assertEqual(result.column_names(), ['c','X2']) self.__assert_sarray_equal(result['c'], sf['c']) self.__assert_sarray_equal(result['X2'], expected_ab_default) expected_sarray_ac_fillna_default = SArray([ [1, float('NaN')], [2, 2.0], [3, 3.0], [4, float('NaN')], [5, 5.0] ]) result = sf.pack_columns(['id','c'], dtype=array.array) self.assertEqual(result.column_names(), ['b', 'X2']) self.__assert_sarray_equal(result['b'], sf['b']) self.__assert_sarray_equal(result['X2'], expected_sarray_ac_fillna_default) expected_dict_default = SArray([ {'id': 1}, {'id': 2, 'b':'2', 'c': 2.0}, {'id': 3, 'b':'3', 'c': 3.0}, {'id':4 }, {'id':5, 'b':'5', 'c': 5.0} ]) result = sf.pack_columns(dtype=dict) self.__assert_sarray_equal(result['X1'], expected_dict_default) expected_dict_fillna = SArray([ {'id': 1, 'b':-1, 'c': -1}, {'id': 2, 'b':'2', 'c': 2.0}, {'id': 3, 'b':'3', 'c': 3.0}, {'id': 4, 'b':-1, 'c': -1}, {'id': 5, 'b':'5', 'c': 5.0} ]) result = sf.pack_columns(dtype=dict, fill_na=-1) self.__assert_sarray_equal(result['X1'], expected_dict_fillna) # pack large number of rows sf = SFrame() num_rows = 100000 sf['a'] = range(0, num_rows); sf['b'] = range(0, num_rows); result = sf.pack_columns(['a', 'b']); self.assertEqual(len(result), num_rows); def test_pack_columns_dtype(self): a = SFrame({'name':[-140500967,-1405039672],'data':[3,4]}) b = a.pack_columns(['name','data'],dtype=array.array) expected = SArray([[-140500967, 3],[-1405039672,4]]) self.__assert_sarray_equal(b['X1'], expected) def test_unpack_dict_mixtype(self): sf = SFrame({'a':[{'a':["haha", "hoho"]}, {'a':array.array('d', [1,2,3])}]}) sf = sf.unpack('a', column_name_prefix = '') self.assertEqual(sf['a'].dtype(), list) sf = SFrame({'a':[{'a':["haha", "hoho"]}, {'a':None}]}) sf = sf.unpack('a', column_name_prefix = '') self.assertEqual(sf['a'].dtype(), list) sa = SArray([{'a':array.array('d', [1,2,3])}, {'a':None}]) sf = sa.unpack(column_name_prefix = '') self.assertEqual(sf['a'].dtype(), array.array) sa = SArray([{'a':array.array('d', [1,2,3])}, {'a':{'b':1}}]) sf = sa.unpack(column_name_prefix = '') self.assertEqual(sf['a'].dtype(), str) sa = SArray([{'a': 1, 'b': 0.1}, {'a': 0.1, 'b': 1}]) sf = sa.unpack(column_name_prefix = '') self.assertEqual(sf['a'].dtype(), float) self.assertEqual(sf['b'].dtype(), float) def test_unpack_list(self): sa = SArray([ [1, None, None], [2, '2', 2.0], [3, '3', 3.0], [4, None, None], [5, '5', 5.0] ]) expected = SFrame() expected ['a'] = [1, 2, 3, 4, 5] expected ['b'] = [None, '2', '3', None, '5'] expected ['c'] = [None, 2.0, 3.0, None, 5.0] result = sa.unpack(); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) result = sa.unpack(column_name_prefix='ttt'); self.assertEqual(result.column_names(), ['ttt.0', 'ttt.1', 'ttt.2']) result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # column types result = sa.unpack(column_types=[int, str, float]); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # more column types result = sa.unpack(column_types=[int, str, float, int]); result.rename(dict(zip(result.column_names(), ['a','b','c','d']))) e = expected.select_columns(['a','b','c']) e.add_column(SArray([None for i in range(5)], int),'d') assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # less column types result = sa.unpack(column_types=[int, str]); result.rename(dict(zip(result.column_names(), ['a','b']))) e = expected.select_columns(['a','b']) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # fill na_value e = SFrame() e['a'] = [1, 2, None, 4, 5] e['b'] = [None, '2', '3', None, '5'] e['c'] = [None, 2.0, None, None, 5.0] result = sa.unpack(na_value=3); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # wrong length with self.assertRaises(TypeError): sa.unpack(column_name_prefix=['a','b']) # wrong type with self.assertRaises(RuntimeError): sa.unpack(column_types = [str, int, float]) # wrong limit types with self.assertRaises(TypeError): sa.unpack(limit=["1"]) # int array cannot be unpacked with self.assertRaises(TypeError): SArray([1,2,3,4]).unpack() # column name must be a string with self.assertRaises(TypeError): sa.unpack(1) # invalid column type with self.assertRaises(TypeError): sa.unpack(column_types = int) # invalid column type with self.assertRaises(TypeError): sa.unpack(column_types = [np.array]) # cannot infer type if no values with self.assertRaises(RuntimeError): SArray([], list).unpack() def test_unpack_array(self): import array sa = SArray([ array.array('d', [1, 1, 0]), array.array('d', [2, -1, 1]), array.array('d', [3, 3, 2]), array.array('d', [-1, 2, 3]), array.array('d', [5, 5, 4]) ]) expected = SFrame() expected ['a'] = [1.0, 2.0, 3.0, -1.0, 5.0] expected ['b'] = [1.0, -1.0, 3.0, 2.0, 5.0] expected ['c'] = [0.0, 1.0, 2.0, 3.0, 4.0] result = sa.unpack(); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # right amount column names result = sa.unpack(column_name_prefix = 'unpacked'); result.rename(dict(zip(result.column_names(), ['t.0', 't.1', 't.2']))) result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # column types result = sa.unpack(column_types=[int, str, float]); result.rename(dict(zip(result.column_names(), ['a','b','c']))) expected['a'] = expected['a'].astype(int) expected['b'] = expected['b'].astype(str) expected['c'] = expected['c'].astype(float) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # more column types result = sa.unpack(column_types=[int, str, float, int]); result.rename(dict(zip(result.column_names(), ['a','b','c','d']))) e = expected.select_columns(['a','b','c']) e.add_column(SArray([None for i in range(5)], int),'d') assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # less column types result = sa.unpack(column_types=[int, str]); result.rename(dict(zip(result.column_names(), ['a','b']))) e = expected.select_columns(['a','b']) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # fill na_value e = SFrame() e['a'] = SArray([1, 2, 3, None, 5], float) e['b'] = SArray([1, None, 3, 2, 5], float) e['c'] = SArray([0, 1, 2, 3, 4], float) result = sa.unpack(na_value=-1); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) def test_unpack_dict(self): sf = SFrame() sf["user_id"] = [1,2,3,4,5,6,7] sf["is_restaurant"] = [1, 1,0,0, 1, None, None] sf["is_retail"] = [None,1,1,None,1, None, None] sf["is_electronics"] = ["yes", "no","yes",None,"no", None, None] packed_sf = SFrame() packed_sf['user_id'] = sf['user_id'] packed_sf["category"] = [ {"is_restaurant": 1, "is_electronics": "yes"}, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, {"is_restaurant": 0, "is_retail": 1, "is_electronics": "yes"}, {"is_restaurant": 0 }, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, { }, None] with self.assertRaises(TypeError): packed_sf['user_id'].unpack() with self.assertRaises(TypeError): packed_sf['category'].unpack(1) with self.assertRaises(TypeError): packed_sf['category'].unpack(value_types = [int]) # unpack only one column expected_sf = SFrame() expected_sf["is_retail"] = sf["is_retail"] unpacked_sf = packed_sf['category'].unpack(limit=["is_retail"], column_types=[int], column_name_prefix=None) assert_frame_equal(unpacked_sf.to_dataframe(), expected_sf.to_dataframe()) # unpack all unpacked_sf = packed_sf['category'].unpack(column_name_prefix=None, column_types=[int, int, str], limit=["is_restaurant", "is_retail", "is_electronics"]) assert_frame_equal(unpacked_sf.to_dataframe(), sf[["is_restaurant", "is_retail", "is_electronics"]].to_dataframe()) # auto infer types, the column order may be different, so use order here before comparison unpacked_sf = packed_sf["category"].unpack() unpacked_sf.rename({ "X.is_restaurant": "is_restaurant", "X.is_retail": "is_retail", "X.is_electronics": "is_electronics" }) assert_frame_equal(unpacked_sf.to_dataframe().sort(axis=1), sf[["is_restaurant", "is_retail", "is_electronics"]].to_dataframe().sort(axis=1)) unpacked_sf = packed_sf["category"].unpack(na_value = 0, column_name_prefix="new") expected = SFrame() expected["new.is_restaurant"] = [1, 1,None,None, 1, None, None] expected["new.is_retail"] = [None,1,1,None,1, None, None] expected["new.is_electronics"] = ["yes", "no","yes",None,"no", None, None] assert_frame_equal(unpacked_sf.to_dataframe().sort(axis=1), expected.to_dataframe().sort(axis=1)) # unpack a dictionary key integer as key sa = SArray([ {1: 'a'}, {2: 'b'} ]) result = sa.unpack() expected = SFrame({'X.1':['a', None], 'X.2':[None, 'b']}) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) result = sa.unpack(limit=[2]) expected = SFrame({'X.2':[None, 'b']}) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) result = sa.unpack(limit=[2], column_name_prefix="expanded") expected = SFrame({'expanded.2':[None, 'b']}) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) sa = SArray([{i:i} for i in range(500)]) unpacked_sa = sa.unpack() self.assertEqual(len(unpacked_sa), len(sa)) i = 0 for v in unpacked_sa: for j in range(500): val = v['X.' + str(j)] if (j == i): self.assertEqual(val, i); else: self.assertEqual(val, None); i = i + 1 # if types don't agree, convert to string automatically sa = SArray([{'a':1},{'a': 'a_3'}]) sf = sa.unpack() self.assertEqual(sf.column_types(), [str]) sa = SArray([{'a':None}, {'a': 1}]) sf = sa.unpack() self.assertEqual(sf.column_types(), [int]) sa = SArray([{'a':1}, {'a': None}]) sf = sa.unpack() self.assertEqual(sf.column_types(), [int]) # type inferrence is already at server side even if limit is given sa = SArray([{'c'+str(i): i if i % 2 == 0 else 'v' + str(i)} for i in range(1000)]) unpacked = sa.unpack(limit=['c'+str(i) for i in range(10)], column_name_prefix="") for i in range(10): v = unpacked[i] for j in range(10): if (j != i): self.assertEqual(v['c'+str(j)], None) elif j % 2 == 0: self.assertEqual(v['c'+str(j)], j) else: self.assertEqual(v['c'+str(j)], 'v' + str(j)) def test_unpack_sframe(self): sf = SFrame() sf['user_id'] = range(7) sf["category"] = [ {"is_restaurant": 1, "is_electronics": "yes"}, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, {"is_restaurant": 0, "is_retail": 1, "is_electronics": "yes"}, {"is_restaurant": 0 }, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, { }, None] sf['list'] = [ None, range(1), range(2), range(3), range(1), range(2), range(3), ] with self.assertRaises(TypeError): sf.unpack('user_id') expected = SFrame() expected['user_id'] = sf['user_id'] expected['list'] = sf['list'] expected["is_restaurant"] = [1, 1,0,0, 1, None, None] expected["is_retail"] = [None,1,1,None,1, None, None] expected["is_electronics"] = ["yes", "no","yes",None,"no", None, None] result = sf.unpack('category') result.rename({ 'category.is_restaurant': 'is_restaurant', 'category.is_retail': 'is_retail', 'category.is_electronics': 'is_electronics' }) assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="") assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="abc") result.rename({ 'abc.is_restaurant': 'is_restaurant', 'abc.is_retail': 'is_retail', 'abc.is_electronics': 'is_electronics' }) assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="", column_types=[str], limit=['is_restaurant']) new_expected = expected[['user_id', 'list', 'is_restaurant']] new_expected['is_restaurant'] = new_expected['is_restaurant'].astype(str) assert_frame_equal(new_expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="", na_value = None) assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='list') expected = SFrame() expected['user_id'] = sf['user_id'] expected['list.0'] = [None,0,0,0, 0,0,0] expected['list.1'] = [None,None,1,1, None,1,1] expected['list.2'] = [None,None,None,2, None, None,2] expected['category'] = sf['category'] assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='list', na_value= 2) expected = SFrame() expected['user_id'] = sf['user_id'] expected['list.0'] = [None,0,0,0, 0,0,0] expected['list.1'] = [None,None,1,1, None,1,1] expected['list.2'] = [None,None,None,None, None, None,None] expected['category'] = sf['category'] assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) # auto resolving conflicting names sf = SFrame() sf['a'] = range(100) sf['b'] = [range(5) for i in range(100)] sf['b.0'] = range(100) sf['b.0.1'] = range(100) result = sf.unpack('b') self.assertEqual(result.column_names(), ['a', 'b.0', 'b.0.1', 'b.0.1.1', 'b.1.1.1', 'b.2.1.1', 'b.3.1.1', 'b.4.1.1']) sf = SFrame() sf['a'] = range(100) sf['b'] = [{'str1': i, 'str2':i + 1} for i in range(100)] sf['b.str1'] = range(100) result = sf.unpack('b') self.assertEqual(len(result.column_names()), 4) def test_stack_dict(self): sf = SFrame() sf["user_id"] = [1,2,3,4,5] sf["user_name"] = ['user' + str(i) for i in list(sf['user_id'])] sf["category"] = [ {"is_restaurant": 1, }, {"is_restaurant": 0, "is_retail": 1 }, { "is_retail": 0 }, {}, None] expected_sf = SFrame(); expected_sf["user_id"] = [1,2, 2, 3,4,5] expected_sf["user_name"] = ['user' + str(i) for i in list(expected_sf['user_id'])] expected_sf['category'] = ['is_restaurant', 'is_restaurant', 'is_retail', 'is_retail', None, None] expected_sf['value'] = [1,0,1,0, None, None] df_expected = expected_sf.to_dataframe().sort(['user_id', 'category']).reset_index(drop=True) with self.assertRaises(TypeError): sf.stack() with self.assertRaises(ValueError): sf.stack('sss') with self.assertRaises(ValueError): sf.stack('category', ['user_id', 'value']) # normal case stacked_sf = sf.stack('category', ['category', 'value']) assert_frame_equal(stacked_sf.to_dataframe().sort(["user_id", "category"]).reset_index(drop=True), df_expected) # set column types stacked_sf = sf.stack('category') self.assertTrue(stacked_sf.column_types()[2] == str) self.assertTrue(stacked_sf.column_types()[3] == int) # auto generate column names stacked_sf = sf.stack('category') new_column_names = stacked_sf.column_names() self.assertTrue(len(new_column_names) == 4) expected_sf.rename({'category':new_column_names[2], 'value':new_column_names[3]}) df_expected = expected_sf.to_dataframe().sort(['user_id', new_column_names[2]]).reset_index(drop=True) assert_frame_equal(stacked_sf.to_dataframe().sort(["user_id", new_column_names[2]]).reset_index(drop=True), df_expected) #dropna expected_sf = SFrame(); expected_sf["user_id"] = [1,2, 2, 3, 4, 5] expected_sf["user_name"] = ['user' + str(i) for i in list(expected_sf['user_id'])] expected_sf['category'] = ['is_restaurant', 'is_restaurant', 'is_retail', 'is_retail', None, None] expected_sf['value'] = [1,0,1,0, None, None] df_expected = expected_sf.to_dataframe().sort(['user_id', 'category']).reset_index(drop=True) stacked_sf = sf.stack('category', ['category','value'], drop_na = False) assert_frame_equal(stacked_sf.to_dataframe().sort(["user_id", "category"]).reset_index(drop=True), df_expected) sf = SFrame() sf['a'] = SArray(([{}] * 100) + [{'a':1}]) # its a dict need 2 types with self.assertRaises(ValueError): sf.stack('a',['key', 'value'], new_column_type=[str]) with self.assertRaises(ValueError): sf.stack('a',['key', 'value'], new_column_type=str) sf.stack('a',['key', 'value'], new_column_type=[str, int]) expected_sf = SFrame() expected_sf['key'] = SArray([None] * 100 + ["a"]) expected_sf['value'] = SArray([None] * 100 + [1]) def test_stack_list(self): sf = SFrame() sf["a"] = [1,2,3,4,5] sf["b"] = [['a', 'b'], ['c'], ['d'],['e', None], None] expected_result = SFrame() expected_result['a'] = [1,1,2,3,4,4,5] expected_result['X1'] = ['a','b','c','d','e',None, None] with self.assertRaises(TypeError): sf.stack() with self.assertRaises(ValueError): sf.stack('sss') with self.assertRaises(TypeError): sf.stack('a') with self.assertRaises(TypeError): sf.stack('b', ["something"]) result = sf.stack("b", drop_na = False) stacked_column_name = result.column_names()[1] expected_result.rename({'X1':stacked_column_name}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # default drop_na=False result = sf.stack("b") assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) expected_result.rename({stacked_column_name: 'b'}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # drop_na=True result = sf.stack("b", drop_na = True) expected_result = SFrame() expected_result['a'] = [1,1,2,3,4,4] expected_result[result.column_names()[1]] = ['a','b','c','d','e',None] assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) sf = SFrame() n = 1000000 sf['a'] = range(1,n) sf['b'] = [[str(i), str(i+1)] for i in range(1,n)] result = sf.stack('b') self.assertTrue(len(result), n * 2) sf = SFrame() sf['a'] = SArray(([[]] * 100) + [['a','b']]) # its a dict need 2 types with self.assertRaises(ValueError): sf.stack('a', 'a', new_column_type=[str, int]) sf.stack('a', 'a', new_column_type=str) expected_sf = SFrame() expected_sf['a'] = SArray([None] * 100 + ["a", "b"]) def test_stack_vector(self): sf = SFrame() sf["a"] = [1,2,3,4,5] sf["b"] = [[1],[1,2],[1,2,3],[1,2,3,4],None] expected_result = SFrame() expected_result['a'] = [1,2,2,3,3,3,4,4,4,4,5] expected_result['X1'] = [1,1,2,1,2,3,1,2,3,4,None] with self.assertRaises(TypeError): sf.stack() with self.assertRaises(ValueError): sf.stack('sss') with self.assertRaises(TypeError): sf.stack('a') with self.assertRaises(TypeError): sf.stack('b', ["something"]) result = sf.stack("b", drop_na = False) stacked_column_name = result.column_names()[1] expected_result.rename({'X1':stacked_column_name}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # default drop_na=False result = sf.stack("b") assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) expected_result.rename({stacked_column_name: 'b'}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # drop_na=True result = sf.stack("b", drop_na = True) expected_result = SFrame() expected_result['a'] = [1,2,2,3,3,3,4,4,4,4] expected_result[result.column_names()[1]] = SArray([1,1,2,1,2,3,1,2,3,4], float) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) import array sf = SFrame() sf['a'] = SArray(([array.array('d')] * 100) + [array.array('d',[1.0,2.0])]) # its a dict need 2 types with self.assertRaises(ValueError): sf.stack('a', 'a', new_column_type=[str, int]) sf.stack('a', 'a', new_column_type=int) expected_sf = SFrame() expected_sf['a'] = SArray([None] * 100 + [1, 2]) def test_unstack_dict(self): sf = SFrame() sf["user_id"] = [1,2,3,4] sf["user_name"] = ['user' + str(i) for i in list(sf['user_id'])] sf["categories"] = [ {"is_restaurant": 1, }, {"is_restaurant": 0, "is_retail": 1 }, { "is_retail": 0 }, None] stacked_sf = sf.stack('categories', ['category', 'value'], drop_na=False) # normal unstack unstacked_sf = stacked_sf.unstack(column=['category', 'value'], new_column_name = 'categories') # these frames are *almost* equal except user4 will be {} instead of None assert_frame_equal(sf.fillna('categories',{}).to_dataframe(), unstacked_sf.to_dataframe().sort("user_id").reset_index(drop=True)) # missing new column name unstacked_sf = stacked_sf.unstack(['category', 'value']) self.assertEqual(len(unstacked_sf.column_names()), 3) unstacked_sf.rename({unstacked_sf.column_names()[2] : 'categories'}) assert_frame_equal(sf.fillna('categories',{}).to_dataframe(), unstacked_sf.to_dataframe().sort("user_id").reset_index(drop=True)) # missing column names with self.assertRaises(KeyError): stacked_sf.unstack(['category','value1']) # wrong input with self.assertRaises(TypeError): stacked_sf.unstack(['category']) # duplicate new column name with self.assertRaises(RuntimeError): unstacked_sf = stacked_sf.unstack(['category', 'value'], 'user_name') def test_unstack_list(self): sf = SFrame() sf['a'] = [1,2,3,4] sf['b'] = [range(10), range(20), range(30), range(50)] stacked_sf = sf.stack('b', new_column_name = 'new_b') unstacked_sf = stacked_sf.unstack('new_b', new_column_name = 'b') self.__assert_concat_result_equal(sf.sort('a'), unstacked_sf.sort('a'), ['b']) unstacked_sf = stacked_sf.unstack('new_b') unstacked_sf.rename({unstacked_sf.column_names()[1]: 'b'}) self.__assert_concat_result_equal(sf.sort('a'), unstacked_sf.sort('a'), ['b']) unstacked_sf = stacked_sf.unstack('new_b', new_column_name='b') unstacked_sf.rename({unstacked_sf.column_names()[1]: 'b'}) self.__assert_concat_result_equal(sf.sort('a'), unstacked_sf.sort('a'), ['b']) with self.assertRaises(RuntimeError): stacked_sf.unstack('new_b', new_column_name='a') with self.assertRaises(TypeError): stacked_sf.unstack(['new_b']) with self.assertRaises(KeyError): stacked_sf.unstack('non exist') def test_content_identifier(self): sf = SFrame({"a":[1,2,3,4],"b":["1","2","3","4"]}) a1 = sf['a'].__get_content_identifier__() a2 = sf['a'].__get_content_identifier__() self.assertEquals(a1, a2) def test_random_access(self): t1 = list(range(0,100000)) t2 = [str(i) for i in t1] t = [{'t1':t1[i], 't2':t2[i]} for i in range(len(t1))]; s = SFrame({'t1':t1,'t2':t2}) # simple slices self.__test_equal(s[1:10000], pd.DataFrame(t[1:10000])) self.__test_equal(s[0:10000:3], pd.DataFrame(t[0:10000:3])) self.__test_equal(s[1:10000:3], pd.DataFrame(t[1:10000:3])) self.__test_equal(s[2:10000:3], pd.DataFrame(t[2:10000:3])) self.__test_equal(s[3:10000:101], pd.DataFrame(t[3:10000:101])) # negative slices self.__test_equal(s[-5:], pd.DataFrame(t[-5:])) self.__test_equal(s[-1:], pd.DataFrame(t[-1:])) self.__test_equal(s[-100:-10], pd.DataFrame(t[-100:-10])) self.__test_equal(s[-100:-10:2], pd.DataFrame(t[-100:-10:2])) # single element reads self.assertEqual(s[511], t[511]) self.assertEqual(s[1912],t[1912]) self.assertEqual(s[-1], t[-1]) self.assertEqual(s[-10],t[-10]) # edge case odities self.__test_equal(s[10:100:100], pd.DataFrame(t[10:100:100])) self.__test_equal(s[-100:len(s):10], pd.DataFrame(t[-100:len(t):10])) self.assertEqual(len(s[-1:-2]), 0) self.assertEqual(len(s[-1:-1000:2]), 0) with self.assertRaises(IndexError): s[len(s)] def sort_n_rows(self, nrows=100): nrows += 1 sf = SFrame() sf['a'] = range(1, nrows) sf['b'] = [float(i) for i in range(1,nrows)] sf['c'] = [str(i) for i in range(1,nrows)] sf['d'] = [[i, i+1] for i in range(1,nrows)] reversed_sf = SFrame() reversed_sf['a'] = range(nrows-1, 0, -1) reversed_sf['b'] = [float(i) for i in range(nrows-1, 0, -1)] reversed_sf['c'] = [str(i) for i in range(nrows-1, 0, -1)] reversed_sf['d'] = [[i, i+1] for i in range(nrows-1, 0, -1)] with self.assertRaises(TypeError): sf.sort() with self.assertRaises(TypeError): sf.sort(1) with self.assertRaises(TypeError): sf.sort("d") with self.assertRaises(ValueError): sf.sort("nonexist") with self.assertRaises(TypeError): sf.sort({'a':True}) result = sf.sort('a') assert_frame_equal(sf.to_dataframe(), result.to_dataframe()); # try a lazy input result = sf[sf['a'] > 10].sort('a') assert_frame_equal(sf[sf['a'] > 10].to_dataframe(), result.to_dataframe()); result = sf.sort('a', ascending = False) assert_frame_equal(reversed_sf.to_dataframe(), result.to_dataframe()); # lazy reversed result = sf[sf['a'] > 10].sort('a', ascending = False) assert_frame_equal(reversed_sf[reversed_sf['a'] > 10].to_dataframe(), result.to_dataframe()); # lazy reversed result = sf[sf['a'] > 10].sort('a', ascending = False) assert_frame_equal(reversed_sf[reversed_sf['a'] > 10].to_dataframe(), result.to_dataframe()); # sort two columns result = sf.sort(['a', 'b']) assert_frame_equal(sf.to_dataframe(), result.to_dataframe()); result = sf.sort(['a', 'c'], ascending = False) assert_frame_equal(reversed_sf.to_dataframe(), result.to_dataframe()); result = sf.sort([('a', True), ('b', False)]) assert_frame_equal(sf.to_dataframe(), result.to_dataframe()); result = sf.sort([('a', False), ('b', True)]) assert_frame_equal(reversed_sf.to_dataframe(), result.to_dataframe()); # empty sort should not throw sf = SFrame({'x':[]}) sf.sort('x') def test_sort(self): #self.sort_n_rows(100) for i in range(1, 10): self.sort_n_rows(i) def test_dropna(self): # empty case sf = SFrame() self.assertEquals(len(sf.dropna()), 0) # normal case self.__test_equal(self.employees_sf.dropna(), self.employees_sf[0:5].to_dataframe()) test_split = self.employees_sf.dropna_split() self.__test_equal(test_split[0], self.employees_sf[0:5].to_dataframe()) self.__test_equal(test_split[1], self.employees_sf[5:6].to_dataframe()) # create some other test sframe test_sf = SFrame({'ints':SArray([None,None,3,4,None], int), 'floats':SArray([np.nan,2.,3.,4.,np.nan],float), 'strs':SArray(['1',np.nan,'','4',None], str), 'lists':SArray([[1],None,[],[1,1,1,1],None], list), 'dicts':SArray([{1:2},{2:3},{},{4:5},None], dict)}) # another normal, but more interesting case self.__test_equal(test_sf.dropna(), pd.DataFrame({'ints':[3,4],'floats':[3.,4.],'strs':['','4'],'lists':[[],[1,1,1,1]],'dicts':[{},{4:5}]})) test_split = test_sf.dropna_split() self.__test_equal(test_split[0], test_sf[2:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[0:2].append(test_sf[4:5]).to_dataframe()) # the 'all' case self.__test_equal(test_sf.dropna(how='all'), test_sf[0:4].to_dataframe()) test_split = test_sf.dropna_split(how='all') self.__test_equal(test_split[0], test_sf[0:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[4:5].to_dataframe()) # select some columns self.__test_equal(test_sf.dropna(['ints','floats'], how='all'), test_sf[1:4].to_dataframe()) test_split = test_sf.dropna_split(['ints','floats'], how='all') self.__test_equal(test_split[0], test_sf[1:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[0:1].append(test_sf[4:5]).to_dataframe()) self.__test_equal(test_sf.dropna('strs'), test_sf[0:4].to_dataframe()) test_split = test_sf.dropna_split('strs') self.__test_equal(test_split[0], test_sf[0:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[4:5].to_dataframe()) self.__test_equal(test_sf.dropna(['strs','dicts']), test_sf[0:4].to_dataframe()) test_split = test_sf.dropna_split(['strs','dicts']) self.__test_equal(test_split[0], test_sf[0:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[4:5].to_dataframe()) # bad stuff with self.assertRaises(TypeError): test_sf.dropna(1) test_sf.dropna([1,2]) test_sf.dropna('strs', how=1) test_sf.dropna_split(1) test_sf.dropna_split([1,2]) test_sf.dropna_split('strs', how=1) with self.assertRaises(ValueError): test_sf.dropna('ints', how='blah') test_sf.dropna_split('ints', how='blah') with self.assertRaises(RuntimeError): test_sf.dropna('dontexist') test_sf.dropna_split('dontexist') def test_add_row_number(self): sf = SFrame(self.__create_test_df(400000)) sf = sf.add_row_number('id') self.assertEquals(list(sf['id']), list(range(0,400000))) del sf['id'] sf = sf.add_row_number('id', -20000) self.assertEquals(list(sf['id']), list(range(-20000,380000))) del sf['id'] sf = sf.add_row_number('id', 40000) self.assertEquals(list(sf['id']), list(range(40000,440000))) with self.assertRaises(RuntimeError): sf.add_row_number('id') with self.assertRaises(TypeError): sf = sf.add_row_number(46) sf = sf.add_row_number('id2',start='hi') def test_check_lazy_sframe_size(self): # empty sframe, materialized, has_size sf = SFrame() self.assertTrue(sf.__is_materialized__()) self.assertTrue(sf.__has_size__()) # add one column, not materialized, has_size sf['a'] = range(1000) self.assertTrue(sf.__is_materialized__()) self.assertTrue(sf.__has_size__()) # materialize it, materialized, has_size sf['a'] = range(1000) sf.__materialize__() self.assertTrue(sf.__is_materialized__()) self.assertTrue(sf.__has_size__()) # logical filter, not materialized, not has_size sf = sf[sf['a'] > 5000] self.assertFalse(sf.__is_materialized__()) self.assertFalse(sf.__has_size__()) def test_lazy_logical_filter_sarray(self): g=SArray(range(10000)) g2=SArray(range(10000)) a=g[g>10] a2=g2[g>10] z=a[a2>20] self.assertEqual(len(z), 9979) def test_lazy_logical_filter_sframe(self): g=SFrame({'a':range(10000)}) g2=SFrame({'a':range(10000)}) a=g[g['a']>10] a2=g2[g['a']>10] z=a[a2['a']>20] self.assertEqual(len(z), 9979) def test_sframe_to_rdd(self): if not HAS_PYSPARK: print("Did not run Pyspark unit tests!") return sc = SparkContext('local') # Easiest case: single column of integers test_rdd = sc.parallelize(range(100)) sf = SFrame.from_rdd(test_rdd) self.assertTrue(sf.num_cols(), 1) self.assertTrue(sf.column_names(), ['X1']) # We cast integers to floats to be safe on varying types self.assertEquals([float(i) for i in range(0,100)], list(sf['X1'])) sc.stop() def test_rdd_to_sframe(self): if not HAS_PYSPARK: print("Did not run Pyspark unit tests!") return sc = SparkContext('local') # Easiest case: single column of integers sf = SFrame({'column_name':range(100)}) test_rdd = sf.to_rdd(sc) res = test_rdd.collect() self.assertEquals(res, [{'column_name':long(i)} for i in range(100)]) sc.stop() def test_column_manipulation_of_lazy_sframe(self): g=SFrame({'a':[1,2,3,4,5],'id':[1,2,3,4,5]}) g = g[g['id'] > 2] del g['id'] # if lazy column deletion is quirky, this will cause an exception self.assertEquals(list(g[0:2]['a']), [3,4]) g=SFrame({'a':[1,2,3,4,5],'id':[1,2,3,4,5]}) g = g[g['id'] > 2] g.swap_columns('a','id') # if lazy column swap is quirky, this will cause an exception self.assertEquals(list(g[0:2]['a']), [3,4]) def test_empty_sarray(self): with util.TempDirectory() as f: sf = SArray() sf.save(f) sf2 = SArray(f) self.assertEquals(len(sf2), 0) def test_empty_sframe(self): with util.TempDirectory() as f: sf = SFrame() sf.save(f) sf2 = SFrame(f) self.assertEquals(len(sf2), 0) self.assertEquals(sf2.num_columns(), 0) def test_none_column(self): sf = SFrame({'a':[1,2,3,4,5]}) sf['b'] = None self.assertEqual(sf['b'].dtype(), float) df = pd.DataFrame({'a': [1,2,3,4,5], 'b': [None,None,None,None,None]}) self.__test_equal(sf, df) sa = SArray.from_const(None, 100) self.assertEquals(list(sa), [None] * 100) self.assertEqual(sa.dtype(), float) def test_apply_with_partial(self): sf = SFrame({'a': [1, 2, 3, 4, 5]}) def concat_fn(character, row): return '%s%d' % (character, row['a']) my_partial_fn = functools.partial(concat_fn, 'x') sa = sf.apply(my_partial_fn) self.assertEqual(list(sa), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_apply_with_functor(self): sf = SFrame({'a': [1, 2, 3, 4, 5]}) class Concatenator(object): def __init__(self, character): self.character = character def __call__(self, row): return '%s%d' % (self.character, row['a']) concatenator = Concatenator('x') sa = sf.apply(concatenator) self.assertEqual(list(sa), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_save_sframe(self): '''save lazily evaluated SFrame should not matrialize to target folder ''' data = SFrame() data['x'] = range(100) data['x'] = data['x'] > 50 #lazy and good tmp_dir = tempfile.mkdtemp() data.save(tmp_dir) shutil.rmtree(tmp_dir) print(data) def test_empty_argmax_does_not_fail(self): # an empty argmax should not result in a crash sf = SFrame({'id': [0, 0, 0, 1, 1, 2, 2], 'value': [3.0, 2.0, 2.3, None, None, 4.3, 1.3], 'category': ['A', 'B', 'A', 'E', 'A', 'A', 'B']}) sf.groupby('id', aggregate.ARGMAX('value', 'category')) def test_cache_invalidation(self): # Changes to the SFrame should invalidate the indexing cache. X = SFrame({'a' : range(4000), 'b' : range(4000)}) for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : i, 'b' : i}) X['a'] = range(1000, 5000) for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i, 'b' : i}) del X['b'] for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i}) X['b'] = X['a'] for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i, 'b' : 1000 + i}) X.rename({'b' : 'c'}) for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i, 'c' : 1000 + i}) def test_to_numpy(self): X = SFrame({'a' : range(100), 'b' : range(100)}) import numpy as np import numpy.testing as nptest Y = np.transpose(np.array([range(100), range(100)])) nptest.assert_array_equal(X.to_numpy(), Y) X['b'] = X['b'].astype(str) s = [str(i) for i in range(100)] Y = np.transpose(np.array([s, s])) nptest.assert_array_equal(X.to_numpy(), Y) @mock.patch(__name__+'.sqlite3.Cursor', spec=True) @mock.patch(__name__+'.sqlite3.Connection', spec=True) def test_from_sql(self, mock_conn, mock_cursor): # Set up mock connection and cursor conn = mock_conn('example.db') curs = mock_cursor() conn.cursor.return_value = curs sf_type_codes = [44,44,41,22,114,199,43] sf_data = list(zip(*self.all_type_cols)) sf_iter = sf_data.__iter__() def mock_fetchone(): try: return next(sf_iter) except StopIteration: return None def mock_fetchmany(size=1): count = 0 ret_list = [] for i in sf_iter: if count == curs.arraysize: break ret_list.append(i) count += 1 return ret_list curs.fetchone.side_effect = mock_fetchone curs.fetchmany.side_effect = mock_fetchmany curs.description = [['X'+str(i+1),sf_type_codes[i]]+[None for j in range(5)] for i in range(len(sf_data[0]))] # bigger than cache, no Nones sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock()) _assert_sframe_equal(sf, self.sf_all_types) # smaller than cache, no Nones sf_iter = sf_data.__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=100, dbapi_module=dbapi2_mock()) _assert_sframe_equal(sf, self.sf_all_types) none_col = [None for i in range(5)] nones_in_cache = list(zip(*[none_col for i in range(len(sf_data[0]))])) none_sf = SFrame({'X'+str(i):none_col for i in range(1,len(sf_data[0])+1)}) test_data = (nones_in_cache+sf_data) sf_iter = test_data.__iter__() # more None rows than cache & types in description sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock()) sf_inferred_types = SFrame() expected_types = [float,float,str,str,str,str,dt.datetime] for i in zip(self.sf_all_types.column_names(),expected_types): new_col = SArray(none_col).astype(i[1]) new_col = new_col.append(self.sf_all_types[i[0]].apply(lambda x: i[1](x) if i[1] is not dt.datetime else x)) sf_inferred_types.add_column(new_col) # Don't test the string representation of dict and list; there are # funky consistency issues with the string representations of these sf.remove_columns(['X5', 'X6']) sf_inferred_types.remove_columns(['X5', 'X6']) _assert_sframe_equal(sf, sf_inferred_types) # more None rows than cache & no type information for i in range(len(curs.description)): curs.description[i][1] = None sf_iter = test_data.__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock()) sf_inferred_types = SFrame() expected_types = [str for i in range(len(sf_data[0]))] for i in zip(self.sf_all_types.column_names(),expected_types): new_col = SArray(none_col).astype(i[1]) new_col = new_col.append(self.sf_all_types[i[0]].apply(lambda x: str(x))) sf_inferred_types.add_column(new_col) # Don't test the string representation of dict, could be out of order sf.remove_columns(['X5', 'X6']) sf_inferred_types.remove_columns(['X5', 'X6']) _assert_sframe_equal(sf, sf_inferred_types) ### column_type_hints tests sf_iter = test_data.__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock(), column_type_hints=str) sf.remove_columns(['X5', 'X6']) _assert_sframe_equal(sf, sf_inferred_types) # Provide unhintable types sf_iter = test_data.__iter__() expected_types = [int,float,str,array.array,list,dict,dt.datetime] with self.assertRaises(TypeError): sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock(), column_type_hints=expected_types) sf_iter = test_data.__iter__() expected_types = {'X'+str(i+1):expected_types[i] for i in range(3)} sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=10, dbapi_module=dbapi2_mock(), column_type_hints=expected_types) _assert_sframe_equal(sf[5:],self.sf_all_types) # Test a float forced to a str sf_iter = test_data.__iter__() expected_types['X2'] = str self.sf_all_types['X2'] = self.sf_all_types['X2'].apply(lambda x: str(x)) sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=10, dbapi_module=dbapi2_mock(), column_type_hints=expected_types) _assert_sframe_equal(sf[5:],self.sf_all_types) # Type unsupported by sframe curs.description = [['X1',44],['X2',44]] sf_iter = [[complex(4.5,3),1], [complex(3.4,5),2]].__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table") expected_sf = SFrame({'X1':["(4.5+3j)","(3.4+5j)"],'X2':[1,2]}) _assert_sframe_equal(sf, expected_sf) # bad DBAPI version! bad_version = dbapi2_mock() bad_version.apilevel = "1.0 " with self.assertRaises(NotImplementedError): sf = SFrame.from_sql(conn, "SELECT * FROM test_table", dbapi_module=bad_version) # Bad module with self.assertRaises(AttributeError): sf = SFrame.from_sql(conn, "SELECT * FROM test_table", dbapi_module=os) # Bad connection with self.assertRaises(AttributeError): sf = SFrame.from_sql(4, "SELECT * FROM test_table") # Empty query result curs.description = [] sf = SFrame.from_sql(conn, "SELECT * FROM test_table", dbapi_module=dbapi2_mock()) _assert_sframe_equal(sf, SFrame()) @mock.patch(__name__+'.sqlite3.Cursor', spec=True) @mock.patch(__name__+'.sqlite3.Connection', spec=True) def test_to_sql(self, mock_conn, mock_cursor): conn = mock_conn('example.db') curs = mock_cursor() insert_stmt = "INSERT INTO ins_test (X1,X2,X3,X4,X5,X6,X7) VALUES ({0},{1},{2},{3},{4},{5},{6})" num_cols = len(self.sf_all_types.column_names()) test_cases = [ ('qmark',insert_stmt.format(*['?' for i in range(num_cols)])), ('numeric',insert_stmt.format(*[':'+str(i) for i in range(1,num_cols+1)])), ('named',insert_stmt.format(*[':X'+str(i) for i in range(1,num_cols+1)])), ('format',insert_stmt.format(*['%s' for i in range(num_cols)])), ('pyformat',insert_stmt.format(*['%(X'+str(i)+')s' for i in range(1,num_cols+1)])), ] for i in test_cases: conn.cursor.return_value = curs mock_mod = dbapi2_mock() mock_mod.paramstyle = i[0] self.sf_all_types.to_sql(conn, "ins_test", dbapi_module=mock_mod) conn.cursor.assert_called_once_with() calls = [] col_names = self.sf_all_types.column_names() for j in self.sf_all_types: if i[0] == 'named' or i[0] == 'pyformat': calls.append(mock.call(i[1],j)) else: calls.append(mock.call(i[1],[j[k] for k in col_names])) curs.execute.assert_has_calls(calls, any_order=False) self.assertEquals(curs.execute.call_count, len(self.sf_all_types)) conn.commit.assert_called_once_with() curs.close.assert_called_once_with() conn.reset_mock() curs.reset_mock() # bad DBAPI version! bad_version = dbapi2_mock() bad_version.apilevel = "1.0 " with self.assertRaises(NotImplementedError): self.sf_all_types.to_sql(conn, "ins_test", dbapi_module=bad_version) # bad paramstyle bad_paramstyle = dbapi2_mock() bad_paramstyle.paramstyle = 'foo' with self.assertRaises(TypeError): self.sf_all_types.to_sql(conn, "ins_test", dbapi_module=bad_paramstyle) def test_materialize(self): sf = SFrame({'a':range(100)}) sf = sf[sf['a'] > 10] self.assertFalse(sf.is_materialized()) sf.materialize() self.assertTrue(sf.is_materialized()) def test_materialization_slicing(self): # Has been known to fail. g=SFrame({'a':range(100)})[:10] g['b'] = g['a'] + 1 g['b'].materialize() g.materialize() def test_copy(self): from copy import copy sf = generate_random_sframe(100, "Cns") sf_copy = copy(sf) assert sf is not sf_copy _assert_sframe_equal(sf, sf_copy) def test_deepcopy(self): from copy import deepcopy sf = generate_random_sframe(100, "Cns") sf_copy = deepcopy(sf) assert sf is not sf_copy _assert_sframe_equal(sf, sf_copy) if __name__ == "__main__": import sys # Check if we are supposed to connect to another server for i, v in enumerate(sys.argv): if v.startswith("ipc://"): _launch(v) # The rest of the arguments need to get passed through to # the unittest module del sys.argv[i] break unittest.main()
bsd-3-clause
ishay2b/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimators_test.py
23
5276
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom optimizer tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split from tensorflow.python.framework import constant_op from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.training import momentum as momentum_lib class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "transformed_x": constant_op.constant([9.]) }, { "transformed_y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["transformed_x"] loss = constant_op.constant([2.]) update_global_step = variables.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={"label": metric_spec.MetricSpec(lambda predictions, labels: labels)}) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testNoneFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "x": constant_op.constant([9.]) }, { "y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = variables.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator_with_fe_fn = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=1) estimator_without_fe_fn = estimator_lib.Estimator(model_fn=model_fn) estimator_without_fe_fn.fit(input_fn=input_fn, steps=1) # predictions = x prediction_with_fe_fn = next( estimator_with_fe_fn.predict( input_fn=input_fn, as_iterable=True)) self.assertEqual(9., prediction_with_fe_fn) prediction_without_fe_fn = next( estimator_without_fe_fn.predict( input_fn=input_fn, as_iterable=True)) self.assertEqual(1., prediction_without_fe_fn) class CustomOptimizer(test.TestCase): """Custom optimizer tests.""" def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) def custom_optimizer(): return momentum_lib.MomentumOptimizer(learning_rate=0.01, momentum=0.9) classifier = learn.DNNClassifier( hidden_units=[10, 20, 10], feature_columns=learn.infer_real_valued_columns_from_input(x_train), n_classes=3, optimizer=custom_optimizer, config=learn.RunConfig(tf_random_seed=1)) classifier.fit(x_train, y_train, steps=400) predictions = np.array(list(classifier.predict_classes(x_test))) score = accuracy_score(y_test, predictions) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
iproduct/course-social-robotics
11-dnn-keras/venv/Lib/site-packages/pandas/tests/extension/base/methods.py
1
18343
import operator import numpy as np import pytest from pandas.core.dtypes.common import is_bool_dtype import pandas as pd import pandas._testing as tm from pandas.core.sorting import nargsort from .base import BaseExtensionTests class BaseMethodsTests(BaseExtensionTests): """Various Series and DataFrame methods.""" @pytest.mark.parametrize("dropna", [True, False]) def test_value_counts(self, all_data, dropna): all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Series(all_data).value_counts(dropna=dropna).sort_index() expected = pd.Series(other).value_counts(dropna=dropna).sort_index() self.assert_series_equal(result, expected) def test_value_counts_with_normalize(self, data): # GH 33172 data = data[:10].unique() values = np.array(data[~data.isna()]) result = ( pd.Series(data, dtype=data.dtype).value_counts(normalize=True).sort_index() ) expected = pd.Series([1 / len(values)] * len(values), index=result.index) self.assert_series_equal(result, expected) def test_count(self, data_missing): df = pd.DataFrame({"A": data_missing}) result = df.count(axis="columns") expected = pd.Series([0, 1]) self.assert_series_equal(result, expected) def test_series_count(self, data_missing): # GH#26835 ser = pd.Series(data_missing) result = ser.count() expected = 1 assert result == expected def test_apply_simple_series(self, data): result = pd.Series(data).apply(id) assert isinstance(result, pd.Series) def test_argsort(self, data_for_sorting): result = pd.Series(data_for_sorting).argsort() expected = pd.Series(np.array([2, 0, 1], dtype=np.int64)) self.assert_series_equal(result, expected) def test_argsort_missing_array(self, data_missing_for_sorting): result = data_missing_for_sorting.argsort() expected = np.array([2, 0, 1], dtype=np.dtype("int")) # we don't care whether it's int32 or int64 result = result.astype("int64", casting="safe") expected = expected.astype("int64", casting="safe") tm.assert_numpy_array_equal(result, expected) def test_argsort_missing(self, data_missing_for_sorting): result = pd.Series(data_missing_for_sorting).argsort() expected = pd.Series(np.array([1, -1, 0], dtype=np.int64)) self.assert_series_equal(result, expected) def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value): # GH 24382 # data_for_sorting -> [B, C, A] with A < B < C assert data_for_sorting.argmax() == 1 assert data_for_sorting.argmin() == 2 # with repeated values -> first occurence data = data_for_sorting.take([2, 0, 0, 1, 1, 2]) assert data.argmax() == 3 assert data.argmin() == 0 # with missing values # data_missing_for_sorting -> [B, NA, A] with A < B and NA missing. assert data_missing_for_sorting.argmax() == 0 assert data_missing_for_sorting.argmin() == 2 @pytest.mark.parametrize("method", ["argmax", "argmin"]) def test_argmin_argmax_empty_array(self, method, data): # GH 24382 err_msg = "attempt to get" with pytest.raises(ValueError, match=err_msg): getattr(data[:0], method)() @pytest.mark.parametrize("method", ["argmax", "argmin"]) def test_argmin_argmax_all_na(self, method, data, na_value): # all missing with skipna=True is the same as emtpy err_msg = "attempt to get" data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype) with pytest.raises(ValueError, match=err_msg): getattr(data_na, method)() @pytest.mark.parametrize( "na_position, expected", [ ("last", np.array([2, 0, 1], dtype=np.dtype("intp"))), ("first", np.array([1, 2, 0], dtype=np.dtype("intp"))), ], ) def test_nargsort(self, data_missing_for_sorting, na_position, expected): # GH 25439 result = nargsort(data_missing_for_sorting, na_position=na_position) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values(self, data_for_sorting, ascending, sort_by_key): ser = pd.Series(data_for_sorting) result = ser.sort_values(ascending=ascending, key=sort_by_key) expected = ser.iloc[[2, 0, 1]] if not ascending: # GH 35922. Expect stable sort if ser.nunique() == 2: expected = ser.iloc[[0, 1, 2]] else: expected = ser.iloc[[1, 0, 2]] self.assert_series_equal(result, expected) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values_missing( self, data_missing_for_sorting, ascending, sort_by_key ): ser = pd.Series(data_missing_for_sorting) result = ser.sort_values(ascending=ascending, key=sort_by_key) if ascending: expected = ser.iloc[[2, 0, 1]] else: expected = ser.iloc[[0, 2, 1]] self.assert_series_equal(result, expected) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values_frame(self, data_for_sorting, ascending): df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting}) result = df.sort_values(["A", "B"]) expected = pd.DataFrame( {"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1] ) self.assert_frame_equal(result, expected) @pytest.mark.parametrize("box", [pd.Series, lambda x: x]) @pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique]) def test_unique(self, data, box, method): duplicated = box(data._from_sequence([data[0], data[0]])) result = method(duplicated) assert len(result) == 1 assert isinstance(result, type(data)) assert result[0] == duplicated[0] @pytest.mark.parametrize("na_sentinel", [-1, -2]) def test_factorize(self, data_for_grouping, na_sentinel): codes, uniques = pd.factorize(data_for_grouping, na_sentinel=na_sentinel) expected_codes = np.array( [0, 0, na_sentinel, na_sentinel, 1, 1, 0, 2], dtype=np.intp ) expected_uniques = data_for_grouping.take([0, 4, 7]) tm.assert_numpy_array_equal(codes, expected_codes) self.assert_extension_array_equal(uniques, expected_uniques) @pytest.mark.parametrize("na_sentinel", [-1, -2]) def test_factorize_equivalence(self, data_for_grouping, na_sentinel): codes_1, uniques_1 = pd.factorize(data_for_grouping, na_sentinel=na_sentinel) codes_2, uniques_2 = data_for_grouping.factorize(na_sentinel=na_sentinel) tm.assert_numpy_array_equal(codes_1, codes_2) self.assert_extension_array_equal(uniques_1, uniques_2) assert len(uniques_1) == len(pd.unique(uniques_1)) assert uniques_1.dtype == data_for_grouping.dtype def test_factorize_empty(self, data): codes, uniques = pd.factorize(data[:0]) expected_codes = np.array([], dtype=np.intp) expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype) tm.assert_numpy_array_equal(codes, expected_codes) self.assert_extension_array_equal(uniques, expected_uniques) def test_fillna_copy_frame(self, data_missing): arr = data_missing.take([1, 1]) df = pd.DataFrame({"A": arr}) filled_val = df.iloc[0, 0] result = df.fillna(filled_val) assert df.A.values is not result.A.values def test_fillna_copy_series(self, data_missing): arr = data_missing.take([1, 1]) ser = pd.Series(arr) filled_val = ser[0] result = ser.fillna(filled_val) assert ser._values is not result._values assert ser._values is arr def test_fillna_length_mismatch(self, data_missing): msg = "Length of 'value' does not match." with pytest.raises(ValueError, match=msg): data_missing.fillna(data_missing.take([1])) def test_combine_le(self, data_repeated): # GH 20825 # Test that combine works when doing a <= (le) comparison orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series( [a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))] ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series([a <= val for a in list(orig_data1)]) self.assert_series_equal(result, expected) def test_combine_add(self, data_repeated): # GH 20825 orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 + x2) with np.errstate(over="ignore"): expected = pd.Series( orig_data1._from_sequence( [a + b for (a, b) in zip(list(orig_data1), list(orig_data2))] ) ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 + x2) expected = pd.Series( orig_data1._from_sequence([a + val for a in list(orig_data1)]) ) self.assert_series_equal(result, expected) def test_combine_first(self, data): # https://github.com/pandas-dev/pandas/issues/24147 a = pd.Series(data[:3]) b = pd.Series(data[2:5], index=[2, 3, 4]) result = a.combine_first(b) expected = pd.Series(data[:5]) self.assert_series_equal(result, expected) @pytest.mark.parametrize("frame", [True, False]) @pytest.mark.parametrize( "periods, indices", [(-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2])], ) def test_container_shift(self, data, frame, periods, indices): # https://github.com/pandas-dev/pandas/issues/22386 subset = data[:5] data = pd.Series(subset, name="A") expected = pd.Series(subset.take(indices, allow_fill=True), name="A") if frame: result = data.to_frame(name="A").assign(B=1).shift(periods) expected = pd.concat( [expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1 ) compare = self.assert_frame_equal else: result = data.shift(periods) compare = self.assert_series_equal compare(result, expected) def test_shift_0_periods(self, data): # GH#33856 shifting with periods=0 should return a copy, not same obj result = data.shift(0) assert data[0] != data[1] # otherwise below is invalid data[0] = data[1] assert result[0] != result[1] # i.e. not the same object/view @pytest.mark.parametrize("periods", [1, -2]) def test_diff(self, data, periods): data = data[:5] if is_bool_dtype(data.dtype): op = operator.xor else: op = operator.sub try: # does this array implement ops? op(data, data) except Exception: pytest.skip(f"{type(data)} does not support diff") s = pd.Series(data) result = s.diff(periods) expected = pd.Series(op(data, data.shift(periods))) self.assert_series_equal(result, expected) df = pd.DataFrame({"A": data, "B": [1.0] * 5}) result = df.diff(periods) if periods == 1: b = [np.nan, 0, 0, 0, 0] else: b = [0, 0, 0, np.nan, np.nan] expected = pd.DataFrame({"A": expected, "B": b}) self.assert_frame_equal(result, expected) @pytest.mark.parametrize( "periods, indices", [[-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]]], ) def test_shift_non_empty_array(self, data, periods, indices): # https://github.com/pandas-dev/pandas/issues/23911 subset = data[:2] result = subset.shift(periods) expected = subset.take(indices, allow_fill=True) self.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("periods", [-4, -1, 0, 1, 4]) def test_shift_empty_array(self, data, periods): # https://github.com/pandas-dev/pandas/issues/23911 empty = data[:0] result = empty.shift(periods) expected = empty self.assert_extension_array_equal(result, expected) def test_shift_zero_copies(self, data): result = data.shift(0) assert result is not data result = data[:0].shift(2) assert result is not data def test_shift_fill_value(self, data): arr = data[:4] fill_value = data[0] result = arr.shift(1, fill_value=fill_value) expected = data.take([0, 0, 1, 2]) self.assert_extension_array_equal(result, expected) result = arr.shift(-2, fill_value=fill_value) expected = data.take([2, 3, 0, 0]) self.assert_extension_array_equal(result, expected) def test_not_hashable(self, data): # We are in general mutable, so not hashable with pytest.raises(TypeError, match="unhashable type"): hash(data) def test_hash_pandas_object_works(self, data, as_frame): # https://github.com/pandas-dev/pandas/issues/23066 data = pd.Series(data) if as_frame: data = data.to_frame() a = pd.util.hash_pandas_object(data) b = pd.util.hash_pandas_object(data) self.assert_equal(a, b) def test_searchsorted(self, data_for_sorting, as_series): b, c, a = data_for_sorting arr = type(data_for_sorting)._from_sequence([a, b, c]) if as_series: arr = pd.Series(arr) assert arr.searchsorted(a) == 0 assert arr.searchsorted(a, side="right") == 1 assert arr.searchsorted(b) == 1 assert arr.searchsorted(b, side="right") == 2 assert arr.searchsorted(c) == 2 assert arr.searchsorted(c, side="right") == 3 result = arr.searchsorted(arr.take([0, 2])) expected = np.array([0, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) # sorter sorter = np.array([1, 2, 0]) assert data_for_sorting.searchsorted(a, sorter=sorter) == 0 def test_where_series(self, data, na_value, as_frame): assert data[0] != data[1] cls = type(data) a, b = data[:2] ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype)) cond = np.array([True, True, False, False]) if as_frame: ser = ser.to_frame(name="a") cond = cond.reshape(-1, 1) result = ser.where(cond) expected = pd.Series( cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype) ) if as_frame: expected = expected.to_frame(name="a") self.assert_equal(result, expected) # array other cond = np.array([True, False, True, True]) other = cls._from_sequence([a, b, a, b], dtype=data.dtype) if as_frame: other = pd.DataFrame({"a": other}) cond = pd.DataFrame({"a": cond}) result = ser.where(cond, other) expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype)) if as_frame: expected = expected.to_frame(name="a") self.assert_equal(result, expected) @pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]]) def test_repeat(self, data, repeats, as_series, use_numpy): arr = type(data)._from_sequence(data[:3], dtype=data.dtype) if as_series: arr = pd.Series(arr) result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats) repeats = [repeats] * 3 if isinstance(repeats, int) else repeats expected = [x for x, n in zip(arr, repeats) for _ in range(n)] expected = type(data)._from_sequence(expected, dtype=data.dtype) if as_series: expected = pd.Series(expected, index=arr.index.repeat(repeats)) self.assert_equal(result, expected) @pytest.mark.parametrize( "repeats, kwargs, error, msg", [ (2, {"axis": 1}, ValueError, "axis"), (-1, {}, ValueError, "negative"), ([1, 2], {}, ValueError, "shape"), (2, {"foo": "bar"}, TypeError, "'foo'"), ], ) def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy): with pytest.raises(error, match=msg): if use_numpy: np.repeat(data, repeats, **kwargs) else: data.repeat(repeats, **kwargs) @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame]) def test_equals(self, data, na_value, as_series, box): data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype) data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype) data = tm.box_expected(data, box, transpose=False) data2 = tm.box_expected(data2, box, transpose=False) data_na = tm.box_expected(data_na, box, transpose=False) # we are asserting with `is True/False` explicitly, to test that the # result is an actual Python bool, and not something "truthy" assert data.equals(data) is True assert data.equals(data.copy()) is True # unequal other data assert data.equals(data2) is False assert data.equals(data_na) is False # different length assert data[:2].equals(data[:3]) is False # emtpy are equal assert data[:0].equals(data[:0]) is True # other types assert data.equals(None) is False assert data[[0]].equals(data[0]) is False
gpl-2.0
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/pandas/tests/frame/test_period.py
18
5005
import numpy as np from numpy.random import randn from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas import (PeriodIndex, period_range, DataFrame, date_range, Index, to_datetime, DatetimeIndex) def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestPeriodIndex(object): def setup_method(self, method): pass def test_as_frame_columns(self): rng = period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) ts = df[rng[0]] tm.assert_series_equal(ts, df.iloc[:, 0]) # GH # 1211 repr(df) ts = df['1/1/2000'] tm.assert_series_equal(ts, df.iloc[:, 0]) def test_frame_setitem(self): rng = period_range('1/1/2000', periods=5, name='index') df = DataFrame(randn(5, 3), index=rng) df['Index'] = rng rs = Index(df['Index']) tm.assert_index_equal(rs, rng, check_names=False) assert rs.name == 'Index' assert rng.name == 'index' rs = df.reset_index().set_index('index') assert isinstance(rs.index, PeriodIndex) tm.assert_index_equal(rs.index, rng) def test_frame_to_time_stamp(self): K = 5 index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') df = DataFrame(randn(len(index), K), index=index) df['mix'] = 'a' exp_index = date_range('1/1/2001', end='12/31/2009', freq='A-DEC') result = df.to_timestamp('D', 'end') tm.assert_index_equal(result.index, exp_index) tm.assert_numpy_array_equal(result.values, df.values) exp_index = date_range('1/1/2001', end='1/1/2009', freq='AS-JAN') result = df.to_timestamp('D', 'start') tm.assert_index_equal(result.index, exp_index) def _get_with_delta(delta, freq='A-DEC'): return date_range(to_datetime('1/1/2001') + delta, to_datetime('12/31/2009') + delta, freq=freq) delta = timedelta(hours=23) result = df.to_timestamp('H', 'end') exp_index = _get_with_delta(delta) tm.assert_index_equal(result.index, exp_index) delta = timedelta(hours=23, minutes=59) result = df.to_timestamp('T', 'end') exp_index = _get_with_delta(delta) tm.assert_index_equal(result.index, exp_index) result = df.to_timestamp('S', 'end') delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) tm.assert_index_equal(result.index, exp_index) # columns df = df.T exp_index = date_range('1/1/2001', end='12/31/2009', freq='A-DEC') result = df.to_timestamp('D', 'end', axis=1) tm.assert_index_equal(result.columns, exp_index) tm.assert_numpy_array_equal(result.values, df.values) exp_index = date_range('1/1/2001', end='1/1/2009', freq='AS-JAN') result = df.to_timestamp('D', 'start', axis=1) tm.assert_index_equal(result.columns, exp_index) delta = timedelta(hours=23) result = df.to_timestamp('H', 'end', axis=1) exp_index = _get_with_delta(delta) tm.assert_index_equal(result.columns, exp_index) delta = timedelta(hours=23, minutes=59) result = df.to_timestamp('T', 'end', axis=1) exp_index = _get_with_delta(delta) tm.assert_index_equal(result.columns, exp_index) result = df.to_timestamp('S', 'end', axis=1) delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) tm.assert_index_equal(result.columns, exp_index) # invalid axis tm.assert_raises_regex( ValueError, 'axis', df.to_timestamp, axis=2) result1 = df.to_timestamp('5t', axis=1) result2 = df.to_timestamp('t', axis=1) expected = pd.date_range('2001-01-01', '2009-01-01', freq='AS') assert isinstance(result1.columns, DatetimeIndex) assert isinstance(result2.columns, DatetimeIndex) tm.assert_numpy_array_equal(result1.columns.asi8, expected.asi8) tm.assert_numpy_array_equal(result2.columns.asi8, expected.asi8) # PeriodIndex.to_timestamp always use 'infer' assert result1.columns.freqstr == 'AS-JAN' assert result2.columns.freqstr == 'AS-JAN' def test_frame_index_to_string(self): index = PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M') frame = DataFrame(np.random.randn(3, 4), index=index) # it works! frame.to_string() def test_align_frame(self): rng = period_range('1/1/2000', '1/1/2010', freq='A') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) result = ts + _permute(ts[::2]) tm.assert_frame_equal(result, expected)
agpl-3.0
andre-nguyen/rpg_svo
svo_analysis/src/svo_analysis/analyse_dataset.py
17
1178
# -*- coding: utf-8 -*- import associate import numpy as np import matplotlib.pyplot as plt import yaml def loadDataset(filename): file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") D = np.array([[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"], dtype=np.float64) return D dataset_dir = '/home/cforster/Datasets/SlamBenchmark/px4_r2' trajectory_data = dataset_dir+'/groundtruth.txt' stepsize = 10 # load dataset data = loadDataset(trajectory_data) n = data.shape[0] steps = np.arange(0,n,stepsize) # compute trajectory length last_pos = data[0,1:4] trajectory_length = 0 for i in steps[1:]: new_pos = data[i,1:4] trajectory_length += np.linalg.norm(new_pos-last_pos) last_pos = new_pos print 'trajectory lenght = ' + str(trajectory_length) + 'm' print 'height mean = ' + str(np.mean(data[:,3])) + 'm' print 'height median = ' + str(np.median(data[:,3])) + 'm' print 'height std = ' + str(np.std(data[:,3])) + 'm' print 'duration = ' + str(data[-1,0]-data[0,0]) + 's' print 'speed = ' + str(trajectory_length/(data[-1,0]-data[0,0])) + 'm/s'
gpl-3.0
hamogu/filili
filili/findlines.py
1
7501
import time import numpy as np try: import matplotlib.pyplot as plt has_mpl = True except ImportError: has_mpl = False print 'Warning: findlines.py: No matplotlib found' print ' Some plotting routines are disabled' #from sigma_clip import sigma_clipping # TBD: Should this be separated in code that requires sherpa and code that does not? import sherpa.astro.ui as ui import shmodelshelper as smh def maximum_filter_noscipy(input, size): '''reimplement scipy.ndimage.maximum_filter1d This implementation is in pure python for compatability in case scipy is not available. The scipy version is written in C and should be faster for larger arrays. This procedure implemnts only a subset of the options from the scipy verion. Calculate a one-dimensional maximum filter along a 1-d array. Parameters ---------- input : array-like input array to filter size : int length along which to calculate 1D maximum ''' if input.ndim != 1: raise ValueError('Input array must have exactly one dimension') maxfilter = np.zeros_like(input) for i in range(input.size): maxfilter[i] = np.maximum(input[max(0, i-size):min(i+size, input.size)]) return maxfilter try: from scipy.ndimage import maximum_filter1d except ImportError: maximum_filter1d = maximum_filter_noscipy def findlines(x, y, fwhm, smoothwindow = 'hanning', sigma_threshold = 3.): ''' Several things here and I am not quite sure yet what turn out to be useful - smoothing: show real peaks and not just noise - maximum_filter = array: will find the peaks - sigma_clipping = are the peaks large enough to be relevant? Parameters ---------- x : ndarray x values, e.g. wavelength y : ndarray y values, e.g. flux or res_flux / error fwhm : float estimate for FWHM of lines. Used as smoothing scale smoothwindow : string or None if `smoothwindow` is on of `['flat', 'hanning', 'hamming', 'bartlett', 'blackman']` a correspondig window function will be used to smooth the signal before line detection. Returns ------- peaks : ndarray index numbers for peaks found ''' fwhminpix = int(fwhm / np.diff(x).mean()) if smoothwindow is not None: #print smoothwindow #print fwhminpix y = smooth(y, window_len = 3*fwhminpix, window = smoothwindow) maxindex = (maximum_filter1d(y, max(fwhminpix,3)) == y) maxindex = maxindex & (y > (y.mean() + sigma_threshold * y.std())) # sigma_clipping works only if there is plenty of continuum #clipped_y = sigma_clipping(y, threshold = sigma_threshold) # believe only peaks which are so large, that the get clipped by sigma_clipping #maxindex = maxindex & (clipped_y.mask == False) return np.flatnonzero(maxindex) def smooth(x,window_len=11, window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. Parameters ---------- x: ndarray the input signal window_len: integer , optional The dimension of the smoothing window; should be an odd integer window: string, optional The type of window from `['flat', 'hanning', 'hamming', 'bartlett', 'blackman']`. A 'flat' window will produce a moving average smoothing. Returns ------- y : ndarray the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) See also -------- numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string window could accept even number from http://www.scipy.org/Cookbook/SignalSmooth """ if x.ndim != 1: raise ValueError, "smooth only accepts 1 dimension arrays." if x.size < window_len: raise ValueError, "Input vector needs to be bigger than window size." if window_len<3: return x # make it an odd number, so that reflection of values is same on each side if np.mod(window_len,2) != 1: window_len +=1 if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" s=np.r_[x[(window_len-1)/2:0:-1],x,x[-1:-window_len/2:-1]] #print(len(s)) if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)') y=np.convolve(w/w.sum(),s,mode='valid') return y smoothwindow = 'hanning' sigma_threshold = 2. def mainloop(mymodel, fwhm, id = None, maxiter = 5, mindist = 0., do_plots = 0): if id is None: id = ui.get_default_id() data = ui.get_data(id) wave = data.get_indep()[0] error = data.get_error()[0] # model could habe been initalized with arbitrary values ui.fit(id) for i in range(maxiter): oldmodel = smh.get_model_parts(id) res_flux = ui.get_resid_plot(id).y if smoothwindow is not None: fwhminpix = int(fwhm / np.diff(wave).mean()) y = smooth(res_flux/error, window_len = 3*fwhminpix, window = smoothwindow) else: y = res_flux/error peaks = findlines(wave, y, fwhm, smoothwindow = None, sigma_threshold = sigma_threshold) if has_mpl and (do_plots > 2): plt.figure() plt.plot(wave, res_flux/error, 's') for pos in mymodel.line_value_list('pos'): plt.plot([pos, pos], plt.ylim(),'k:') for peak in peaks: plt.plot([wave[peak], wave[peak]], plt.ylim()) plt.plot(wave, y) plt.draw() for peak in peaks: if (len(mymodel.line_value_list('pos')) == 0) or (min(np.abs(mymodel.line_value_list('pos') - wave[peak])) >= mindist): mymodel.add_line(**mymodel.guess(wave, smooth(res_flux, window_len = 3*fwhminpix, window = smoothwindow), peak, fwhm = fwhm)) newmodel = smh.get_model_parts(id) print 'Iteration {0:3n}: {1:3n} lines added'.format(i, len(newmodel) - len(oldmodel)) if set(newmodel) == set(oldmodel): print 'No new lines added this step - fitting finished' break # Now do the fitting in Sherpa #ui.set_method('simplex') ui.fit(id) #ui.set_method('moncar') #ui.fit(id) if has_mpl and (do_plots > 0): if do_plots > 1: plt.figure() else: plt.clf() ui.plot_fit(id) for pos in mymodel.line_value_list('pos'): plt.plot([pos, pos], plt.ylim(),'k:') for peak in peaks: plt.plot([wave[peak], wave[peak]], plt.ylim()) plt.plot(wave, res_flux) plt.draw() else: print 'Max number of iterations reached' #model.cleanup() #remove lines running to 0 etc. return mymodel
mit
vortex-ape/scikit-learn
sklearn/covariance/tests/test_graphical_lasso.py
4
6553
""" Test the graphical_lasso module. """ import sys import numpy as np from scipy import linalg import pytest from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_warns_message from sklearn.covariance import (graphical_lasso, GraphicalLasso, GraphicalLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets from sklearn.utils.fixes import PY3_OR_LATER from numpy.testing import assert_equal def test_graphical_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graphical_lasso(emp_cov, return_costs=True, alpha=alpha, mode=method) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphicalLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphicalLasso( assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graphical_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # (need to set penalize.diagonal to FALSE) cov_R = np.array([ [0.68112222, 0.0000000, 0.265820, 0.02464314], [0.00000000, 0.1887129, 0.000000, 0.00000000], [0.26582000, 0.0000000, 3.095503, 0.28697200], [0.02464314, 0.0000000, 0.286972, 0.57713289] ]) icov_R = np.array([ [1.5190747, 0.000000, -0.1304475, 0.0000000], [0.0000000, 5.299055, 0.0000000, 0.0000000], [-0.1304475, 0.000000, 0.3498624, -0.1683946], [0.0000000, 0.000000, -0.1683946, 1.8164353] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graphical_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graphical_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graphical_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) @pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22 def test_graphical_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphicalLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphicalLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X) @pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22 @pytest.mark.skipif(not PY3_OR_LATER, reason='On Python 2 DeprecationWarning is not issued for some unkown reason.') def test_deprecated_grid_scores(random_state=1): dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) graphical_lasso = GraphicalLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1) graphical_lasso.fit(X) depr_message = ("Attribute grid_scores was deprecated in version " "0.19 and will be removed in 0.21. Use " "``grid_scores_`` instead") with pytest.warns(DeprecationWarning, match=depr_message): assert_equal(graphical_lasso.grid_scores, graphical_lasso.grid_scores_)
bsd-3-clause
quheng/scikit-learn
sklearn/ensemble/tests/test_forest.py
48
39224
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.grid_search import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(X, y, name, criterion): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) X_new = est.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, X, y, name, criterion for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse"]): yield check_importances, X, y, name, criterion def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name, X, y): # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name, X, y def check_min_samples_leaf(name, X, y): # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): est = ForestEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def test_min_samples_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name, X, y def check_min_weight_fraction_leaf(name, X, y): # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) if isinstance(est, (RandomForestClassifier, RandomForestRegressor)): est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name, X, y def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for subsample and balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight='subsample', random_state=0) ignore_warnings(clf.fit)(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='auto', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y)
bsd-3-clause
wlamond/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
87
3903
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.externals.joblib import Memory from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1)) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
gtesei/fast-furious
competitions/quora-question-pairs/xgb2.py
1
3082
import numpy as np import pandas as pd import xgboost as xgb import datetime import operator from sklearn.cross_validation import train_test_split from collections import Counter from nltk.corpus import stopwords import matplotlib.pyplot as plt from pylab import plot, show, subplot, specgram, imshow, savefig RS = 12357 ROUNDS = 10000 print("Started") np.random.seed(RS) input_folder = './data/' # data df_train = pd.read_csv(input_folder + 'train.csv') df_test = pd.read_csv(input_folder + 'test.csv') print("Original data: X_train: {}, X_test: {}".format(df_train.shape, df_test.shape)) x_train_1 = pd.read_csv('xtrain.csv') del x_train_1['Unnamed: 0'] x_test_1 = pd.read_csv('xtest.csv') del x_test_1['Unnamed: 0'] print("Feature set 1: X_train: {}, X_test: {}".format(x_train_1.shape,x_test_1.shape)) x_train_2 = pd.read_csv('xtrain_2.csv') #del x_train_2['Unnamed: 0'] x_test_2 = pd.read_csv('xtest_2.csv') #del x_test_2['Unnamed: 0'] print("Feature set 2: X_train: {}, X_test: {}".format(x_train_2.shape, x_test_2.shape)) y_train = df_train['is_duplicate'].values x_train = pd.concat([x_train_1,x_train_2],axis=1) x_test = pd.concat([x_test_1,x_test_2],axis=1) print("Merge: X_train: {}, X_test: {}".format(x_train.shape, x_test.shape)) assert x_train.shape[0] == df_train.shape[0] assert x_test.shape[0] == df_test.shape[0] # resample if 1: # Now we oversample the negative class - on your own risk of overfitting! pos_train = x_train[y_train == 1] neg_train = x_train[y_train == 0] print("Oversampling started for proportion: {}".format(len(pos_train) / (len(pos_train) + len(neg_train)))) p = 0.165 scale = ((len(pos_train) / (len(pos_train) + len(neg_train))) / p) - 1 while scale > 1: neg_train = pd.concat([neg_train, neg_train]) scale -=1 neg_train = pd.concat([neg_train, neg_train[:int(scale * len(neg_train))]]) print("Oversampling done, new proportion: {}".format(len(pos_train) / (len(pos_train) + len(neg_train)))) x_train = pd.concat([pos_train, neg_train]) y_train = (np.zeros(len(pos_train)) + 1).tolist() + np.zeros(len(neg_train)).tolist() del pos_train, neg_train # XGB params = {} params['objective'] = 'binary:logistic' params['eval_metric'] = 'logloss' params['eta'] = 0.01 params['max_depth'] = 5 params['silent'] = 1 params['seed'] = RS print("Will train XGB for {} rounds, RandomSeed: {}".format(ROUNDS, RS)) x, X_val, ytrain, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=RS) print("Training data: X_train: {}, Y_train: {}, X_test: {}".format(x_train.shape, len(y_train), x_test.shape)) xg_train = xgb.DMatrix(x, label=ytrain) xg_val = xgb.DMatrix(X_val, label=y_val) watchlist = [(xg_train,'train'), (xg_val,'eval')] clf = xgb.train(params=params,dtrain=xg_train,num_boost_round=ROUNDS,early_stopping_rounds=200,evals=watchlist) preds = clf.predict(xgb.DMatrix(x_test)) print("Writing output...") sub = pd.DataFrame() sub['test_id'] = df_test['test_id'] sub['is_duplicate'] = preds sub.to_csv("xgb_feat_seed_2{}_n{}.csv".format(RS, ROUNDS), index=False) print("Done.")
mit
BrettJSettle/MotilityTracking
tifffile.py
1
122080
#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2013, Christoph Gohlke # Copyright (c) 2008-2013, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read and write image data from and to TIFF files. Image and meta-data can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, ImageJ, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG/CCITT compressed image data or EXIF/IPTC/GPS/XMP meta-data is not implemented. Only primary info records are read for STK, FluoView, and NIH image formats. TIFF, the Tagged Image File Format, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SEQ, GEL, and OME-TIFF, are custom extensions defined by MetaMorph, Carl Zeiss MicroImaging, Olympus, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run ``python tifffile.py --help`` :Author: `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2013.05.02 Requirements ------------ * `CPython 2.7 or 3.3 <http://www.python.org>`_ * `Numpy 1.7 <http://www.numpy.org>`_ * `Matplotlib 1.2 <http://www.matplotlib.org>`_ (optional for plotting) * `Tifffile.c 2013.01.18 <http://www.lfd.uci.edu/~gohlke/>`_ (recommended for faster decoding of PackBits and LZW encoded strings) Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread <http://luispedro.org/software/imread>`_ * `PyLibTiff <http://code.google.com/p/pylibtiff>`_ * `SimpleITK <http://www.simpleitk.org>`_ * `PyLSM <https://launchpad.net/pylsm>`_ * `PyMca.TiffIO.py <http://pymca.sourceforge.net/>`_ * `BioImageXD.Readers <http://www.bioimagexd.net/>`_ * `Cellcognition.io <http://cellcognition.org/>`_ * `CellProfiler.bioformats <http://www.cellprofiler.org/>`_ Acknowledgements ---------------- * Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics. * Wim Lewis, for a bug fix and some read_cz_lsm functions. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (5) BioFormats. http://www.loci.wisc.edu/ome/formats.html (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) TiffDecoder.java http://rsbweb.nih.gov/ij/developer/source/ij/io/TiffDecoder.java.html (8) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf Examples -------- >>> data = numpy.random.rand(301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> assert numpy.all(image == data) >>> tif = TiffFile('test.tif') >>> images = tif.asarray() >>> image0 = tif[0].asarray() >>> for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() ... if page.is_rgb: pass ... if page.is_palette: ... t = page.color_map ... if page.is_stk: ... t = page.mm_uic_tags.number_planes ... if page.is_lsm: ... t = page.cz_lsm_info >>> tif.close() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import struct import warnings import datetime import collections from fractions import Fraction from xml.etree import cElementTree as ElementTree import numpy __version__ = '2013.05.02' __docformat__ = 'restructuredtext en' __all__ = ['imsave', 'imread', 'imshow', 'TiffFile', 'TiffSequence'] def imsave(filename, data, photometric=None, planarconfig=None, resolution=None, description=None, software='tifffile.py', byteorder=None, bigtiff=False): """Write image data to TIFF file. Image data are written uncompressed in one stripe per plane. Dimensions larger than 2 or 3 (depending on photometric mode and planar configuration) are flattened and saved as separate pages. Parameters ---------- filename : str Name of file to write. data : array_like Input image. The last dimensions are assumed to be image height, width, and samples. photometric : {'minisblack', 'miniswhite', 'rgb'} The color space of the image data. By default this setting is inferred from the data shape. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. description : str The subject of the image. Saved with the first page only. software : str Name of the software used to create the image. Saved with the first page only. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. bigtiff : bool If True the BigTIFF format is used. By default the standard TIFF format is used for data less than 2040 MB. Examples -------- >>> data = numpy.random.rand(10, 3, 301, 219) >>> imsave('temp.tif', data) """ assert(photometric in (None, 'minisblack', 'miniswhite', 'rgb')) assert(planarconfig in (None, 'contig', 'planar')) assert(byteorder in (None, '<', '>')) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') data_shape = shape = data.shape data = numpy.atleast_2d(data) if not bigtiff and data.size * data.dtype.itemsize < 2040*2**20: bigtiff = False offset_size = 4 tag_size = 12 numtag_format = 'H' offset_format = 'I' val_format = '4s' else: bigtiff = True offset_size = 8 tag_size = 20 numtag_format = 'Q' offset_format = 'Q' val_format = '8s' # unify shape of data samplesperpixel = 1 extrasamples = 0 if photometric is None: if data.ndim > 2 and (shape[-3] in (3, 4) or shape[-1] in (3, 4)): photometric = 'rgb' else: photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if planarconfig is None: planarconfig = 'planar' if shape[-3] in (3, 4) else 'contig' if planarconfig == 'contig': if shape[-1] not in (3, 4): raise ValueError("not a contiguous RGB(A) image") data = data.reshape((-1, 1) + shape[-3:]) samplesperpixel = shape[-1] else: if shape[-3] not in (3, 4): raise ValueError("not a planar RGB(A) image") data = data.reshape((-1, ) + shape[-3:] + (1, )) samplesperpixel = shape[-3] if samplesperpixel == 4: extrasamples = 1 elif planarconfig and len(shape) > 2: if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[-3:]) samplesperpixel = shape[-1] else: data = data.reshape((-1, ) + shape[-3:] + (1, )) samplesperpixel = shape[-3] extrasamples = samplesperpixel - 1 else: planarconfig = None data = data.reshape((-1, 1) + shape[-2:] + (1, )) shape = data.shape # (pages, planes, height, width, contig samples) bytestr = bytes if sys.version[0] == '2' else lambda x: bytes(x, 'ascii') tifftypes = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} tifftags = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'fill_order': 266, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'extra_samples': 338, 'sample_format': 339} tags = [] tag_data = [] def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def tag(name, dtype, number, value, offset=[0]): # append tag binary string to tags list # append (offset, value as binary string) to tag_data list # increment offset by tag_size if dtype == 's': value = bytestr(value) + b'\0' number = len(value) value = (value, ) t = [pack('HH', tifftags[name], tifftypes[dtype]), pack(offset_format, number)] if len(dtype) > 1: number *= int(dtype[:-1]) dtype = dtype[-1] if number == 1: if isinstance(value, (tuple, list)): value = value[0] t.append(pack(val_format, pack(dtype, value))) elif struct.calcsize(dtype) * number <= offset_size: t.append(pack(val_format, pack(str(number)+dtype, *value))) else: t.append(pack(offset_format, 0)) tag_data.append((offset[0] + offset_size + 4, pack(str(number)+dtype, *value))) tags.append(b''.join(t)) offset[0] += tag_size def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if software: tag('software', 's', 0, software) if description: tag('image_description', 's', 0, description) elif shape != data_shape: tag('image_description', 's', 0, "shape=(%s)" % (",".join('%i' % i for i in data_shape))) tag('datetime', 's', 0, datetime.datetime.now().strftime("%Y:%m:%d %H:%M:%S")) # write previous tags only once writeonce = (len(tags), len(tag_data)) if shape[0] > 1 else None tag('compression', 'H', 1, 1) tag('orientation', 'H', 1, 1) tag('image_width', 'I', 1, shape[-2]) tag('image_length', 'I', 1, shape[-3]) tag('new_subfile_type', 'I', 1, 0 if shape[0] == 1 else 2) tag('sample_format', 'H', 1, {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) tag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2}[photometric]) tag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig: tag('planar_configuration', 'H', 1, 1 if planarconfig=='contig' else 2) tag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8, ) * samplesperpixel) else: tag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb': tag('extra_samples', 'H', 1, 1) # alpha channel else: tag('extra_samples', 'H', extrasamples, (0, ) * extrasamples) if resolution: tag('x_resolution', '2I', 1, rational(resolution[0])) tag('y_resolution', '2I', 1, rational(resolution[1])) tag('resolution_unit', 'H', 1, 2) tag('rows_per_strip', 'I', 1, shape[-3]) # use one strip per plane strip_byte_counts = (data[0, 0].size * data.dtype.itemsize, ) * shape[1] tag('strip_byte_counts', offset_format, shape[1], strip_byte_counts) # strip_offsets must be the last tag; will be updated later tag('strip_offsets', offset_format, shape[1], (0, ) * shape[1]) fh = open(filename, 'wb') seek = fh.seek tell = fh.tell def write(arg, *args): fh.write(pack(arg, *args) if args else arg) write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: write('HHH', 43, 8, 0) else: write('H', 42) ifd_offset = tell() write(offset_format, 0) # first IFD for i in range(shape[0]): # update pointer at ifd_offset pos = tell() seek(ifd_offset) write(offset_format, pos) seek(pos) # write tags write(numtag_format, len(tags)) tag_offset = tell() write(b''.join(tags)) ifd_offset = tell() write(offset_format, 0) # offset to next IFD # write extra tag data and update pointers for off, dat in tag_data: pos = tell() seek(tag_offset + off) write(offset_format, pos) seek(pos) write(dat) # update strip_offsets pos = tell() if len(strip_byte_counts) == 1: seek(ifd_offset - offset_size) write(offset_format, pos) else: seek(pos - offset_size*shape[1]) strip_offset = pos for size in strip_byte_counts: write(offset_format, strip_offset) strip_offset += size seek(pos) # write data data[i].tofile(fh) # if this fails try to update Python and numpy fh.flush() # remove tags that should be written only once if writeonce: tags = tags[writeonce[0]:] d = writeonce[0] * tag_size tag_data = [(o-d, v) for (o, v) in tag_data[writeonce[1]:]] writeonce = None fh.close() def imread(files, *args, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. Examples -------- >>> im = imread('test.tif', 0) >>> im.shape (256, 256, 4) >>> ims = imread(['test.tif', 'test.tif']) >>> ims.shape (2, 256, 256, 4) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if len(files) == 1: files = files[0] if isinstance(files, basestring): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(*args, **kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(*args, **kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func', ) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and meta-data from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the close method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list All TIFF pages in file. series : list of Records(shape, dtype, axes, TiffPages) TIFF pages with compatible shapes and types. All attributes are read-only. Examples -------- >>> tif = TiffFile('test.tif') ... try: ... images = tif.asarray() ... except Exception as e: ... print(e) ... finally: ... tif.close() """ def __init__(self, arg, name=None, multifile=False): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Human readable label of open file. multifile : bool If True, series may include pages from multiple files. """ if isinstance(arg, basestring): filename = os.path.abspath(arg) self._fh = open(filename, 'rb') else: filename = str(name) self._fh = arg self._fh.seek(0, 2) self._fsize = self._fh.tell() self._fh.seek(0) self.fname = os.path.basename(filename) self.fpath = os.path.dirname(filename) self._tiffs = {self.fname: self} # cache of TiffFiles self.offset_size = None self.pages = [] self._multifile = bool(multifile) try: self._fromfile() except Exception: self._fh.close() raise def close(self): """Close open file handle(s).""" for tif in self._tiffs.values(): if tif._fh: tif._fh.close() tif._fh = None def _fromfile(self): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: #print("Page %d \r" % len(self.pages), end='') page = TiffPage(self) self.pages.append(page) except StopIteration: break if not self.pages: raise ValueError("empty TIFF file") @lazyattr def series(self): """Return series of TiffPage with compatible shape and properties.""" series = [] if self.is_ome: series = self._omeseries() elif self.is_fluoview: dims = {b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(self.pages[0].mm_header.dimensions)) series = [Record( axes=''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1), shape=tuple(int(i[1]) for i in mmhd if i[1] > 1), pages=self.pages, dtype=numpy.dtype(self.pages[0].dtype))] elif self.is_lsm: lsmi = self.pages[0].cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if self.pages[0].is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') axes = axes[::-1] shape = [getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes] pages = [p for p in self.pages if not p.is_reduced] series = [Record(axes=axes, shape=shape, pages=pages, dtype=numpy.dtype(pages[0].dtype))] if len(pages) != len(self.pages): # reduced RGB pages pages = [p for p in self.pages if p.is_reduced] cp = 1 i = 0 while cp < len(pages) and i < len(shape)-2: cp *= shape[i] i += 1 shape = shape[:i] + list(pages[0].shape) axes = axes[:i] + 'CYX' series.append(Record(axes=axes, shape=shape, pages=pages, dtype=numpy.dtype(pages[0].dtype))) elif self.is_imagej: shape = [] axes = [] ij = self.pages[0].imagej_tags if 'frames' in ij: shape.append(ij['frames']) axes.append('T') if 'slices' in ij: shape.append(ij['slices']) axes.append('Z') if 'channels' in ij and not self.is_rgb: shape.append(ij['channels']) axes.append('C') remain = len(self.pages) // (numpy.prod(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') shape.extend(self.pages[0].shape) axes.extend(self.pages[0].axes) axes = ''.join(axes) series = [Record(pages=self.pages, shape=shape, axes=axes, dtype=numpy.dtype(self.pages[0].dtype))] elif self.is_nih: series = [Record(pages=self.pages, shape=(len(self.pages),) + self.pages[0].shape, axes='I' + self.pages[0].axes, dtype=numpy.dtype(self.pages[0].dtype))] elif self.pages[0].is_shaped: shape = self.pages[0].tags['image_description'].value[7:-1] shape = tuple(int(i) for i in shape.split(b',')) series = [Record(pages=self.pages, shape=shape, axes='Q' * len(shape), dtype=numpy.dtype(self.pages[0].dtype))] if not series: shapes = [] pages = {} for page in self.pages: if not page.shape: continue shape = page.shape + (page.axes, page.compression in TIFF_DECOMPESSORS) if not shape in pages: shapes.append(shape) pages[shape] = [page] else: pages[shape].append(page) series = [Record(pages=pages[s], axes=(('I' + s[-2]) if len(pages[s]) > 1 else s[-2]), dtype=numpy.dtype(pages[s][0].dtype), shape=((len(pages[s]), ) + s[:-2] if len(pages[s]) > 1 else s[:-2])) for s in shapes] return series def asarray(self, key=None, series=None): """Return image data of multiple TIFF pages as numpy array. By default the first image series is returned. Parameters ---------- key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages to return as array. """ if key is None and series is None: series = 0 if series is not None: pages = self.series[series].pages else: pages = self.pages if key is None: pass elif isinstance(key, int): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, collections.Iterable): pages = [pages[k] for k in key] else: raise TypeError("key must be an int, slice, or sequence") if len(pages) == 1: return pages[0].asarray() elif self.is_nih: result = numpy.vstack(p.asarray(colormapped=False, squeeze=False) for p in pages) if pages[0].is_palette: result = numpy.take(pages[0].color_map, result, axis=1) result = numpy.swapaxes(result, 0, 1) else: if self.is_ome and any(p is None for p in pages): firstpage = next(p for p in pages if p) nopage = numpy.zeros_like( firstpage.asarray()) result = numpy.vstack((p.asarray() if p else nopage) for p in pages) if key is None: try: result.shape = self.series[series].shape except ValueError: warnings.warn("failed to reshape %s to %s" % ( result.shape, self.series[series].shape)) result.shape = (-1,) + pages[0].shape else: result.shape = (-1,) + pages[0].shape return result def _omeseries(self): """Return image series in OME-TIFF file(s).""" root = ElementTree.XML(self.pages[0].tags['image_description'].value) uuid = root.attrib.get('UUID', None) self._tiffs = {uuid: self} modulo = {} result = [] for element in root: if element.tag.endswith('BinaryOnly'): warnings.warn("not an OME-TIFF master file") break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = AXES_LABELS[newaxis] if 'Start' in along.attrib: labels = range( int(along.attrib['Start']), int(along.attrib['End']) + 1, int(along.attrib.get('Step', 1))) else: labels = [label.text for label in along if label.tag.endswith('Label')] modulo[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for pixels in element: if not pixels.tag.endswith('Pixels'): continue atr = pixels.attrib axes = "".join(reversed(atr['DimensionOrder'])) shape = list(int(atr['Size'+ax]) for ax in axes) size = numpy.prod(shape[:-2]) ifds = [None] * size for data in pixels: if not data.tag.endswith('TiffData'): continue atr = data.attrib ifd = int(atr.get('IFD', 0)) num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0)) num = int(atr.get('PlaneCount', num)) idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]] idx = numpy.ravel_multi_index(idx, shape[:-2]) for uuid in data: if uuid.tag.endswith('UUID'): if uuid.text not in self._tiffs: if not self._multifile: # abort reading multi file OME series return [] fn = uuid.attrib['FileName'] try: tf = TiffFile(os.path.join(self.fpath, fn)) except (IOError, ValueError): warnings.warn("failed to read %s" % fn) break self._tiffs[uuid.text] = tf pages = self._tiffs[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") break else: pages = self.pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") result.append(Record(axes=axes, shape=shape, pages=ifds, dtype=numpy.dtype(ifds[0].dtype))) for record in result: for axis, (newaxis, labels) in modulo.items(): i = record.axes.index(axis) size = len(labels) if record.shape[i] == size: record.axes = record.axes.replace(axis, newaxis, 1) else: record.shape[i] //= size record.shape.insert(i+1, size) record.axes = record.axes.replace(axis, axis+newaxis, 1) return result def __len__(self): """Return number of image pages in file.""" return len(self.pages) def __getitem__(self, key): """Return specified page.""" return self.pages[key] def __iter__(self): """Return iterator over pages.""" return iter(self.pages) def __str__(self): """Return string containing information about file.""" result = [ self.fname.capitalize(), format_size(self._fsize), {'<': 'little endian', '>': 'big endian'}[self.byteorder]] if self.is_bigtiff: result.append("bigtiff") if len(self.pages) > 1: result.append("%i pages" % len(self.pages)) if len(self.series) > 1: result.append("%i series" % len(self.series)) if len(self._tiffs) > 1: result.append("%i files" % (len(self._tiffs))) return ", ".join(result) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @lazyattr def fstat(self): try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None @lazyattr def is_bigtiff(self): return self.offset_size != 4 @lazyattr def is_rgb(self): return all(p.is_rgb for p in self.pages) @lazyattr def is_palette(self): return all(p.is_palette for p in self.pages) @lazyattr def is_mdgel(self): return any(p.is_mdgel for p in self.pages) @lazyattr def is_mediacy(self): return any(p.is_mediacy for p in self.pages) @lazyattr def is_stk(self): return all(p.is_stk for p in self.pages) @lazyattr def is_lsm(self): return self.pages[0].is_lsm @lazyattr def is_imagej(self): return self.pages[0].is_imagej @lazyattr def is_nih(self): return self.pages[0].is_nih @lazyattr def is_fluoview(self): return self.pages[0].is_fluoview @lazyattr def is_ome(self): return self.pages[0].is_ome class TiffPage(object): """A TIFF image file directory (IFD). Attributes ---------- index : int Index of page in file. dtype : str {TIFF_SAMPLE_DTYPES} Data type of image, colormapped if applicable. shape : tuple Dimensions of the image array in TIFF page, colormapped and with one alpha channel if applicable. axes : str Axes label codes: 'X' width, 'Y' height, 'S' sample, 'P' plane, 'I' image series, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'F' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Dictionary of tags in page. Tag values are also directly accessible as attributes. color_map : numpy array Color look up table if exists. mm_uic_tags: Record(dict) Consolidated MetaMorph mm_uic# tags, if exists. cz_lsm_scan_info: Record(dict) LSM scan info attributes, if exists. imagej_tags: Record(dict) Consolidated ImageJ description and meta_data tags, if exists. All attributes are read-only. """ def __init__(self, parent): """Initialize instance from file.""" self.parent = parent self.index = len(parent.pages) self.shape = self._shape = () self.dtype = self._dtype = None self.axes = "" self.tags = TiffTags() self._fromfile() self._process_tags() def _fromfile(self): """Read TIFF IFD structure and its tags from file. File cursor must be at storage position of IFD offset and is left at offset to next IFD. Raises StopIteration if offset (first bytes read) is 0. """ fh = self.parent._fh byteorder = self.parent.byteorder offset_size = self.parent.offset_size fmt = {4: 'I', 8: 'Q'}[offset_size] offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0] if not offset: raise StopIteration() # read standard tags tags = self.tags fh.seek(offset) fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size] try: numtags = struct.unpack(byteorder + fmt, fh.read(size))[0] except Exception: warnings.warn("corrupted page list") raise StopIteration() for _ in range(numtags): try: tag = TiffTag(self.parent) tags[tag.name] = tag except TiffTag.Error as e: warnings.warn(str(e)) # read LSM info subrecords if self.is_lsm: pos = fh.tell() for name, reader in CZ_LSM_INFO_READERS.items(): try: offset = self.cz_lsm_info['offset_'+name] except KeyError: continue if not offset: continue fh.seek(offset) try: setattr(self, 'cz_lsm_'+name, reader(fh, byteorder)) except ValueError: pass fh.seek(pos) def _process_tags(self): """Validate standard tags and initialize attributes. Raise ValueError if tag values are not supported. """ tags = self.tags for code, (name, default, dtype, count, validate) in TIFF_TAGS.items(): if not (name in tags or default is None): tags[name] = TiffTag(code, dtype=dtype, count=count, value=default, name=name) if name in tags and validate: try: if tags[name].count == 1: setattr(self, name, validate[tags[name].value]) else: setattr(self, name, tuple( validate[value] for value in tags[name].value)) except KeyError: raise ValueError("%s.value (%s) not supported" % (name, tags[name].value)) tag = tags['bits_per_sample'] if tag.count == 1: self.bits_per_sample = tag.value else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.bits_per_sample = value else: self.bits_per_sample = value[0] tag = tags['sample_format'] if tag.count == 1: self.sample_format = TIFF_SAMPLE_FORMATS[tag.value] else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value] else: self.sample_format = TIFF_SAMPLE_FORMATS[value[0]] if not 'photometric' in tags: self.photometric = None if 'image_length' in tags: self.strips_per_image = int(math.floor( float(self.image_length + self.rows_per_strip - 1) / self.rows_per_strip)) else: self.strips_per_image = 0 key = (self.sample_format, self.bits_per_sample) self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None) if self.is_imagej: # consolidate imagej meta data adict = imagej_description(tags['image_description'].value) try: adict.update(imagej_meta_data( tags['imagej_meta_data'].value, tags['imagej_byte_counts'].value, self.parent.byteorder)) except Exception: pass self.imagej_tags = Record(adict) if not 'image_length' in self.tags or not 'image_width' in self.tags: # some GEL file pages are missing image data self.image_length = 0 self.image_width = 0 self.strip_offsets = 0 self._shape = () self.shape = () self.axes = '' if self.is_palette: self.dtype = self.tags['color_map'].dtype[1] self.color_map = numpy.array(self.color_map, self.dtype) dmax = self.color_map.max() if dmax < 256: self.dtype = numpy.uint8 self.color_map = self.color_map.astype(self.dtype) #else: # self.dtype = numpy.uint8 # self.color_map >>= 8 # self.color_map = self.color_map.astype(self.dtype) self.color_map.shape = (3, -1) if self.is_stk: # consolidate mm_uci tags planes = tags['mm_uic2'].count self.mm_uic_tags = Record(tags['mm_uic2'].value) for key in ('mm_uic3', 'mm_uic4', 'mm_uic1'): if key in tags: self.mm_uic_tags.update(tags[key].value) if self.planar_configuration == 'contig': self._shape = (planes, 1, self.image_length, self.image_width, self.samples_per_pixel) self.shape = tuple(self._shape[i] for i in (0, 2, 3, 4)) self.axes = 'PYXS' else: self._shape = (planes, self.samples_per_pixel, self.image_length, self.image_width, 1) self.shape = self._shape[:4] self.axes = 'PSYX' if self.is_palette and (self.color_map.shape[1] >= 2**self.bits_per_sample): self.shape = (3, planes, self.image_length, self.image_width) self.axes = 'CPYX' else: #warnings.warn("palette cannot be applied") self.is_palette = False elif self.is_palette: samples = 1 if 'extra_samples' in self.tags: samples += len(self.extra_samples) if self.planar_configuration == 'contig': self._shape = ( 1, 1, self.image_length, self.image_width, samples) else: self._shape = ( 1, samples, self.image_length, self.image_width, 1) if self.color_map.shape[1] >= 2**self.bits_per_sample: self.shape = (3, self.image_length, self.image_width) self.axes = 'CYX' else: warnings.warn("palette cannot be applied") self.is_palette = False self.shape = (self.image_length, self.image_width) self.axes = 'YX' elif self.is_rgb or self.samples_per_pixel > 1: if self.planar_configuration == 'contig': self._shape = (1, 1, self.image_length, self.image_width, self.samples_per_pixel) self.shape = (self.image_length, self.image_width, self.samples_per_pixel) self.axes = 'YXS' else: self._shape = (1, self.samples_per_pixel, self.image_length, self.image_width, 1) self.shape = self._shape[1:-1] self.axes = 'SYX' if self.is_rgb and 'extra_samples' in self.tags: extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples, ) for exs in extra_samples: if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.planar_configuration == 'contig': self.shape = self.shape[:2] + (4,) else: self.shape = (4,) + self.shape[1:] break else: self._shape = (1, 1, self.image_length, self.image_width, 1) self.shape = self._shape[2:4] self.axes = 'YX' if not self.compression and not 'strip_byte_counts' in tags: self.strip_byte_counts = numpy.prod(self.shape) * ( self.bits_per_sample // 8) def asarray(self, squeeze=True, colormapped=True, rgbonly=True): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. If any argument is False, the shape of the returned array might be different from the page shape. Parameters ---------- squeeze : bool If True all length-1 dimensions (except X and Y) are squeezed out from result. colormapped : bool If True color mapping is applied for palette-indexed images. rgbonly : bool If True return RGB(A) image without additional extra samples. """ fh = self.parent._fh if not fh: raise IOError("TIFF file is not open") if self.dtype is None: raise ValueError("data type not supported: %s%i" % ( self.sample_format, self.bits_per_sample)) if self.compression not in TIFF_DECOMPESSORS: raise ValueError("cannot decompress %s" % self.compression) if ('ycbcr_subsampling' in self.tags and self.tags['ycbcr_subsampling'].value not in (1, (1, 1))): raise ValueError("YCbCr subsampling not supported") tag = self.tags['sample_format'] if tag.count != 1 and any((i-tag.value[0] for i in tag.value)): raise ValueError("sample formats don't match %s" % str(tag.value)) dtype = self._dtype shape = self._shape if not shape: return None image_width = self.image_width image_length = self.image_length typecode = self.parent.byteorder + dtype bits_per_sample = self.bits_per_sample if self.is_tiled: if 'tile_offsets' in self.tags: byte_counts = self.tile_byte_counts offsets = self.tile_offsets else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets tile_width = self.tile_width tile_length = self.tile_length tw = (image_width + tile_width - 1) // tile_width tl = (image_length + tile_length - 1) // tile_length shape = shape[:-3] + (tl*tile_length, tw*tile_width, shape[-1]) tile_shape = (tile_length, tile_width, shape[-1]) runlen = tile_width else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets runlen = image_width try: offsets[0] except TypeError: offsets = (offsets, ) byte_counts = (byte_counts, ) if any(o < 2 for o in offsets): raise ValueError("corrupted page") if (not self.is_tiled and (self.is_stk or (not self.compression and bits_per_sample in (8, 16, 32, 64) and all(offsets[i] == offsets[i+1] - byte_counts[i] for i in range(len(offsets)-1))))): # contiguous data fh.seek(offsets[0]) result = numpy_fromfile(fh, typecode, numpy.prod(shape)) result = result.astype('=' + dtype) else: if self.planar_configuration == 'contig': runlen *= self.samples_per_pixel if bits_per_sample in (8, 16, 32, 64, 128): if (bits_per_sample * runlen) % 8: raise ValueError("data and sample size mismatch") unpack = lambda x: numpy.fromstring(x, typecode) elif isinstance(bits_per_sample, tuple): unpack = lambda x: unpackrgb(x, typecode, bits_per_sample) else: unpack = lambda x: unpackints(x, typecode, bits_per_sample, runlen) decompress = TIFF_DECOMPESSORS[self.compression] if self.is_tiled: result = numpy.empty(shape, dtype) tw, tl, pl = 0, 0, 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) tile = unpack(decompress(fh.read(bytecount))) tile.shape = tile_shape if self.predictor == 'horizontal': numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile) result[0, pl, tl:tl+tile_length, tw:tw+tile_width, :] = tile del tile tw += tile_width if tw >= shape[-2]: tw, tl = 0, tl + tile_length if tl >= shape[-3]: tl, pl = 0, pl + 1 result = result[..., :image_length, :image_width, :] else: strip_size = (self.rows_per_strip * self.image_width * self.samples_per_pixel) result = numpy.empty(shape, dtype).reshape(-1) index = 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) strip = unpack(decompress(fh.read(bytecount))) size = min(result.size, strip.size, strip_size, result.size - index) result[index:index+size] = strip[:size] del strip index += size result.shape = self._shape if self.predictor == 'horizontal' and not self.is_tiled: # work around bug in LSM510 software if not (self.parent.is_lsm and not self.compression): numpy.cumsum(result, axis=-2, dtype=dtype, out=result) if colormapped and self.is_palette: if self.color_map.shape[1] >= 2**bits_per_sample: # FluoView and LSM might fail here result = numpy.take(self.color_map, result[:, 0, :, :, 0], axis=1) elif rgbonly and self.is_rgb and 'extra_samples' in self.tags: # return only RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples, ) for i, exs in enumerate(extra_samples): if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.planar_configuration == 'contig': result = result[..., [0, 1, 2, 3+i]] else: result = result[:, [0, 1, 2, 3+i]] break else: if self.planar_configuration == 'contig': result = result[..., :3] else: result = result[:, :3] if squeeze: try: result.shape = self.shape except ValueError: warnings.warn("failed to reshape from %s to %s" % ( str(result.shape), str(self.shape))) return result def __str__(self): """Return string containing information about page.""" s = ', '.join(s for s in ( ' x '.join(str(i) for i in self.shape), str(numpy.dtype(self.dtype)), '%s bit' % str(self.bits_per_sample), self.photometric if 'photometric' in self.tags else '', self.compression if self.compression else 'raw', ','.join(t[3:] for t in ('is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej', 'is_fluoview', 'is_mdgel', 'is_mediacy', 'is_reduced', 'is_tiled') if getattr(self, t))) if s) return "Page %i: %s" % (self.index, s) def __getattr__(self, name): """Return tag value.""" if name in self.tags: value = self.tags[name].value setattr(self, name, value) return value raise AttributeError(name) @lazyattr def is_rgb(self): """True if page contains a RGB image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 2) @lazyattr def is_palette(self): """True if page contains a palette-colored image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 3) @lazyattr def is_tiled(self): """True if page contains tiled image.""" return 'tile_width' in self.tags @lazyattr def is_reduced(self): """True if page is a reduced image of another image.""" return bool(self.tags['new_subfile_type'].value & 1) @lazyattr def is_mdgel(self): """True if page contains md_file_tag tag.""" return 'md_file_tag' in self.tags @lazyattr def is_mediacy(self): """True if page contains Media Cybernetics Id tag.""" return ('mc_id' in self.tags and self.tags['mc_id'].value.startswith(b'MC TIFF')) @lazyattr def is_stk(self): """True if page contains MM_UIC2 tag.""" return 'mm_uic2' in self.tags @lazyattr def is_lsm(self): """True if page contains LSM CZ_LSM_INFO tag.""" return 'cz_lsm_info' in self.tags @lazyattr def is_fluoview(self): """True if page contains FluoView MM_STAMP tag.""" return 'mm_stamp' in self.tags @lazyattr def is_nih(self): """True if page contains NIH image header.""" return 'nih_image_header' in self.tags @lazyattr def is_ome(self): """True if page contains OME-XML in image_description tag.""" return ('image_description' in self.tags and self.tags[ 'image_description'].value.startswith(b'<?xml version=')) @lazyattr def is_shaped(self): """True if page contains shape in image_description tag.""" return ('image_description' in self.tags and self.tags[ 'image_description'].value.startswith(b'shape=(')) @lazyattr def is_imagej(self): """True if page contains ImageJ description.""" return ('image_description' in self.tags and self.tags['image_description'].value.startswith(b'ImageJ=')) class TiffTag(object): """A TIFF tag structure. Attributes ---------- name : string Attribute name of tag. code : int Decimal code of tag. dtype : str Datatype of tag data. One of TIFF_DATA_TYPES. count : int Number of values. value : various types Tag data. For codes in CUSTOM_TAGS the 4 bytes file content. value_offset : int Location of value in file, if any. All attributes are read-only. """ __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset', '_offset') class Error(Exception): pass def __init__(self, arg, **kwargs): """Initialize instance from file or arguments.""" self._offset = None if hasattr(arg, '_fh'): self._fromfile(arg, **kwargs) else: self._fromdata(arg, **kwargs) def _fromdata(self, code, dtype, count, value, name=None): """Initialize instance from arguments.""" self.code = int(code) self.name = name if name else str(code) self.dtype = TIFF_DATA_TYPES[dtype] self.count = int(count) self.value = value def _fromfile(self, parent): """Read tag structure from open file. Advance file cursor.""" fh = parent._fh byteorder = parent.byteorder self._offset = fh.tell() self.value_offset = self._offset + parent.offset_size + 4 fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size] data = fh.read(size) code, dtype = struct.unpack(byteorder + fmt[:2], data[:4]) count, value = struct.unpack(byteorder + fmt[2:], data[4:]) if code in TIFF_TAGS: name = TIFF_TAGS[code][0] elif code in CUSTOM_TAGS: name = CUSTOM_TAGS[code][0] else: name = str(code) try: dtype = TIFF_DATA_TYPES[dtype] except KeyError: raise TiffTag.Error("unknown tag data type %i" % dtype) fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > parent.offset_size or code in CUSTOM_TAGS: pos = fh.tell() tof = {4: 'I', 8: 'Q'}[parent.offset_size] self.value_offset = offset = struct.unpack(byteorder+tof, value)[0] if offset < 0 or offset > parent._fsize: raise TiffTag.Error("corrupt file - invalid tag value offset") elif offset < 4: raise TiffTag.Error("corrupt value offset for tag %i" % code) fh.seek(offset) if code in CUSTOM_TAGS: readfunc = CUSTOM_TAGS[code][1] value = readfunc(fh, byteorder, dtype, count) fh.seek(0, 2) # bug in numpy/Python 3.x ? if isinstance(value, dict): # numpy.core.records.record value = Record(value) elif code in TIFF_TAGS or dtype[-1] == 's': value = struct.unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count) fh.seek(0, 2) # bug in numpy/Python 3.x ? fh.seek(pos) else: value = struct.unpack(fmt, value[:size]) if not code in CUSTOM_TAGS: if len(value) == 1: value = value[0] if dtype.endswith('s'): value = stripnull(value) self.code = code self.name = name self.dtype = dtype self.count = count self.value = value def __str__(self): """Return string containing information about tag.""" return ' '.join(str(getattr(self, s)) for s in self.__slots__) class TiffSequence(object): """Sequence of image files. Properties ---------- files : list List of file names. shape : tuple Shape of image sequence. axes : str Labels of axes in shape. Examples -------- >>> ims = TiffSequence("test.oif.files/*.tif") >>> ims = ims.asarray() >>> ims.shape (2, 100, 256, 256) """ _axes_pattern = """ # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """ class _ParseError(Exception): pass def __init__(self, files, imread=TiffFile, pattern='axes'): """Initialize instance from multiple files. Parameters ---------- files : str, or sequence of str Glob pattern or sequence of file names. imread : function or class Image read function or class with asarray function returning numpy array from single file. pattern : str Regular expression pattern that matches axes names and sequence indices in file names. """ if isinstance(files, basestring): files = natural_sorted(glob.glob(files)) files = list(files) if not files: raise ValueError("no files found") #if not os.path.isfile(files[0]): # raise ValueError("file not found") self.files = files if hasattr(imread, 'asarray'): _imread = imread def imread(fname, *args, **kwargs): with _imread(fname) as im: return im.asarray(*args, **kwargs) self.imread = imread self.pattern = self._axes_pattern if pattern == 'axes' else pattern try: self._parse() if not self.axes: self.axes = 'I' except self._ParseError: self.axes = 'I' self.shape = (len(files),) self._start_index = (0,) self._indices = ((i,) for i in range(len(files))) def __str__(self): """Return string with information about image sequence.""" return "\n".join([ self.files[0], '* files: %i' % len(self.files), '* axes: %s' % self.axes, '* shape: %s' % str(self.shape)]) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): pass def asarray(self, *args, **kwargs): """Read image data from all files and return as single numpy array. Raise IndexError if image shapes don't match. """ im = self.imread(self.files[0]) result_shape = self.shape + im.shape result = numpy.zeros(result_shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) for index, fname in zip(self._indices, self.files): index = [i-j for i, j in zip(index, self._start_index)] index = numpy.ravel_multi_index(index, self.shape) im = self.imread(fname, *args, **kwargs) result[index] = im result.shape = result_shape return result def _parse(self): """Get axes and shape from file names.""" if not self.pattern: raise self._ParseError("invalid pattern") pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE) matches = pattern.findall(self.files[0]) if not matches: raise self._ParseError("pattern doesn't match file names") matches = matches[-1] if len(matches) % 2: raise self._ParseError("pattern doesn't match axis name and index") axes = ''.join(m for m in matches[::2] if m) if not axes: raise self._ParseError("pattern doesn't match file names") indices = [] for fname in self.files: matches = pattern.findall(fname)[-1] if axes != ''.join(m for m in matches[::2] if m): raise ValueError("axes don't match within the image sequence") indices.append([int(m) for m in matches[1::2] if m]) shape = tuple(numpy.max(indices, axis=0)) start_index = tuple(numpy.min(indices, axis=0)) shape = tuple(i-j+1 for i, j in zip(shape, start_index)) if numpy.prod(shape) != len(self.files): warnings.warn("files are missing. Missing data are zeroed") self.axes = axes.upper() self.shape = shape self._indices = indices self._start_index = start_index class Record(dict): """Dictionary with attribute access. Can also be initialized with numpy.core.records.record. """ __slots__ = () def __init__(self, arg=None, **kwargs): if kwargs: arg = kwargs elif arg is None: arg = {} try: dict.__init__(self, arg) except (TypeError, ValueError): for i, name in enumerate(arg.dtype.names): v = arg[i] self[name] = v if v.dtype.char != 'S' else stripnull(v) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self.__setitem__(name, value) def __str__(self): """Pretty print Record.""" s = [] lists = [] for k in sorted(self): if k.startswith('_'): # does not work with byte continue v = self[k] if isinstance(v, (list, tuple)) and len(v): if isinstance(v[0], Record): lists.append((k, v)) continue elif isinstance(v[0], TiffPage): v = [i.index for i in v if i] s.append( ("* %s: %s" % (k, str(v))).split("\n", 1)[0] [:PRINT_LINE_LEN].rstrip()) for k, v in lists: l = [] for i, w in enumerate(v): l.append("* %s[%i]\n %s" % (k, i, str(w).replace("\n", "\n "))) s.append('\n'.join(l)) return '\n'.join(s) class TiffTags(Record): """Dictionary of TiffTags with attribute access.""" def __str__(self): """Return string with information about all tags.""" s = [] #sortbycode = lambda a, b: cmp(a.code, b.code) #for tag in sorted(self.values(), sortbycode): for tag in sorted(self.values(), key=lambda x: x.code): typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1]) line = "* %i %s (%s) %s" % (tag.code, tag.name, typecode, str(tag.value).split('\n', 1)[0]) s.append(line[:PRINT_LINE_LEN].lstrip()) return '\n'.join(s) def read_bytes(fh, byteorder, dtype, count): """Read tag data from file and return as byte string.""" return numpy_fromfile(fh, byteorder+dtype[-1], count).tostring() def read_numpy(fh, byteorder, dtype, count): """Read tag data from file and return as numpy array.""" return numpy_fromfile(fh, byteorder+dtype[-1], count) def read_mm_header(fh, byteorder, dtype, count): """Read MM_HEADER tag from file and return as numpy.rec.array.""" return numpy.rec.fromfile(fh, MM_HEADER, 1, byteorder=byteorder)[0] def read_mm_stamp(fh, byteorder, dtype, count): """Read MM_STAMP tag from file and return as numpy.array.""" return numpy_fromfile(fh, byteorder+'8f8', 1)[0] def read_mm_uic1(fh, byteorder, dtype, count): """Read MM_UIC1 tag from file and return as dictionary.""" t = fh.read(8*count) t = struct.unpack('%s%iI' % (byteorder, 2*count), t) return dict((MM_TAG_IDS[k], v) for k, v in zip(t[::2], t[1::2]) if k in MM_TAG_IDS) def read_mm_uic2(fh, byteorder, dtype, count): """Read MM_UIC2 tag from file and return as dictionary.""" result = {'number_planes': count} values = numpy_fromfile(fh, byteorder+'I', 6*count) result['z_distance'] = values[0::6] // values[1::6] #result['date_created'] = tuple(values[2::6]) #result['time_created'] = tuple(values[3::6]) #result['date_modified'] = tuple(values[4::6]) #result['time_modified'] = tuple(values[5::6]) return result def read_mm_uic3(fh, byteorder, dtype, count): """Read MM_UIC3 tag from file and return as dictionary.""" t = numpy_fromfile(fh, byteorder+'I', 2*count) return {'wavelengths': t[0::2] // t[1::2]} def read_mm_uic4(fh, byteorder, dtype, count): """Read MM_UIC4 tag from file and return as dictionary.""" t = struct.unpack(byteorder + 'hI'*count, fh.read(6*count)) return dict((MM_TAG_IDS[k], v) for k, v in zip(t[::2], t[1::2]) if k in MM_TAG_IDS) def read_cz_lsm_info(fh, byteorder, dtype, count): """Read CS_LSM_INFO tag from file and return as numpy.rec.array.""" result = numpy.rec.fromfile(fh, CZ_LSM_INFO, 1, byteorder=byteorder)[0] {50350412: '1.3', 67127628: '2.0'}[result.magic_number] # validation return result def read_cz_lsm_time_stamps(fh, byteorder): """Read LSM time stamps from file and return as list.""" size, count = struct.unpack(byteorder+'II', fh.read(8)) if size != (8 + 8 * count): raise ValueError("lsm_time_stamps block is too short") return struct.unpack(('%s%dd' % (byteorder, count)), fh.read(8*count)) def read_cz_lsm_event_list(fh, byteorder): """Read LSM events from file and return as list of (time, type, text).""" count = struct.unpack(byteorder+'II', fh.read(8))[1] events = [] while count > 0: esize, etime, etype = struct.unpack(byteorder+'IdI', fh.read(16)) etext = stripnull(fh.read(esize - 16)) events.append((etime, etype, etext)) count -= 1 return events def read_cz_lsm_scan_info(fh, byteorder): """Read LSM scan information from file and return as Record.""" block = Record() blocks = [block] unpack = struct.unpack if 0x10000000 != struct.unpack(byteorder+"I", fh.read(4))[0]: raise ValueError("not a lsm_scan_info structure") fh.read(8) while True: entry, dtype, size = unpack(byteorder+"III", fh.read(12)) if dtype == 2: value = stripnull(fh.read(size)) elif dtype == 4: value = unpack(byteorder+"i", fh.read(4))[0] elif dtype == 5: value = unpack(byteorder+"d", fh.read(8))[0] else: value = 0 if entry in CZ_LSM_SCAN_INFO_ARRAYS: blocks.append(block) name = CZ_LSM_SCAN_INFO_ARRAYS[entry] newobj = [] setattr(block, name, newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_STRUCTS: blocks.append(block) newobj = Record() block.append(newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES: name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry] setattr(block, name, value) elif entry == 0xffffffff: block = blocks.pop() else: setattr(block, "unknown_%x" % entry, value) if not blocks: break return block def read_nih_image_header(fh, byteorder, dtype, count): """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array.""" a = numpy.rec.fromfile(fh, NIH_IMAGE_HEADER, 1, byteorder=byteorder)[0] a = a.newbyteorder(byteorder) a.xunit = a.xunit[:a._xunit_len] a.um = a.um[:a._um_len] return a def imagej_meta_data(data, bytecounts, byteorder): """Return dict from ImageJ meta data tag value.""" if sys.version_info[0] > 2: _str = lambda x: str(x, 'cp1252') else: _str = str def read_string(data, byteorder): return _str(data[1::2]) def read_double(data, byteorder): return struct.unpack(byteorder+('d' * (len(data) // 8)), data) def read_bytes(data, byteorder): #return struct.unpack('b' * len(data), data) return numpy.fromstring(data, 'uint8') metadata_types = { b'info': ('info', read_string), b'labl': ('labels', read_string), b'rang': ('ranges', read_double), b'luts': ('luts', read_bytes), b'roi ': ('roi', read_bytes), b'over': ('overlays', read_bytes)} if not bytecounts: raise ValueError("no ImageJ meta data") if not data.startswith(b'IJIJ'): raise ValueError("invalid ImageJ meta data") header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError("invalid ImageJ meta data header size") ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (_str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description(description): """Return dict from ImageJ image_description tag.""" def _bool(val): return {b'true': True, b'false': False}[val.lower()] if sys.version_info[0] > 2: _str = lambda x: str(x, 'cp1252') else: _str = str result = {} for line in description.splitlines(): try: key, val = line.split(b'=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool, _str): try: val = dtype(val) break except Exception: pass result[_str(key)] = val return result def _replace_by(module_function, package=None, warn=True): """Try replace decorated function by module.function.""" try: from importlib import import_module except ImportError: warnings.warn('Could not import module importlib') return lambda func: func def decorate(func, module_function=module_function, warn=warn): try: module, function = module_function.split('.') if not package: module = import_module(module) else: module = import_module('.' + module, package=package) func, oldfunc = getattr(module, function), func globals()['__old_' + func.__name__] = oldfunc except Exception: if warn: pass #warnings.warn("failed to import %s" % module_function) return func return decorate @_replace_by('_tifffile.decodepackbits') def decodepackbits(encoded): """Decompress PackBits encoded byte string. PackBits is a simple byte-oriented run-length compression scheme. """ func = ord if sys.version[0] == '2' else lambda x: x result = [] result_extend = result.extend i = 0 try: while True: n = func(encoded[i]) + 1 i += 1 if n < 129: result_extend(encoded[i:i+n]) i += n elif n > 129: result_extend(encoded[i:i+1] * (258-n)) i += 1 except IndexError: pass return b''.join(result) if sys.version[0] == '2' else bytes(result) @_replace_by('_tifffile.decodelzw') def decodelzw(encoded): """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string). The strip must begin with a CLEAR code and end with an EOI code. This is an implementation of the LZW decoding algorithm described in (1). It is not compatible with old style LZW compressed files like quad-lzw.tif. """ len_encoded = len(encoded) bitcount_max = len_encoded * 8 unpack = struct.unpack if sys.version[0] == '2': newtable = [chr(i) for i in range(256)] else: newtable = [bytes([i]) for i in range(256)] newtable.extend((0, 0)) def next_code(): """Return integer of `bitw` bits at `bitcount` position in encoded.""" start = bitcount // 8 s = encoded[start:start+4] try: code = unpack('>I', s)[0] except Exception: code = unpack('>I', s + b'\x00'*(4-len(s)))[0] code <<= bitcount % 8 code &= mask return code >> shr switchbitch = { # code: bit-width, shr-bits, bit-mask 255: (9, 23, int(9*'1'+'0'*23, 2)), 511: (10, 22, int(10*'1'+'0'*22, 2)), 1023: (11, 21, int(11*'1'+'0'*21, 2)), 2047: (12, 20, int(12*'1'+'0'*20, 2)), } bitw, shr, mask = switchbitch[255] bitcount = 0 if len_encoded < 4: raise ValueError("strip must be at least 4 characters long") if next_code() != 256: raise ValueError("strip must begin with CLEAR code") code = 0 oldcode = 0 result = [] result_append = result.append while True: code = next_code() # ~5% faster when inlining this function bitcount += bitw if code == 257 or bitcount >= bitcount_max: # EOI break if code == 256: # CLEAR table = newtable[:] table_append = table.append lentable = 258 bitw, shr, mask = switchbitch[255] code = next_code() bitcount += bitw if code == 257: # EOI break result_append(table[code]) else: if code < lentable: decoded = table[code] newcode = table[oldcode] + decoded[:1] else: newcode = table[oldcode] newcode += newcode[:1] decoded = newcode result_append(decoded) table_append(newcode) lentable += 1 oldcode = code if lentable in switchbitch: bitw, shr, mask = switchbitch[lentable] if code != 257: warnings.warn( "decodelzw encountered unexpected end of stream (code %i)" % code) return b''.join(result) @_replace_by('_tifffile.unpackints') def unpackints(data, dtype, itemsize, runlen=0): """Decompress byte string to array of integers of any bit size <= 32. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. itemsize : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. """ if itemsize == 1: # bitarray data = numpy.fromstring(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) dtype = numpy.dtype(dtype) if itemsize in (8, 16, 32, 64): return numpy.fromstring(data, dtype) if itemsize < 1 or itemsize > 32: raise ValueError("itemsize out of range: %i" % itemsize) if dtype.kind not in "biu": raise ValueError("invalid dtype") itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize) if itembytes != dtype.itemsize: raise ValueError("dtype.itemsize too small") if runlen == 0: runlen = len(data) // itembytes skipbits = runlen*itemsize % 8 if skipbits: skipbits = 8 - skipbits shrbits = itembytes*8 - itemsize bitmask = int(itemsize*'1'+'0'*shrbits, 2) dtypestr = '>' + dtype.char # dtype always big endian? unpack = struct.unpack l = runlen * (len(data)*8 // (runlen*itemsize + skipbits)) result = numpy.empty((l, ), dtype) bitcount = 0 for i in range(len(result)): start = bitcount // 8 s = data[start:start+itembytes] try: code = unpack(dtypestr, s)[0] except Exception: code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0] code <<= bitcount % 8 code &= bitmask result[i] = code >> shrbits bitcount += itemsize if (i+1) % runlen == 0: bitcount += skipbits return result def unpackrgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True): """Return array from byte string containing packed samples. Use to unpack RGB565 or RGB555 to RGB888 format. Parameters ---------- data : byte str The data to be decoded. Samples in each pixel are stored consecutively. Pixels are aligned to 8, 16, or 32 bit boundaries. dtype : numpy.dtype The sample data type. The byteorder applies also to the data stream. bitspersample : tuple Number of bits for each sample in a pixel. rescale : bool Upscale samples to the number of bits in dtype. Returns ------- result : ndarray Flattened array of unpacked samples of native dtype. Examples -------- >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpackrgb(data, '<B', (5, 6, 5), False)) [ 1 1 1 31 63 31] >>> print(unpackrgb(data, '<B', (5, 6, 5))) [ 8 4 8 255 255 255] >>> print(unpackrgb(data, '<B', (5, 5, 5))) [ 16 8 8 255 255 255] """ dtype = numpy.dtype(dtype) bits = int(numpy.sum(bitspersample)) if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)): raise ValueError("sample size not supported %s" % str(bitspersample)) dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits) data = numpy.fromstring(data, dtype.byteorder+dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i+1:])) t &= int('0b'+'1'*bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy array Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF_ORIENTATIONS keys or values. """ o = TIFF_ORIENTATIONS.get(orientation, orientation) if o == 'top_left': return image elif o == 'top_right': return image[..., ::-1, :] elif o == 'bottom_left': return image[..., ::-1, :, :] elif o == 'bottom_right': return image[..., ::-1, ::-1, :] elif o == 'left_top': return numpy.swapaxes(image, -3, -2) elif o == 'right_top': return numpy.swapaxes(image, -3, -2)[..., ::-1, :] elif o == 'left_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] elif o == 'right_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] def numpy_fromfile(arg, dtype=float, count=-1, sep=''): """Return array from data in binary file. Work around numpy issue #2230, "numpy.fromfile does not accept StringIO object" https://github.com/numpy/numpy/issues/2230. """ try: return numpy.fromfile(arg, dtype, count, sep) except IOError: if count < 0: size = 2**30 else: size = count * numpy.dtype(dtype).itemsize data = arg.read(int(size)) return numpy.fromstring(data, dtype, count, sep) def stripnull(string): """Return string truncated at first null character.""" i = string.find(b'\x00') return string if (i < 0) else string[:i] def format_size(size): """Return file size as string from byte size.""" for unit in ('B', 'KB', 'MB', 'GB', 'TB'): if size < 2048: return "%.f %s" % (size, unit) size /= 1024.0 def natural_sorted(iterable): """Return human sorted list of strings. Examples -------- >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ numbers = re.compile('(\d+)') sortkey = lambda x: [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] return sorted(iterable, key=sortkey) def datetime_from_timestamp(n, epoch=datetime.datetime.fromordinal(693594)): """Return datetime object from timestamp in Excel serial format. Examples -------- >>> datetime_from_timestamp(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ return epoch + datetime.timedelta(n) def test_tifffile(directory='testimages', verbose=True): """Read all images in directory. Print error message on failure. Examples -------- >>> test_tifffile(verbose=False) """ successful = 0 failed = 0 start = time.time() for f in glob.glob(os.path.join(directory, '*.*')): if verbose: print("\n%s>\n" % f.lower(), end='') t0 = time.time() try: tif = TiffFile(f, multifile=True) except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue try: img = tif.asarray() except ValueError: try: img = tif[0].asarray() except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue finally: tif.close() successful += 1 if verbose: print("%s, %s %s, %s, %.0f ms" % ( str(tif), str(img.shape), img.dtype, tif[0].compression, (time.time()-t0) * 1e3)) if verbose: print("\nSuccessfully read %i of %i files in %.3f s\n" % ( successful, successful+failed, time.time()-start)) class TIFF_SUBFILE_TYPES(object): def __getitem__(self, key): result = [] if key & 1: result.append('reduced_image') if key & 2: result.append('page') if key & 4: result.append('mask') return tuple(result) TIFF_PHOTOMETRICS = { 0: 'miniswhite', 1: 'minisblack', 2: 'rgb', 3: 'palette', 4: 'mask', 5: 'separated', 6: 'cielab', 7: 'icclab', 8: 'itulab', 32844: 'logl', 32845: 'logluv', } TIFF_COMPESSIONS = { 1: None, 2: 'ccittrle', 3: 'ccittfax3', 4: 'ccittfax4', 5: 'lzw', 6: 'ojpeg', 7: 'jpeg', 8: 'adobe_deflate', 9: 't85', 10: 't43', 32766: 'next', 32771: 'ccittrlew', 32773: 'packbits', 32809: 'thunderscan', 32895: 'it8ctpad', 32896: 'it8lw', 32897: 'it8mp', 32898: 'it8bl', 32908: 'pixarfilm', 32909: 'pixarlog', 32946: 'deflate', 32947: 'dcs', 34661: 'jbig', 34676: 'sgilog', 34677: 'sgilog24', 34712: 'jp2000', 34713: 'nef', } TIFF_DECOMPESSORS = { None: lambda x: x, 'adobe_deflate': zlib.decompress, 'deflate': zlib.decompress, 'packbits': decodepackbits, 'lzw': decodelzw, } TIFF_DATA_TYPES = { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator of # a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1B', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the numerator # of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. #14: '', # UNICODE #15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } TIFF_SAMPLE_FORMATS = { 1: 'uint', 2: 'int', 3: 'float', #4: 'void', #5: 'complex_int', 6: 'complex', } TIFF_SAMPLE_DTYPES = { ('uint', 1): '?', # bitmap ('uint', 2): 'B', ('uint', 3): 'B', ('uint', 4): 'B', ('uint', 5): 'B', ('uint', 6): 'B', ('uint', 7): 'B', ('uint', 8): 'B', ('uint', 9): 'H', ('uint', 10): 'H', ('uint', 11): 'H', ('uint', 12): 'H', ('uint', 13): 'H', ('uint', 14): 'H', ('uint', 15): 'H', ('uint', 16): 'H', ('uint', 17): 'I', ('uint', 18): 'I', ('uint', 19): 'I', ('uint', 20): 'I', ('uint', 21): 'I', ('uint', 22): 'I', ('uint', 23): 'I', ('uint', 24): 'I', ('uint', 25): 'I', ('uint', 26): 'I', ('uint', 27): 'I', ('uint', 28): 'I', ('uint', 29): 'I', ('uint', 30): 'I', ('uint', 31): 'I', ('uint', 32): 'I', ('uint', 64): 'Q', ('int', 8): 'b', ('int', 16): 'h', ('int', 32): 'i', ('int', 64): 'q', ('float', 16): 'e', ('float', 32): 'f', ('float', 64): 'd', ('complex', 64): 'F', ('complex', 128): 'D', ('uint', (5, 6, 5)): 'B', } TIFF_ORIENTATIONS = { 1: 'top_left', 2: 'top_right', 3: 'bottom_right', 4: 'bottom_left', 5: 'left_top', 6: 'right_top', 7: 'right_bottom', 8: 'left_bottom', } AXES_LABELS = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'P': 'plane', # page 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'F': 'phase', 'R': 'tile', # region, point 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', } AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items())) # NIH Image PicHeader v1.63 NIH_IMAGE_HEADER = [ ('fileid', 'a8'), ('nlines', 'i2'), ('pixelsperline', 'i2'), ('version', 'i2'), ('oldlutmode', 'i2'), ('oldncolors', 'i2'), ('colors', 'u1', (3, 32)), ('oldcolorstart', 'i2'), ('colorwidth', 'i2'), ('extracolors', 'u2', (6, 3)), ('nextracolors', 'i2'), ('foregroundindex', 'i2'), ('backgroundindex', 'i2'), ('xscale', 'f8'), ('_x0', 'i2'), ('_x1', 'i2'), ('units_t', 'i2'), ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('curvefit_t', 'i2'), ('ncoefficients', 'i2'), ('coeff', 'f8', 6), ('_um_len', 'u1'), ('um', 'a15'), ('_x2', 'u1'), ('binarypic', 'b1'), ('slicestart', 'i2'), ('sliceend', 'i2'), ('scalemagnification', 'f4'), ('nslices', 'i2'), ('slicespacing', 'f4'), ('currentslice', 'i2'), ('frameinterval', 'f4'), ('pixelaspectratio', 'f4'), ('colorstart', 'i2'), ('colorend', 'i2'), ('ncolors', 'i2'), ('fill1', '3u2'), ('fill2', '3u2'), ('colortable_t', 'u1'), ('lutmode_t', 'u1'), ('invertedtable', 'b1'), ('zeroclip', 'b1'), ('_xunit_len', 'u1'), ('xunit', 'a11'), ('stacktype_t', 'i2'), ] #NIH_COLORTABLE_TYPE = ( # 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', # 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum') #NIH_LUTMODE_TYPE = ( # 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', # 'ColorLut', 'CustomGrayscale') #NIH_CURVEFIT_TYPE = ( # 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', # 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', # 'UncalibratedOD') #NIH_UNITS_TYPE = ( # 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', # 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits') #NIH_STACKTYPE_TYPE = ( # 'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack') # MetaMorph STK tags MM_TAG_IDS = { 0: 'auto_scale', 1: 'min_scale', 2: 'max_scale', 3: 'spatial_calibration', #4: 'x_calibration', #5: 'y_calibration', #6: 'calibration_units', #7: 'name', 8: 'thresh_state', 9: 'thresh_state_red', 11: 'thresh_state_green', 12: 'thresh_state_blue', 13: 'thresh_state_lo', 14: 'thresh_state_hi', 15: 'zoom', #16: 'create_time', #17: 'last_saved_time', 18: 'current_buffer', 19: 'gray_fit', 20: 'gray_point_count', #21: 'gray_x', #22: 'gray_y', #23: 'gray_min', #24: 'gray_max', #25: 'gray_unit_name', 26: 'standard_lut', 27: 'wavelength', #28: 'stage_position', #29: 'camera_chip_offset', #30: 'overlay_mask', #31: 'overlay_compress', #32: 'overlay', #33: 'special_overlay_mask', #34: 'special_overlay_compress', #35: 'special_overlay', 36: 'image_property', #37: 'stage_label', #38: 'autoscale_lo_info', #39: 'autoscale_hi_info', #40: 'absolute_z', #41: 'absolute_z_valid', #42: 'gamma', #43: 'gamma_red', #44: 'gamma_green', #45: 'gamma_blue', #46: 'camera_bin', 47: 'new_lut', #48: 'image_property_ex', 49: 'plane_property', #50: 'user_lut_table', 51: 'red_autoscale_info', #52: 'red_autoscale_lo_info', #53: 'red_autoscale_hi_info', 54: 'red_minscale_info', 55: 'red_maxscale_info', 56: 'green_autoscale_info', #57: 'green_autoscale_lo_info', #58: 'green_autoscale_hi_info', 59: 'green_minscale_info', 60: 'green_maxscale_info', 61: 'blue_autoscale_info', #62: 'blue_autoscale_lo_info', #63: 'blue_autoscale_hi_info', 64: 'blue_min_scale_info', 65: 'blue_max_scale_info', #66: 'overlay_plane_color' } # Olympus FluoView MM_DIMENSION = [ ('name', 'a16'), ('size', 'i4'), ('origin', 'f8'), ('resolution', 'f8'), ('unit', 'a64'), ] MM_HEADER = [ ('header_flag', 'i2'), ('image_type', 'u1'), ('image_name', 'a257'), ('offset_data', 'u4'), ('palette_size', 'i4'), ('offset_palette0', 'u4'), ('offset_palette1', 'u4'), ('comment_size', 'i4'), ('offset_comment', 'u4'), ('dimensions', MM_DIMENSION, 10), ('offset_position', 'u4'), ('map_type', 'i2'), ('map_min', 'f8'), ('map_max', 'f8'), ('min_value', 'f8'), ('max_value', 'f8'), ('offset_map', 'u4'), ('gamma', 'f8'), ('offset', 'f8'), ('gray_channel', MM_DIMENSION), ('offset_thumbnail', 'u4'), ('voice_field', 'i4'), ('offset_voice_field', 'u4'), ] # Carl Zeiss LSM CZ_LSM_INFO = [ ('magic_number', 'i4'), ('structure_size', 'i4'), ('dimension_x', 'i4'), ('dimension_y', 'i4'), ('dimension_z', 'i4'), ('dimension_channels', 'i4'), ('dimension_time', 'i4'), ('dimension_data_type', 'i4'), ('thumbnail_x', 'i4'), ('thumbnail_y', 'i4'), ('voxel_size_x', 'f8'), ('voxel_size_y', 'f8'), ('voxel_size_z', 'f8'), ('origin_x', 'f8'), ('origin_y', 'f8'), ('origin_z', 'f8'), ('scan_type', 'u2'), ('spectral_scan', 'u2'), ('data_type', 'u4'), ('offset_vector_overlay', 'u4'), ('offset_input_lut', 'u4'), ('offset_output_lut', 'u4'), ('offset_channel_colors', 'u4'), ('time_interval', 'f8'), ('offset_channel_data_types', 'u4'), ('offset_scan_information', 'u4'), ('offset_ks_data', 'u4'), ('offset_time_stamps', 'u4'), ('offset_event_list', 'u4'), ('offset_roi', 'u4'), ('offset_bleach_roi', 'u4'), ('offset_next_recording', 'u4'), ('display_aspect_x', 'f8'), ('display_aspect_y', 'f8'), ('display_aspect_z', 'f8'), ('display_aspect_time', 'f8'), ('offset_mean_of_roi_overlay', 'u4'), ('offset_topo_isoline_overlay', 'u4'), ('offset_topo_profile_overlay', 'u4'), ('offset_linescan_overlay', 'u4'), ('offset_toolbar_flags', 'u4'), ] # Import functions for LSM_INFO sub-records CZ_LSM_INFO_READERS = { 'scan_information': read_cz_lsm_scan_info, 'time_stamps': read_cz_lsm_time_stamps, 'event_list': read_cz_lsm_event_list, } # Map cz_lsm_info.scan_type to dimension order CZ_SCAN_TYPES = { 0: 'XYZCT', # x-y-z scan 1: 'XYZCT', # z scan (x-z plane) 2: 'XYZCT', # line scan 3: 'XYTCZ', # time series x-y 4: 'XYZTC', # time series x-z 5: 'XYTCZ', # time series 'Mean of ROIs' 6: 'XYZTC', # time series x-y-z 7: 'XYCTZ', # spline scan 8: 'XYCZT', # spline scan x-z 9: 'XYTCZ', # time series spline plane x-z 10: 'XYZCT', # point mode } # Map dimension codes to cz_lsm_info attribute CZ_DIMENSIONS = { 'X': 'dimension_x', 'Y': 'dimension_y', 'Z': 'dimension_z', 'C': 'dimension_channels', 'T': 'dimension_time', } # Descriptions of cz_lsm_info.data_type CZ_DATA_TYPES = { 0: 'varying data types', 2: '12 bit unsigned integer', 5: '32 bit float', } CZ_LSM_SCAN_INFO_ARRAYS = { 0x20000000: "tracks", 0x30000000: "lasers", 0x60000000: "detectionchannels", 0x80000000: "illuminationchannels", 0xa0000000: "beamsplitters", 0xc0000000: "datachannels", 0x13000000: "markers", 0x11000000: "timers", } CZ_LSM_SCAN_INFO_STRUCTS = { 0x40000000: "tracks", 0x50000000: "lasers", 0x70000000: "detectionchannels", 0x90000000: "illuminationchannels", 0xb0000000: "beamsplitters", 0xd0000000: "datachannels", 0x14000000: "markers", 0x12000000: "timers", } CZ_LSM_SCAN_INFO_ATTRIBUTES = { 0x10000001: "name", 0x10000002: "description", 0x10000003: "notes", 0x10000004: "objective", 0x10000005: "processing_summary", 0x10000006: "special_scan_mode", 0x10000007: "oledb_recording_scan_type", 0x10000008: "oledb_recording_scan_mode", 0x10000009: "number_of_stacks", 0x1000000a: "lines_per_plane", 0x1000000b: "samples_per_line", 0x1000000c: "planes_per_volume", 0x1000000d: "images_width", 0x1000000e: "images_height", 0x1000000f: "images_number_planes", 0x10000010: "images_number_stacks", 0x10000011: "images_number_channels", 0x10000012: "linscan_xy_size", 0x10000013: "scan_direction", 0x10000014: "time_series", 0x10000015: "original_scan_data", 0x10000016: "zoom_x", 0x10000017: "zoom_y", 0x10000018: "zoom_z", 0x10000019: "sample_0x", 0x1000001a: "sample_0y", 0x1000001b: "sample_0z", 0x1000001c: "sample_spacing", 0x1000001d: "line_spacing", 0x1000001e: "plane_spacing", 0x1000001f: "plane_width", 0x10000020: "plane_height", 0x10000021: "volume_depth", 0x10000023: "nutation", 0x10000034: "rotation", 0x10000035: "precession", 0x10000036: "sample_0time", 0x10000037: "start_scan_trigger_in", 0x10000038: "start_scan_trigger_out", 0x10000039: "start_scan_event", 0x10000040: "start_scan_time", 0x10000041: "stop_scan_trigger_in", 0x10000042: "stop_scan_trigger_out", 0x10000043: "stop_scan_event", 0x10000044: "stop_scan_time", 0x10000045: "use_rois", 0x10000046: "use_reduced_memory_rois", 0x10000047: "user", 0x10000048: "use_bccorrection", 0x10000049: "position_bccorrection1", 0x10000050: "position_bccorrection2", 0x10000051: "interpolation_y", 0x10000052: "camera_binning", 0x10000053: "camera_supersampling", 0x10000054: "camera_frame_width", 0x10000055: "camera_frame_height", 0x10000056: "camera_offset_x", 0x10000057: "camera_offset_y", # lasers 0x50000001: "name", 0x50000002: "acquire", 0x50000003: "power", # tracks 0x40000001: "multiplex_type", 0x40000002: "multiplex_order", 0x40000003: "sampling_mode", 0x40000004: "sampling_method", 0x40000005: "sampling_number", 0x40000006: "acquire", 0x40000007: "sample_observation_time", 0x4000000b: "time_between_stacks", 0x4000000c: "name", 0x4000000d: "collimator1_name", 0x4000000e: "collimator1_position", 0x4000000f: "collimator2_name", 0x40000010: "collimator2_position", 0x40000011: "is_bleach_track", 0x40000012: "is_bleach_after_scan_number", 0x40000013: "bleach_scan_number", 0x40000014: "trigger_in", 0x40000015: "trigger_out", 0x40000016: "is_ratio_track", 0x40000017: "bleach_count", 0x40000018: "spi_center_wavelength", 0x40000019: "pixel_time", 0x40000021: "condensor_frontlens", 0x40000023: "field_stop_value", 0x40000024: "id_condensor_aperture", 0x40000025: "condensor_aperture", 0x40000026: "id_condensor_revolver", 0x40000027: "condensor_filter", 0x40000028: "id_transmission_filter1", 0x40000029: "id_transmission1", 0x40000030: "id_transmission_filter2", 0x40000031: "id_transmission2", 0x40000032: "repeat_bleach", 0x40000033: "enable_spot_bleach_pos", 0x40000034: "spot_bleach_posx", 0x40000035: "spot_bleach_posy", 0x40000036: "spot_bleach_posz", 0x40000037: "id_tubelens", 0x40000038: "id_tubelens_position", 0x40000039: "transmitted_light", 0x4000003a: "reflected_light", 0x4000003b: "simultan_grab_and_bleach", 0x4000003c: "bleach_pixel_time", # detection_channels 0x70000001: "integration_mode", 0x70000002: "special_mode", 0x70000003: "detector_gain_first", 0x70000004: "detector_gain_last", 0x70000005: "amplifier_gain_first", 0x70000006: "amplifier_gain_last", 0x70000007: "amplifier_offs_first", 0x70000008: "amplifier_offs_last", 0x70000009: "pinhole_diameter", 0x7000000a: "counting_trigger", 0x7000000b: "acquire", 0x7000000c: "point_detector_name", 0x7000000d: "amplifier_name", 0x7000000e: "pinhole_name", 0x7000000f: "filter_set_name", 0x70000010: "filter_name", 0x70000013: "integrator_name", 0x70000014: "detection_channel_name", 0x70000015: "detection_detector_gain_bc1", 0x70000016: "detection_detector_gain_bc2", 0x70000017: "detection_amplifier_gain_bc1", 0x70000018: "detection_amplifier_gain_bc2", 0x70000019: "detection_amplifier_offset_bc1", 0x70000020: "detection_amplifier_offset_bc2", 0x70000021: "detection_spectral_scan_channels", 0x70000022: "detection_spi_wavelength_start", 0x70000023: "detection_spi_wavelength_stop", 0x70000026: "detection_dye_name", 0x70000027: "detection_dye_folder", # illumination_channels 0x90000001: "name", 0x90000002: "power", 0x90000003: "wavelength", 0x90000004: "aquire", 0x90000005: "detchannel_name", 0x90000006: "power_bc1", 0x90000007: "power_bc2", # beam_splitters 0xb0000001: "filter_set", 0xb0000002: "filter", 0xb0000003: "name", # data_channels 0xd0000001: "name", 0xd0000003: "acquire", 0xd0000004: "color", 0xd0000005: "sample_type", 0xd0000006: "bits_per_sample", 0xd0000007: "ratio_type", 0xd0000008: "ratio_track1", 0xd0000009: "ratio_track2", 0xd000000a: "ratio_channel1", 0xd000000b: "ratio_channel2", 0xd000000c: "ratio_const1", 0xd000000d: "ratio_const2", 0xd000000e: "ratio_const3", 0xd000000f: "ratio_const4", 0xd0000010: "ratio_const5", 0xd0000011: "ratio_const6", 0xd0000012: "ratio_first_images1", 0xd0000013: "ratio_first_images2", 0xd0000014: "dye_name", 0xd0000015: "dye_folder", 0xd0000016: "spectrum", 0xd0000017: "acquire", # markers 0x14000001: "name", 0x14000002: "description", 0x14000003: "trigger_in", 0x14000004: "trigger_out", # timers 0x12000001: "name", 0x12000002: "description", 0x12000003: "interval", 0x12000004: "trigger_in", 0x12000005: "trigger_out", 0x12000006: "activation_time", 0x12000007: "activation_number", } # Map TIFF tag code to attribute name, default value, type, count, validator TIFF_TAGS = { 254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()), 255: ('subfile_type', None, 3, 1, {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}), 256: ('image_width', None, 4, 1, None), 257: ('image_length', None, 4, 1, None), 258: ('bits_per_sample', 1, 3, 1, None), 259: ('compression', 1, 3, 1, TIFF_COMPESSIONS), 262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS), 266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}), 269: ('document_name', None, 2, None, None), 270: ('image_description', None, 2, None, None), 271: ('make', None, 2, None, None), 272: ('model', None, 2, None, None), 273: ('strip_offsets', None, 4, None, None), 274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS), 277: ('samples_per_pixel', 1, 3, 1, None), 278: ('rows_per_strip', 2**32-1, 4, 1, None), 279: ('strip_byte_counts', None, 4, None, None), 280: ('min_sample_value', None, 3, None, None), 281: ('max_sample_value', None, 3, None, None), # 2**bits_per_sample 282: ('x_resolution', None, 5, 1, None), 283: ('y_resolution', None, 5, 1, None), 284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}), 285: ('page_name', None, 2, None, None), 286: ('x_position', None, 5, 1, None), 287: ('y_position', None, 5, 1, None), 296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}), 297: ('page_number', None, 3, 2, None), 305: ('software', None, 2, None, None), 306: ('datetime', None, 2, None, None), 315: ('artist', None, 2, None, None), 316: ('host_computer', None, 2, None, None), 317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal'}), 320: ('color_map', None, 3, None, None), 322: ('tile_width', None, 4, 1, None), 323: ('tile_length', None, 4, 1, None), 324: ('tile_offsets', None, 4, None, None), 325: ('tile_byte_counts', None, 4, None, None), 338: ('extra_samples', None, 3, None, {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}), 339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS), 347: ('jpeg_tables', None, None, None, None), 530: ('ycbcr_subsampling', 1, 3, 2, None), 531: ('ycbcr_positioning', 1, 3, 1, None), 32997: ('image_depth', None, 4, 1, None), 32998: ('tile_depth', None, 4, 1, None), 33432: ('copyright', None, 1, None, None), 33445: ('md_file_tag', None, 4, 1, None), 33446: ('md_scale_pixel', None, 5, 1, None), 33447: ('md_color_table', None, 3, None, None), 33448: ('md_lab_name', None, 2, None, None), 33449: ('md_sample_info', None, 2, None, None), 33450: ('md_prep_date', None, 2, None, None), 33451: ('md_prep_time', None, 2, None, None), 33452: ('md_file_units', None, 2, None, None), 33550: ('model_pixel_scale', None, 12, 3, None), 33922: ('model_tie_point', None, 12, None, None), 37510: ('user_comment', None, None, None, None), 34665: ('exif_ifd', None, None, 1, None), 34735: ('geo_key_directory', None, 3, None, None), 34736: ('geo_double_params', None, 12, None, None), 34737: ('geo_ascii_params', None, 2, None, None), 34853: ('gps_ifd', None, None, 1, None), 42112: ('gdal_metadata', None, 2, None, None), 42113: ('gdal_nodata', None, 2, None, None), 50838: ('imagej_byte_counts', None, None, None, None), 50289: ('mc_xy_position', None, 12, 2, None), 50290: ('mc_z_position', None, 12, 1, None), 50291: ('mc_xy_calibration', None, 12, 3, None), 50292: ('mc_lens_lem_na_n', None, 12, 3, None), 50293: ('mc_channel_name', None, 1, None, None), 50294: ('mc_ex_wavelength', None, 12, 1, None), 50295: ('mc_time_stamp', None, 12, 1, None), 65200: ('flex_xml', None, 2, None, None), # code: (attribute name, default value, type, count, validator) } # Map custom TIFF tag codes to attribute names and import functions CUSTOM_TAGS = { 700: ('xmp', read_bytes), 34377: ('photoshop', read_numpy), 33723: ('iptc', read_bytes), 34675: ('icc_profile', read_numpy), 33628: ('mm_uic1', read_mm_uic1), 33629: ('mm_uic2', read_mm_uic2), 33630: ('mm_uic3', read_mm_uic3), 33631: ('mm_uic4', read_mm_uic4), 34361: ('mm_header', read_mm_header), 34362: ('mm_stamp', read_mm_stamp), 34386: ('mm_user_block', read_bytes), 34412: ('cz_lsm_info', read_cz_lsm_info), 43314: ('nih_image_header', read_nih_image_header), # 40001: ('mc_ipwinscal', read_bytes), 40100: ('mc_id_old', read_bytes), 50288: ('mc_id', read_bytes), 50296: ('mc_frame_properties', read_bytes), 50839: ('imagej_meta_data', read_bytes), } # Max line length of printed output PRINT_LINE_LEN = 79 def imshow(data, title=None, vmin=0, vmax=None, cmap=None, bitspersample=None, photometric='rgb', interpolation='nearest', dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported ``from matplotlib import pyplot``. Parameters ---------- bitspersample : int or None Number of bits per channel in integer RGB images. photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'} The color space of the image data. title : str Window and subplot title. figure : matplotlib.figure.Figure (optional). Matplotlib to use for plotting. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int maximum image size in any dimension. kwargs : optional Arguments for matplotlib.pyplot.imshow. """ #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'): # raise ValueError("Can't handle %s photometrics" % photometric) # TODO: handle photometric == 'separated' (CMYK) isrgb = photometric in ('rgb', 'palette') data = numpy.atleast_2d(data.squeeze()) data = data[(slice(0, maxdim), ) * len(data.shape)] dims = data.ndim if dims < 2: raise ValueError("not an image") elif dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and data.shape[-1] in (3, 4): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if photometric == 'palette' and isrgb: datamax = data.max() if datamax > 255: data >>= 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, int): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data <<= 8 - bitspersample elif bitspersample > 8: data >>= bitspersample - 8 # precision loss data = data.astype('B') elif data.dtype.kind == 'f': datamax = data.max() if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax elif data.dtype.kind == 'b': datamax = 1 if not isrgb: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) if data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9, left=0.1, right=0.95, hspace=0.05, wspace=0.0) subplot = pyplot.subplot(subplot) if title: try: title = unicode(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.kind in 'ub' and vmin == 0: cmap = 'gray' else: cmap = 'coolwarm' if photometric == 'miniswhite': cmap += '_r' image = pyplot.imshow(data[(0, ) * dims].squeeze(), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x], current, x, y) else: return "%s @ [%4i, %4i]" % (data[y, x], x, y) except IndexError: return "" pyplot.gca().format_coord = format_coord if dims: current = list((0, ) * dims) cur_ax_dat = [0, data[tuple(current)].squeeze()] sliders = [pyplot.Slider( pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]), 'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5', valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas cur_ax_dat[1] = data[tuple(current)].squeeze() image.set_data(cur_ax_dat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) cur_ax_dat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = cur_ax_dat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1 elif key == 'down': cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def main(argv=None): """Command line usage main function.""" if float(sys.version[0:3]) < 2.6: print("This script requires Python version 2.6 or better.") print("This is Python version %s" % sys.version) return 0 if argv is None: argv = sys.argv import optparse search_doc = lambda r, d: re.search(r, __doc__).group(1) if __doc__ else d parser = optparse.OptionParser( usage="usage: %prog [options] path", description=search_doc("\n\n([^|]*?)\n\n", ''), version="%%prog %s" % search_doc(":Version: (.*)", "Unknown")) opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help="display single page") opt('-s', '--series', dest='series', type='int', default=-1, help="display series of pages of same shape") opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help="don't read OME series from multiple files") opt('--noplot', dest='noplot', action='store_true', default=False, help="don't display images") opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear', help="image interpolation method") opt('--dpi', dest='dpi', type='int', default=96, help="set plot resolution") opt('--debug', dest='debug', action='store_true', default=False, help="raise exception on failures") opt('--test', dest='test', action='store_true', default=False, help="try read all images in path") opt('--doctest', dest='doctest', action='store_true', default=False, help="runs the internal tests") opt('-v', '--verbose', dest='verbose', action='store_true', default=True) opt('-q', '--quiet', dest='verbose', action='store_false') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest doctest.testmod() return 0 if not path: parser.error("No file specified") if settings.test: test_tifffile(path, settings.verbose) return 0 if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('no files match the pattern') return 0 # TODO: handle image sequences #if len(path) == 1: path = path[0] print("Reading file structure...", end=' ') start = time.time() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as e: if settings.debug: raise else: print("\n", e) sys.exit(0) print("%.3f ms" % ((time.time()-start) * 1e3)) if tif.is_ome: settings.norgb = True images = [(None, tif[0 if settings.page < 0 else settings.page])] if not settings.noplot: print("Reading image data... ", end=' ') notnone = lambda x: next(i for i in x if i is not None) start = time.time() try: if settings.page >= 0: images = [(tif.asarray(key=settings.page), tif[settings.page])] elif settings.series >= 0: images = [(tif.asarray(series=settings.series), notnone(tif.series[settings.series].pages))] else: images = [] for i, s in enumerate(tif.series): try: images.append( (tif.asarray(series=i), notnone(s.pages))) except ValueError as e: images.append((None, notnone(s.pages))) if settings.debug: raise else: print("\n* series %i failed: %s... " % (i, e), end='') print("%.3f ms" % ((time.time()-start) * 1e3)) except Exception as e: if settings.debug: raise else: print(e) tif.close() print("\nTIFF file:", tif) print() for i, s in enumerate(tif.series): print ("Series %i" % i) print(s) print() for i, page in images: print(page) print(page.tags) if page.is_palette: print("\nColor Map:", page.color_map.shape, page.color_map.dtype) for attr in ('cz_lsm_info', 'cz_lsm_scan_information', 'mm_uic_tags', 'mm_header', 'imagej_tags', 'nih_image_header'): if hasattr(page, attr): print("", attr.upper(), Record(getattr(page, attr)), sep="\n") print() if images and not settings.noplot: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as e: warnings.warn("failed to import matplotlib.\n%s" % e) else: for img, page in images: if img is None: continue vmin, vmax = None, None if 'gdal_nodata' in page.tags: vmin = numpy.min(img[img > float(page.gdal_nodata)]) if page.is_stk: try: vmin = page.mm_uic_tags['min_scale'] vmax = page.mm_uic_tags['max_scale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = None, None title = "%s\n %s" % (str(tif), str(page)) imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bits_per_sample, photometric=page.photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() TIFFfile = TiffFile # backwards compatibility if sys.version_info[0] > 2: basestring = str unicode = str if __name__ == "__main__": sys.exit(main())
mit
RayMick/scikit-learn
examples/classification/plot_lda.py
70
2413
""" ==================================================================== Normal and Shrinkage Linear Discriminant Analysis for classification ==================================================================== Shows how shrinkage improves classification. """ from __future__ import division import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis n_train = 20 # samples for training n_test = 200 # samples for testing n_averages = 50 # how often to repeat classification n_features_max = 75 # maximum number of features step = 4 # step size for the calculation def generate_data(n_samples, n_features): """Generate random blob-ish data with noisy features. This returns an array of input data with shape `(n_samples, n_features)` and an array of `n_samples` target labels. Only one feature contains discriminative information, the other features contain only noise. """ X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]]) # add non-discriminative features if n_features > 1: X = np.hstack([X, np.random.randn(n_samples, n_features - 1)]) return X, y acc_clf1, acc_clf2 = [], [] n_features_range = range(1, n_features_max + 1, step) for n_features in n_features_range: score_clf1, score_clf2 = 0, 0 for _ in range(n_averages): X, y = generate_data(n_train, n_features) clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y) clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y) X, y = generate_data(n_test, n_features) score_clf1 += clf1.score(X, y) score_clf2 += clf2.score(X, y) acc_clf1.append(score_clf1 / n_averages) acc_clf2.append(score_clf2 / n_averages) features_samples_ratio = np.array(n_features_range) / n_train plt.plot(features_samples_ratio, acc_clf1, linewidth=2, label="Linear Discriminant Analysis with shrinkage", color='r') plt.plot(features_samples_ratio, acc_clf2, linewidth=2, label="Linear Discriminant Analysis", color='g') plt.xlabel('n_features / n_samples') plt.ylabel('Classification accuracy') plt.legend(loc=1, prop={'size': 12}) plt.suptitle('Linear Discriminant Analysis vs. \ shrinkage Linear Discriminant Analysis (1 discriminative feature)') plt.show()
bsd-3-clause
MechCoder/scikit-learn
examples/decomposition/plot_image_denoising.py
6
5958
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np import scipy as sp from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d ############################################################################### try: # SciPy >= 0.16 have face in misc from scipy.misc import face face = face(gray=True) except ImportError: face = sp.face(gray=True) # Convert from uint8 representation with values between 0 and 255 to # a floating point representation with values between 0 and 1. face = face / 255. # downsample for higher speed face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face /= 4.0 height, width = face.shape # Distort the right half of the image print('Distorting image...') distorted = face.copy() distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :width // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from face patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, face, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, width // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = face.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d( patches, (height, width // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], face, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
flightgong/scikit-learn
sklearn/decomposition/truncated_svd.py
2
8230
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # Michael Becker <[email protected]> # License: 3-clause BSD. import warnings import numpy as np import scipy.sparse as sp try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import (array2d, as_float_array, atleast2d_or_csr, check_random_state) from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip from ..utils.sparsefuncs import mean_variance_axis0 __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithm: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient. Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iter : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- `components_` : array, shape (n_components, n_features) `explained_variance_ratio_` : array, [n_components] Percentage of variance explained by each of the selected components. `explained_variance_` : array, [n_components] The variance of the training samples transformed by a projection to each component. Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> svd = TruncatedSVD(n_components=5, random_state=42) >>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5, random_state=42, tol=0.0) >>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...] >>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS 0.27930... See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iter=5, random_state=None, tol=0., n_iterations=None): if n_iterations is not None: warnings.warn("n_iterations was renamed to n_iter for consistency " "and will be removed in 0.16.", DeprecationWarning) n_iter = n_iterations self.algorithm = algorithm self.n_components = n_components self.n_iter = n_iter self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) # If sparse and not csr or csc, convert to csr if sp.issparse(X) and X.getformat() not in ["csr", "csc"]: X = X.tocsr() if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT # Calculate explained variance & explained variance ratio n_samples = X.shape[0] X_transformed = np.dot(U, np.diag(Sigma)) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): _, full_var = mean_variance_axis0(X) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = atleast2d_or_csr(X) return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = array2d(X) return np.dot(X, self.components_) @property def n_iterations(self): warnings.warn("n_iterations was renamed to n_iter for consistency " "and will be removed in 0.16.", DeprecationWarning) return self.n_iter
bsd-3-clause
jkarnows/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/hmm.py
18
48579
# Hidden Markov Models # # Author: Ron Weiss <[email protected]> # and Shiqiao Du <[email protected]> # API changes: Jaques Grobler <[email protected]> """ The :mod:`sklearn.hmm` module implements hidden Markov models. **Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known numerical stability issues. This module will be removed in version 0.17. It has been moved to a separate repository: https://github.com/hmmlearn/hmmlearn """ import string import numpy as np from .utils import check_random_state, deprecated from .utils.extmath import logsumexp from .base import BaseEstimator from .mixture import ( GMM, log_multivariate_normal_density, sample_gaussian, distribute_covar_matrix_to_match_covariance_type, _validate_covars) from . import cluster from . import _hmmc __all__ = ['GMMHMM', 'GaussianHMM', 'MultinomialHMM', 'decoder_algorithms', 'normalize'] ZEROLOGPROB = -1e200 EPS = np.finfo(float).eps NEGINF = -np.inf decoder_algorithms = ("viterbi", "map") @deprecated("WARNING: The HMM module and its functions will be removed in 0.17 " "as it no longer falls within the project's scope and API. " "It has been moved to a separate repository: " "https://github.com/hmmlearn/hmmlearn") def normalize(A, axis=None): """ Normalize the input array so that it sums to 1. WARNING: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Parameters ---------- A: array, shape (n_samples, n_features) Non-normalized input data axis: int dimension along which normalization is performed Returns ------- normalized_A: array, shape (n_samples, n_features) A with values normalized (summing to 1) along the prescribed axis WARNING: Modifies inplace the array """ A += EPS Asum = A.sum(axis) if axis and A.ndim > 1: # Make sure we don't divide by zero. Asum[Asum == 0] = 1 shape = list(A.shape) shape[axis] = 1 Asum.shape = shape return A / Asum @deprecated("WARNING: The HMM module and its function will be removed in 0.17" "as it no longer falls within the project's scope and API. " "It has been moved to a separate repository: " "https://github.com/hmmlearn/hmmlearn") class _BaseHMM(BaseEstimator): """Hidden Markov Model base class. Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. See the instance documentation for details specific to a particular object. .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. transmat_prior : array, shape (`n_components`, `n_components`) Matrix of prior transition probabilities between states. startprob_prior : array, shape ('n_components`,) Initial state occupation prior distribution. algorithm : string, one of the decoder_algorithms decoder algorithm random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emmission parameters. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emmission parameters. Defaults to all parameters. See Also -------- GMM : Gaussian mixture model """ # This class implements the public interface to all HMMs that # derive from it, including all of the machinery for the # forward-backward and Viterbi algorithms. Subclasses need only # implement _generate_sample_from_state(), _compute_log_likelihood(), # _init(), _initialize_sufficient_statistics(), # _accumulate_sufficient_statistics(), and _do_mstep(), all of # which depend on the specific emission distribution. # # Subclasses will probably also want to implement properties for # the emission distribution parameters to expose them publicly. def __init__(self, n_components=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): self.n_components = n_components self.n_iter = n_iter self.thresh = thresh self.params = params self.init_params = init_params self.startprob_ = startprob self.startprob_prior = startprob_prior self.transmat_ = transmat self.transmat_prior = transmat_prior self._algorithm = algorithm self.random_state = random_state def eval(self, X): return self.score_samples(X) def score_samples(self, obs): """Compute the log probability under the model and compute posteriors. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- logprob : float Log likelihood of the sequence ``obs``. posteriors : array_like, shape (n, n_components) Posterior probabilities of each state for each observation See Also -------- score : Compute the log probability under the model decode : Find most likely state sequence corresponding to a `obs` """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) logprob, fwdlattice = self._do_forward_pass(framelogprob) bwdlattice = self._do_backward_pass(framelogprob) gamma = fwdlattice + bwdlattice # gamma is guaranteed to be correctly normalized by logprob at # all frames, unless we do approximate inference using pruning. # So, we will normalize each frame explicitly in case we # pruned too aggressively. posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T posteriors += np.finfo(np.float32).eps posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1)) return logprob, posteriors def score(self, obs): """Compute the log probability under the model. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : float Log likelihood of the ``obs``. See Also -------- score_samples : Compute the log probability under the model and posteriors decode : Find most likely state sequence corresponding to a `obs` """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) logprob, _ = self._do_forward_pass(framelogprob) return logprob def _decode_viterbi(self, obs): """Find most likely state sequence corresponding to ``obs``. Uses the Viterbi algorithm. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- viterbi_logprob : float Log probability of the maximum likelihood path through the HMM. state_sequence : array_like, shape (n,) Index of the most likely states for each observation. See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob) return viterbi_logprob, state_sequence def _decode_map(self, obs): """Find most likely state sequence corresponding to `obs`. Uses the maximum a posteriori estimation. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- map_logprob : float Log probability of the maximum likelihood path through the HMM state_sequence : array_like, shape (n,) Index of the most likely states for each observation See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ _, posteriors = self.score_samples(obs) state_sequence = np.argmax(posteriors, axis=1) map_logprob = np.max(posteriors, axis=1).sum() return map_logprob, state_sequence def decode(self, obs, algorithm="viterbi"): """Find most likely state sequence corresponding to ``obs``. Uses the selected algorithm for decoding. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. algorithm : string, one of the `decoder_algorithms` decoder algorithm to be used Returns ------- logprob : float Log probability of the maximum likelihood path through the HMM state_sequence : array_like, shape (n,) Index of the most likely states for each observation See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ if self._algorithm in decoder_algorithms: algorithm = self._algorithm elif algorithm in decoder_algorithms: algorithm = algorithm decoder = {"viterbi": self._decode_viterbi, "map": self._decode_map} logprob, state_sequence = decoder[algorithm](obs) return logprob, state_sequence def predict(self, obs, algorithm="viterbi"): """Find most likely state sequence corresponding to `obs`. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- state_sequence : array_like, shape (n,) Index of the most likely states for each observation """ _, state_sequence = self.decode(obs, algorithm) return state_sequence def predict_proba(self, obs): """Compute the posterior probability for each state in the model Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- T : array-like, shape (n, n_components) Returns the probability of the sample for each state in the model. """ _, posteriors = self.score_samples(obs) return posteriors def sample(self, n=1, random_state=None): """Generate random samples from the model. Parameters ---------- n : int Number of samples to generate. random_state: RandomState or an int seed (0 by default) A random number generator instance. If None is given, the object's random_state is used Returns ------- (obs, hidden_states) obs : array_like, length `n` List of samples hidden_states : array_like, length `n` List of hidden states """ if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) startprob_pdf = self.startprob_ startprob_cdf = np.cumsum(startprob_pdf) transmat_pdf = self.transmat_ transmat_cdf = np.cumsum(transmat_pdf, 1) # Initial state. rand = random_state.rand() currstate = (startprob_cdf > rand).argmax() hidden_states = [currstate] obs = [self._generate_sample_from_state( currstate, random_state=random_state)] for _ in range(n - 1): rand = random_state.rand() currstate = (transmat_cdf[currstate] > rand).argmax() hidden_states.append(currstate) obs.append(self._generate_sample_from_state( currstate, random_state=random_state)) return np.array(obs), np.array(hidden_states, dtype=int) def fit(self, obs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. Notes ----- In general, `logprob` should be non-decreasing unless aggressive pruning is used. Decreasing `logprob` is generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting more training data, or strengthening the appropriate subclass-specific regularization parameter. """ if self.algorithm not in decoder_algorithms: self._algorithm = "viterbi" self._init(obs, self.init_params) logprob = [] for i in range(self.n_iter): # Expectation step stats = self._initialize_sufficient_statistics() curr_logprob = 0 for seq in obs: framelogprob = self._compute_log_likelihood(seq) lpr, fwdlattice = self._do_forward_pass(framelogprob) bwdlattice = self._do_backward_pass(framelogprob) gamma = fwdlattice + bwdlattice posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T curr_logprob += lpr self._accumulate_sufficient_statistics( stats, seq, framelogprob, posteriors, fwdlattice, bwdlattice, self.params) logprob.append(curr_logprob) # Check for convergence. if i > 0 and abs(logprob[-1] - logprob[-2]) < self.thresh: break # Maximization step self._do_mstep(stats, self.params) return self def _get_algorithm(self): "decoder algorithm" return self._algorithm def _set_algorithm(self, algorithm): if algorithm not in decoder_algorithms: raise ValueError("algorithm must be one of the decoder_algorithms") self._algorithm = algorithm algorithm = property(_get_algorithm, _set_algorithm) def _get_startprob(self): """Mixing startprob for each state.""" return np.exp(self._log_startprob) def _set_startprob(self, startprob): if startprob is None: startprob = np.tile(1.0 / self.n_components, self.n_components) else: startprob = np.asarray(startprob, dtype=np.float) # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(startprob): normalize(startprob) if len(startprob) != self.n_components: raise ValueError('startprob must have length n_components') if not np.allclose(np.sum(startprob), 1.0): raise ValueError('startprob must sum to 1.0') self._log_startprob = np.log(np.asarray(startprob).copy()) startprob_ = property(_get_startprob, _set_startprob) def _get_transmat(self): """Matrix of transition probabilities.""" return np.exp(self._log_transmat) def _set_transmat(self, transmat): if transmat is None: transmat = np.tile(1.0 / self.n_components, (self.n_components, self.n_components)) # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(transmat): normalize(transmat, axis=1) if (np.asarray(transmat).shape != (self.n_components, self.n_components)): raise ValueError('transmat must have shape ' '(n_components, n_components)') if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)): raise ValueError('Rows of transmat must sum to 1.0') self._log_transmat = np.log(np.asarray(transmat).copy()) underflow_idx = np.isnan(self._log_transmat) self._log_transmat[underflow_idx] = NEGINF transmat_ = property(_get_transmat, _set_transmat) def _do_viterbi_pass(self, framelogprob): n_observations, n_components = framelogprob.shape state_sequence, logprob = _hmmc._viterbi( n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob) return logprob, state_sequence def _do_forward_pass(self, framelogprob): n_observations, n_components = framelogprob.shape fwdlattice = np.zeros((n_observations, n_components)) _hmmc._forward(n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob, fwdlattice) fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF return logsumexp(fwdlattice[-1]), fwdlattice def _do_backward_pass(self, framelogprob): n_observations, n_components = framelogprob.shape bwdlattice = np.zeros((n_observations, n_components)) _hmmc._backward(n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob, bwdlattice) bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF return bwdlattice def _compute_log_likelihood(self, obs): pass def _generate_sample_from_state(self, state, random_state=None): pass def _init(self, obs, params): if 's' in params: self.startprob_.fill(1.0 / self.n_components) if 't' in params: self.transmat_.fill(1.0 / self.n_components) # Methods used by self.fit() def _initialize_sufficient_statistics(self): stats = {'nobs': 0, 'start': np.zeros(self.n_components), 'trans': np.zeros((self.n_components, self.n_components))} return stats def _accumulate_sufficient_statistics(self, stats, seq, framelogprob, posteriors, fwdlattice, bwdlattice, params): stats['nobs'] += 1 if 's' in params: stats['start'] += posteriors[0] if 't' in params: n_observations, n_components = framelogprob.shape # when the sample is of length 1, it contains no transitions # so there is no reason to update our trans. matrix estimate if n_observations > 1: lneta = np.zeros((n_observations - 1, n_components, n_components)) lnP = logsumexp(fwdlattice[-1]) _hmmc._compute_lneta(n_observations, n_components, fwdlattice, self._log_transmat, bwdlattice, framelogprob, lnP, lneta) stats['trans'] += np.exp(np.minimum(logsumexp(lneta, 0), 700)) def _do_mstep(self, stats, params): # Based on Huang, Acero, Hon, "Spoken Language Processing", # p. 443 - 445 if self.startprob_prior is None: self.startprob_prior = 1.0 if self.transmat_prior is None: self.transmat_prior = 1.0 if 's' in params: self.startprob_ = normalize( np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20)) if 't' in params: transmat_ = normalize( np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20), axis=1) self.transmat_ = transmat_ class GaussianHMM(_BaseHMM): """Hidden Markov Model with Gaussian emissions Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Parameters ---------- n_components : int Number of states. ``_covariance_type`` : string String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Attributes ---------- ``_covariance_type`` : string String describing the type of covariance parameters used by the model. Must be one of 'spherical', 'tied', 'diag', 'full'. n_features : int Dimensionality of the Gaussian emissions. n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. means : array, shape (`n_components`, `n_features`) Mean parameters for each state. covars : array Covariance parameters for each state. The shape depends on ``_covariance_type``:: (`n_components`,) if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_components`, `n_features`) if 'diag', (`n_components`, `n_features`, `n_features`) if 'full' random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import GaussianHMM >>> GaussianHMM(n_components=2) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE GaussianHMM(algorithm='viterbi',... See Also -------- GMM : Gaussian mixture model """ def __init__(self, n_components=1, covariance_type='diag', startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", means_prior=None, means_weight=0, covars_prior=1e-2, covars_weight=1, random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) self._covariance_type = covariance_type if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError('bad covariance_type') self.means_prior = means_prior self.means_weight = means_weight self.covars_prior = covars_prior self.covars_weight = covars_weight @property def covariance_type(self): """Covariance type of the model. Must be one of 'spherical', 'tied', 'diag', 'full'. """ return self._covariance_type def _get_means(self): """Mean parameters for each state.""" return self._means_ def _set_means(self, means): means = np.asarray(means) if (hasattr(self, 'n_features') and means.shape != (self.n_components, self.n_features)): raise ValueError('means must have shape ' '(n_components, n_features)') self._means_ = means.copy() self.n_features = self._means_.shape[1] means_ = property(_get_means, _set_means) def _get_covars(self): """Return covars as a full matrix.""" if self._covariance_type == 'full': return self._covars_ elif self._covariance_type == 'diag': return [np.diag(cov) for cov in self._covars_] elif self._covariance_type == 'tied': return [self._covars_] * self.n_components elif self._covariance_type == 'spherical': return [np.eye(self.n_features) * f for f in self._covars_] def _set_covars(self, covars): covars = np.asarray(covars) _validate_covars(covars, self._covariance_type, self.n_components) self._covars_ = covars.copy() covars_ = property(_get_covars, _set_covars) def _compute_log_likelihood(self, obs): return log_multivariate_normal_density( obs, self._means_, self._covars_, self._covariance_type) def _generate_sample_from_state(self, state, random_state=None): if self._covariance_type == 'tied': cv = self._covars_ else: cv = self._covars_[state] return sample_gaussian(self._means_[state], cv, self._covariance_type, random_state=random_state) def _init(self, obs, params='stmc'): super(GaussianHMM, self)._init(obs, params=params) if (hasattr(self, 'n_features') and self.n_features != obs[0].shape[1]): raise ValueError('Unexpected number of dimensions, got %s but ' 'expected %s' % (obs[0].shape[1], self.n_features)) self.n_features = obs[0].shape[1] if 'm' in params: self._means_ = cluster.KMeans( n_clusters=self.n_components).fit(obs[0]).cluster_centers_ if 'c' in params: cv = np.cov(obs[0].T) if not cv.shape: cv.shape = (1, 1) self._covars_ = distribute_covar_matrix_to_match_covariance_type( cv, self._covariance_type, self.n_components) self._covars_[self._covars_ == 0] = 1e-5 def _initialize_sufficient_statistics(self): stats = super(GaussianHMM, self)._initialize_sufficient_statistics() stats['post'] = np.zeros(self.n_components) stats['obs'] = np.zeros((self.n_components, self.n_features)) stats['obs**2'] = np.zeros((self.n_components, self.n_features)) stats['obs*obs.T'] = np.zeros((self.n_components, self.n_features, self.n_features)) return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(GaussianHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) if 'm' in params or 'c' in params: stats['post'] += posteriors.sum(axis=0) stats['obs'] += np.dot(posteriors.T, obs) if 'c' in params: if self._covariance_type in ('spherical', 'diag'): stats['obs**2'] += np.dot(posteriors.T, obs ** 2) elif self._covariance_type in ('tied', 'full'): for t, o in enumerate(obs): obsobsT = np.outer(o, o) for c in range(self.n_components): stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT def _do_mstep(self, stats, params): super(GaussianHMM, self)._do_mstep(stats, params) # Based on Huang, Acero, Hon, "Spoken Language Processing", # p. 443 - 445 denom = stats['post'][:, np.newaxis] if 'm' in params: prior = self.means_prior weight = self.means_weight if prior is None: weight = 0 prior = 0 self._means_ = (weight * prior + stats['obs']) / (weight + denom) if 'c' in params: covars_prior = self.covars_prior covars_weight = self.covars_weight if covars_prior is None: covars_weight = 0 covars_prior = 0 means_prior = self.means_prior means_weight = self.means_weight if means_prior is None: means_weight = 0 means_prior = 0 meandiff = self._means_ - means_prior if self._covariance_type in ('spherical', 'diag'): cv_num = (means_weight * (meandiff) ** 2 + stats['obs**2'] - 2 * self._means_ * stats['obs'] + self._means_ ** 2 * denom) cv_den = max(covars_weight - 1, 0) + denom self._covars_ = (covars_prior + cv_num) / np.maximum(cv_den, 1e-5) if self._covariance_type == 'spherical': self._covars_ = np.tile( self._covars_.mean(1)[:, np.newaxis], (1, self._covars_.shape[1])) elif self._covariance_type in ('tied', 'full'): cvnum = np.empty((self.n_components, self.n_features, self.n_features)) for c in range(self.n_components): obsmean = np.outer(stats['obs'][c], self._means_[c]) cvnum[c] = (means_weight * np.outer(meandiff[c], meandiff[c]) + stats['obs*obs.T'][c] - obsmean - obsmean.T + np.outer(self._means_[c], self._means_[c]) * stats['post'][c]) cvweight = max(covars_weight - self.n_features, 0) if self._covariance_type == 'tied': self._covars_ = ((covars_prior + cvnum.sum(axis=0)) / (cvweight + stats['post'].sum())) elif self._covariance_type == 'full': self._covars_ = ((covars_prior + cvnum) / (cvweight + stats['post'][:, None, None])) def fit(self, obs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. Notes ----- In general, `logprob` should be non-decreasing unless aggressive pruning is used. Decreasing `logprob` is generally a sign of overfitting (e.g. the covariance parameter on one or more components becomminging too small). You can fix this by getting more training data, or increasing covars_prior. """ return super(GaussianHMM, self).fit(obs) class MultinomialHMM(_BaseHMM): """Hidden Markov Model with multinomial (discrete) emissions .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. n_symbols : int Number of possible symbols emitted by the model (in the observations). transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. emissionprob : array, shape ('n_components`, 'n_symbols`) Probability of emitting a given symbol when in each state. random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'e' for emmissionprob. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'e' for emmissionprob. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import MultinomialHMM >>> MultinomialHMM(n_components=2) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE MultinomialHMM(algorithm='viterbi',... See Also -------- GaussianHMM : HMM with Gaussian emissions """ def __init__(self, n_components=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): """Create a hidden Markov model with multinomial emissions. Parameters ---------- n_components : int Number of states. """ _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) def _get_emissionprob(self): """Emission probability distribution for each state.""" return np.exp(self._log_emissionprob) def _set_emissionprob(self, emissionprob): emissionprob = np.asarray(emissionprob) if hasattr(self, 'n_symbols') and \ emissionprob.shape != (self.n_components, self.n_symbols): raise ValueError('emissionprob must have shape ' '(n_components, n_symbols)') # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(emissionprob): normalize(emissionprob) self._log_emissionprob = np.log(emissionprob) underflow_idx = np.isnan(self._log_emissionprob) self._log_emissionprob[underflow_idx] = NEGINF self.n_symbols = self._log_emissionprob.shape[1] emissionprob_ = property(_get_emissionprob, _set_emissionprob) def _compute_log_likelihood(self, obs): return self._log_emissionprob[:, obs].T def _generate_sample_from_state(self, state, random_state=None): cdf = np.cumsum(self.emissionprob_[state, :]) random_state = check_random_state(random_state) rand = random_state.rand() symbol = (cdf > rand).argmax() return symbol def _init(self, obs, params='ste'): super(MultinomialHMM, self)._init(obs, params=params) self.random_state = check_random_state(self.random_state) if 'e' in params: if not hasattr(self, 'n_symbols'): symbols = set() for o in obs: symbols = symbols.union(set(o)) self.n_symbols = len(symbols) emissionprob = normalize(self.random_state.rand(self.n_components, self.n_symbols), 1) self.emissionprob_ = emissionprob def _initialize_sufficient_statistics(self): stats = super(MultinomialHMM, self)._initialize_sufficient_statistics() stats['obs'] = np.zeros((self.n_components, self.n_symbols)) return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(MultinomialHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) if 'e' in params: for t, symbol in enumerate(obs): stats['obs'][:, symbol] += posteriors[t] def _do_mstep(self, stats, params): super(MultinomialHMM, self)._do_mstep(stats, params) if 'e' in params: self.emissionprob_ = (stats['obs'] / stats['obs'].sum(1)[:, np.newaxis]) def _check_input_symbols(self, obs): """check if input can be used for Multinomial.fit input must be both positive integer array and every element must be continuous. e.g. x = [0, 0, 2, 1, 3, 1, 1] is OK and y = [0, 0, 3, 5, 10] not """ symbols = np.asarray(obs).flatten() if symbols.dtype.kind != 'i': # input symbols must be integer return False if len(symbols) == 1: # input too short return False if np.any(symbols < 0): # input contains negative intiger return False symbols.sort() if np.any(np.diff(symbols) > 1): # input is discontinous return False return True def fit(self, obs, **kwargs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. """ err_msg = ("Input must be both positive integer array and " "every element must be continuous, but %s was given.") if not self._check_input_symbols(obs): raise ValueError(err_msg % obs) return _BaseHMM.fit(self, obs, **kwargs) class GMMHMM(_BaseHMM): """Hidden Markov Model with Gaussin mixture emissions .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. gmms : array of GMM objects, length `n_components` GMM emission distributions for each state. random_state : RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, 'c' for covars, and 'w' for GMM mixing weights. Defaults to all parameters. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars, and 'w' for GMM mixing weights. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import GMMHMM >>> GMMHMM(n_components=2, n_mix=10, covariance_type='diag') ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE GMMHMM(algorithm='viterbi', covariance_type='diag',... See Also -------- GaussianHMM : HMM with Gaussian emissions """ def __init__(self, n_components=1, n_mix=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", gmms=None, covariance_type='diag', covars_prior=1e-2, random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): """Create a hidden Markov model with GMM emissions. Parameters ---------- n_components : int Number of states. """ _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) # XXX: Hotfit for n_mix that is incompatible with the scikit's # BaseEstimator API self.n_mix = n_mix self._covariance_type = covariance_type self.covars_prior = covars_prior self.gmms = gmms if gmms is None: gmms = [] for x in range(self.n_components): if covariance_type is None: g = GMM(n_mix) else: g = GMM(n_mix, covariance_type=covariance_type) gmms.append(g) self.gmms_ = gmms # Read-only properties. @property def covariance_type(self): """Covariance type of the model. Must be one of 'spherical', 'tied', 'diag', 'full'. """ return self._covariance_type def _compute_log_likelihood(self, obs): return np.array([g.score(obs) for g in self.gmms_]).T def _generate_sample_from_state(self, state, random_state=None): return self.gmms_[state].sample(1, random_state=random_state).flatten() def _init(self, obs, params='stwmc'): super(GMMHMM, self)._init(obs, params=params) allobs = np.concatenate(obs, 0) for g in self.gmms_: g.set_params(init_params=params, n_iter=0) g.fit(allobs) def _initialize_sufficient_statistics(self): stats = super(GMMHMM, self)._initialize_sufficient_statistics() stats['norm'] = [np.zeros(g.weights_.shape) for g in self.gmms_] stats['means'] = [np.zeros(np.shape(g.means_)) for g in self.gmms_] stats['covars'] = [np.zeros(np.shape(g.covars_)) for g in self.gmms_] return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(GMMHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) for state, g in enumerate(self.gmms_): _, lgmm_posteriors = g.score_samples(obs) lgmm_posteriors += np.log(posteriors[:, state][:, np.newaxis] + np.finfo(np.float).eps) gmm_posteriors = np.exp(lgmm_posteriors) tmp_gmm = GMM(g.n_components, covariance_type=g.covariance_type) n_features = g.means_.shape[1] tmp_gmm._set_covars( distribute_covar_matrix_to_match_covariance_type( np.eye(n_features), g.covariance_type, g.n_components)) norm = tmp_gmm._do_mstep(obs, gmm_posteriors, params) if np.any(np.isnan(tmp_gmm.covars_)): raise ValueError stats['norm'][state] += norm if 'm' in params: stats['means'][state] += tmp_gmm.means_ * norm[:, np.newaxis] if 'c' in params: if tmp_gmm.covariance_type == 'tied': stats['covars'][state] += tmp_gmm.covars_ * norm.sum() else: cvnorm = np.copy(norm) shape = np.ones(tmp_gmm.covars_.ndim) shape[0] = np.shape(tmp_gmm.covars_)[0] cvnorm.shape = shape stats['covars'][state] += tmp_gmm.covars_ * cvnorm def _do_mstep(self, stats, params): super(GMMHMM, self)._do_mstep(stats, params) # All that is left to do is to apply covars_prior to the # parameters updated in _accumulate_sufficient_statistics. for state, g in enumerate(self.gmms_): n_features = g.means_.shape[1] norm = stats['norm'][state] if 'w' in params: g.weights_ = normalize(norm) if 'm' in params: g.means_ = stats['means'][state] / norm[:, np.newaxis] if 'c' in params: if g.covariance_type == 'tied': g.covars_ = ((stats['covars'][state] + self.covars_prior * np.eye(n_features)) / norm.sum()) else: cvnorm = np.copy(norm) shape = np.ones(g.covars_.ndim) shape[0] = np.shape(g.covars_)[0] cvnorm.shape = shape if (g.covariance_type in ['spherical', 'diag']): g.covars_ = (stats['covars'][state] + self.covars_prior) / cvnorm elif g.covariance_type == 'full': eye = np.eye(n_features) g.covars_ = ((stats['covars'][state] + self.covars_prior * eye[np.newaxis]) / cvnorm)
apache-2.0
pravsripad/jumeg
jumeg/epocher/jumeg_epocher_plot.py
2
8315
# -*- coding: utf-8 -*- """ Created on 08.06.2018 @author: fboers """ import os,os.path,logging import numpy as np import matplotlib.pyplot as pl from matplotlib.backends.backend_pdf import PdfPages import mne from jumeg.base.jumeg_base import JuMEG_Base_IO logger = logging.getLogger('jumeg') __version__="2019.05.14.001" #--- A4 landscape pl.rc('figure', figsize=(11.69,8.27)) pl.rcParams.update({'font.size': 8}) class JuMEG_Epocher_Plot(JuMEG_Base_IO): def __init__ (self,raw=None): super(JuMEG_Epocher_Plot, self).__init__() self.raw = raw self.dpi = 100 self.file_extention = '.png' self.colors = ['r','b','g','c','m','y','k'] def minmax(self,d): ymin, ymax = d.min(),d.max() ymin -= np.abs(ymin) * 0.1 #factor * 1.1 ymax += np.abs(ymax) * 0.1 #factor * 1.1 return ymin,ymax def _set_colors(self): for i,j in enumerate(pl.gca().lines): j.set_color(self.colors[i % len(self.colors)]) def plot_group(self,ep,group="meg",picks=None,info=None,show_evt=False,show_labels=True): """ :param ep: :param group: :param picks: :param info: :param show_evt: :param show_labels: :return: """ if picks.any(): labels = [ ep.info['ch_names'][x] for x in picks ] avg = ep.average(picks=picks) if info: avg.data *= info.get('scale',1.0) pl.ylabel('[' + info.get('unit','au') + ']') d = pl.plot(avg.times, avg.data.T) self._set_colors() if show_evt: #--- change legend idx0 = np.where(avg.times == 0) labels = [ep.info['ch_names'][x] for x in picks] if idx0: for idx in range(len(labels)): labels[idx] += " evt: {} ".format(int(avg.data[idx,idx0].flatten())) if show_labels: pl.legend(d, labels, loc=2,prop={'size':8}) pl.ylim(self.minmax(avg.data)) pl.xlim(ep.tmin,ep.tmax) pl.xlabel('[s]') pl.grid(True) return avg.data def plot_stim(self,ep,group="stim",picks=None,info=None,show_evt=False,show_labels=True): """ :param ep: :param group: :param picks: :param info: :param show_evt: :param show_labels: :return: """ if picks.any(): labels = [ ep.info['ch_names'][x] for x in picks ] avg = ep.average(picks=picks) if info: avg.data *= info.get('scale',1.0) pl.ylabel('[' + info.get('unit','au') + ']') d = pl.plot(avg.times, avg.data.T) self._set_colors() if show_evt: #--- change legend idx0 = np.where(avg.times == 0) # labels = [ep.info['ch_names'][x] for x in picks] if idx0: for idx in range(len(labels)): labels[idx] += " evt: {} ".format(int(avg.data[idx,idx0].flatten())) if show_labels: pl.legend(d, labels, loc=2,prop={'size':8}) pl.ylim(self.minmax(avg.data)) pl.xlim(ep.tmin,ep.tmax) pl.xlabel('[s]') pl.grid(True) def plot_evoked(self,evt,fname=None,save_plot=True,show_plot=False,condition=None,plot_dir=None, info={'meg':{'scale':1e15,'unit':'fT'},'eeg':{'scale':1e3,'unit':'mV'},'emg':{'scale':1e3,'unit':'mV'},}): ''' :param evt: event dictionary evt['events'] : <np.array([])> from mne.find_events evt['event_id']: <None> list of event ids evt['baseline_corrected']: True/False baseline: evt['bc']['events'] = np.array([]) evt['bc']['event_id'] = None :param fname: :param save_plot: :param show_plot: :param condition: :param plot_dir: :param info: plot subplots evoked/average MEG ECG/EOG + performance STIM Trigger/Response events, rt mean median min max :return: ''' if not evt: return ep = evt["epochs"] name = 'test' subject_id = name if fname: fout_path = os.path.dirname(fname) name = os.path.basename(fname) subject_id = name.split('_')[0] else: name = "test.png" fout_path = "." if plot_dir: fout_path += "/" + plot_dir try: os.makedirs(fout_path,exist_ok=True) except: logger.exception("---> can not create epocher plot\n"+ " -> directory: {}\n".format(fout_path)+ " -> filename : {}".format(fname) ) return # mkpath( fout_path ) fout = fout_path +'/'+ name #pl.ioff() # switch off (interactive) plot visualisation pl.figure(name) pl.clf() #fig = pl.figure(name,figsize=(10, 8), dpi=100)) pl.title(name) #--- make title t = subject_id + ' Evoked ' if condition: t += ' ' + condition t += ' Id: {} counts: {}'.format(ep.events[0,2],ep.events.shape[0]) if ep.info['bads']: t = t + " bads: " + ','.join(ep.info['bads']) #---ck if emg channels exist picks = self.picks.emg_nobads(ep) if picks.any(): nplt = 4 else: nplt = 3 #--- meg pl.subplot(nplt,1,1) pl.title(t) self.plot_group(ep,group="meg",picks=self.picks.meg_nobads(ep),info=info.get('meg'),show_labels=False) #--- ecg eog pl.subplot(nplt,1,2) self.plot_group(ep,group="ecg eog",picks=self.picks.ecg_eog(ep),info=info.get('eeg')) #--- stim pl.subplot(nplt,1,3) self.plot_group(ep,group="stim",picks=self.picks.stim_response(ep),info=info.get('stim'),show_evt=True) ''' ax = pl.gca() ax.set_ylabel('Stim', color=self.colors[0]) ax.tick_params(axis='y', labelcolor=self.colors[0]) ax.set_ylim(0,data[0].max() +10) ax2 = ax.twinx() # instantiate a second axes that shares the same x-axis ax2.set_ylabel('RES', color=self.colors[1]) ax2.tick_params(axis='y', labelcolor=self.colors[1]) ax2.set_ylim( 0,data[1].max()+10 ) #fig.tight_layout() # otherwise the right y-label is slightly clipped ''' #--- emg if nplt > 3: pl.subplot(nplt,1,4) self.plot_group(ep,group="emg",picks=self.picks.emg_nobads(ep),info=info.get('emg')) #--- plt event_id table cols = ('EvtId', 'Counts') #--- get ids and counts ids,cnts = np.unique( evt["events"][:,-1],return_counts=True) data = np.zeros((len(ids),2),dtype=np.int) data[:,0] += ids data[:,1] += cnts yend= len(ids)*0.12 #[left, bottom, width, height] if yend > 4.0: yend= 4.0 tab = pl.table(cellText=data,colLabels=cols,loc='top', colWidths=[0.04 for x in cols], bbox=[-0.15, -0.40, 0.1, yend], cellLoc='left') #cellDict = tab.get_celld() #for i in range(0,len(cols)): # cellDict[(0,i)].set_height(.02) # for j in range(1,len(ids)+1): # cellDict[(j,i)].set_height(.02) tab.set_fontsize(9) #--- if save_plot: fout += self.file_extention pl.savefig(fout, dpi=self.dpi) if self.verbose: logger.info("---> done saving plot: " +fout) else: fout= "no plot saved" #--- if show_plot: pl.show() else: pl.close() return fout jumeg_epocher_plot = JuMEG_Epocher_Plot()
bsd-3-clause
kmather73/ggplot
ggplot/stats/stat_function.py
12
4439
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd from ggplot.utils import make_iterable_ntimes from ggplot.utils.exceptions import GgplotError from .stat import stat class stat_function(stat): """ Superimpose a function onto a plot Uses a Parameters ---------- x : list, 1darray x values of data fun : function Function to draw. n : int Number of points to interpolate over. Must be greater than zero. Defaults to 101. color : str Color to draw function with. args : list, dict, object List or dict of additional arguments to pass to function. If neither list or dict, object is passed as second argument. Examples -------- Sin vs cos. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * gg = ggplot(pd.DataFrame({'x':np.arange(10)}),aes(x='x')) gg = gg + stat_function(fun=np.sin,color="red") gg = gg + stat_function(fun=np.cos,color="blue") print(gg) Compare random sample density to normal distribution. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * x = np.random.normal(size=100) # normal distribution function def dnorm(n): return (1.0 / np.sqrt(2 * np.pi)) * (np.e ** (-0.5 * (n ** 2))) data = pd.DataFrame({'x':x}) gg = ggplot(aes(x='x'),data=data) + geom_density() gg = gg + stat_function(fun=dnorm,n=150) print(gg) Passing additional arguments to function as list. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * x = np.random.randn(100) to_the_power_of = lambda n, p: n ** p y = x ** 3 y += np.random.randn(100) # add noise data = pd.DataFrame({'x':x,'y':y}) gg = ggplot(aes(x='x',y='y'),data=data) + geom_point() gg = gg + stat_function(fun=to_the_power_of,args=[3]) print(gg) Passing additional arguments to function as dict. .. plot:: :include-source: import scipy import numpy as np import pandas as pd from ggplot import * def dnorm(x, mean, var): return scipy.stats.norm(mean,var).pdf(x) data = pd.DataFrame({'x':np.arange(-5,6)}) gg = ggplot(aes(x='x'),data=data) gg = gg + stat_function(fun=dnorm,color="blue",args={'mean':0.0,'var':0.2}) gg = gg + stat_function(fun=dnorm,color="red",args={'mean':0.0,'var':1.0}) gg = gg + stat_function(fun=dnorm,color="yellow",args={'mean':0.0,'var':5.0}) gg = gg + stat_function(fun=dnorm,color="green",args={'mean':-2.0,'var':0.5}) print(gg) """ # TODO: Should not have a required aesthetic, use the scale information # maybe that is where the "scale trainning" helps REQUIRED_AES = {'x'} DEFAULT_PARAMS = {'geom': 'path', 'position': 'identity', 'fun': None, 'n': 101, 'args': None} _aes_renames = {'size': 'linewidth', 'linetype': 'linestyle'} CREATES = {'y'} def _calculate(self, data): x = data.pop('x') fun = self.params['fun'] n = self.params['n'] args = self.params['args'] if not hasattr(fun, '__call__'): raise GgplotError("stat_function requires parameter 'fun' to be " + "a function or any other callable object") old_fun = fun if isinstance(args,list): fun = lambda x: old_fun(x, *args) elif isinstance(args,dict): fun = lambda x: old_fun(x, **args) elif args is not None: fun = lambda x: old_fun(x, args) else: fun = lambda x: old_fun(x) x = np.linspace(x.min(), x.max(),n) y = list(map(fun, x)) new_data = pd.DataFrame({'x': x, 'y': y}) # Copy the other aesthetics into the new dataframe # Don't copy the any previous 'y' assignments try: del data['y'] except KeyError: pass n = len(x) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
bsd-2-clause
villalonreina/dipy
setup_helpers.py
11
14073
''' Distutils / setuptools helpers ''' import os import sys from os.path import join as pjoin, split as psplit, splitext, dirname, exists import tempfile import shutil from distutils.version import LooseVersion from distutils.command.install_scripts import install_scripts from distutils.errors import CompileError, LinkError from distutils import log BAT_TEMPLATE = \ r"""@echo off REM wrapper to use shebang first line of {FNAME} set mypath=%~dp0 set pyscript="%mypath%{FNAME}" set /p line1=<%pyscript% if "%line1:~0,2%" == "#!" (goto :goodstart) echo First line of %pyscript% does not start with "#!" exit /b 1 :goodstart set py_exe=%line1:~2% REM quote exe in case of spaces in path name set py_exe="%py_exe%" call %py_exe% %pyscript% %* """ # Path of file to which to write C conditional vars from build-time checks CONFIG_H = pjoin('build', 'config.h') # File name (no directory) to which to write Python vars from build-time checks CONFIG_PY = '__config__.py' # Directory to which to write libraries for building LIB_DIR_TMP = pjoin('build', 'extra_libs') class install_scripts_bat(install_scripts): """ Make scripts executable on Windows Scripts are bare file names without extension on Unix, fitting (for example) Debian rules. They identify as python scripts with the usual ``#!`` first line. Unix recognizes and uses this first "shebang" line, but Windows does not. So, on Windows only we add a ``.bat`` wrapper of name ``bare_script_name.bat`` to call ``bare_script_name`` using the python interpreter from the #! first line of the script. Notes ----- See discussion at http://matthew-brett.github.com/pydagogue/installing_scripts.html and example at git://github.com/matthew-brett/myscripter.git for more background. """ def run(self): install_scripts.run(self) if not os.name == "nt": return for filepath in self.get_outputs(): # If we can find an executable name in the #! top line of the script # file, make .bat wrapper for script. with open(filepath, 'rt') as fobj: first_line = fobj.readline() if not (first_line.startswith('#!') and 'python' in first_line.lower()): log.info("No #!python executable found, skipping .bat " "wrapper") continue pth, fname = psplit(filepath) froot, ext = splitext(fname) bat_file = pjoin(pth, froot + '.bat') bat_contents = BAT_TEMPLATE.replace('{FNAME}', fname) log.info("Making %s wrapper for %s" % (bat_file, filepath)) if self.dry_run: continue with open(bat_file, 'wt') as fobj: fobj.write(bat_contents) def add_flag_checking(build_ext_class, flag_defines, top_package_dir=''): """ Override input `build_ext_class` to check compiler `flag_defines` Parameters ---------- build_ext_class : class Class implementing ``distutils.command.build_ext.build_ext`` interface, with a ``build_extensions`` method. flag_defines : sequence A sequence of elements, where the elements are sequences of length 4 consisting of (``compile_flags``, ``link_flags``, ``code``, ``defvar``). ``compile_flags`` is a sequence of compiler flags; ``link_flags`` is a sequence of linker flags. We check ``compile_flags`` to see whether a C source string ``code`` will compile, and ``link_flags`` to see whether the resulting object file will link. If both compile and link works, we add ``compile_flags`` to ``extra_compile_args`` and ``link_flags`` to ``extra_link_args`` of each extension when we build the extensions. If ``defvar`` is not None, it is the name of C variable to be defined in ``build/config.h`` with 1 if the combination of (``compile_flags``, ``link_flags``, ``code``) will compile and link, 0 otherwise. If None, do not write variable. top_package_dir : str String giving name of top-level package, for writing Python file containing configuration variables. If empty, do not write this file. Variables written are the same as the Cython variables generated via the `flag_defines` setting. Returns ------- checker_class : class A class with similar interface to ``distutils.command.build_ext.build_ext``, that adds all working ``compile_flags`` values to the ``extra_compile_args`` and working ``link_flags`` to ``extra_link_args`` attributes of extensions, before compiling. """ class Checker(build_ext_class): flag_defs = tuple(flag_defines) def can_compile_link(self, compile_flags, link_flags, code): cc = self.compiler fname = 'test.c' cwd = os.getcwd() tmpdir = tempfile.mkdtemp() try: os.chdir(tmpdir) with open(fname, 'wt') as fobj: fobj.write(code) try: objects = cc.compile([fname], extra_postargs=compile_flags) except CompileError: return False try: # Link shared lib rather then executable to avoid # http://bugs.python.org/issue4431 with MSVC 10+ cc.link_shared_lib(objects, "testlib", extra_postargs=link_flags) except (LinkError, TypeError): return False finally: os.chdir(cwd) shutil.rmtree(tmpdir) return True def build_extensions(self): """ Hook into extension building to check compiler flags """ def_vars = [] good_compile_flags = [] good_link_flags = [] config_dir = dirname(CONFIG_H) for compile_flags, link_flags, code, def_var in self.flag_defs: compile_flags = list(compile_flags) link_flags = list(link_flags) flags_good = self.can_compile_link(compile_flags, link_flags, code) if def_var: def_vars.append((def_var, flags_good)) if flags_good: good_compile_flags += compile_flags good_link_flags += link_flags else: log.warn("Flags {0} omitted because of compile or link " "error".format(compile_flags + link_flags)) if def_vars: # write config.h file if not exists(config_dir): self.mkpath(config_dir) with open(CONFIG_H, 'wt') as fobj: fobj.write('/* Automatically generated; do not edit\n') fobj.write(' C defines from build-time checks */\n') for v_name, v_value in def_vars: fobj.write('int {0} = {1};\n'.format( v_name, 1 if v_value else 0)) if def_vars and top_package_dir: # write __config__.py file config_py_dir = (top_package_dir if self.inplace else pjoin(self.build_lib, top_package_dir)) if not exists(config_py_dir): self.mkpath(config_py_dir) config_py = pjoin(config_py_dir, CONFIG_PY) with open(config_py, 'wt') as fobj: fobj.write('# Automatically generated; do not edit\n') fobj.write('# Variables from compile checks\n') for v_name, v_value in def_vars: fobj.write('{0} = {1}\n'.format(v_name, v_value)) if def_vars or good_compile_flags or good_link_flags: for ext in self.extensions: ext.extra_compile_args += good_compile_flags ext.extra_link_args += good_link_flags if def_vars: ext.include_dirs.append(config_dir) build_ext_class.build_extensions(self) return Checker def get_pkg_version(pkg_name): """ Return package version for `pkg_name` if installed Returns ------- pkg_version : str or None Return None if package not importable. Return 'unknown' if standard ``__version__`` string not present. Otherwise return version string. """ try: pkg = __import__(pkg_name) except ImportError: return None try: return pkg.__version__ except AttributeError: return 'unknown' def version_error_msg(pkg_name, found_ver, min_ver): """ Return informative error message for version or None """ if found_ver is None: return 'We need package {0}, but not importable'.format(pkg_name) if found_ver == 'unknown': return 'We need {0} version {1}, but cannot get version'.format( pkg_name, min_ver) if LooseVersion(found_ver) >= LooseVersion(min_ver): return None return 'We need {0} version {1}, but found version {2}'.format( pkg_name, found_ver, min_ver) class SetupDependency(object): """ SetupDependency class Parameters ---------- import_name : str Name with which required package should be ``import``ed. min_ver : str Distutils version string giving minimum version for package. req_type : {'install_requires', 'setup_requires'}, optional Setuptools dependency type. heavy : {False, True}, optional If True, and package is already installed (importable), then do not add to the setuptools dependency lists. This prevents setuptools reinstalling big packages when the package was installed without using setuptools, or this is an upgrade, and we want to avoid the pip default behavior of upgrading all dependencies. install_name : str, optional Name identifying package to install from pypi etc, if different from `import_name`. """ def __init__(self, import_name, min_ver, req_type='install_requires', heavy=False, install_name=None): self.import_name = import_name self.min_ver = min_ver self.req_type = req_type self.heavy = heavy self.install_name = (import_name if install_name is None else install_name) def check_fill(self, setuptools_kwargs): """ Process this dependency, maybe filling `setuptools_kwargs` Run checks on this dependency. If not using setuptools, then raise error for unmet dependencies. If using setuptools, add missing or not-heavy dependencies to `setuptools_kwargs`. A heavy dependency is one that is inconvenient to install automatically, such as numpy or (particularly) scipy, matplotlib. Parameters ---------- setuptools_kwargs : dict Dictionary of setuptools keyword arguments that may be modified in-place while checking dependencies. """ found_ver = get_pkg_version(self.import_name) ver_err_msg = version_error_msg(self.import_name, found_ver, self.min_ver) if not 'setuptools' in sys.modules: # Not using setuptools; raise error for any unmet dependencies if ver_err_msg is not None: raise RuntimeError(ver_err_msg) return # Using setuptools; add packages to given section of # setup/install_requires, unless it's a heavy dependency for which we # already have an acceptable importable version. if self.heavy and ver_err_msg is None: return new_req = '{0}>={1}'.format(self.import_name, self.min_ver) old_reqs = setuptools_kwargs.get(self.req_type, []) setuptools_kwargs[self.req_type] = old_reqs + [new_req] class Bunch(object): def __init__(self, vars): for key, name in vars.items(): if key.startswith('__'): continue self.__dict__[key] = name def read_vars_from(ver_file): """ Read variables from Python text file Parameters ---------- ver_file : str Filename of file to read Returns ------- info_vars : Bunch instance Bunch object where variables read from `ver_file` appear as attributes """ # Use exec for compabibility with Python 3 ns = {} with open(ver_file, 'rt') as fobj: exec(fobj.read(), ns) return Bunch(ns) def make_np_ext_builder(build_ext_class): """ Override input `build_ext_class` to add numpy includes to extension This is useful to delay call of ``np.get_include`` until the extension is being built. Parameters ---------- build_ext_class : class Class implementing ``distutils.command.build_ext.build_ext`` interface, with a ``build_extensions`` method. Returns ------- np_build_ext_class : class A class with similar interface to ``distutils.command.build_ext.build_ext``, that adds libraries in ``np.get_include()`` to include directories of extension. """ class NpExtBuilder(build_ext_class): def build_extensions(self): """ Hook into extension building to add np include dirs """ # Delay numpy import until last moment import numpy as np for ext in self.extensions: ext.include_dirs.append(np.get_include()) build_ext_class.build_extensions(self) return NpExtBuilder
bsd-3-clause
samzhang111/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
calebfoss/tensorflow
tensorflow/examples/learn/wide_n_deep_tutorial.py
24
8941
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example code for TensorFlow Wide & Deep Tutorial using TF.Learn API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile from six.moves import urllib import pandas as pd import tensorflow as tf COLUMNS = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] LABEL_COLUMN = "label" CATEGORICAL_COLUMNS = ["workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country"] CONTINUOUS_COLUMNS = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] def maybe_download(train_data, test_data): """Maybe downloads training data and returns train and test file names.""" if train_data: train_file_name = train_data else: train_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve("http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data", train_file.name) # pylint: disable=line-too-long train_file_name = train_file.name train_file.close() print("Training data is downloaded to %s" % train_file_name) if test_data: test_file_name = test_data else: test_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve("http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.test", test_file.name) # pylint: disable=line-too-long test_file_name = test_file.name test_file.close() print("Test data is downloaded to %s" % test_file_name) return train_file_name, test_file_name def build_estimator(model_dir, model_type): """Build an estimator.""" # Sparse base columns. gender = tf.contrib.layers.sparse_column_with_keys(column_name="gender", keys=["female", "male"]) education = tf.contrib.layers.sparse_column_with_hash_bucket( "education", hash_bucket_size=1000) relationship = tf.contrib.layers.sparse_column_with_hash_bucket( "relationship", hash_bucket_size=100) workclass = tf.contrib.layers.sparse_column_with_hash_bucket( "workclass", hash_bucket_size=100) occupation = tf.contrib.layers.sparse_column_with_hash_bucket( "occupation", hash_bucket_size=1000) native_country = tf.contrib.layers.sparse_column_with_hash_bucket( "native_country", hash_bucket_size=1000) # Continuous base columns. age = tf.contrib.layers.real_valued_column("age") education_num = tf.contrib.layers.real_valued_column("education_num") capital_gain = tf.contrib.layers.real_valued_column("capital_gain") capital_loss = tf.contrib.layers.real_valued_column("capital_loss") hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week") # Transformations. age_buckets = tf.contrib.layers.bucketized_column(age, boundaries=[ 18, 25, 30, 35, 40, 45, 50, 55, 60, 65 ]) # Wide columns and deep columns. wide_columns = [gender, native_country, education, occupation, workclass, relationship, age_buckets, tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column( [age_buckets, education, occupation], hash_bucket_size=int(1e6)), tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4))] deep_columns = [ tf.contrib.layers.embedding_column(workclass, dimension=8), tf.contrib.layers.embedding_column(education, dimension=8), tf.contrib.layers.embedding_column(gender, dimension=8), tf.contrib.layers.embedding_column(relationship, dimension=8), tf.contrib.layers.embedding_column(native_country, dimension=8), tf.contrib.layers.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week, ] if model_type == "wide": m = tf.contrib.learn.LinearClassifier(model_dir=model_dir, feature_columns=wide_columns) elif model_type == "deep": m = tf.contrib.learn.DNNClassifier(model_dir=model_dir, feature_columns=deep_columns, hidden_units=[100, 50]) else: m = tf.contrib.learn.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=wide_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[100, 50]) return m def input_fn(df): """Input builder function.""" # Creates a dictionary mapping from each continuous feature column name (k) to # the values of that column stored in a constant Tensor. continuous_cols = {k: tf.constant(df[k].values) for k in CONTINUOUS_COLUMNS} # Creates a dictionary mapping from each categorical feature column name (k) # to the values of that column stored in a tf.SparseTensor. categorical_cols = { k: tf.SparseTensor( indices=[[i, 0] for i in range(df[k].size)], values=df[k].values, dense_shape=[df[k].size, 1]) for k in CATEGORICAL_COLUMNS} # Merges the two dictionaries into one. feature_cols = dict(continuous_cols) feature_cols.update(categorical_cols) # Converts the label column into a constant Tensor. label = tf.constant(df[LABEL_COLUMN].values) # Returns the feature columns and the label. return feature_cols, label def train_and_eval(model_dir, model_type, train_steps, train_data, test_data): """Train and evaluate the model.""" train_file_name, test_file_name = maybe_download(train_data, test_data) df_train = pd.read_csv( tf.gfile.Open(train_file_name), names=COLUMNS, skipinitialspace=True, engine="python") df_test = pd.read_csv( tf.gfile.Open(test_file_name), names=COLUMNS, skipinitialspace=True, skiprows=1, engine="python") # remove NaN elements df_train = df_train.dropna(how='any', axis=0) df_test = df_test.dropna(how='any', axis=0) df_train[LABEL_COLUMN] = ( df_train["income_bracket"].apply(lambda x: ">50K" in x)).astype(int) df_test[LABEL_COLUMN] = ( df_test["income_bracket"].apply(lambda x: ">50K" in x)).astype(int) model_dir = tempfile.mkdtemp() if not model_dir else model_dir print("model directory = %s" % model_dir) m = build_estimator(model_dir, model_type) m.fit(input_fn=lambda: input_fn(df_train), steps=train_steps) results = m.evaluate(input_fn=lambda: input_fn(df_test), steps=1) for key in sorted(results): print("%s: %s" % (key, results[key])) FLAGS = None def main(_): train_and_eval(FLAGS.model_dir, FLAGS.model_type, FLAGS.train_steps, FLAGS.train_data, FLAGS.test_data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--model_dir", type=str, default="", help="Base directory for output models." ) parser.add_argument( "--model_type", type=str, default="wide_n_deep", help="Valid model types: {'wide', 'deep', 'wide_n_deep'}." ) parser.add_argument( "--train_steps", type=int, default=200, help="Number of training steps." ) parser.add_argument( "--train_data", type=str, default="", help="Path to the training data." ) parser.add_argument( "--test_data", type=str, default="", help="Path to the test data." ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
v4hn/moveit
moveit_ros/benchmarks/scripts/moveit_benchmark_statistics.py
2
25524
#!/usr/bin/env python ###################################################################### # Software License Agreement (BSD License) # # Copyright (c) 2010, Rice University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the Rice University nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ###################################################################### # Author: Mark Moll, Ioan Sucan, Luis G. Torres from sys import argv, exit from os.path import basename, splitext import sqlite3 import datetime import matplotlib matplotlib.use('pdf') from matplotlib import __version__ as matplotlibversion from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy as np from math import floor from optparse import OptionParser, OptionGroup # Given a text line, split it into tokens (by space) and return the token # at the desired index. Additionally, test that some expected tokens exist. # Return None if they do not. def readLogValue(filevar, desired_token_index, expected_tokens) : start_pos = filevar.tell() tokens = filevar.readline().split() for token_index in expected_tokens: if not tokens[token_index] == expected_tokens[token_index]: # undo the read, if we failed to parse. filevar.seek(start_pos) return None return tokens[desired_token_index] def readOptionalLogValue(filevar, desired_token_index, expected_tokens = {}) : return readLogValue(filevar, desired_token_index, expected_tokens) def readRequiredLogValue(name, filevar, desired_token_index, expected_tokens = {}) : result = readLogValue(filevar, desired_token_index, expected_tokens) if result == None: raise Exception("Unable to read " + name) return result def ensurePrefix(line, prefix): if not line.startswith(prefix): raise Exception("Expected prefix " + prefix + " was not found") return line def readOptionalMultilineValue(filevar): start_pos = filevar.tell() line = filevar.readline() if not line.startswith("<<<|"): filevar.seek(start_pos) return None value = '' line = filevar.readline() while not line.startswith('|>>>'): value = value + line line = filevar.readline() if line == None: raise Exception("Expected token |>>> missing") return value def readRequiredMultilineValue(filevar): ensurePrefix(filevar.readline(), "<<<|") value = '' line = filevar.readline() while not line.startswith('|>>>'): value = value + line line = filevar.readline() if line == None: raise Exception("Expected token |>>> missing") return value def readBenchmarkLog(dbname, filenames): """Parse benchmark log files and store the parsed data in a sqlite3 database.""" conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') # create all tables if they don't already exist c.executescript("""CREATE TABLE IF NOT EXISTS experiments (id INTEGER PRIMARY KEY AUTOINCREMENT, name VARCHAR(512), totaltime REAL, timelimit REAL, memorylimit REAL, runcount INTEGER, version VARCHAR(128), hostname VARCHAR(1024), cpuinfo TEXT, date DATETIME, seed INTEGER, setup TEXT); CREATE TABLE IF NOT EXISTS plannerConfigs (id INTEGER PRIMARY KEY AUTOINCREMENT, name VARCHAR(512) NOT NULL, settings TEXT); CREATE TABLE IF NOT EXISTS enums (name VARCHAR(512), value INTEGER, description TEXT, PRIMARY KEY (name, value)); CREATE TABLE IF NOT EXISTS runs (id INTEGER PRIMARY KEY AUTOINCREMENT, experimentid INTEGER, plannerid INTEGER, FOREIGN KEY (experimentid) REFERENCES experiments(id) ON DELETE CASCADE, FOREIGN KEY (plannerid) REFERENCES plannerConfigs(id) ON DELETE CASCADE); CREATE TABLE IF NOT EXISTS progress (runid INTEGER, time REAL, PRIMARY KEY (runid, time), FOREIGN KEY (runid) REFERENCES runs(id) ON DELETE CASCADE)""") for filename in filenames: print('Processing ' + filename) logfile = open(filename,'r') start_pos = logfile.tell() libname = readOptionalLogValue(logfile, 0, {1 : "version"}) if libname == None: libname = "OMPL" logfile.seek(start_pos) version = readOptionalLogValue(logfile, -1, {1 : "version"}) if version == None: # set the version number to make Planner Arena happy version = "0.0.0" version = ' '.join([libname, version]) expname = readRequiredLogValue("experiment name", logfile, -1, {0 : "Experiment"}) hostname = readRequiredLogValue("hostname", logfile, -1, {0 : "Running"}) date = ' '.join(ensurePrefix(logfile.readline(), "Starting").split()[2:]) expsetup = readRequiredMultilineValue(logfile) cpuinfo = readOptionalMultilineValue(logfile) rseed = int(readRequiredLogValue("random seed", logfile, 0, {-2 : "random", -1 : "seed"})) timelimit = float(readRequiredLogValue("time limit", logfile, 0, {-3 : "seconds", -2 : "per", -1 : "run"})) memorylimit = float(readRequiredLogValue("memory limit", logfile, 0, {-3 : "MB", -2 : "per", -1 : "run"})) nrrunsOrNone = readOptionalLogValue(logfile, 0, {-3 : "runs", -2 : "per", -1 : "planner"}) nrruns = -1 if nrrunsOrNone != None: nrruns = int(nrrunsOrNone) totaltime = float(readRequiredLogValue("total time", logfile, 0, {-3 : "collect", -2 : "the", -1 : "data"})) numEnums = 0 numEnumsOrNone = readOptionalLogValue(logfile, 0, {-2 : "enum"}) if numEnumsOrNone != None: numEnums = int(numEnumsOrNone) for i in range(numEnums): enum = logfile.readline()[:-1].split('|') c.execute('SELECT * FROM enums WHERE name IS "%s"' % enum[0]) if c.fetchone() == None: for j in range(len(enum)-1): c.execute('INSERT INTO enums VALUES (?,?,?)', (enum[0],j,enum[j+1])) c.execute('INSERT INTO experiments VALUES (?,?,?,?,?,?,?,?,?,?,?,?)', (None, expname, totaltime, timelimit, memorylimit, nrruns, version, hostname, cpuinfo, date, rseed, expsetup) ) experimentId = c.lastrowid numPlanners = int(readRequiredLogValue("planner count", logfile, 0, {-1 : "planners"})) for i in range(numPlanners): plannerName = logfile.readline()[:-1] print('Parsing data for ' + plannerName) # read common data for planner numCommon = int(logfile.readline().split()[0]) settings = '' for j in range(numCommon): settings = settings + logfile.readline() + ';' # find planner id c.execute('SELECT id FROM plannerConfigs WHERE (name=? AND settings=?)', (plannerName, settings,)) p = c.fetchone() if p==None: c.execute('INSERT INTO plannerConfigs VALUES (?,?,?)', (None, plannerName, settings,)) plannerId = c.lastrowid else: plannerId = p[0] # get current column names c.execute('PRAGMA table_info(runs)') columnNames = [col[1] for col in c.fetchall()] # read properties and add columns as necessary numProperties = int(logfile.readline().split()[0]) propertyNames = ['experimentid', 'plannerid'] for j in range(numProperties): field = logfile.readline().split() propertyType = field[-1] propertyName = '_'.join(field[:-1]) if propertyName not in columnNames: c.execute('ALTER TABLE runs ADD %s %s' % (propertyName, propertyType)) propertyNames.append(propertyName) # read measurements insertFmtStr = 'INSERT INTO runs (' + ','.join(propertyNames) + \ ') VALUES (' + ','.join('?'*len(propertyNames)) + ')' numRuns = int(logfile.readline().split()[0]) runIds = [] for j in range(numRuns): values = tuple([experimentId, plannerId] + \ [None if len(x) == 0 or x == 'nan' or x == 'inf' else x for x in logfile.readline().split('; ')[:-1]]) c.execute(insertFmtStr, values) # extract primary key of each run row so we can reference them # in the planner progress data table if needed runIds.append(c.lastrowid) nextLine = logfile.readline().strip() # read planner progress data if it's supplied if nextLine != '.': # get current column names c.execute('PRAGMA table_info(progress)') columnNames = [col[1] for col in c.fetchall()] # read progress properties and add columns as necesary numProgressProperties = int(nextLine.split()[0]) progressPropertyNames = ['runid'] for i in range(numProgressProperties): field = logfile.readline().split() progressPropertyType = field[-1] progressPropertyName = "_".join(field[:-1]) if progressPropertyName not in columnNames: c.execute('ALTER TABLE progress ADD %s %s' % (progressPropertyName, progressPropertyType)) progressPropertyNames.append(progressPropertyName) # read progress measurements insertFmtStr = 'INSERT INTO progress (' + \ ','.join(progressPropertyNames) + ') VALUES (' + \ ','.join('?'*len(progressPropertyNames)) + ')' numRuns = int(logfile.readline().split()[0]) for j in range(numRuns): dataSeries = logfile.readline().split(';')[:-1] for dataSample in dataSeries: values = tuple([runIds[j]] + \ [None if len(x) == 0 or x == 'nan' or x == 'inf' else x for x in dataSample.split(',')[:-1]]) try: c.execute(insertFmtStr, values) except sqlite3.IntegrityError: print('Ignoring duplicate progress data. Consider increasing ompl::tools::Benchmark::Request::timeBetweenUpdates.') pass logfile.readline() logfile.close() conn.commit() c.close() def plotAttribute(cur, planners, attribute, typename): """Create a plot for a particular attribute. It will include data for all planners that have data for this attribute.""" labels = [] measurements = [] nanCounts = [] if typename == 'ENUM': cur.execute('SELECT description FROM enums where name IS "%s"' % attribute) descriptions = [ t[0] for t in cur.fetchall() ] numValues = len(descriptions) for planner in planners: cur.execute('SELECT %s FROM runs WHERE plannerid = %s AND %s IS NOT NULL' \ % (attribute, planner[0], attribute)) measurement = [ t[0] for t in cur.fetchall() if t[0] != None ] if len(measurement) > 0: cur.execute('SELECT count(*) FROM runs WHERE plannerid = %s AND %s IS NULL' \ % (planner[0], attribute)) nanCounts.append(cur.fetchone()[0]) labels.append(planner[1]) if typename == 'ENUM': scale = 100. / len(measurement) measurements.append([measurement.count(i)*scale for i in range(numValues)]) else: measurements.append(measurement) if len(measurements)==0: print('Skipping "%s": no available measurements' % attribute) return plt.clf() ax = plt.gca() if typename == 'ENUM': width = .5 measurements = np.transpose(np.vstack(measurements)) colsum = np.sum(measurements, axis=1) rows = np.where(colsum != 0)[0] heights = np.zeros((1,measurements.shape[1])) ind = range(measurements.shape[1]) legend_labels = [] for i in rows: plt.bar(ind, measurements[i], width, bottom=heights[0], color=matplotlib.cm.hot(int(floor(i*256/numValues))), label=descriptions[i]) heights = heights + measurements[i] xtickNames = plt.xticks([x+width/2. for x in ind], labels, rotation=30) ax.set_ylabel(attribute.replace('_',' ') + ' (%)') box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) props = matplotlib.font_manager.FontProperties() props.set_size('small') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop = props) elif typename == 'BOOLEAN': width = .5 measurementsPercentage = [sum(m) * 100. / len(m) for m in measurements] ind = range(len(measurements)) plt.bar(ind, measurementsPercentage, width) xtickNames = plt.xticks([x + width / 2. for x in ind], labels, rotation=30, fontsize=8) ax.set_ylabel(attribute.replace('_',' ') + ' (%)') plt.subplots_adjust(bottom=0.3) # Squish the plot into the upper 2/3 of the page. Leave room for labels else: if int(matplotlibversion.split('.')[0])<1: plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5) else: plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5, bootstrap=1000) ax.set_ylabel(attribute.replace('_',' ')) #xtickNames = plt.xticks(labels, rotation=30, fontsize=10) #plt.subplots_adjust(bottom=0.3) # Squish the plot into the upper 2/3 of the page. Leave room for labels xtickNames = plt.setp(ax,xticklabels=labels) plt.setp(xtickNames, rotation=30) for tick in ax.xaxis.get_major_ticks(): # shrink the font size of the x tick labels tick.label.set_fontsize(8) plt.subplots_adjust(bottom=0.3) # Squish the plot into the upper 2/3 of the page. Leave room for labels ax.set_xlabel('Motion planning algorithm') ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) if max(nanCounts)>0: maxy = max([max(y) for y in measurements]) for i in range(len(labels)): x = i+width/2 if typename=='BOOLEAN' else i+1 ax.text(x, .95*maxy, str(nanCounts[i]), horizontalalignment='center', size='small') plt.show() def plotProgressAttribute(cur, planners, attribute): """Plot data for a single planner progress attribute. Will create an average time-plot with error bars of the attribute over all runs for each planner.""" import numpy.ma as ma plt.clf() ax = plt.gca() ax.set_xlabel('time (s)') ax.set_ylabel(attribute.replace('_',' ')) plannerNames = [] for planner in planners: cur.execute("""SELECT count(progress.%s) FROM progress INNER JOIN runs ON progress.runid = runs.id AND runs.plannerid=%s AND progress.%s IS NOT NULL""" \ % (attribute, planner[0], attribute)) if cur.fetchone()[0] > 0: plannerNames.append(planner[1]) cur.execute("""SELECT DISTINCT progress.runid FROM progress INNER JOIN runs WHERE progress.runid=runs.id AND runs.plannerid=?""", (planner[0],)) runids = [t[0] for t in cur.fetchall()] timeTable = [] dataTable = [] for r in runids: # Select data for given run cur.execute('SELECT time, %s FROM progress WHERE runid = %s ORDER BY time' % (attribute,r)) (time, data) = zip(*(cur.fetchall())) timeTable.append(time) dataTable.append(data) # It's conceivable that the sampling process may have # generated more samples for one run than another; in this # case, truncate all data series to length of shortest # one. fewestSamples = min(len(time[:]) for time in timeTable) times = np.array(timeTable[0][:fewestSamples]) dataArrays = np.array([data[:fewestSamples] for data in dataTable]) filteredData = ma.masked_array(dataArrays, np.equal(dataArrays, None), dtype=float) means = np.mean(filteredData, axis=0) stddevs = np.std(filteredData, axis=0, ddof=1) # plot average with error bars plt.errorbar(times, means, yerr=2*stddevs, errorevery=max(1, len(times) // 20)) ax.legend(plannerNames) if len(plannerNames)>0: plt.show() else: plt.clf() def plotStatistics(dbname, fname): """Create a PDF file with box plots for all attributes.""" print("Generating plots...") conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') c.execute('SELECT id, name FROM plannerConfigs') planners = [(t[0],t[1].replace('geometric_','').replace('control_','')) for t in c.fetchall()] c.execute('PRAGMA table_info(runs)') colInfo = c.fetchall()[3:] pp = PdfPages(fname) for col in colInfo: if col[2] == 'BOOLEAN' or col[2] == 'ENUM' or \ col[2] == 'INTEGER' or col[2] == 'REAL': plotAttribute(c, planners, col[1], col[2]) pp.savefig(plt.gcf()) c.execute('PRAGMA table_info(progress)') colInfo = c.fetchall()[2:] for col in colInfo: plotProgressAttribute(c, planners, col[1]) pp.savefig(plt.gcf()) plt.clf() pagey = 0.9 pagex = 0.06 c.execute("""SELECT id, name, timelimit, memorylimit FROM experiments""") experiments = c.fetchall() for experiment in experiments: c.execute("""SELECT count(*) FROM runs WHERE runs.experimentid = %d GROUP BY runs.plannerid""" % experiment[0]) numRuns = [run[0] for run in c.fetchall()] numRuns = numRuns[0] if len(set(numRuns)) == 1 else ','.join(numRuns) plt.figtext(pagex, pagey, 'Experiment "%s"' % experiment[1]) plt.figtext(pagex, pagey-0.05, 'Number of averaged runs: %d' % numRuns) plt.figtext(pagex, pagey-0.10, "Time limit per run: %g seconds" % experiment[2]) plt.figtext(pagex, pagey-0.15, "Memory limit per run: %g MB" % experiment[3]) pagey -= 0.22 plt.show() pp.savefig(plt.gcf()) pp.close() def saveAsMysql(dbname, mysqldump): # See http://stackoverflow.com/questions/1067060/perl-to-python import re print("Saving as MySQL dump file...") conn = sqlite3.connect(dbname) mysqldump = open(mysqldump,'w') # make sure all tables are dropped in an order that keepd foreign keys valid c = conn.cursor() c.execute("SELECT name FROM sqlite_master WHERE type='table'") table_names = [ str(t[0]) for t in c.fetchall() ] c.close() last = ['experiments', 'planner_configs'] for table in table_names: if table.startswith("sqlite"): continue if not table in last: mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table) for table in last: if table in table_names: mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table) for line in conn.iterdump(): process = False for nope in ('BEGIN TRANSACTION','COMMIT', 'sqlite_sequence','CREATE UNIQUE INDEX', 'CREATE VIEW'): if nope in line: break else: process = True if not process: continue line = re.sub(r"[\n\r\t ]+", " ", line) m = re.search('CREATE TABLE ([a-zA-Z0-9_]*)(.*)', line) if m: name, sub = m.groups() sub = sub.replace('"','`') line = '''CREATE TABLE IF NOT EXISTS %(name)s%(sub)s''' line = line % dict(name=name, sub=sub) # make sure we use an engine that supports foreign keys line = line.rstrip("\n\t ;") + " ENGINE = InnoDB;\n" else: m = re.search('INSERT INTO "([a-zA-Z0-9_]*)"(.*)', line) if m: line = 'INSERT INTO %s%s\n' % m.groups() line = line.replace('"', r'\"') line = line.replace('"', "'") line = re.sub(r"([^'])'t'(.)", "\\1THIS_IS_TRUE\\2", line) line = line.replace('THIS_IS_TRUE', '1') line = re.sub(r"([^'])'f'(.)", "\\1THIS_IS_FALSE\\2", line) line = line.replace('THIS_IS_FALSE', '0') line = line.replace('AUTOINCREMENT', 'AUTO_INCREMENT') mysqldump.write(line) mysqldump.close() def computeViews(dbname): conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') c.execute('PRAGMA table_info(runs)') # kinodynamic paths cannot be simplified (or least not easily), # so simplification_time may not exist as a database column if 'simplification_time' in [col[1] for col in c.fetchall()]: s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, time + simplification_time AS total_time FROM plannerConfigs INNER JOIN experiments INNER JOIN runs ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid""" else: s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, time AS total_time FROM plannerConfigs INNER JOIN experiments INNER JOIN runs ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid""" s1 = """SELECT plannerid, plannerName, experimentid, AVG(solved) AS avg_solved, AVG(total_time) AS avg_total_time FROM (%s) GROUP BY plannerid, experimentid""" % s0 s2 = """SELECT plannerid, experimentid, MIN(avg_solved) AS avg_solved, avg_total_time FROM (%s) GROUP BY plannerName, experimentid ORDER BY avg_solved DESC, avg_total_time ASC""" % s1 c.execute('DROP VIEW IF EXISTS bestPlannerConfigsPerExperiment') c.execute('CREATE VIEW IF NOT EXISTS bestPlannerConfigsPerExperiment AS %s' % s2) s1 = """SELECT plannerid, plannerName, AVG(solved) AS avg_solved, AVG(total_time) AS avg_total_time FROM (%s) GROUP BY plannerid""" % s0 s2 = """SELECT plannerid, MIN(avg_solved) AS avg_solved, avg_total_time FROM (%s) GROUP BY plannerName ORDER BY avg_solved DESC, avg_total_time ASC""" % s1 c.execute('DROP VIEW IF EXISTS bestPlannerConfigs') c.execute('CREATE VIEW IF NOT EXISTS bestPlannerConfigs AS %s' % s2) conn.commit() c.close() if __name__ == "__main__": usage = """%prog [options] [<benchmark.log> ...]""" parser = OptionParser("A script to parse benchmarking results.\n" + usage) parser.add_option("-d", "--database", dest="dbname", default="benchmark.db", help="Filename of benchmark database [default: %default]") parser.add_option("-v", "--view", action="store_true", dest="view", default=False, help="Compute the views for best planner configurations") parser.add_option("-p", "--plot", dest="plot", default=None, help="Create a PDF of plots with the filename provided") parser.add_option("-m", "--mysql", dest="mysqldb", default=None, help="Save SQLite3 database as a MySQL dump file") (options, args) = parser.parse_args() if len(args) == 0: parser.error("No arguments were provided. Please provide full path of log file") if len(args) == 1: readBenchmarkLog(options.dbname, args) # If we update the database, we recompute the views as well options.view = True if options.view: computeViews(options.dbname) if options.plot: plotStatistics(options.dbname, options.plot) if options.mysqldb: saveAsMysql(options.dbname, options.mysqldb)
bsd-3-clause
uclmr/inferbeddings
data/kinships/make_folds.py
2
2304
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import argparse import logging import numpy as np from sklearn.cross_validation import KFold, train_test_split def read_triples(path): with open(path, 'rt') as f: lines = f.readlines() triples = [(s.strip(), p.strip(), o.strip()) for [s, p, o] in [l.split() for l in lines]] return triples def main(argv): def formatter(prog): return argparse.HelpFormatter(prog, max_help_position=100, width=200) argparser = argparse.ArgumentParser('K-Folder for Knowledge Graphs', formatter_class=formatter) argparser.add_argument('triples', action='store', type=str, default=None) args = argparser.parse_args(argv) triples_path = args.triples triples = read_triples(triples_path) nb_triples = len(triples) kf = KFold(n=nb_triples, n_folds=10, random_state=0, shuffle=True) triples_np = np.array(triples) for fold_no, (train_idx, test_idx) in enumerate(kf): train_valid_triples = triples_np[train_idx] test_triples = triples_np[test_idx] train_triples, valid_triples, _, _ = train_test_split(train_valid_triples, np.ones(train_valid_triples.shape[0]), test_size=len(test_triples), random_state=0) train_lines = ['{}\t{}\t{}'.format(s, p, o) for [s, p, o] in train_triples] valid_lines = ['{}\t{}\t{}'.format(s, p, o) for [s, p, o] in valid_triples] test_lines = ['{}\t{}\t{}'.format(s, p, o) for [s, p, o] in test_triples] if not os.path.exists('folds/{}'.format(str(fold_no))): os.mkdir('folds/{}'.format(str(fold_no))) with open('folds/{}/nations_train.tsv'.format(str(fold_no)), 'w') as f: f.writelines(['{}\n'.format(line) for line in train_lines]) with open('folds/{}/nations_valid.tsv'.format(str(fold_no)), 'w') as f: f.writelines(['{}\n'.format(line) for line in valid_lines]) with open('folds/{}/nations_test.tsv'.format(str(fold_no)), 'w') as f: f.writelines(['{}\n'.format(line) for line in test_lines]) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) main(sys.argv[1:])
mit
phoebe-project/phoebe2-docs
2.1/examples/diher_misaligned.py
1
4328
#!/usr/bin/env python # coding: utf-8 # DI Her: Misaligned Binary # ============================ # # In this example, we'll reproduce Figure 8 in the misalignment release paper ([Horvat et al. 2018](http://phoebe-project.org/publications/2018Horvat+)). # # <img src="horvat+18_fig8.png" alt="Figure 8" width="400px"/> # # Setup # ----------------------------- # # Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.1,<2.2"') # As always, let's do imports and initialize a logger and a new bundle. See [Building a System](../tutorials/building_a_system.html) for more details. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger('error') b = phoebe.default_binary() # System Parameters # ------------ # # We'll adopt and set parameters from the following sources: # * Albrecht et al. (2009), Nature: https://arxiv.org/pdf/0909.2861 # * https://en.wikipedia.org/wiki/DI_Herculis # * Claret et al (2010) https://arxiv.org/pdf/1002.2949.pdf # In[3]: Nt = 2000 b.set_value('t0_supconj@orbit', 2442233.3481) b.set_value('vgamma@system', 9.1) # [km/s] (Albrecht et al. 2009) b.set_value('ntriangles@primary', Nt) b.set_value('ntriangles@secondary', Nt) mass1 = 5.1 # [M_sun] (Albrecht et al. 2009) mass2 = 4.4 # [M_sun] (Albrecht et al. 2009) P = 10.550164 # [d] (Albrecht et al. 2009) mu_sun = 1.32712440018e20 # = G M_sun [m3 s^-2], Wiki Standard_gravitational_parameter R_sun = 695700000 # [m] Wiki Sun sma = (mu_sun*(mass1 + mass2)*(P*86400/(2*np.pi))**2)**(1./3)/R_sun # Kepler equation incl = 89.3 # deg (Albrecht et al. 2009) vp_sini = 109 # [km/s] (Albrecht et al. 2009) vs_sini = 117 # [km/s] (Albrecht et al. 2009) Rp = 2.68 # [R_sun] (Albrecht et al. 2009) Rs = 2.48 # [R_sun] (Albrecht et al. 2009) sini = np.sin(np.pi*incl/180) vp = vp_sini*86400/sini # [km/s] vs = vs_sini*86400/sini # [km/s] Pp = 2*np.pi*Rp*R_sun/1000/vp Ps = 2*np.pi*Rs*R_sun/1000/vs Fp = P/Pp Fs = P/Ps b.set_value('q', mass2/mass1) b.set_value('incl@binary', incl) # (Albrecht et al. 2009) b.set_value('sma@binary', sma) # calculated b.set_value('ecc@binary', 0.489) # (Albrecht et al. 2009) b.set_value('per0@binary', 330.2) # (Albrecht et al. 2009) b.set_value('period@binary', P) # calculated b.set_value('syncpar@primary', Fp) # calculated b.set_value('syncpar@secondary', Fs) # calculated b.set_value('requiv@primary', Rp) # !!! requiv (Albrecht et al. 2009) b.set_value('requiv@secondary', Rs) # !!! requiv (Albrecht et al. 2009) b.set_value('teff@primary', 17300) # Wiki DI_Herculis b.set_value('teff@secondary', 15400) # Wiki DI_Herculis b.set_value('gravb_bol@primary', 1.) b.set_value('gravb_bol@secondary', 1.) # beta = 72 deg (Albrecht et al. 2009) dOmega_p = 72 di_p = 62 - incl b.set_value('pitch@primary', di_p) # di b.set_value('yaw@primary', dOmega_p) # dOmega # beta = - 84 deg (Albrecht et al. 2009) dOmega_s = -84 di_s = 100 - incl b.set_value('pitch@secondary', di_s) # di b.set_value('yaw@secondary', dOmega_s) # dOmega b.set_value_all('atm','extern_planckint') b.set_value_all('irrad_method', 'none') # Datasets # --------------- # # Let's compute an LC and RV dataset sampled at 200 points in phase (with some aliasing). # In[4]: n = 200 times = b.to_time(np.linspace(-0.05, 1.05, n)) b.add_dataset('lc', times=times, dataset='lc01', ld_func='logarithmic', ld_coeffs = [0.5,0.5]) b.add_dataset('rv', times=times, dataset='rv01', ld_func='logarithmic', ld_coeffs = [0.5,0.5]) # Compute # -------------- # In[5]: b.run_compute(ltte=False) # Plotting # ------------- # In[6]: afig, mplfig = b.plot(kind='lc', show=True) # In[7]: afig, mplfig = b.plot(kind='rv', show=True) # In[ ]:
gpl-3.0
reshama/data-science-from-scratch
code-python3/linear_algebra.py
12
3566
# -*- coding: iso-8859-15 -*- import re, math, random # regexes, math functions, random numbers import matplotlib.pyplot as plt # pyplot from collections import defaultdict, Counter from functools import partial, reduce # # functions for working with vectors # def vector_add(v, w): """adds two vectors componentwise""" return [v_i + w_i for v_i, w_i in zip(v,w)] def vector_subtract(v, w): """subtracts two vectors componentwise""" return [v_i - w_i for v_i, w_i in zip(v,w)] def vector_sum(vectors): return reduce(vector_add, vectors) def scalar_multiply(c, v): return [c * v_i for v_i in v] def vector_mean(vectors): """compute the vector whose i-th element is the mean of the i-th elements of the input vectors""" n = len(vectors) return scalar_multiply(1/n, vector_sum(vectors)) def dot(v, w): """v_1 * w_1 + ... + v_n * w_n""" return sum(v_i * w_i for v_i, w_i in zip(v, w)) def sum_of_squares(v): """v_1 * v_1 + ... + v_n * v_n""" return dot(v, v) def magnitude(v): return math.sqrt(sum_of_squares(v)) def squared_distance(v, w): return sum_of_squares(vector_subtract(v, w)) def distance(v, w): return math.sqrt(squared_distance(v, w)) # # functions for working with matrices # def shape(A): num_rows = len(A) num_cols = len(A[0]) if A else 0 return num_rows, num_cols def get_row(A, i): return A[i] def get_column(A, j): return [A_i[j] for A_i in A] def make_matrix(num_rows, num_cols, entry_fn): """returns a num_rows x num_cols matrix whose (i,j)-th entry is entry_fn(i, j)""" return [[entry_fn(i, j) for j in range(num_cols)] for i in range(num_rows)] def is_diagonal(i, j): """1's on the 'diagonal', 0's everywhere else""" return 1 if i == j else 0 identity_matrix = make_matrix(5, 5, is_diagonal) # user 0 1 2 3 4 5 6 7 8 9 # friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9 ##### # DELETE DOWN # def matrix_add(A, B): if shape(A) != shape(B): raise ArithmeticError("cannot add matrices with different shapes") num_rows, num_cols = shape(A) def entry_fn(i, j): return A[i][j] + B[i][j] return make_matrix(num_rows, num_cols, entry_fn) def make_graph_dot_product_as_vector_projection(plt): v = [2, 1] w = [math.sqrt(.25), math.sqrt(.75)] c = dot(v, w) vonw = scalar_multiply(c, w) o = [0,0] plt.arrow(0, 0, v[0], v[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("v", v, xytext=[v[0] + 0.1, v[1]]) plt.arrow(0 ,0, w[0], w[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("w", w, xytext=[w[0] - 0.1, w[1]]) plt.arrow(0, 0, vonw[0], vonw[1], length_includes_head=True) plt.annotate(u"(v•w)w", vonw, xytext=[vonw[0] - 0.1, vonw[1] + 0.1]) plt.arrow(v[0], v[1], vonw[0] - v[0], vonw[1] - v[1], linestyle='dotted', length_includes_head=True) plt.scatter(*zip(v,w,o),marker='.') plt.axis('equal') plt.show()
unlicense
imcgreer/rapala
survey/summer2015/checkfields.py
2
28485
#!/usr/bin/env python import os import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import astropy.io.ascii as ascii_io import fitsio import bass import bokextract datadir = '/global/scratch2/sd/imcgreer/' ndwfs_starfile = datadir+'ndwfs/starcat.fits' bootes_sdss_starfile = datadir+'ndwfs/sdss_bootes_gstars.fits' cfhtlswide_starfile = datadir+'cfhtls/CFHTLSW3_starcat.fits' cfhtlsdeep_starfile = datadir+'cfhtls/CFHTLSD3_starcat.fits' def cfhtw3_tiles(observed=True): w3west,w3east = 15*(13.+50/60.), 15*(14+45./60) w3south,w3north = 50.7, 56.2 return bass.region_tiles(w3west,w3east,w3south,w3north,observed=observed) def ndwfs_tiles(observed=True): ndwest,ndeast = 15*14.37, 15*14.62 ndsouth,ndnorth = 32.5, 36.1 return bass.region_tiles(ndwest,ndeast,ndsouth,ndnorth,observed=observed) def panstarrs_md_tiles(observed=True): tiles = {} for field,ra,dec in [('MD03',130.592,+44.317), ('MD05',161.917,+58.083), ('MD06',185.000,+47.117), ('MD07',213.704,+53.083), ('MD08',242.787,+54.950)]: dra = 3.5/np.cos(np.radians(dec)) tiles[field] = bass.region_tiles(ra-dra,ra+dra,dec-3.5,dec+3.5, observed=observed) return tiles def check_fields_list(): files = [ t['utDate']+'/'+t['fileName']+'.fits.gz' for tiles in [cfhtw3_tiles(),ndwfs_tiles()] for t in tiles ] with open('checkfields_tiles.txt','w') as f: f.write('\n'.join(sorted(files))) def srcor(ra1,dec1,ra2,dec2,sep,return_sep=False): from astropy.coordinates import SkyCoord,match_coordinates_sky from astropy import units as u c1 = SkyCoord(ra1,dec1,unit=(u.degree,u.degree)) c2 = SkyCoord(ra2,dec2,unit=(u.degree,u.degree)) idx,d2d,d3c = match_coordinates_sky(c1,c2) ii = np.where(d2d.arcsec < sep)[0] if return_sep: return ii,idx[ii],d2d.arcsec[ii] else: return ii,idx[ii] def srcorXY(x1,y1,x2,y2,maxrad): sep = np.sqrt( (x1[:,np.newaxis]-x2[np.newaxis,:])**2 + (y1[:,np.newaxis]-y2[np.newaxis,:])**2 ) ii = sep.argmin(axis=1) m1 = np.arange(len(x1)) jj = np.where(sep[m1,ii] < maxrad)[0] return m1[jj],ii[jj] def match_objects(objs,tiles): objpars = [('g_number','f4'),('g_ra','f8'),('g_dec','f8'), ('g_x','f4'),('g_y','f4'), ('g_autoMag','f4'),('g_autoMagErr','f4'), ('g_autoFlux','f4'),('g_autoFluxErr','f4'), ('g_psfMag','f4'),('g_psfMagErr','f4'), ('g_psfFlux','f4'),('g_psfFluxErr','f4'), ('g_elongation','f4'),('g_ellipticity','f4'), ('g_flags','i4'),('g_fluxRad','f4')] tilepars = [('g_utDate','S8'),('g_expTime','f4'), ('g_tileId','i4'),('g_ditherId','i4'),('g_ccdNum','i4')] dtype = objs.dtype.descr + objpars + tilepars skeys = ['NUMBER','ALPHA_J2000','DELTA_J2000','X_IMAGE','Y_IMAGE', 'MAG_AUTO','MAGERR_AUTO','FLUX_AUTO','FLUXERR_AUTO', 'MAG_PSF','MAGERR_PSF','FLUX_PSF','FLUXERR_PSF', 'ELONGATION','ELLIPTICITY', 'FLAGS','FLUX_RADIUS'] tkeys = ['utDate','expTime','tileId','ditherId'] matches = [] for ti,t in enumerate(tiles): print 'matching tile %d/%d' % (ti+1,len(tiles)) for ccdNum in range(1,5): catpath = os.path.join(bass.rdxdir,t['utDate'],'ccdproc3', t['fileName']+'_ccd%d.cat.fits'%ccdNum) if not os.path.exists(catpath): print ' ... %s does not exist, skipping' % catpath continue cat = fitsio.read(catpath) ii = np.where( (objs['ra']>cat['ALPHA_J2000'].min()+3e-3) & (objs['ra']<cat['ALPHA_J2000'].max()-3e-3) & (objs['dec']>cat['DELTA_J2000'].min()+3e-3) & (objs['dec']<cat['DELTA_J2000'].max()-3e-3) )[0] if len(ii)==0: continue m1,m2 = srcor(objs['ra'][ii],objs['dec'][ii], cat['ALPHA_J2000'],cat['DELTA_J2000'],2.5) print ' ccd%d %d/%d' % (ccdNum,len(m1),len(ii)), matches.extend( [ tuple(objs[i]) + tuple([cat[k][j] for k in skeys]) + tuple([t[k] for k in tkeys]) + (ccdNum,) for i,j in zip(ii[m1],m2) ] ) uu = np.delete(np.arange(len(ii)),m1) matches.extend( [ tuple(objs[i]) + tuple([0]*len(skeys)) + tuple([t[k] for k in tkeys]) + (ccdNum,) for i in ii[uu] ] ) print matches = np.array(matches,dtype=dtype) print 'finished with ',matches.size return matches def depth_plots(matches,g_ref,gname,bypriority=True,aper='psf',**kwargs): assert aper in ['psf','auto'] fluxk = 'g_%sFlux' % aper errk = 'g_%sFluxErr' % aper # m = np.where( (matches[fluxk]>0) & (matches[errk]>0) )[0] gSNR = matches[fluxk][m] / matches[errk][m] if bypriority: fig1 = plt.figure(figsize=(10,8)) plt.subplots_adjust(0.07,0.07,0.97,0.96,0.27,0.27) else: fig1 = plt.figure(figsize=(5,4.5)) plt.subplots_adjust(0.13,0.12,0.98,0.94) for i in range(4): if bypriority: ax = plt.subplot(2,2,i+1) else: if i>0: break ax = plt.subplot(1,1,i+1) if i==0: ii = np.where(matches['g_ditherId'][m] > 0)[0] else: ii = np.where(matches['g_ditherId'][m] == i)[0] ax.hexbin(g_ref[m[ii]],np.log10(gSNR[ii]), bins='log',cmap=plt.cm.Blues) ax.axhline(np.log10(5.0),c='r',lw=1.3,alpha=0.7) ax.plot([24.0-2.5*np.log10(np.sqrt(3))]*2,np.log10([3,8]),c='m',lw=1.5) ax.set_xlim(17.2,24.5) ax.set_ylim(np.log10(2),np.log10(500)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.2)) ax.yaxis.set_major_locator(ticker.FixedLocator(np.log10( [2,5,10,20,50,100,200]))) ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda x,pos: '%d' % np.round(10**x))) ax.set_xlabel(gname+' mag') ax.set_ylabel('BASS %s flux/err' % aper.upper()) if i==0: ax.set_title('all tiles') else: ax.set_title('P%d tiles' % i) # mbins = np.arange(18.,24.01,0.1) fig2 = plt.figure(figsize=(8,4)) plt.subplots_adjust(0.07,0.14,0.97,0.97,0.25) ax1 = plt.subplot(121) ax2 = plt.subplot(122) for i in range(4): if i==0: ii = np.where(matches['g_ditherId'] > 0)[0] else: if not bypriority: break ii = np.where(matches['g_ditherId'] == i)[0] jj = np.where(matches[errk][ii]>0)[0] g5sig = ( matches[fluxk][ii[jj]] / matches[errk][ii[jj]] ) > 5.0 tot,_ = np.histogram(g_ref[ii],mbins) det,_ = np.histogram(g_ref[ii[jj]],mbins) det5,_ = np.histogram(g_ref[ii[jj[g5sig]]],mbins) ax1.plot(mbins[:-1],det.astype(np.float)/tot,drawstyle='steps-pre', c=['black','blue','green','DarkCyan'][i],lw=1.3, label=['all','P1','P2','P3'][i]) ax2.plot(mbins[:-1],det5.astype(np.float)/tot,drawstyle='steps-pre', c=['black','blue','green','DarkCyan'][i],lw=1.3, label=['all','P1','P2','P3'][i]) ax1.set_xlabel(gname+' mag') ax2.set_xlabel(gname+' mag') ax1.set_ylabel('fraction detected') ax2.set_ylabel('fraction detected 5 sig') ax1.legend(loc='lower left') if kwargs.get('saveplots',False): figname = kwargs.get('figname','blah') figext = kwargs.get('figtype','png') fig1.savefig(figname+'_depth.'+figext) fig2.savefig(figname+'_complete.'+figext) ############################################################################## # # # NDWFS # # # ############################################################################## def select_ndwfs_stars(): ndwfsdir = '/global/scratch2/sd/imcgreer/ndwfs/DR3/matchedFITS/' dtype = [('number','i4'),('autoMag','3f4'),('autoMagErr','3f4'), ('ra','f8'),('dec','f8'),('rFWHM','f4'),('rClass','f4')] starcat = [] rcols = ['NUMBER','MAG_AUTO','MAGERR_AUTO','ALPHA_J2000','DELTA_J2000', 'FWHM_IMAGE','CLASS_STAR'] cols = ['MAG_AUTO','MAGERR_AUTO'] for dec1 in range(32,36): catfn = lambda b: 'NDWFS_%s_%d_%d_cat_m.fits.gz' % (b,dec1,dec1+1) rfits = fitsio.FITS(ndwfsdir+catfn('R')) bfits = fitsio.FITS(ndwfsdir+catfn('Bw')) ifits = fitsio.FITS(ndwfsdir+catfn('I')) w = rfits[1].where('FWHM_IMAGE < 7 && MAG_AUTO < 24.0 && FLAGS == 0') print len(w) rcat = rfits[1].read(rows=w,columns=rcols) bcat = bfits[1].read(rows=w,columns=cols) icat = ifits[1].read(rows=w,columns=cols) stars = np.empty(len(w),dtype=dtype) stars['number'] = rcat['NUMBER'] stars['ra'] = rcat['ALPHA_J2000'] stars['dec'] = rcat['DELTA_J2000'] stars['rFWHM'] = rcat['FWHM_IMAGE'] stars['rClass'] = rcat['CLASS_STAR'] for j,cat in enumerate([bcat,rcat,icat]): stars['autoMag'][:,j] = cat['MAG_AUTO'] stars['autoMagErr'][:,j] = cat['MAGERR_AUTO'] starcat.append(stars) starcat = np.concatenate(starcat) fitsio.write(ndwfs_starfile,starcat,clobber=True) def match_ndwfs_stars(matchRad=2.5): stars = fitsio.read(ndwfs_starfile) tiles = ndwfs_tiles(observed=True) matches = match_objects(stars,tiles) fitsio.write('ndwfs_match.fits',matches,clobber=True) def ndwfs_depth(**kwargs): kwargs.setdefault('figname','ndwfs') ndwfsm = fitsio.read('ndwfs_match.fits') Bw = ndwfsm['autoMag'][:,0] Bw_minus_R = ndwfsm['autoMag'][:,0] - ndwfsm['autoMag'][:,1] NDWFSg = np.choose(Bw_minus_R <= 1.45, [ Bw - (0.23*Bw_minus_R + 0.25), Bw - (0.38*Bw_minus_R + 0.05) ]) # m = np.where( np.all(ndwfsm['autoMag'][:,:2]> 0,axis=1) & np.all(ndwfsm['autoMag'][:,:2]<30,axis=1) )[0] depth_plots(ndwfsm[m],NDWFSg[m],'NDWFS g-ish',**kwargs) ############################################################################## # # # CFHTLS # # # ############################################################################## def match_cfhtls_stars(matchRad=2.5,survey='wide'): if survey=='wide': stars = fitsio.read(cfhtlswide_starfile) tiles = cfhtw3_tiles(observed=True) fname = 'cfhtlswide' else: stars = fitsio.read(cfhtlsdeep_starfile) fname = 'cfhtlsdeep' matches = match_objects(stars,tiles) fitsio.write('%s_match.fits'%fname,matches,clobber=True) def cfhtls_depth(**kwargs): kwargs.setdefault('figname','cfhtls') cfhtlsm = fitsio.read('cfhtlswide_match.fits') m = np.where( (cfhtlsm['psfMag'][:,1]> 0) & (cfhtlsm['psfMag'][:,1]<30) )[0] depth_plots(cfhtlsm[m],cfhtlsm['psfMag'][m,1],'CFHTLS g',bypriority=False, **kwargs) bok_gain_2015 = [ 1.3325, 1.5225, 1.415, 1.47 ] bok_rn_2015 = [ 7.94, 9.54, 11.81, 8.91 ] def cfhtls_depth_compare(): import itertools import boketc import bokdepth tiles = cfhtw3_tiles(observed=True) cfhtlsm = fitsio.read('stuff/cfhtlswide_match.fits') m = np.where( (cfhtlsm['psfMag'][:,1]>20) & (cfhtlsm['psfMag'][:,1]<30) )[0] m = cfhtlsm[m] for ccdNum in range(1,5): ents = [] for ti,t in enumerate(tiles): print ccdNum,ti,len(tiles) ii = np.where( (m['g_tileId'] == t['tileId']) & (m['g_ditherId'] == t['ditherId']) & (m['g_ccdNum'] == ccdNum) & (m['g_psfFlux'] != 0) )[0] if len(ii)==0: continue impath = os.path.join(bass.rdxdir,t['utDate'],'ccdproc3', t['fileName']+'_ccd%d_pv.fits'%ccdNum) psfpath = os.path.join(bass.rdxdir,t['utDate'],'ccdproc3', t['fileName']+'_ccd%d.ldac_cat.psf'%ccdNum) if not os.path.exists(impath): print ' ... %s does not exist, skipping' % impath continue gain = bok_gain_2015[ccdNum-1] rdnoise = bok_rn_2015[ccdNum-1] rmsADU,rmsEl,A,skyADU = bokdepth.calc_processed_image_rms( impath,psfpath, gain=gain, rdNoise=rdnoise, retPars=True) snr = m['g_psfFlux'][ii] / rmsADU fwhm = 2*m['g_fluxRad']*1.1 * 0.455 skyADUps = skyADU / m['g_expTime'][ii] nominal_snr = [ boketc.snr_singleexposure('g',m['psfMag'][i,1], m['g_expTime'][i], fwhm=fwhm[i], skyADU=skyADUps[0], profile='gaussian') for i in ii ] nominal_snr = np.array(nominal_snr) # revise the ETC calculation using updated gain and RN values, # as well as the noise-equivalent-gaussian determined from the # pixel area of the PSF NEG = np.sqrt(A/(4*np.pi)) * 0.455 * 2.355 revnominal_snr = [ boketc.snr_singleexposure('g',m['psfMag'][i,1], m['g_expTime'][i], fwhm=NEG, skyADU=skyADUps[0], profile='gaussian', gain=gain, rdnoise=rdnoise) for i in ii ] revnominal_snr = np.array(revnominal_snr) objEl = m['g_psfFlux'][ii] * gain est_snr = objEl / np.sqrt(objEl + rmsEl**2) sex_snr = m['g_psfFlux'][ii] / m['g_psfFluxErr'][ii] ents.extend( [ vals for vals in itertools.izip(ii, m['psfMag'][ii,1], [A]*len(ii), skyADUps,fwhm, snr,nominal_snr, est_snr,sex_snr, revnominal_snr) ] ) ents = np.array(ents,dtype=[('ii','i4'),('refMag','f4'), ('psfArea','f4'),('skyADUperSec','f4'), ('fwhm','f4'), ('snrRMS','f4'),('snrETC','f4'), ('snrSky','f4'),('snrSex','f4'), ('snrETCrev','f4')]) fitsio.write('cfhtlswide_snr.fits',ents,clobber=(ccdNum==1)) def plot_cfhtls_snr_ratio(snr1='snrRMS',snr2='snrETCrev'): hdus = fitsio.FITS('cfhtlswide_snr.fits') ccds = [hdu.read() for hdu in hdus[1:]] plt.figure() for pnum,ccd in enumerate(ccds,start=1): ax = plt.subplot(2,2,pnum) plt.hexbin(ccd['refMag'],ccd[snr1]/ccd[snr2], extent=(20,23.5,0.5,1.5),cmap=plt.cm.Blues) plt.axhline(1,c='r') ax.xaxis.set_major_locator(ticker.MultipleLocator(1.0)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.25)) ax.yaxis.set_major_locator(ticker.MultipleLocator(0.2)) ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.05)) ax.set_title('CCD%d'%pnum) plt.figtext(0.01,0.5,'SNR/SNR(ETC)',va='center',rotation='vertical') plt.figtext(0.5,0.01,'g mag (CFHTLS)',ha='center') ############################################################################## # # # Pan-STARRS Medium Deeps # # # ############################################################################## def match_ps1mds(matchRad=2.5): raise NotImplementedError pstiles = panstarrs_md_tiles(observed=True) for field,tiles in pstiles.items(): stars = fitsio.read(ps1md_starfile(field)) matches = match_objects(stars,tiles) fitsio.write('ps1%s_match.fits'%field,matches,clobber=True) ############################################################################## # # # fake sources # # # ############################################################################## from astropy.io import fits def fake_sdss_stars_on_tile(stars,tile, nresample=200,magrange=(22.0,23.4), stampSize=25,margin=50,aper='psf', keepfakes=False,savestars=False): pixlo = lambda _x: _x-stampSize/2 pixhi = lambda _x: _x-stampSize/2 + stampSize fakemags = np.zeros(nresample*4,dtype=np.float32) fakesnr = -np.ones_like(fakemags) if aper=='auto': magk,fluxk,errk = 'MAG_AUTO','FLUX_AUTO','FLUXERR_AUTO' elif aper=='psf': magk,fluxk,errk = 'MAG_PSF','FLUX_PSF','FLUXERR_PSF' else: raise ValueError for ccdNum in range(1,5): catpath = os.path.join(bass.rdxdir,tile['utDate'],'ccdproc3', tile['fileName']+'_ccd%d.cat.fits'%ccdNum) if not os.path.exists(catpath): print ' ... %s does not exist, skipping' % catpath continue cat = fitsio.read(catpath) impath = os.path.join(bass.rdxdir,tile['utDate'],'ccdproc3', tile['fileName']+'_ccd%d.fits'%ccdNum) _impath = impath.replace('.fits','_pv.fits') fakeim = fits.open(_impath) im = fakeim[0].data nY,nX = im.shape ii = np.where( (stars['ra']>cat['ALPHA_J2000'].min()+3e-3) & (stars['ra']<cat['ALPHA_J2000'].max()-3e-3) & (stars['dec']>cat['DELTA_J2000'].min()+3e-3) & (stars['dec']<cat['DELTA_J2000'].max()-3e-3) )[0] if len(ii)==0: print 'no stars found on ccd #',ccdNum continue m1,m2 = srcor(stars['ra'][ii],stars['dec'][ii], cat['ALPHA_J2000'],cat['DELTA_J2000'],2.5) jj = np.where(cat['FLAGS'][m2] == 0)[0] rindx = np.random.choice(len(jj),size=nresample,replace=True) fakemag = magrange[0] + \ (magrange[1]-magrange[0])*np.random.random(nresample) fscale = 10**(-0.4*(fakemag-stars['psfMag_g'][ii[m1[jj[rindx]]]])) print 'matched %d/%d stars, max scale factor %.2e' % \ (len(m1),len(ii),fscale.max()) fakex = np.random.randint(margin,nX-margin,nresample) fakey = np.random.randint(margin,nY-margin,nresample) for x,y,fx,fy,fscl in zip(np.round(cat['X_IMAGE'][m2[jj[rindx]]]), np.round(cat['Y_IMAGE'][m2[jj[rindx]]]), fakex,fakey,fscale): stamp = im[pixlo(y):pixhi(y),pixlo(x):pixhi(x)] im[pixlo(fy):pixhi(fy),pixlo(fx):pixhi(fx)] += fscl*stamp fakeimpath = impath.replace('.fits','_fake.fits') fakecatpath = fakeimpath.replace('.fits','.cat.fits') fakeim.writeto(fakeimpath,clobber=True) bokextract.sextract(fakeimpath,frompv=False,redo=True, withpsf=True,redopsf=False, psfpath=impath.replace('.fits','.ldac_cat.psf')) fakecat = fitsio.read(fakecatpath) q1,q2 = srcorXY(fakex,fakey,fakecat['X_IMAGE'],fakecat['Y_IMAGE'],3.0) snr = fakecat[fluxk][q2] / fakecat[errk][q2] fakemags[nresample*(ccdNum-1):nresample*ccdNum] = fakemag fakesnr[nresample*(ccdNum-1):nresample*ccdNum][q1] = snr if True: zpt = np.median(cat[magk][m2[jj]] - stars['psfMag_g'][ii[m1[jj]]]) zpt -= 25 foo = np.where(fakemag[q1] < 22.3)[0] offset = np.median((-2.5*np.log10(fakecat[fluxk][q2[foo]]) - zpt) - fakemag[q1[foo]]) print 'fake star mag offset is ',offset fakemags[nresample*(ccdNum-1):nresample*ccdNum] += offset if False: print ' --------- ZERO POINT CHECK -----------' print cat[magk][m2[jj]][:10] print -2.5*np.log10(cat[fluxk][m2[jj]])[:10] - zpt print stars['psfMag_g'][ii[m1]][:10] print ( (-2.5*np.log10(cat[fluxk][m2[jj]])[:10] - zpt) - stars['psfMag_g'][ii[m1]][:10]) print -2.5*np.log10(fakecat[fluxk][q2[foo]]) - zpt print fakemag[q1[foo]] print ( (-2.5*np.log10(fakecat[fluxk][q2[foo]]) - zpt) - fakemag[q1[foo]] ) print ( (-2.5*np.log10(fakecat[fluxk][q2[foo]]) - zpt) - fakemag[q1[foo]] ).mean() print snr[foo] print if not keepfakes: os.unlink(fakeimpath) os.unlink(fakecatpath) if savestars: np.savetxt(fakeimpath.replace('.fits','_stars.dat'), np.vstack([fakemag,fakex,fakey]).transpose(),fmt='%9.3f') return fakemags,fakesnr def fake_ndwfs_stars(grange=(16.0,17.0),**kwargs): aper = kwargs.setdefault('aper','psf') magrange = kwargs.setdefault('magrange',(22.0,23.4)) nbins = 5 medges = np.linspace(magrange[0],magrange[1],nbins+1) np.random.seed(1) stars = fitsio.read('/global/scratch2/sd/imcgreer/ndwfs/sdss_bootes_gstars.fits') fakedir = '/global/scratch2/sd/imcgreer/fakes/' stars = stars[(stars['psfMag_g']>grange[0])&(stars['psfMag_g']<grange[1])] tiles = ndwfs_tiles(observed=True) summaryf = open(fakedir+'fakestars_%s_bytile.dat' % aper,'w') summaryf.write('# %4s %1s %8s ' % ('tile','D','utdate')) for i in range(nbins): summaryf.write('%6.3f ' % ((medges[i]+medges[i+1])/2)) summaryf.write('\n') for ti,tile in enumerate(tiles): print 'faking stars in tile %d/%d' % (ti+1,len(tiles)) mag,snr = fake_sdss_stars_on_tile(stars,tile,**kwargs) np.savetxt(fakedir+'fakestars_%s_%05d_%d_%s.dat' % (aper,tile['tileId'],tile['ditherId'],tile['utDate']), np.vstack([mag,snr]).transpose(),fmt='%8.3f') summaryf.write(' %05d %1d %8s ' % (tile['tileId'],tile['ditherId'],tile['utDate'])) ii = np.digitize(mag,medges) # could divide by CCD for i in range(nbins): jj = np.where(ii==i+1)[0] frac = np.sum(snr[jj]>5.0) / float(len(jj)) summaryf.write('%6.3f ' % frac) summaryf.write('\n') summaryf.close() def ndwfs_sdss_matches(): ''' for checking linearity ''' import basslog stars = fitsio.read('/global/scratch2/sd/imcgreer/ndwfs/sdss_bootes_gstars.fits') logs = basslog.load_Bok_logs('./logs/') tiles = ndwfs_tiles(observed=True) tiledb = bass.load_tiledb() tid = np.array([int(tid) for tid in tiledb['TID']]) i1 = 0 m = np.zeros(1e5,dtype=[('sdss_id','i4'),('sdss_g_mag','f4'), ('bass_g_mag','f4'),('bass_g_err','f4'), ('bass_expTime','f4'),('bass_skyADU','f4'), ('bass_airmass','f4'),('bass_ebv','f4'), ('bass_ccdNum','i4'),('bass_ditherId','i4'), ('bass_fluxMax','f4'),('bass_FWHM','f4')]) for ti,tile in enumerate(tiles): print 'tile %d/%d [%d]' % (ti+1,len(tiles),i1) for ccdNum in range(1,5): impath = os.path.join(bass.rdxdir,tile['utDate'],'ccdproc3', tile['fileName']+'_ccd%d.fits'%ccdNum) if not os.path.exists(impath): print ' ... %s does not exist, skipping' % impath continue h = fitsio.read_header(impath) sky = h['SKYVAL'] catpath = os.path.join(bass.rdxdir,tile['utDate'],'ccdproc3', tile['fileName']+'_ccd%d.cat.fits'%ccdNum) if not os.path.exists(catpath): print ' ... %s does not exist, skipping' % catpath continue cat = fitsio.read(catpath) ii = np.where( (stars['ra']>cat['ALPHA_J2000'].min()+3e-3) & (stars['ra']<cat['ALPHA_J2000'].max()-3e-3) & (stars['dec']>cat['DELTA_J2000'].min()+3e-3) & (stars['dec']<cat['DELTA_J2000'].max()-3e-3) )[0] if len(ii)==0: print 'no stars found on ccd #',ccdNum continue m1,m2 = srcor(stars['ra'][ii],stars['dec'][ii], cat['ALPHA_J2000'],cat['DELTA_J2000'],2.5) jj = np.where(cat['FLAGS'][m2] == 0)[0] i2 = i1 + len(jj) m['sdss_id'][i1:i2] = ii[m1[jj]] m['sdss_g_mag'][i1:i2] = stars['psfMag_g'][ii[m1[jj]]] m['bass_g_mag'][i1:i2] = cat['MAG_PSF'][m2[jj]] m['bass_g_err'][i1:i2] = cat['MAGERR_PSF'][m2[jj]] m['bass_fluxMax'][i1:i2] = cat['FLUX_MAX'][m2[jj]] m['bass_FWHM'][i1:i2] = np.median(cat['FWHM_IMAGE'][m2[jj]]) m['bass_expTime'][i1:i2] = tile['expTime'] i = np.where(logs[tile['utDate']]['fileName'] == tile['fileName'])[0][0] m['bass_airmass'][i1:i2] = logs[tile['utDate']]['airmass'][i] m['bass_ebv'][i1:i2] = tiledb['EBV'][tid==tile['tileId']][0] m['bass_ccdNum'][i1:i2] = ccdNum m['bass_ditherId'][i1:i2] = tile['ditherId'] m['bass_skyADU'][i1:i2] = sky i1 = i2 m = m[:i1] outdir = '/project/projectdirs/cosmo/staging/bok/ian/' fitsio.write(outdir+'ndwfs_sdss.fits',m,clobber=True) def get_phototiles_info(): import boklog logs = boklog.load_Bok_logs('./logs/') tiledb = bass.load_tiledb() tid = np.array([int(tid) for tid in tiledb['TID']]) ccdNum = 1 photinfof = open('photo_tiles_info.txt','w') photinfof.write('# %6s %10s %7s %7s %7s %10s %8s %7s\n' % ('UTD','file','airmass','E(B-V)','FWHMpix','skyADU','zpt','texp')) for ti,tiles in enumerate([cfhtw3_tiles(),ndwfs_tiles()]): if ti==0: refcat = fitsio.read(cfhtlswide_starfile) ii = np.where((refcat['psfMag'][:,1]>17) & (refcat['psfMag'][:,1]<18.5))[0] ref_ra = refcat['ra'][ii] ref_dec = refcat['dec'][ii] ref_mag = refcat['psfMag'][ii,1] #ref_mag = refcat['psfMag'][ii,1] - A_ext['g']*refcat['E(B-V)'][ii] else: refcat = fitsio.read(bootes_sdss_starfile) ii = np.where((refcat['psfMag_g']>16) & (refcat['psfMag_g']<18.5))[0] ref_ra = refcat['ra'][ii] ref_dec = refcat['dec'][ii] ref_mag = refcat['psfMag_g'][ii] #ref_mag = refcat['psfMag_g'][ii] - refcat['extinction_g'][ii] for tj,t in enumerate(tiles): if t['ditherId'] != 1: continue # get E(B-V) from tile database ebv = tiledb['EBV'][tid==t['tileId']][0] # get conditions (airmass,exptime) from observing logs try: i = np.where(logs[t['utDate']]['fileName']==t['fileName'])[0][0] except: continue airmass = logs[t['utDate']]['airmass'][i] exptime = logs[t['utDate']]['expTime'][i] # get sky value in ADU from FITS headers impath = os.path.join(bass.rdxdir,t['utDate'],'ccdproc3', t['fileName']+'_ccd%d.fits'%ccdNum) h = fitsio.read_header(impath) sky = h['SKYVAL'] # get FWHM and zero point from catalogs catpath = os.path.join(bass.rdxdir,t['utDate'],'ccdproc3', t['fileName']+'_ccd%d.cat.fits'%ccdNum) cat = fitsio.read(catpath) ii = np.where( (ref_ra>cat['ALPHA_J2000'].min()+3e-3) & (ref_ra<cat['ALPHA_J2000'].max()-3e-3) & (ref_dec>cat['DELTA_J2000'].min()+3e-3) & (ref_dec<cat['DELTA_J2000'].max()-3e-3) )[0] if len(ii)==0: continue m1,m2 = srcor(ref_ra[ii],ref_dec[ii], cat['ALPHA_J2000'],cat['DELTA_J2000'],2) if len(m1)==0: continue m1 = ii[m1] ii = np.where(cat['FLAGS'][m2]==0)[0] m1,m2 = m1[ii],m2[ii] if len(m1)<5: continue print len(ii),' stars on tile ',t['utDate'],t['fileName'] fwhm = np.median(cat['FWHM_IMAGE'][m2]) zpt = 25 - np.median(cat['MAG_AUTO'][m2] - ref_mag[m1]) - \ 2.5*np.log10(exptime) photinfof.write('%8s %10s %7.2f %7.3f %7.2f %10.2f %8.3f %7.1f\n' % (t['utDate'],t['fileName'],airmass,ebv,fwhm,sky,zpt,exptime)) photinfof.close() def phototiles_stats(doplots=True): import boketc gain = boketc.G pxscl = boketc.p k = boketc.k_ext['g'] A = boketc.A_ext['g'] tiledat = ascii_io.read('photo_tiles_info.txt') sky_ADUs = tiledat['skyADU'] / tiledat['texp'] sky_eps = sky_ADUs * gain sky_magasec2 = -2.5*np.log10(sky_ADUs*pxscl**-2) + tiledat['zpt'] print sky_ADUs.mean(),sky_eps.mean(),sky_magasec2.mean() zp0 = tiledat['zpt'] - k*(tiledat['airmass']-1) #- A*tiledat['E(B-V)'] print zp0.mean() fwhm_asec = tiledat['FWHMpix'] * pxscl if doplots: fig = plt.figure(figsize=(8,6)) ax1 = plt.subplot(2,2,1) ax1.hist(zp0) #ax1.axvline(boketc.bok_zpt0_am00['g'],c='r',lw=2) ax1.axvline(boketc.bok_zpt0_am10['g'],c='r',lw=2) ax1 = plt.subplot(2,2,2) ax1.hist(sky_magasec2) ax1.axvline(boketc.kpno_sky_lun0['g'],c='r',lw=2) ax1 = plt.subplot(2,2,3) ax1.hist(fwhm_asec) ax1.axvline(boketc.bok_medianFWHM['g'],c='r',lw=2) if __name__=='__main__': import sys if sys.argv[1]=='match_ndwfs': match_ndwfs_stars() elif sys.argv[1]=='match_cfhtlswide': match_cfhtls_stars(survey='wide') elif sys.argv[1]=='fake_ndwfs': if len(sys.argv)==2 or 'psf' in sys.argv[2:]: aper = 'psf' elif 'auto' in sys.argv[2:]: aper = 'auto' fake_ndwfs_stars(aper=aper) elif sys.argv[1]=='photo_info': get_phototiles_info() else: raise ValueError
bsd-3-clause
mne-tools/mne-python
mne/viz/tests/test_epochs.py
2
18317
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Jaakko Leppakangas <[email protected]> # Daniel McCloy <[email protected]> # # License: Simplified BSD import os.path as op import numpy as np import pytest import matplotlib.pyplot as plt from mne import (read_events, Epochs, pick_types, read_cov, create_info, EpochsArray) from mne.channels import read_layout from mne.fixes import _close_event from mne.io import read_raw_fif, read_raw_ctf from mne.utils import _click_ch_name from mne.viz import plot_drop_log from mne.viz.utils import _fake_click from mne.datasets import testing from mne.event import make_fixed_length_events base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') cov_fname = op.join(base_dir, 'test-cov.fif') event_name = op.join(base_dir, 'test-eve.fif') event_id, tmin, tmax = 1, -0.1, 1.0 layout = read_layout('Vectorview-all') test_base_dir = testing.data_path(download=False) ctf_fname = op.join(test_base_dir, 'CTF', 'testdata_ctf.ds') def _get_epochs(stop=5, meg=True, eeg=False, n_chan=20): """Get epochs.""" raw = read_raw_fif(raw_fname) events = read_events(event_name) picks = pick_types(raw.info, meg=meg, eeg=eeg, stim=False, ecg=False, eog=False, exclude='bads') # Use a subset of channels for plotting speed picks = np.round(np.linspace(0, len(picks) + 1, n_chan)).astype(int) with pytest.warns(RuntimeWarning, match='projection'): epochs = Epochs(raw, events[:stop], event_id, tmin, tmax, picks=picks, proj=False, preload=False) epochs.info.normalize_proj() # avoid warnings return epochs @pytest.fixture() def epochs(): """Get minimal, pre-loaded epochs data suitable for most tests.""" return _get_epochs().load_data() def test_plot_epochs_not_preloaded(): """Test plotting non-preloaded epochs.""" epochs = _get_epochs() assert epochs._data is None epochs.plot() assert epochs._data is None def test_plot_epochs_basic(epochs, capsys): """Test epoch plotting.""" assert len(epochs.events) == 1 epochs.info['lowpass'] = 10. # allow heavy decim during plotting fig = epochs.plot(scalings=None, title='Epochs') ticks = [x.get_text() for x in fig.mne.ax_main.get_xticklabels(minor=True)] assert ticks == ['2'] plt.close('all') # covariance / whitening cov = read_cov(cov_fname) assert len(cov['names']) == 366 # all channels assert cov['bads'] == [] assert epochs.info['bads'] == [] # all good with pytest.warns(RuntimeWarning, match='projection'): epochs.plot(noise_cov=cov) plt.close('all') # add a channel to the epochs.info['bads'] epochs.info['bads'] = [epochs.ch_names[0]] with pytest.warns(RuntimeWarning, match='projection'): epochs.plot(noise_cov=cov) plt.close('all') # add a channel to cov['bads'] cov['bads'] = [epochs.ch_names[1]] with pytest.warns(RuntimeWarning, match='projection'): epochs.plot(noise_cov=cov) plt.close('all') # have a data channel missing from the covariance cov['names'] = cov['names'][:306] cov['data'] = cov['data'][:306][:306] with pytest.warns(RuntimeWarning, match='projection'): epochs.plot(noise_cov=cov) plt.close('all') # other options fig = epochs[0].plot(picks=[0, 2, 3], scalings=None) fig.canvas.key_press_event('escape') with pytest.raises(ValueError, match='No appropriate channels found'): epochs.plot(picks=[]) # gh-5906 epochs = _get_epochs(None).load_data() epochs.load_data() assert len(epochs) == 7 epochs.info['bads'] = [epochs.ch_names[0]] capsys.readouterr() # test title error handling with pytest.raises(TypeError, match='title must be None or a string, got'): epochs.plot(title=7) # test auto-generated title, and selection mode epochs.plot(group_by='selection', title='') @pytest.mark.parametrize('scalings', (dict(mag=1e-12, grad=1e-11, stim='auto'), None, 'auto')) def test_plot_epochs_scalings(epochs, scalings): """Test the valid options for scalings.""" epochs.plot(scalings=scalings) def test_plot_epochs_colors(epochs): """Test epoch_colors, for compatibility with autoreject.""" epoch_colors = [['r'] * len(epochs.ch_names) for _ in range(len(epochs.events))] epochs.plot(epoch_colors=epoch_colors) with pytest.raises(ValueError, match='length equal to the number of epo'): epochs.plot(epoch_colors=[['r'], ['b']]) # epochs obj has only 1 epoch with pytest.raises(ValueError, match=r'epoch colors for epoch \d+ has'): epochs.plot(epoch_colors=[['r']]) # need 1 color for each channel # also test event_color epochs.plot(event_color='b') def test_plot_epochs_scale_bar(epochs): """Test scale bar for epochs.""" fig = epochs.plot() fig.canvas.key_press_event('s') # default is to not show scalebars ax = fig.mne.ax_main # only empty vline-text, mag & grad in this instance assert len(ax.texts) == 3 texts = tuple(t.get_text().strip() for t in ax.texts) wants = ('', '800.0 fT/cm', '2000.0 fT') assert texts == wants def test_plot_epochs_clicks(epochs, capsys): """Test plot_epochs mouse interaction.""" fig = epochs.plot(events=epochs.events) data_ax = fig.mne.ax_main x = fig.mne.traces[0].get_xdata()[3] y = fig.mne.traces[0].get_ydata()[3] n_epochs = len(epochs) epoch_num = fig.mne.inst.selection[0] # test (un)marking bad epochs _fake_click(fig, data_ax, [x, y], xform='data') # mark a bad epoch assert epoch_num in fig.mne.bad_epochs _fake_click(fig, data_ax, [x, y], xform='data') # unmark it assert epoch_num not in fig.mne.bad_epochs _fake_click(fig, data_ax, [x, y], xform='data') # mark it bad again assert epoch_num in fig.mne.bad_epochs # test vline fig.canvas.key_press_event('escape') # close and drop epochs _close_event(fig) # XXX workaround, MPL Agg doesn't trigger close event assert(n_epochs - 1 == len(epochs)) # test marking bad channels epochs = _get_epochs(None).load_data() # need more than 1 epoch this time fig = epochs.plot(n_epochs=3) data_ax = fig.mne.ax_main first_ch = data_ax.get_yticklabels()[0].get_text() assert first_ch not in fig.mne.info['bads'] _click_ch_name(fig, ch_index=0, button=1) # click ch name to mark bad assert first_ch in fig.mne.info['bads'] # test clicking scrollbars _fake_click(fig, fig.mne.ax_vscroll, [0.5, 0.5]) _fake_click(fig, fig.mne.ax_hscroll, [0.5, 0.5]) # test moving bad epoch offscreen fig.canvas.key_press_event('right') # move right x = fig.mne.traces[0].get_xdata()[-3] y = fig.mne.traces[0].get_ydata()[-3] _fake_click(fig, data_ax, [x, y], xform='data') # mark a bad epoch fig.canvas.key_press_event('left') # move back out, err = capsys.readouterr() assert 'out of bounds' not in out assert 'out of bounds' not in err fig.canvas.key_press_event('escape') _close_event(fig) # XXX workaround, MPL Agg doesn't trigger close event assert len(epochs) == 6 # test rightclick → image plot fig = epochs.plot() _click_ch_name(fig, ch_index=0, button=3) # show image plot assert len(fig.mne.child_figs) == 1 # test scroll wheel fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up def test_plot_epochs_keypresses(): """Test plot_epochs keypress interaction.""" epochs = _get_epochs(stop=15).load_data() # we need more than 1 epoch epochs.drop_bad(dict(mag=4e-12)) # for histogram plot coverage fig = epochs.plot(n_epochs=3) data_ax = fig.mne.ax_main # make sure green vlines are visible first (for coverage) sample_idx = len(epochs.times) // 2 # halfway through the first epoch x = fig.mne.traces[0].get_xdata()[sample_idx] y = (fig.mne.traces[0].get_ydata()[sample_idx] + fig.mne.traces[1].get_ydata()[sample_idx]) / 2 _fake_click(fig, data_ax, [x, y], xform='data') # click between traces # test keys keys = ('pagedown', 'down', 'up', 'down', 'right', 'left', '-', '+', '=', 'd', 'd', 'pageup', 'home', 'shift+right', 'end', 'shift+left', 'z', 'z', 's', 's', 'f11', '?', 'h', 'j', 'b') for key in keys * 2: # test twice → once in normal, once in butterfly view fig.canvas.key_press_event(key) _fake_click(fig, data_ax, [x, y], xform='data', button=3) # remove vlines def test_plot_overlapping_epochs_with_events(): """Test drawing of event lines in overlapping epochs.""" data = np.zeros(shape=(3, 2, 100)) # 3 epochs, 2 channels, 100 samples sfreq = 100 info = create_info( ch_names=('a', 'b'), ch_types=('misc', 'misc'), sfreq=sfreq) # 90% overlap, so all 3 events should appear in all 3 epochs when plotted: events = np.column_stack(([50, 60, 70], [0, 0, 0], [1, 2, 3])) epochs = EpochsArray(data, info, tmin=-0.5, events=events) fig = epochs.plot(events=events, picks='misc') assert len(fig.mne.event_lines.get_segments()) == 9 def test_epochs_plot_sensors(epochs): """Test sensor plotting.""" epochs.plot_sensors() def test_plot_epochs_nodata(): """Test plotting of epochs when no data channels are present.""" data = np.random.RandomState(0).randn(10, 2, 1000) info = create_info(2, 1000., 'stim') epochs = EpochsArray(data, info) with pytest.raises(ValueError, match='consider passing picks explicitly'): epochs.plot() def test_plot_epochs_image(epochs): """Test plotting of epochs image. Note that some of these tests that should pass are triggering MPL UserWarnings about tight_layout not being applied ("tight_layout cannot make axes width small enough to accommodate all axes decorations"). Calling `plt.close('all')` just before the offending test seems to prevent this warning, though it's unclear why. """ figs = epochs.plot_image() assert len(figs) == 2 # one fig per ch_type (test data has mag, grad) assert len(plt.get_fignums()) == 2 figs = epochs.plot_image() assert len(figs) == 2 assert len(plt.get_fignums()) == 4 # should create new figures epochs.plot_image(picks='mag', sigma=0.1) epochs.plot_image(picks=[0, 1], combine='mean', ts_args=dict(show_sensors=False)) epochs.plot_image(picks=[1], order=[0], overlay_times=[0.1], vmin=0.01, title='test') plt.close('all') epochs.plot_image(picks=[1], overlay_times=[0.1], vmin=-0.001, vmax=0.001) plt.close('all') epochs.plot_image(picks=[1], vmin=lambda x: x.min()) # test providing figure fig, axs = plt.subplots(3, 1) epochs.plot_image(picks=[1], fig=fig) # test providing axes instance epochs.plot_image(picks=[1], axes=axs[0], evoked=False, colorbar=False) plt.close('all') # test order=callable epochs.plot_image(picks=[0, 1], order=lambda times, data: np.arange(len(data))[::-1]) # test warning with pytest.warns(RuntimeWarning, match='Only one channel in group'): epochs.plot_image(picks=[1], combine='mean') # group_by should be a dict with pytest.raises(TypeError, match="dict or None"): epochs.plot_image(group_by='foo') # units and scalings keys must match with pytest.raises(ValueError, match='Scalings and units must have the'): epochs.plot_image(units=dict(hi=1), scalings=dict(ho=1)) plt.close('all') # test invert_y epochs.plot_image(ts_args=dict(invert_y=True)) # can't combine different sensor types with pytest.raises(ValueError, match='Cannot combine sensors of differ'): epochs.plot_image(group_by=dict(foo=[0, 1, 2])) # can't pass both fig and axes with pytest.raises(ValueError, match='one of "fig" or "axes" must be'): epochs.plot_image(fig='foo', axes='bar') # wrong number of axes in fig with pytest.raises(ValueError, match='"fig" must contain . axes, got .'): epochs.plot_image(fig=plt.figure()) # only 1 group allowed when fig is passed with pytest.raises(ValueError, match='"group_by" can only have one group'): fig, axs = plt.subplots(3, 1) epochs.plot_image(fig=fig, group_by=dict(foo=[0, 1], bar=[5, 6])) del fig, axs plt.close('all') # must pass correct number of axes (1, 2, or 3) with pytest.raises(ValueError, match='is a list, can only plot one group'): fig, axs = plt.subplots(1, 3) epochs.plot_image(axes=axs) for length, kwargs in ([3, dict()], [2, dict(evoked=False)], [2, dict(colorbar=False)], [1, dict(evoked=False, colorbar=False)]): fig, axs = plt.subplots(1, length + 1) epochs.plot_image(picks='mag', axes=axs[:length], **kwargs) with pytest.raises(ValueError, match='"axes" must be length ., got .'): epochs.plot_image(picks='mag', axes=axs, **kwargs) plt.close('all') # mismatch between axes dict keys and group_by dict keys with pytest.raises(ValueError, match='must match the keys in "group_by"'): epochs.plot_image(axes=dict()) # wrong number of axes in dict match = 'each value in "axes" must be a list of . axes, got .' with pytest.raises(ValueError, match=match): epochs.plot_image(axes=dict(foo=axs[:2], bar=axs[:3]), group_by=dict(foo=[0, 1], bar=[5, 6])) # bad value of "combine" with pytest.raises(ValueError, match='"combine" must be None, a callable'): epochs.plot_image(combine='foo') # mismatched picks and overlay_times with pytest.raises(ValueError, match='size of overlay_times parameter'): epochs.plot_image(picks=[1], overlay_times=[0.1, 0.2]) # bad overlay times with pytest.warns(RuntimeWarning, match='fall outside'): epochs.plot_image(overlay_times=[999.]) # mismatched picks and order with pytest.raises(ValueError, match='must match the length of the data'): epochs.plot_image(picks=[1], order=[0, 1]) plt.close('all') def test_plot_drop_log(): """Test plotting a drop log.""" epochs = _get_epochs() # not loaded with pytest.raises(ValueError, match='bad epochs have not yet been'): epochs.plot_drop_log() epochs.drop_bad() epochs.plot_drop_log() plot_drop_log((('One',), (), ())) plot_drop_log((('One',), ('Two',), ())) plot_drop_log((('One',), ('One', 'Two'), ())) for arg in ([], ([],), (1,)): with pytest.raises(TypeError, match='tuple of tuple of str'): plot_drop_log(arg) plt.close('all') def test_plot_psd_epochs(epochs): """Test plotting epochs psd (+topomap).""" epochs.plot_psd(average=True, spatial_colors=False) epochs.plot_psd(average=False, spatial_colors=True) epochs.plot_psd(average=False, spatial_colors=False) # test plot_psd_topomap errors with pytest.raises(RuntimeError, match='No frequencies in band'): epochs.plot_psd_topomap(bands=[(0, 0.01, 'foo')]) plt.close('all') # test defaults fig = epochs.plot_psd_topomap() assert len(fig.axes) == 10 # default: 5 bands (δ, θ, α, β, γ) + colorbars # test joint vlim fig = epochs.plot_psd_topomap(vlim='joint') vmin_0 = fig.axes[0].images[0].norm.vmin vmax_0 = fig.axes[0].images[0].norm.vmax assert all(vmin_0 == ax.images[0].norm.vmin for ax in fig.axes[1:5]) assert all(vmax_0 == ax.images[0].norm.vmax for ax in fig.axes[1:5]) # test support for single-bin bands fig = epochs.plot_psd_topomap(bands=[(20, '20 Hz'), (15, 25, '15-25 Hz')]) # test with a flat channel err_str = 'for channel %s' % epochs.ch_names[2] epochs.get_data()[0, 2, :] = 0 for dB in [True, False]: with pytest.warns(UserWarning, match=err_str): epochs.plot_psd(dB=dB) def test_plot_psdtopo_nirs(fnirs_epochs): """Test plotting of PSD topography for nirs data.""" bands = [(0.2, '0.2 Hz'), (0.4, '0.4 Hz'), (0.8, '0.8 Hz')] fig = fnirs_epochs.plot_psd_topomap(bands=bands) assert len(fig.axes) == 6 # 3 band x (plot + cmap) @testing.requires_testing_data def test_plot_epochs_ctf(): """Test of basic CTF plotting.""" raw = read_raw_ctf(ctf_fname, preload=True) raw.pick_channels(['UDIO001', 'UPPT001', 'SCLK01-177', 'BG1-4304', 'MLC11-4304', 'MLC11-4304', 'EEG058', 'UADC007-4302']) evts = make_fixed_length_events(raw) epochs = Epochs(raw, evts, preload=True) epochs.plot() plt.close('all') # test butterfly fig = epochs.plot(butterfly=True) keys = ('b', 'b', 'pagedown', 'down', 'up', 'down', 'right', 'left', '-', '+', '=', 'd', 'd', 'pageup', 'home', 'end', 'z', 'z', 's', 's', 'f11', '?', 'h', 'j') for key in keys: fig.canvas.key_press_event(key) fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up fig.canvas.resize_event() fig.canvas.key_press_event('escape') # close and drop epochs @testing.requires_testing_data def test_plot_psd_epochs_ctf(): """Test plotting CTF epochs psd (+topomap).""" raw = read_raw_ctf(ctf_fname, preload=True) evts = make_fixed_length_events(raw) epochs = Epochs(raw, evts, preload=True) pytest.raises(RuntimeError, epochs.plot_psd_topomap, bands=[(0, 0.01, 'foo')]) # no freqs in range epochs.plot_psd_topomap() # EEG060 is flat in this dataset for dB in [True, False]: with pytest.warns(UserWarning, match='for channel EEG060'): epochs.plot_psd(dB=dB) epochs.drop_channels(['EEG060']) epochs.plot_psd(spatial_colors=False, average=False)
bsd-3-clause
fabioticconi/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
swharden/SWHLab
doc/uses/EPSCs-and-IPSCs/smooth histogram method/11.py
1
1764
""" MOST OF THIS CODE IS NOT USED ITS COPY/PASTED AND LEFT HERE FOR CONVENIENCE """ import os import sys # in case our module isn't installed (running from this folder) if not os.path.abspath('../../../') in sys.path: sys.path.append('../../../') # helps spyder get docs import swhlab import swhlab.common as cm import matplotlib.pyplot as plt import numpy as np import warnings # suppress VisibleDeprecationWarning warning warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) def analyzeSweep(abf,label=None): Y=abf.sweepYsmartbase()[abf.pointsPerSec*.5:] #Y=abf.sweepY[abf.pointsPerSec*.5:] AV,SD=np.average(Y),np.std(Y) dev=5 # number of stdevs from the avg to set the range R1,R2=[(AV-SD)*dev,(AV+SD)*dev] nBins=1000 hist,bins=np.histogram(Y,bins=nBins,range=[R1,R2],density=True) histSmooth=abf.convolve(hist,cm.kernel_gaussian(nBins/5)) peakI=np.where(histSmooth==max(histSmooth))[0][0] # center the peak at 0 pA hist=np.roll(hist,int(nBins/2-peakI)) histSmooth=np.roll(histSmooth,int(nBins/2-peakI)) # normalize height to 1 hist,histSmooth=hist/max(histSmooth),histSmooth/max(histSmooth) plt.plot(histSmooth,label=label,lw=3,alpha=.5) if __name__=="__main__": #abfFile=R"C:\Users\scott\Documents\important\demodata\abfs\16d07022.abf" abfFile=R"X:\Data\2P01\2016\2016-09-01 PIR TGOT\16d07022.abf" abf=swhlab.ABF(abfFile) abf.kernel=abf.kernel_gaussian(sizeMS=500) # kernel for smart baseline plt.figure(figsize=(10,10)) # for sweep in range(abf.sweeps): for sweep in [175,200,375]: abf.setsweep(sweep) analyzeSweep(abf,label=str(sweep)) print("Sweep",sweep) plt.legend() plt.show() print("DONE")
mit
belltailjp/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
bnaul/scikit-learn
examples/classification/plot_classifier_comparison.py
34
5239
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), MLPClassifier(alpha=1, max_iter=1000), AdaBoostClassifier(), GaussianNB(), QuadraticDiscriminantAnalysis()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds_cnt, ds in enumerate(datasets): # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.4, random_state=42) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) if ds_cnt == 0: ax.set_title("Input data") # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') # Plot the testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') # Plot the testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors='k', alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 plt.tight_layout() plt.show()
bsd-3-clause
kdmurray91/scikit-bio
skbio/io/format/ordination.py
7
14424
r""" Ordination results format (:mod:`skbio.io.format.ordination`) ============================================================= .. currentmodule:: skbio.io.format.ordination The ordination results file format (``ordination``) stores the results of an ordination method in a human-readable, text-based format. The format supports storing the results of various ordination methods available in scikit-bio, including (but not necessarily limited to) PCoA, CA, RDA, and CCA. Format Support -------------- **Has Sniffer: Yes** +------+------+---------------------------------------------------------------+ |Reader|Writer| Object Class | +======+======+===============================================================+ |Yes |Yes |:mod:`skbio.stats.ordination.OrdinationResults` | +------+------+---------------------------------------------------------------+ Format Specification -------------------- The format is text-based, consisting of six attributes that describe the ordination results: - ``Eigvals``: 1-D - ``Proportion explained``: 1-D - ``Species``: 2-D - ``Site``: 2-D - ``Biplot``: 2-D - ``Site constraints``: 2-D The attributes in the file *must* be in this order. Each attribute is defined in its own section of the file, where sections are separated by a blank (or whitespace-only) line. Each attribute begins with a header line, which contains the attribute's name (as listed above), followed by a tab character, followed by one or more tab-separated dimensions (integers) that describe the shape of the attribute's data. The attribute's data follows its header line, and is stored in tab-separated format. ``Species``, ``Site``, and ``Site constraints`` store species and site IDs, respectively, as the first column, followed by the 2-D data array. An example of this file format might look like:: Eigvals<tab>4 0.36<tab>0.18<tab>0.07<tab>0.08 Proportion explained<tab>4 0.46<tab>0.23<tab>0.10<tab>0.10 Species<tab>9<tab>4 Species0<tab>0.11<tab>0.28<tab>-0.20<tab>-0.00 Species1<tab>0.14<tab>0.30<tab>0.39<tab>-0.14 Species2<tab>-1.01<tab>0.09<tab>-0.19<tab>-0.10 Species3<tab>-1.03<tab>0.10<tab>0.22<tab>0.22 Species4<tab>1.05<tab>0.53<tab>-0.43<tab>0.22 Species5<tab>0.99<tab>0.57<tab>0.67<tab>-0.38 Species6<tab>0.25<tab>-0.17<tab>-0.20<tab>0.43 Species7<tab>0.14<tab>-0.85<tab>-0.01<tab>0.05 Species8<tab>0.41<tab>-0.70<tab>0.21<tab>-0.69 Site<tab>10<tab>4 Site0<tab>0.71<tab>-3.08<tab>0.21<tab>-1.24 Site1<tab>0.58<tab>-3.00<tab>-0.94<tab>2.69 Site2<tab>0.76<tab>-3.15<tab>2.13<tab>-3.11 Site3<tab>1.11<tab>1.07<tab>-1.87<tab>0.66 Site4<tab>-0.97<tab>-0.06<tab>-0.69<tab>-0.61 Site5<tab>1.04<tab>0.45<tab>-0.63<tab>0.28 Site6<tab>-0.95<tab>-0.08<tab>0.13<tab>-0.42 Site7<tab>0.94<tab>-0.10<tab>0.52<tab>-0.00 Site8<tab>-1.14<tab>0.49<tab>0.47<tab>1.17 Site9<tab>1.03<tab>1.03<tab>2.74<tab>-1.28 Biplot<tab>3<tab>3 -0.16<tab>0.63<tab>0.76 -0.99<tab>0.06<tab>-0.04 0.18<tab>-0.97<tab>0.03 Site constraints<tab>10<tab>4 Site0<tab>0.69<tab>-3.08<tab>-0.32<tab>-1.24 Site1<tab>0.66<tab>-3.06<tab>0.23<tab>2.69 Site2<tab>0.63<tab>-3.04<tab>0.78<tab>-3.11 Site3<tab>1.10<tab>0.50<tab>-1.55<tab>0.66 Site4<tab>-0.97<tab>0.06<tab>-1.12<tab>-0.61 Site5<tab>1.05<tab>0.53<tab>-0.43<tab>0.28 Site6<tab>-1.02<tab>0.10<tab>-0.00<tab>-0.42 Site7<tab>0.99<tab>0.57<tab>0.67<tab>-0.00 Site8<tab>-1.08<tab>0.13<tab>1.11<tab>1.17 Site9<tab>0.94<tab>0.61<tab>1.79<tab>-1.28 If a given result attribute is not present (e.g. ``Biplot``), it should still be defined and declare its dimensions as 0. For example:: Biplot<tab>0<tab>0 All attributes are optional except for ``Eigvals``. Examples -------- Assume we have the following tab-delimited text file storing the ordination results in ``ordination`` format:: Eigvals<tab>4 0.36<tab>0.18<tab>0.07<tab>0.08 Proportion explained<tab>4 0.46<tab>0.23<tab>0.10<tab>0.10 Species<tab>9<tab>4 Species0<tab>0.11<tab>0.28<tab>-0.20<tab>-0.00 Species1<tab>0.14<tab>0.30<tab>0.39<tab>-0.14 Species2<tab>-1.01<tab>0.09<tab>-0.19<tab>-0.10 Species3<tab>-1.03<tab>0.10<tab>0.22<tab>0.22 Species4<tab>1.05<tab>0.53<tab>-0.43<tab>0.22 Species5<tab>0.99<tab>0.57<tab>0.67<tab>-0.38 Species6<tab>0.25<tab>-0.17<tab>-0.20<tab>0.43 Species7<tab>0.14<tab>-0.85<tab>-0.01<tab>0.05 Species8<tab>0.41<tab>-0.70<tab>0.21<tab>-0.69 Site<tab>10<tab>4 Site0<tab>0.71<tab>-3.08<tab>0.21<tab>-1.24 Site1<tab>0.58<tab>-3.00<tab>-0.94<tab>2.69 Site2<tab>0.76<tab>-3.15<tab>2.13<tab>-3.11 Site3<tab>1.11<tab>1.07<tab>-1.87<tab>0.66 Site4<tab>-0.97<tab>-0.06<tab>-0.69<tab>-0.61 Site5<tab>1.04<tab>0.45<tab>-0.63<tab>0.28 Site6<tab>-0.95<tab>-0.08<tab>0.13<tab>-0.42 Site7<tab>0.94<tab>-0.10<tab>0.52<tab>-0.00 Site8<tab>-1.14<tab>0.49<tab>0.47<tab>1.17 Site9<tab>1.03<tab>1.03<tab>2.74<tab>-1.28 Biplot<tab>0<tab>0 Site constraints<tab>0<tab>0 Load the ordination results from the file: >>> from io import StringIO >>> from skbio import OrdinationResults >>> or_f = StringIO( ... "Eigvals\t4\n" ... "0.36\t0.18\t0.07\t0.08\n" ... "\n" ... "Proportion explained\t4\n" ... "0.46\t0.23\t0.10\t0.10\n" ... "\n" ... "Species\t9\t4\n" ... "Species0\t0.11\t0.28\t-0.20\t-0.00\n" ... "Species1\t0.14\t0.30\t0.39\t-0.14\n" ... "Species2\t-1.01\t0.09\t-0.19\t-0.10\n" ... "Species3\t-1.03\t0.10\t0.22\t0.22\n" ... "Species4\t1.05\t0.53\t-0.43\t0.22\n" ... "Species5\t0.99\t0.57\t0.67\t-0.38\n" ... "Species6\t0.25\t-0.17\t-0.20\t0.43\n" ... "Species7\t0.14\t-0.85\t-0.01\t0.05\n" ... "Species8\t0.41\t-0.70\t0.21\t-0.69\n" ... "\n" ... "Site\t10\t4\n" ... "Site0\t0.71\t-3.08\t0.21\t-1.24\n" ... "Site1\t0.58\t-3.00\t-0.94\t2.69\n" ... "Site2\t0.76\t-3.15\t2.13\t-3.11\n" ... "Site3\t1.11\t1.07\t-1.87\t0.66\n" ... "Site4\t-0.97\t-0.06\t-0.69\t-0.61\n" ... "Site5\t1.04\t0.45\t-0.63\t0.28\n" ... "Site6\t-0.95\t-0.08\t0.13\t-0.42\n" ... "Site7\t0.94\t-0.10\t0.52\t-0.00\n" ... "Site8\t-1.14\t0.49\t0.47\t1.17\n" ... "Site9\t1.03\t1.03\t2.74\t-1.28\n" ... "\n" ... "Biplot\t0\t0\n" ... "\n" ... "Site constraints\t0\t0\n") >>> ord_res = OrdinationResults.read(or_f) """ # ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import numpy as np import pandas as pd from skbio.stats.ordination import OrdinationResults from skbio.io import create_format, OrdinationFormatError ordination = create_format('ordination') @ordination.sniffer() def _ordination_sniffer(fh): # Smells an ordination file if *all* of the following lines are present # *from the beginning* of the file: # - eigvals header (minimally parsed) # - another line (contents ignored) # - a whitespace-only line # - proportion explained header (minimally parsed) try: _parse_header(fh, 'Eigvals', 1) next_line = next(fh, None) if next_line is not None: _check_empty_line(fh) _parse_header(fh, 'Proportion explained', 1) return True, {} except OrdinationFormatError: pass return False, {} @ordination.reader(OrdinationResults) def _ordination_to_ordination_results(fh): eigvals = _parse_vector_section(fh, 'Eigvals') if eigvals is None: raise OrdinationFormatError("At least one eigval must be present.") _check_empty_line(fh) prop_expl = _parse_vector_section(fh, 'Proportion explained') _check_length_against_eigvals(prop_expl, eigvals, 'proportion explained values') _check_empty_line(fh) species = _parse_array_section(fh, 'Species') _check_length_against_eigvals(species, eigvals, 'coordinates per species') _check_empty_line(fh) site = _parse_array_section(fh, 'Site') _check_length_against_eigvals(site, eigvals, 'coordinates per site') _check_empty_line(fh) # biplot does not have ids to parse (the other arrays do) biplot = _parse_array_section(fh, 'Biplot', has_ids=False) _check_empty_line(fh) cons = _parse_array_section(fh, 'Site constraints') if cons is not None and site is not None: if not np.array_equal(cons.index, site.index): raise OrdinationFormatError( "Site constraints ids and site ids must be equal: %s != %s" % (cons.index, site.index)) return OrdinationResults( short_method_name='', long_method_name='', eigvals=eigvals, features=species, samples=site, biplot_scores=biplot, sample_constraints=cons, proportion_explained=prop_expl) def _parse_header(fh, header_id, num_dimensions): line = next(fh, None) if line is None: raise OrdinationFormatError( "Reached end of file while looking for %s header." % header_id) header = line.strip().split('\t') # +1 for the header ID if len(header) != num_dimensions + 1 or header[0] != header_id: raise OrdinationFormatError("%s header not found." % header_id) return header def _check_empty_line(fh): """Check that the next line in `fh` is empty or whitespace-only.""" line = next(fh, None) if line is None: raise OrdinationFormatError( "Reached end of file while looking for blank line separating " "sections.") if line.strip(): raise OrdinationFormatError("Expected an empty line.") def _check_length_against_eigvals(data, eigvals, label): if data is not None: num_vals = data.shape[-1] num_eigvals = eigvals.shape[-1] if num_vals != num_eigvals: raise OrdinationFormatError( "There should be as many %s as eigvals: %d != %d" % (label, num_vals, num_eigvals)) def _parse_vector_section(fh, header_id): header = _parse_header(fh, header_id, 1) # Parse how many values we are waiting for num_vals = int(header[1]) if num_vals == 0: # The ordination method didn't generate the vector, so set it to None vals = None else: # Parse the line with the vector values line = next(fh, None) if line is None: raise OrdinationFormatError( "Reached end of file while looking for line containing values " "for %s section." % header_id) vals = pd.Series(np.asarray(line.strip().split('\t'), dtype=np.float64)) if len(vals) != num_vals: raise OrdinationFormatError( "Expected %d values in %s section, but found %d." % (num_vals, header_id, len(vals))) return vals def _parse_array_section(fh, header_id, has_ids=True): """Parse an array section of `fh` identified by `header_id`.""" # Parse the array header header = _parse_header(fh, header_id, 2) # Parse the dimensions of the array rows = int(header[1]) cols = int(header[2]) ids = None if rows == 0 and cols == 0: # The ordination method didn't generate the array data for 'header', so # set it to None data = None elif rows == 0 or cols == 0: # Both dimensions should be 0 or none of them are zero raise OrdinationFormatError("One dimension of %s is 0: %d x %d" % (header_id, rows, cols)) else: # Parse the data data = np.empty((rows, cols), dtype=np.float64) if has_ids: ids = [] for i in range(rows): # Parse the next row of data line = next(fh, None) if line is None: raise OrdinationFormatError( "Reached end of file while looking for row %d in %s " "section." % (i + 1, header_id)) vals = line.strip().split('\t') if has_ids: ids.append(vals[0]) vals = vals[1:] if len(vals) != cols: raise OrdinationFormatError( "Expected %d values, but found %d in row %d." % (cols, len(vals), i + 1)) data[i, :] = np.asarray(vals, dtype=np.float64) data = pd.DataFrame(data, index=ids) return data @ordination.writer(OrdinationResults) def _ordination_results_to_ordination(obj, fh): _write_vector_section(fh, 'Eigvals', obj.eigvals) _write_vector_section(fh, 'Proportion explained', obj.proportion_explained) _write_array_section(fh, 'Species', obj.features) _write_array_section(fh, 'Site', obj.samples) _write_array_section(fh, 'Biplot', obj.biplot_scores, has_ids=False) _write_array_section(fh, 'Site constraints', obj.sample_constraints, include_section_separator=False) def _write_vector_section(fh, header_id, vector): if vector is None: shape = 0 else: shape = vector.shape[0] fh.write("%s\t%d\n" % (header_id, shape)) if vector is not None: fh.write(_format_vector(vector.values)) fh.write("\n") def _write_array_section(fh, header_id, data, has_ids=True, include_section_separator=True): # write section header if data is None: shape = (0, 0) else: shape = data.shape fh.write("%s\t%d\t%d\n" % (header_id, shape[0], shape[1])) # write section data if data is not None: if not has_ids: for vals in data.values: fh.write(_format_vector(vals)) else: for id_, vals in zip(data.index, data.values): fh.write(_format_vector(vals, id_)) if include_section_separator: fh.write("\n") def _format_vector(vector, id_=None): formatted_vector = '\t'.join(np.asarray(vector, dtype=np.str)) if id_ is None: return "%s\n" % formatted_vector else: return "%s\t%s\n" % (id_, formatted_vector)
bsd-3-clause
bsipocz/scikit-image
skimage/viewer/plugins/color_histogram.py
40
3271
import numpy as np import matplotlib.pyplot as plt from ... import color, exposure from .plotplugin import PlotPlugin from ..canvastools import RectangleTool class ColorHistogram(PlotPlugin): name = 'Color Histogram' def __init__(self, max_pct=0.99, **kwargs): super(ColorHistogram, self).__init__(height=400, **kwargs) self.max_pct = max_pct print(self.help()) def attach(self, image_viewer): super(ColorHistogram, self).attach(image_viewer) self.rect_tool = RectangleTool(self, on_release=self.ab_selected) self._on_new_image(image_viewer.image) def _on_new_image(self, image): self.lab_image = color.rgb2lab(image) # Calculate color histogram in the Lab colorspace: L, a, b = self.lab_image.T left, right = -100, 100 ab_extents = [left, right, right, left] self.mask = np.ones(L.shape, bool) bins = np.arange(left, right) hist, x_edges, y_edges = np.histogram2d(a.flatten(), b.flatten(), bins, normed=True) self.data = {'bins': bins, 'hist': hist, 'edges': (x_edges, y_edges), 'extents': (left, right, left, right)} # Clip bin heights that dominate a-b histogram max_val = pct_total_area(hist, percentile=self.max_pct) hist = exposure.rescale_intensity(hist, in_range=(0, max_val)) self.ax.imshow(hist, extent=ab_extents, cmap=plt.cm.gray) self.ax.set_title('Color Histogram') self.ax.set_xlabel('b') self.ax.set_ylabel('a') def help(self): helpstr = ("Color Histogram tool:", "Select region of a-b colorspace to highlight on image.") return '\n'.join(helpstr) def ab_selected(self, extents): x0, x1, y0, y1 = extents self.data['extents'] = extents lab_masked = self.lab_image.copy() L, a, b = lab_masked.T self.mask = ((a > y0) & (a < y1)) & ((b > x0) & (b < x1)) lab_masked[..., 1:][~self.mask.T] = 0 self.image_viewer.image = color.lab2rgb(lab_masked) def output(self): """Return the image mask and the histogram data. Returns ------- mask : array of bool, same shape as image The selected pixels. data : dict The data describing the histogram and the selected region. The dictionary contains: - 'bins' : array of float The bin boundaries for both `a` and `b` channels. - 'hist' : 2D array of float The normalized histogram. - 'edges' : tuple of array of float The bin edges along each dimension - 'extents' : tuple of float The left and right and top and bottom of the selected region. """ return (self.mask, self.data) def pct_total_area(image, percentile=0.80): """Return threshold value based on percentage of total area. The specified percent of pixels less than the given intensity threshold. """ idx = int((image.size - 1) * percentile) sorted_pixels = np.sort(image.flat) return sorted_pixels[idx]
bsd-3-clause
classicboyir/BuildingMachineLearningSystemsWithPython
ch05/utils.py
24
7111
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import os try: import ujson as json # UltraJSON if available except: import json from matplotlib import pylab import numpy as np from data import CHART_DIR def fetch_data(filename, col=None, line_count=-1, only_questions=False): count = 0 for line in open(filename, "r"): count += 1 if line_count > 0 and count > line_count: break data = Id, ParentId, IsQuestion, IsAccepted, TimeToAnswer, Score, Text, NumTextTokens, NumCodeLines, LinkCount, MisSpelledFraction = line.split( "\t") IsQuestion = int(IsQuestion) if only_questions and not IsQuestion: continue if col: if col < 6: val = int(data[col]) else: val = data[col] yield val else: Id = int(Id) assert Id >= 0, line ParentId = int(ParentId) IsAccepted = int(IsAccepted) assert not IsQuestion == IsAccepted == 1, "%i %i --- %s" % ( IsQuestion, IsAccepted, line) assert (ParentId == -1 and IsQuestion) or ( ParentId >= 0 and not IsQuestion), "%i %i --- %s" % (ParentId, IsQuestion, line) TimeToAnswer = int(TimeToAnswer) Score = int(Score) NumTextTokens = int(NumTextTokens) NumCodeLines = int(NumCodeLines) LinkCount = int(LinkCount) MisSpelledFraction = float(MisSpelledFraction) yield Id, ParentId, IsQuestion, IsAccepted, TimeToAnswer, Score, Text, NumTextTokens, NumCodeLines, LinkCount, MisSpelledFraction def fetch_posts(filename, with_index=True, line_count=-1): count = 0 for line in open(filename, "r"): count += 1 if line_count > 0 and count > line_count: break Id, Text = line.split("\t") Text = Text.strip() if with_index: yield int(Id), Text else: yield Text def load_meta(filename): meta = json.load(open(filename, "r")) keys = list(meta.keys()) # JSON only allows string keys, changing that to int for key in keys: meta[int(key)] = meta[key] del meta[key] # post Id to index in vectorized id_to_idx = {} # and back idx_to_id = {} for PostId, Info in meta.items(): id_to_idx[PostId] = idx = Info['idx'] idx_to_id[idx] = PostId return meta, id_to_idx, idx_to_id def plot_roc(auc_score, name, fpr, tpr): pylab.figure(num=None, figsize=(6, 5)) pylab.plot([0, 1], [0, 1], 'k--') pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('False Positive Rate') pylab.ylabel('True Positive Rate') pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % ( auc_score, name)) pylab.legend(loc="lower right") pylab.grid(True, linestyle='-', color='0.75') pylab.fill_between(tpr, fpr, alpha=0.5) pylab.plot(fpr, tpr, lw=1) pylab.savefig( os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_") + ".png")) def plot_pr(auc_score, name, precision, recall, label=None): pylab.figure(num=None, figsize=(6, 5)) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label)) pylab.fill_between(recall, precision, alpha=0.5) pylab.grid(True, linestyle='-', color='0.75') pylab.plot(recall, precision, lw=1) filename = name.replace(" ", "_") pylab.savefig(os.path.join(CHART_DIR, "pr_" + filename + ".png")) def show_most_informative_features(vectorizer, clf, n=20): c_f = sorted(zip(clf.coef_[0], vectorizer.get_feature_names())) top = list(zip(c_f[:n], c_f[:-(n + 1):-1])) for (c1, f1), (c2, f2) in top: print("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2)) def plot_feat_importance(feature_names, clf, name): pylab.figure(num=None, figsize=(6, 5)) coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(list(range(len(coef)))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") def plot_feat_hist(data_name_list, filename=None): if len(data_name_list) > 1: assert filename is not None pylab.figure(num=None, figsize=(8, 6)) num_rows = int(1 + (len(data_name_list) - 1) / 2) num_cols = int(1 if len(data_name_list) == 1 else 2) pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Fraction') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name.replace(" ", "_") pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_bias_variance(data_sizes, train_errors, test_errors, name, title): pylab.figure(num=None, figsize=(6, 5)) pylab.ylim([0.0, 1.0]) pylab.xlabel('Data set size') pylab.ylabel('Error') pylab.title("Bias-Variance for '%s'" % name) pylab.plot( data_sizes, test_errors, "--", data_sizes, train_errors, "b-", lw=1) pylab.legend(["test error", "train error"], loc="upper right") pylab.grid(True, linestyle='-', color='0.75') pylab.savefig( os.path.join(CHART_DIR, "bv_" + name.replace(" ", "_") + ".png"), bbox_inches="tight") def plot_k_complexity(ks, train_errors, test_errors): pylab.figure(num=None, figsize=(6, 5)) pylab.ylim([0.0, 1.0]) pylab.xlabel('k') pylab.ylabel('Error') pylab.title('Errors for for different values of $k$') pylab.plot( ks, test_errors, "--", ks, train_errors, "-", lw=1) pylab.legend(["test error", "train error"], loc="upper right") pylab.grid(True, linestyle='-', color='0.75') pylab.savefig( os.path.join(CHART_DIR, "kcomplexity.png"), bbox_inches="tight")
mit
olologin/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
14
2001
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
xclxxl414/rqalpha
test.py
1
8227
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2017 Ricequant, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import sys from datetime import datetime import os import csv from six import iteritems import pandas as pd import numpy as np import coverage from rqalpha import run, run_func from rqalpha.utils.logger import system_log TEST_DIR = os.path.abspath("./tests/") TEST_OUT = os.path.abspath("./tests/outs/") pd.set_option("display.width", 160) def run_tests(file_path=None): if file_path is not None: files = [file_path] else: files = [f for f in os.listdir(TEST_DIR) if f.find("test") == 0] error_map = {} for filename in files: try: r, result_data = run_test(filename) if r is not None: error_map[filename.replace(".py", "")] = result_data except Exception as e: system_log.exception() error_map[filename.replace(".py", "")] = e for filename, result_data in iteritems(error_map): print(u"*" * 20, u"[{}]did not pass!".format(filename), u"*" * 20) if isinstance(result_data, Exception): system_log.error(result_data) else: df, old_df, result = result_data # print("+" * 10, "old test Dataframe: ", "+" * 10) # print(old_df.drop(result.columns[result.all()], axis=1)) # print("+" * 10, "new test Dataframe: ", "+" * 10) # print(df.drop(result.columns[result.all()], axis=1)) print(result.all()) print(u"=" * 40) print(u"[{}|{}] strategies has been passed!".format(len(files) - len(error_map), len(files))) return len(error_map) def run_test(filename): config = { "base": { "strategy_file": os.path.join(TEST_DIR, filename) } } print(u"Start test: " + str(config["base"]["strategy_file"])) result_dict = run(config)['sys_analyser'] df = result_dict["portfolio"] # del df['positions'] old_pickle_file = os.path.join(TEST_OUT, filename.replace(".py", ".pkl")) if not os.path.exists(old_pickle_file): if not os.path.exists(TEST_OUT): os.makedirs(TEST_OUT) pickle.dump(result_dict, open(old_pickle_file, "wb"), protocol=2) return None, None else: old_result_dict = pd.read_pickle(old_pickle_file) # 比较 portfolios old_df = old_result_dict["portfolio"] old_df = old_df.fillna(0) old_df = old_df.replace([np.inf, -np.inf], 0) df = df.fillna(0) df = df.replace([np.inf, -np.inf], 0) # del old_df["trades"] # del df["trades"] try: del old_df["dividend_receivable"] del df["dividend_receivable"] except: pass df = df.round(0) old_df = old_df.round(0) result = df.eq(old_df) if not result.all().all(): return result.all(), (df, old_df, result) # 比较 summary old_df = pd.DataFrame(data=[{"val": val} for val in old_result_dict["summary"].values()], index=old_result_dict["summary"].keys()).sort_index().T.fillna(0) df = pd.DataFrame(data=[{"val": val} for val in result_dict["summary"].values()], index=result_dict["summary"].keys()).sort_index().T.fillna(0) try: del old_df['daily_pnl'] del old_df['daily_returns'] del old_df['dividend_receivable'] del old_df['strategy_file'] del df['strategy_file'] except: pass try: del old_df['strategy_file'] del df['strategy_file'] except: pass result = df.eq(old_df) if not result.all().all(): return result.all(), (old_result_dict, result_dict, result) return None, None def is_enable_coverage(): return os.environ.get('COVERAGE') == "enabled" def test_api(specific_test=None): # FIXME: Error msg is hard to understand @zjuguxi print(u"Testing API......") from tests.api import test_strategies as test_api_strategies from tests.mod import test_strategies as test_mod_strategies for strategy in test_api_strategies + test_mod_strategies: if specific_test and strategy["name"] != specific_test: continue print("running", strategy["name"]) run_func(**strategy) print(u"API test ends.") def test_strategy(): run_tests() def write_csv(path, fields): old_test_times = [] if not os.path.exists(path): with open(path, 'w') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=fields) writer.writeheader() with open(path) as csv_file: reader = csv.DictReader(csv_file) for row in reader: old_test_times.append(row) if performance_path is not None: if 0 < len(old_test_times) < 5 and time_spend > float(sum(float(i['time_spend']) for i in old_test_times)) / len(old_test_times) * 1.1: print('Average time of last 5 runs:', float(sum(float(i['time_spend']) for i in old_test_times))/len(old_test_times)) print('Now time spend:', time_spend) raise RuntimeError('Performance regresses!') elif len(old_test_times) >= 5 and time_spend > float(sum(float(i['time_spend']) for i in old_test_times[-5:])) / 5 * 1.1: print('Average time of last 5 runs:', float(sum(float(i['time_spend']) for i in old_test_times[-5:])) / 5) print('Now time spend:', time_spend) raise RuntimeError('Performance regresses!') else: with open(path, 'a') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=fields) writer.writerow({'date_time': end_time, 'time_spend': time_spend}) def run_unit_tests(): from unittest import TextTestRunner from tests.unittest import load_tests TextTestRunner(verbosity=2).run(load_tests()) if __name__ == '__main__': if is_enable_coverage(): print("enable coverage") cov = coverage.Coverage() cov.start() performance_path = None field_names = ['date_time', 'time_spend'] start_time = datetime.now() if len(sys.argv) >= 2: if sys.argv[1] == 'api': try: test_api(sys.argv[2]) except IndexError: test_api() end_time = datetime.now() elif sys.argv[1] == 'strategy': test_strategy() end_time = datetime.now() elif sys.argv[1] == 'performance': # test_api() test_strategy() end_time = datetime.now() performance_path = sys.argv[2] time_spend = (end_time - start_time).total_seconds() write_csv(performance_path, field_names) elif sys.argv[1] == 'unittest': run_unit_tests() end_time = datetime.now() else: target_file = sys.argv[1] run_tests(target_file) end_time = datetime.now() else: run_unit_tests() test_api() error_count = run_tests() end_time = datetime.now() if error_count == 0: time_csv_file_path = os.path.join(TEST_OUT, "time.csv") time_spend = (end_time - start_time).total_seconds() write_csv(time_csv_file_path, field_names) else: print('Failed!') sys.exit(-1) if is_enable_coverage(): cov.stop() cov.save() cov.html_report() print("Total Spend: ", end_time - start_time)
apache-2.0
vibhorag/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
ClimbsRocks/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
169
8809
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_class_weights(): # Test class weights. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None, random_state=100) clf.fit(X2, y2) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight={1: 0.001}, random_state=100) clf.fit(X2, y2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_partial_fit_weight_class_balanced(): # partial_fit with class_weight='balanced' not supported clf = PassiveAggressiveClassifier(class_weight="balanced") assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y)) def test_equal_class_weight(): X2 = [[1, 0], [1, 0], [0, 1], [0, 1]] y2 = [0, 0, 1, 1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None) clf.fit(X2, y2) # Already balanced, so "balanced" weights should have no effect clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight="balanced") clf_balanced.fit(X2, y2) clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X2, y2) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2) def test_wrong_class_weight_label(): # ValueError due to wrong class_weight label. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight={0: 0.5}) assert_raises(ValueError, clf.fit, X2, y2) def test_wrong_class_weight_format(): # ValueError due to wrong class_weight argument type. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight=[0.5]) assert_raises(ValueError, clf.fit, X2, y2) clf = PassiveAggressiveClassifier(class_weight="the larch") assert_raises(ValueError, clf.fit, X2, y2) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
mikecroucher/GPy
GPy/plotting/gpy_plot/plot_util.py
4
15308
#=============================================================================== # Copyright (c) 2012-2015, GPy authors (see AUTHORS.txt). # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of GPy nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== import numpy as np from scipy import sparse import itertools from ...models import WarpedGP def in_ipynb(): try: cfg = get_ipython().config return 'IPKernelApp' in cfg except NameError: return False def find_best_layout_for_subplots(num_subplots): r, c = 1, 1 while (r*c) < num_subplots: if (c==(r+1)) or (r==c): c += 1 elif c==(r+2): r += 1 c -= 1 return r, c def helper_predict_with_model(self, Xgrid, plot_raw, apply_link, percentiles, which_data_ycols, predict_kw, samples=0): """ Make the right decisions for prediction with a model based on the standard arguments of plotting. This is quite complex and will take a while to understand, so do not change anything in here lightly!!! """ # Put some standards into the predict_kw so that prediction is done automatically: if predict_kw is None: predict_kw = {} if 'likelihood' not in predict_kw: if plot_raw: from ...likelihoods import Gaussian from ...likelihoods.link_functions import Identity lik = Gaussian(Identity(), 1e-9) # Make the likelihood not add any noise else: lik = None predict_kw['likelihood'] = lik if 'Y_metadata' not in predict_kw: predict_kw['Y_metadata'] = {} if 'output_index' not in predict_kw['Y_metadata']: predict_kw['Y_metadata']['output_index'] = Xgrid[:,-1:].astype(np.int) mu, _ = self.predict(Xgrid, **predict_kw) if percentiles is not None: percentiles = self.predict_quantiles(Xgrid, quantiles=percentiles, **predict_kw) else: percentiles = [] if samples > 0: fsamples = self.posterior_samples(Xgrid, full_cov=True, size=samples, **predict_kw) fsamples = fsamples[which_data_ycols] if fsamples.ndim == 3 else fsamples else: fsamples = None # Filter out the ycolums which we want to plot: retmu = mu[:, which_data_ycols] percs = [p[:, which_data_ycols] for p in percentiles] if plot_raw and apply_link: for i in range(len(which_data_ycols)): retmu[:, [i]] = self.likelihood.gp_link.transf(mu[:, [i]]) for perc in percs: perc[:, [i]] = self.likelihood.gp_link.transf(perc[:, [i]]) if fsamples is not None and fsamples.ndim == 3: for s in range(fsamples.shape[-1]): fsamples[i, :, s] = self.likelihood.gp_link.transf(fsamples[i, :, s]) elif fsamples is not None: for s in range(fsamples.shape[-1]): fsamples[:, s] = self.likelihood.gp_link.transf(fsamples[:, s]) return retmu, percs, fsamples def helper_for_plot_data(self, X, plot_limits, visible_dims, fixed_inputs, resolution): """ Figure out the data, free_dims and create an Xgrid for the prediction. This is only implemented for two dimensions for now! """ #work out what the inputs are for plotting (1D or 2D) if fixed_inputs is None: fixed_inputs = [] fixed_dims = get_fixed_dims(fixed_inputs) free_dims = get_free_dims(self, visible_dims, fixed_dims) if len(free_dims) == 1: #define the frame on which to plot resolution = resolution or 200 Xnew, xmin, xmax = x_frame1D(X[:,free_dims], plot_limits=plot_limits, resolution=resolution) Xgrid = np.zeros((Xnew.shape[0],self.input_dim)) Xgrid[:,free_dims] = Xnew for i,v in fixed_inputs: Xgrid[:,i] = v x = Xgrid y = None elif len(free_dims) == 2: #define the frame for plotting on resolution = resolution or 35 Xnew, x, y, xmin, xmax = x_frame2D(X[:,free_dims], plot_limits, resolution) Xgrid = np.zeros((Xnew.shape[0], self.input_dim)) Xgrid[:,free_dims] = Xnew #xmin = Xgrid.min(0)[free_dims] #xmax = Xgrid.max(0)[free_dims] for i,v in fixed_inputs: Xgrid[:,i] = v else: raise TypeError("calculated free_dims {} from visible_dims {} and fixed_dims {} is neither 1D nor 2D".format(free_dims, visible_dims, fixed_dims)) return fixed_dims, free_dims, Xgrid, x, y, xmin, xmax, resolution def scatter_label_generator(labels, X, visible_dims, marker=None): ulabels = [] for lab in labels: if not lab in ulabels: ulabels.append(lab) if marker is not None: marker = itertools.cycle(list(marker)) else: m = None try: input_1, input_2, input_3 = visible_dims except: try: # tuple or int? input_1, input_2 = visible_dims input_3 = None except: input_1 = visible_dims input_2 = input_3 = None for ul in ulabels: from numbers import Number if isinstance(ul, str): try: this_label = unicode(ul) except NameError: #python3 this_label = ul elif isinstance(ul, Number): this_label = 'class {!s}'.format(ul) else: this_label = ul if marker is not None: m = next(marker) index = np.nonzero(labels == ul)[0] if input_2 is None: x = X[index, input_1] y = np.zeros(index.size) z = None elif input_3 is None: x = X[index, input_1] y = X[index, input_2] z = None else: x = X[index, input_1] y = X[index, input_2] z = X[index, input_3] yield x, y, z, this_label, index, m def subsample_X(X, labels, num_samples=1000): """ Stratified subsampling if labels are given. This means due to rounding errors you might get a little differences between the num_samples and the returned subsampled X. """ if X.shape[0] > num_samples: print("Warning: subsampling X, as it has more samples then {}. X.shape={!s}".format(int(num_samples), X.shape)) if labels is not None: subsample = [] for _, _, _, _, index, _ in scatter_label_generator(labels, X, (0, None, None)): subsample.append(np.random.choice(index, size=max(2, int(index.size*(float(num_samples)/X.shape[0]))), replace=False)) subsample = np.hstack(subsample) else: subsample = np.random.choice(X.shape[0], size=1000, replace=False) X = X[subsample] labels = labels[subsample] #======================================================================= # <<<WORK IN PROGRESS>>> # <<<DO NOT DELETE>>> # plt.close('all') # fig, ax = plt.subplots(1,1) # from GPy.plotting.matplot_dep.dim_reduction_plots import most_significant_input_dimensions # import matplotlib.patches as mpatches # i1, i2 = most_significant_input_dimensions(m, None) # xmin, xmax = 100, -100 # ymin, ymax = 100, -100 # legend_handles = [] # # X = m.X.mean[:, [i1, i2]] # X = m.X.variance[:, [i1, i2]] # # xmin = X[:,0].min(); xmax = X[:,0].max() # ymin = X[:,1].min(); ymax = X[:,1].max() # range_ = [[xmin, xmax], [ymin, ymax]] # ul = np.unique(labels) # # for i, l in enumerate(ul): # #cdict = dict(red =[(0., colors[i][0], colors[i][0]), (1., colors[i][0], colors[i][0])], # # green=[(0., colors[i][0], colors[i][1]), (1., colors[i][1], colors[i][1])], # # blue =[(0., colors[i][0], colors[i][2]), (1., colors[i][2], colors[i][2])], # # alpha=[(0., 0., .0), (.5, .5, .5), (1., .5, .5)]) # #cmap = LinearSegmentedColormap('{}'.format(l), cdict) # cmap = LinearSegmentedColormap.from_list('cmap_{}'.format(str(l)), [colors[i], colors[i]], 255) # cmap._init() # #alphas = .5*(1+scipy.special.erf(np.linspace(-2,2, cmap.N+3)))#np.log(np.linspace(np.exp(0), np.exp(1.), cmap.N+3)) # alphas = (scipy.special.erf(np.linspace(0,2.4, cmap.N+3)))#np.log(np.linspace(np.exp(0), np.exp(1.), cmap.N+3)) # cmap._lut[:, -1] = alphas # print l # x, y = X[labels==l].T # # heatmap, xedges, yedges = np.histogram2d(x, y, bins=300, range=range_) # #heatmap, xedges, yedges = np.histogram2d(x, y, bins=100) # # im = ax.imshow(heatmap, extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]], cmap=cmap, aspect='auto', interpolation='nearest', label=str(l)) # legend_handles.append(mpatches.Patch(color=colors[i], label=l)) # ax.set_xlim(xmin, xmax) # ax.set_ylim(ymin, ymax) # plt.legend(legend_handles, [l.get_label() for l in legend_handles]) # plt.draw() # plt.show() #======================================================================= return X, labels def update_not_existing_kwargs(to_update, update_from): """ This function updates the keyword aguments from update_from in to_update, only if the keys are not set in to_update. This is used for updated kwargs from the default dicts. """ if to_update is None: to_update = {} to_update.update({k:v for k,v in update_from.items() if k not in to_update}) return to_update def get_x_y_var(model): """ Either the the data from a model as X the inputs, X_variance the variance of the inputs ([default: None]) and Y the outputs If (X, X_variance, Y) is given, this just returns. :returns: (X, X_variance, Y) """ # model given if hasattr(model, 'has_uncertain_inputs') and model.has_uncertain_inputs(): X = model.X.mean.values X_variance = model.X.variance.values else: try: X = model.X.values except AttributeError: X = model.X X_variance = None try: Y = model.Y.values except AttributeError: Y = model.Y if isinstance(model, WarpedGP) and not model.predict_in_warped_space: Y = model.Y_normalized if sparse.issparse(Y): Y = Y.todense().view(np.ndarray) return X, X_variance, Y def get_free_dims(model, visible_dims, fixed_dims): """ work out what the inputs are for plotting (1D or 2D) The visible dimensions are the dimensions, which are visible. the fixed_dims are the fixed dimensions for this. The free_dims are then the visible dims without the fixed dims. """ if visible_dims is None: visible_dims = np.arange(model.input_dim) dims = np.asanyarray(visible_dims) if fixed_dims is not None: dims = [dim for dim in dims if dim not in fixed_dims] return np.asanyarray([dim for dim in dims if dim is not None]) def get_fixed_dims(fixed_inputs): """ Work out the fixed dimensions from the fixed_inputs list of tuples. """ return np.array([i for i,_ in fixed_inputs]) def get_which_data_ycols(model, which_data_ycols): """ Helper to get the data columns to plot. """ if which_data_ycols == 'all' or which_data_ycols is None: return np.arange(model.output_dim) return which_data_ycols def get_which_data_rows(model, which_data_rows): """ Helper to get the data rows to plot. """ if which_data_rows == 'all' or which_data_rows is None: return slice(None) return which_data_rows def x_frame1D(X,plot_limits=None,resolution=None): """ Internal helper function for making plots, returns a set of input values to plot as well as lower and upper limits """ assert X.shape[1] ==1, "x_frame1D is defined for one-dimensional inputs" if plot_limits is None: from GPy.core.parameterization.variational import VariationalPosterior if isinstance(X, VariationalPosterior): xmin,xmax = X.mean.min(0),X.mean.max(0) else: xmin,xmax = X.min(0),X.max(0) xmin, xmax = xmin-0.25*(xmax-xmin), xmax+0.25*(xmax-xmin) elif len(plot_limits) == 2: xmin, xmax = map(np.atleast_1d, plot_limits) else: raise ValueError("Bad limits for plotting") Xnew = np.linspace(xmin,xmax,resolution or 200)[:,None] return Xnew, xmin, xmax def x_frame2D(X,plot_limits=None,resolution=None): """ Internal helper function for making plots, returns a set of input values to plot as well as lower and upper limits """ assert X.shape[1]==2, "x_frame2D is defined for two-dimensional inputs" if plot_limits is None: xmin, xmax = X.min(0), X.max(0) xmin, xmax = xmin-0.075*(xmax-xmin), xmax+0.075*(xmax-xmin) elif len(plot_limits) == 2: xmin, xmax = plot_limits try: xmin = xmin[0], xmin[1] except: # only one limit given, copy over to other lim xmin = [plot_limits[0], plot_limits[0]] xmax = [plot_limits[1], plot_limits[1]] elif len(plot_limits) == 4: xmin, xmax = (plot_limits[0], plot_limits[2]), (plot_limits[1], plot_limits[3]) else: raise ValueError("Bad limits for plotting") resolution = resolution or 50 xx, yy = np.mgrid[xmin[0]:xmax[0]:1j*resolution,xmin[1]:xmax[1]:1j*resolution] Xnew = np.c_[xx.flat, yy.flat] return Xnew, xx, yy, xmin, xmax
bsd-3-clause
MatthieuBizien/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
50
2378
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired) plt.title(titles[i]) plt.text(.90, 0, "Unlabeled points are colored white") plt.show()
bsd-3-clause
nsteinme/phy
phy/plot/tests/test_ccg.py
2
1770
# -*- coding: utf-8 -*- """Test CCG plotting.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ from pytest import mark import numpy as np from ..ccg import _plot_ccg_mpl, CorrelogramView, plot_correlograms from ...utils._color import _random_color from ...io.mock import artificial_correlograms from ...utils.testing import show_test # Skip these tests in "make test-quick". pytestmark = mark.long() #------------------------------------------------------------------------------ # Tests matplotlib #------------------------------------------------------------------------------ def test_plot_ccg(): n_bins = 51 ccg = np.random.randint(size=n_bins, low=10, high=50) _plot_ccg_mpl(ccg, baseline=20, color='g') def test_plot_correlograms(): n_bins = 51 ccg = np.random.uniform(size=(3, 3, n_bins)) c = plot_correlograms(ccg, lines=[-10, 0, 20], show=False) show_test(c) #------------------------------------------------------------------------------ # Tests VisPy #------------------------------------------------------------------------------ def _test_correlograms(n_clusters=None): n_samples = 51 correlograms = artificial_correlograms(n_clusters, n_samples) c = CorrelogramView(keys='interactive') c.cluster_ids = np.arange(n_clusters) c.visual.correlograms = correlograms c.visual.cluster_colors = np.array([_random_color() for _ in range(n_clusters)]) c.lines = [-5, 0, 5] show_test(c) def test_correlograms_empty(): _test_correlograms(n_clusters=0) def test_correlograms_full(): _test_correlograms(n_clusters=3)
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e308.py
2
5382
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive from neuralnilm.plot import MDNPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 SEQ_LENGTH = 512 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=SEQ_LENGTH, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.0, n_seq_per_batch=16, subsample_target=4, include_diff=False, clip_appliance_power=True, target_is_prediction=False, independently_center_inputs = True, standardise_input=True, standardise_targets=True, input_padding=0, lag=0, reshape_target_to_2D=True, input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), 'std': np.array([ 0.12636775], dtype=np.float32)}, target_stats={ 'mean': np.array([ 0.04066789, 0.01881946, 0.24639061, 0.17608672, 0.10273963], dtype=np.float32), 'std': np.array([ 0.11449792, 0.07338708, 0.26608968, 0.33463112, 0.21250485], dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), loss_function=lambda x, t: mdn_nll(x, t).mean(), # loss_function=lambda x, t: mse(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), updates_func=momentum, learning_rate=1e-05, learning_rate_changes_by_iteration={ 500: 5e-06 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True, plotter=MDNPlotter ) def exp_a(name): # 3 appliances global source source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 4, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': MixtureDensityLayer, 'num_units': source.n_outputs, 'num_components': 2 } ] net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
lail3344/sms-tools
lectures/08-Sound-transformations/plots-code/hps-transformation.py
24
3018
# function call to the transformation functions of relevance for the hpsModel import numpy as np import matplotlib.pyplot as plt from scipy.signal import get_window import sys, os sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/transformations/')) import hpsModel as HPS import hpsTransformations as HPST import harmonicTransformations as HT import utilFunctions as UF inputFile='../../../sounds/sax-phrase-short.wav' window='blackman' M=601 N=1024 t=-100 minSineDur=0.1 nH=100 minf0=350 maxf0=700 f0et=5 harmDevSlope=0.01 stocf=0.1 Ns = 512 H = 128 (fs, x) = UF.wavread(inputFile) w = get_window(window, M) hfreq, hmag, hphase, mYst = HPS.hpsModelAnal(x, fs, w, N, H, t, nH, minf0, maxf0, f0et, harmDevSlope, minSineDur, Ns, stocf) timeScaling = np.array([0, 0, 2.138, 2.138-1.5, 3.146, 3.146]) yhfreq, yhmag, ystocEnv = HPST.hpsTimeScale(hfreq, hmag, mYst, timeScaling) y, yh, yst = HPS.hpsModelSynth(yhfreq, yhmag, np.array([]), ystocEnv, Ns, H, fs) UF.wavwrite(y,fs, 'hps-transformation.wav') plt.figure(figsize=(12, 9)) maxplotfreq = 14900.0 # plot the input sound plt.subplot(4,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.title('x (sax-phrase-short.wav') # plot spectrogram stochastic compoment plt.subplot(4,1,2) numFrames = int(mYst[:,0].size) sizeEnv = int(mYst[0,:].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = (.5*fs)*np.arange(sizeEnv*maxplotfreq/(.5*fs))/sizeEnv plt.pcolormesh(frmTime, binFreq, np.transpose(mYst[:,:sizeEnv*maxplotfreq/(.5*fs)+1])) plt.autoscale(tight=True) # plot harmonic on top of stochastic spectrogram harms = hfreq*np.less(hfreq,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.autoscale(tight=True) plt.title('harmonics + stochastic residual') # plot spectrogram of transformed stochastic compoment plt.subplot(4,1,3) numFrames = int(ystocEnv[:,0].size) sizeEnv = int(ystocEnv[0,:].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = (.5*fs)*np.arange(sizeEnv*maxplotfreq/(.5*fs))/sizeEnv plt.pcolormesh(frmTime, binFreq, np.transpose(ystocEnv[:,:sizeEnv*maxplotfreq/(.5*fs)+1])) plt.autoscale(tight=True) # plot transformed harmonic on top of stochastic spectrogram harms = yhfreq*np.less(yhfreq,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.autoscale(tight=True) plt.title('timescaled harmonics + stochastic residual') # plot the output sound plt.subplot(4,1,4) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.title('output sound: y') plt.tight_layout() plt.savefig('hps-transformation.png') plt.show()
agpl-3.0
bollu/vispy
vispy/color/colormap.py
13
38233
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division # just to be safe... import inspect import numpy as np from .color_array import ColorArray from ..ext.six import string_types from ..ext.cubehelix import cubehelix from ..ext.husl import husl_to_rgb ############################################################################### # Color maps # Utility functions for interpolation in NumPy. def _vector_or_scalar(x, type='row'): """Convert an object to either a scalar or a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x) if isinstance(x, np.ndarray): assert x.ndim == 1 if type == 'column': x = x[:, None] return x def _vector(x, type='row'): """Convert an object to a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x, dtype=np.float32) elif not isinstance(x, np.ndarray): x = np.array([x], dtype=np.float32) assert x.ndim == 1 if type == 'column': x = x[:, None] return x def _find_controls(x, controls=None, clip=None): x_controls = np.clip(np.searchsorted(controls, x) - 1, 0, clip) return x_controls.astype(np.int32) # Normalization def _normalize(x, cmin=None, cmax=None, clip=True): """Normalize an array from the range [cmin, cmax] to [0,1], with optional clipping.""" if not isinstance(x, np.ndarray): x = np.array(x) if cmin is None: cmin = x.min() if cmax is None: cmax = x.max() if cmin == cmax: return .5 * np.ones(x.shape) else: cmin, cmax = float(cmin), float(cmax) y = (x - cmin) * 1. / (cmax - cmin) if clip: y = np.clip(y, 0., 1.) return y # Interpolation functions in NumPy. def _mix_simple(a, b, x): """Mix b (with proportion x) with a.""" x = np.clip(x, 0.0, 1.0) return (1.0 - x)*a + x*b def _interpolate_multi(colors, x, controls): x = x.ravel() n = len(colors) # For each element in x, the control index of its bin's left boundary. x_step = _find_controls(x, controls, n-2) # The length of each bin. controls_length = np.diff(controls).astype(np.float32) # Prevent division by zero error. controls_length[controls_length == 0.] = 1. # Like x, but relative to each bin. _to_clip = x - controls[x_step] _to_clip /= controls_length[x_step] x_rel = np.clip(_to_clip, 0., 1.) return (colors[x_step], colors[x_step + 1], x_rel[:, None]) def mix(colors, x, controls=None): a, b, x_rel = _interpolate_multi(colors, x, controls) return _mix_simple(a, b, x_rel) def smoothstep(edge0, edge1, x): """ performs smooth Hermite interpolation between 0 and 1 when edge0 < x < edge1. """ # Scale, bias and saturate x to 0..1 range x = np.clip((x - edge0)/(edge1 - edge0), 0.0, 1.0) # Evaluate polynomial return x*x*(3 - 2*x) def step(colors, x, controls=None): x = x.ravel() """Step interpolation from a set of colors. x belongs in [0, 1].""" assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(colors) assert ncolors == len(controls) - 1 assert ncolors >= 2 x_step = _find_controls(x, controls, ncolors-1) return colors[x_step, ...] # GLSL interpolation functions. def _glsl_mix(controls=None): """Generate a GLSL template function from a given interpolation patterns and control points.""" assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(controls) assert ncolors >= 2 if ncolors == 2: s = " return mix($color_0, $color_1, t);\n" else: s = "" for i in range(ncolors-1): if i == 0: ifs = 'if (t < %.6f)' % (controls[i+1]) elif i == (ncolors-2): ifs = 'else' else: ifs = 'else if (t < %.6f)' % (controls[i+1]) adj_t = '(t - %s) / %s' % (controls[i], controls[i+1] - controls[i]) s += ("%s {\n return mix($color_%d, $color_%d, %s);\n} " % (ifs, i, i+1, adj_t)) return "vec4 colormap(float t) {\n%s\n}" % s def _glsl_step(controls=None): assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(controls) - 1 assert ncolors >= 2 s = "" for i in range(ncolors-1): if i == 0: ifs = 'if (t < %.6f)' % (controls[i+1]) elif i == (ncolors-2): ifs = 'else' else: ifs = 'else if (t < %.6f)' % (controls[i+1]) s += """%s {\n return $color_%d;\n} """ % (ifs, i) return """vec4 colormap(float t) {\n%s\n}""" % s # Mini GLSL template system for colors. def _process_glsl_template(template, colors): """Replace $color_i by color #i in the GLSL template.""" for i in range(len(colors) - 1, -1, -1): color = colors[i] assert len(color) == 4 vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color) template = template.replace('$color_%d' % i, vec4_color) return template class BaseColormap(object): """Class representing a colormap: t \in [0, 1] --> rgba_color Parameters ---------- colors : list of lists, tuples, or ndarrays The control colors used by the colormap (shape = (ncolors, 4)). Notes ----- Must be overriden. Child classes need to implement: glsl_map : string The GLSL function for the colormap. Use $color_0 to refer to the first color in `colors`, and so on. These are vec4 vectors. map(item) : function Takes a (N, 1) vector of values in [0, 1], and returns a rgba array of size (N, 4). """ # Control colors used by the colormap. colors = None # GLSL string with a function implementing the color map. glsl_map = None def __init__(self, colors=None): # Ensure the colors are arrays. if colors is not None: self.colors = colors if not isinstance(self.colors, ColorArray): self.colors = ColorArray(self.colors) # Process the GLSL map function by replacing $color_i by the if len(self.colors) > 0: self.glsl_map = _process_glsl_template(self.glsl_map, self.colors.rgba) def map(self, item): """Return a rgba array for the requested items. This function must be overriden by child classes. This function doesn't need to implement argument checking on `item`. It can always assume that `item` is a (N, 1) array of values between 0 and 1. Parameters ---------- item : ndarray An array of values in [0,1]. Returns ------- rgba : ndarray An array with rgba values, with one color per item. The shape should be ``item.shape + (4,)``. Notes ----- Users are expected to use a colormap with ``__getitem__()`` rather than ``map()`` (which implements a lower-level API). """ raise NotImplementedError() def __getitem__(self, item): if isinstance(item, tuple): raise ValueError('ColorArray indexing is only allowed along ' 'the first dimension.') # Ensure item is either a scalar or a column vector. item = _vector(item, type='column') # Clip the values in [0, 1]. item = np.clip(item, 0., 1.) colors = self.map(item) return ColorArray(colors) def __setitem__(self, item, value): raise RuntimeError("It is not possible to set items to " "BaseColormap instances.") def _repr_html_(self): n = 100 html = (""" <style> table.vispy_colormap { height: 30px; border: 0; margin: 0; padding: 0; } table.vispy_colormap td { width: 3px; border: 0; margin: 0; padding: 0; } </style> <table class="vispy_colormap"> """ + '\n'.join([(("""<td style="background-color: %s;" title="%s"></td>""") % (color, color)) for color in self[np.linspace(0., 1., n)].hex]) + """ </table> """) return html def _default_controls(ncolors): """Generate linearly spaced control points from a set of colors.""" return np.linspace(0., 1., ncolors) # List the parameters of every supported interpolation mode. _interpolation_info = { 'linear': { 'ncontrols': lambda ncolors: ncolors, # take ncolors as argument 'glsl_map': _glsl_mix, # take 'controls' as argument 'map': mix, }, 'zero': { 'ncontrols': lambda ncolors: (ncolors+1), 'glsl_map': _glsl_step, 'map': step, } } class Colormap(BaseColormap): """A colormap defining several control colors and an interpolation scheme. Parameters ---------- colors : list of colors | ColorArray The list of control colors. If not a ``ColorArray``, a new ``ColorArray`` instance is created from this list. See the documentation of ``ColorArray``. controls : array-like The list of control points for the given colors. It should be an increasing list of floating-point number between 0.0 and 1.0. The first control point must be 0.0. The last control point must be 1.0. The number of control points depends on the interpolation scheme. interpolation : str The interpolation mode of the colormap. Default: 'linear'. Can also be 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). Examples -------- Here is a basic example: >>> from vispy.color import Colormap >>> cm = Colormap(['r', 'g', 'b']) >>> cm[0.], cm[0.5], cm[np.linspace(0., 1., 100)] """ def __init__(self, colors, controls=None, interpolation='linear'): self.interpolation = interpolation ncontrols = self._ncontrols(len(colors)) # Default controls. if controls is None: controls = _default_controls(ncontrols) assert len(controls) == ncontrols self._controls = np.array(controls, dtype=np.float32) self.glsl_map = self._glsl_map_generator(self._controls) super(Colormap, self).__init__(colors) @property def interpolation(self): """The interpolation mode of the colormap""" return self._interpolation @interpolation.setter def interpolation(self, val): if val not in _interpolation_info: raise ValueError('The interpolation mode can only be one of: ' + ', '.join(sorted(_interpolation_info.keys()))) # Get the information of the interpolation mode. info = _interpolation_info[val] # Get the function that generates the GLSL map, as a function of the # controls array. self._glsl_map_generator = info['glsl_map'] # Number of controls as a function of the number of colors. self._ncontrols = info['ncontrols'] # Python map function. self._map_function = info['map'] self._interpolation = val def map(self, x): """The Python mapping function from the [0,1] interval to a list of rgba colors Parameters ---------- x : array-like The values to map. Returns ------- colors : list List of rgba colors. """ return self._map_function(self.colors.rgba, x, self._controls) class CubeHelixColormap(Colormap): def __init__(self, start=0.5, rot=1, gamma=1.0, reverse=True, nlev=32, minSat=1.2, maxSat=1.2, minLight=0., maxLight=1., **kwargs): """Cube helix colormap A full implementation of Dave Green's "cubehelix" for Matplotlib. Based on the FORTRAN 77 code provided in D.A. Green, 2011, BASI, 39, 289. http://adsabs.harvard.edu/abs/2011arXiv1108.5083G User can adjust all parameters of the cubehelix algorithm. This enables much greater flexibility in choosing color maps, while always ensuring the color map scales in intensity from black to white. A few simple examples: Default color map settings produce the standard "cubehelix". Create color map in only blues by setting rot=0 and start=0. Create reverse (white to black) backwards through the rainbow once by setting rot=1 and reverse=True. Parameters ---------- start : scalar, optional Sets the starting position in the color space. 0=blue, 1=red, 2=green. Defaults to 0.5. rot : scalar, optional The number of rotations through the rainbow. Can be positive or negative, indicating direction of rainbow. Negative values correspond to Blue->Red direction. Defaults to -1.5 gamma : scalar, optional The gamma correction for intensity. Defaults to 1.0 reverse : boolean, optional Set to True to reverse the color map. Will go from black to white. Good for density plots where shade~density. Defaults to False nlev : scalar, optional Defines the number of discrete levels to render colors at. Defaults to 32. sat : scalar, optional The saturation intensity factor. Defaults to 1.2 NOTE: this was formerly known as "hue" parameter minSat : scalar, optional Sets the minimum-level saturation. Defaults to 1.2 maxSat : scalar, optional Sets the maximum-level saturation. Defaults to 1.2 startHue : scalar, optional Sets the starting color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in start parameter endHue : scalar, optional Sets the ending color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in rot parameter minLight : scalar, optional Sets the minimum lightness value. Defaults to 0. maxLight : scalar, optional Sets the maximum lightness value. Defaults to 1. """ super(CubeHelixColormap, self).__init__( cubehelix(start=start, rot=rot, gamma=gamma, reverse=reverse, nlev=nlev, minSat=minSat, maxSat=maxSat, minLight=minLight, maxLight=maxLight, **kwargs)) class _Fire(BaseColormap): colors = [(1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 0.0, 1.0), (1.0, 0.0, 0.0, 1.0)] glsl_map = """ vec4 fire(float t) { return mix(mix($color_0, $color_1, t), mix($color_1, $color_2, t*t), t); } """ def map(self, t): a, b, d = self.colors.rgba c = _mix_simple(a, b, t) e = _mix_simple(b, d, t**2) return _mix_simple(c, e, t) class _Grays(BaseColormap): glsl_map = """ vec4 grays(float t) { return vec4(t, t, t, 1.0); } """ def map(self, t): if isinstance(t, np.ndarray): return np.hstack([t, t, t, np.ones(t.shape)]).astype(np.float32) else: return np.array([t, t, t, 1.0], dtype=np.float32) class _Ice(BaseColormap): glsl_map = """ vec4 ice(float t) { return vec4(t, t, 1.0, 1.0); } """ def map(self, t): if isinstance(t, np.ndarray): return np.hstack([t, t, np.ones(t.shape), np.ones(t.shape)]).astype(np.float32) else: return np.array([t, t, 1.0, 1.0], dtype=np.float32) class _Hot(BaseColormap): colors = [(0., .33, .66, 1.0), (.33, .66, 1., 1.0)] glsl_map = """ vec4 hot(float t) { return vec4(smoothstep($color_0.rgb, $color_1.rgb, vec3(t, t, t)), 1.0); } """ def map(self, t): rgba = self.colors.rgba smoothed = smoothstep(rgba[0, :3], rgba[1, :3], t) return np.hstack((smoothed, np.ones((len(t), 1)))) class _Winter(BaseColormap): colors = [(0.0, 0.0, 1.0, 1.0), (0.0, 1.0, 0.5, 1.0)] glsl_map = """ vec4 winter(float t) { return mix($color_0, $color_1, sqrt(t)); } """ def map(self, t): return _mix_simple(self.colors.rgba[0], self.colors.rgba[1], np.sqrt(t)) class _SingleHue(Colormap): """A colormap which is solely defined by the given hue and value. Given the color hue and value, this color map increases the saturation of a color. The start color is almost white but still contains a hint of the given color, and at the end the color is fully saturated. Parameters ---------- hue : scalar, optional The hue refers to a "true" color, without any shading or tinting. Must be in the range [0, 360]. Defaults to 200 (blue). saturation_range : array-like, optional The saturation represents how "pure" a color is. Less saturation means more white light mixed in the color. A fully saturated color means the pure color defined by the hue. No saturation means completely white. This colormap changes the saturation, and with this parameter you can specify the lower and upper bound. Default is [0.2, 0.8]. value : scalar, optional The value defines the "brightness" of a color: a value of 0.0 means completely black while a value of 1.0 means the color defined by the hue without shading. Must be in the range [0, 1.0]. The default value is 1.0. Notes ----- For more information about the hue values see the `wikipedia page`_. .. _wikipedia page: https://en.wikipedia.org/wiki/Hue """ def __init__(self, hue=200, saturation_range=[0.1, 0.8], value=1.0): colors = ColorArray([ (hue, saturation_range[0], value), (hue, saturation_range[1], value) ], color_space='hsv') super(_SingleHue, self).__init__(colors) class _HSL(Colormap): """A colormap which is defined by n evenly spaced points in a circular color space. This means that we change the hue value while keeping the saturation and value constant. Parameters --------- n_colors : int, optional The number of colors to generate. hue_start : int, optional The hue start value. Must be in the range [0, 360], the default is 0. saturation : float, optional The saturation component of the colors to generate. The default is fully saturated (1.0). Must be in the range [0, 1.0]. value : float, optional The value (brightness) component of the colors to generate. Must be in the range [0, 1.0], and the default is 1.0 controls : array-like, optional The list of control points for the colors to generate. It should be an increasing list of floating-point number between 0.0 and 1.0. The first control point must be 0.0. The last control point must be 1.0. The number of control points depends on the interpolation scheme. interpolation : str, optional The interpolation mode of the colormap. Default: 'linear'. Can also be 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). """ def __init__(self, ncolors=6, hue_start=0, saturation=1.0, value=1.0, controls=None, interpolation='linear'): hues = np.linspace(0, 360, ncolors + 1)[:-1] hues += hue_start hues %= 360 colors = ColorArray([(hue, saturation, value) for hue in hues], color_space='hsv') super(_HSL, self).__init__(colors, controls=controls, interpolation=interpolation) class _HUSL(Colormap): """A colormap which is defined by n evenly spaced points in the HUSL hue space. Parameters --------- n_colors : int, optional The number of colors to generate. hue_start : int, optional The hue start value. Must be in the range [0, 360], the default is 0. saturation : float, optional The saturation component of the colors to generate. The default is fully saturated (1.0). Must be in the range [0, 1.0]. value : float, optional The value component of the colors to generate or "brightness". Must be in the range [0, 1.0], and the default is 0.7. controls : array-like, optional The list of control points for the colors to generate. It should be an increasing list of floating-point number between 0.0 and 1.0. The first control point must be 0.0. The last control point must be 1.0. The number of control points depends on the interpolation scheme. interpolation : str, optional The interpolation mode of the colormap. Default: 'linear'. Can also be 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). Notes ----- For more information about HUSL colors see http://husl-colors.org """ def __init__(self, ncolors=6, hue_start=0, saturation=1.0, value=0.7, controls=None, interpolation='linear'): hues = np.linspace(0, 360, ncolors + 1)[:-1] hues += hue_start hues %= 360 saturation *= 99 value *= 99 colors = ColorArray( [husl_to_rgb(hue, saturation, value) for hue in hues], ) super(_HUSL, self).__init__(colors, controls=controls, interpolation=interpolation) class _Diverging(Colormap): def __init__(self, h_pos=20, h_neg=250, saturation=1.0, value=0.7, center="light"): saturation *= 99 value *= 99 start = husl_to_rgb(h_neg, saturation, value) mid = ((0.133, 0.133, 0.133) if center == "dark" else (0.92, 0.92, 0.92)) end = husl_to_rgb(h_pos, saturation, value) colors = ColorArray([start, mid, end]) super(_Diverging, self).__init__(colors) # https://github.com/matplotlib/matplotlib/pull/4707/files#diff-893cf0348279e9f4570488a7a297ab1eR774 # Taken from original Viridis colormap data in matplotlib implementation # Sampled 128 points from the raw data-set of 256 samples. # Sub sampled to 128 points since 256 points causes VisPy to freeze. # HACK: Ideally, all 256 points should be included, with VisPy generating # a 1D texture lookup for ColorMap, rather than branching code. _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] _colormaps = dict( # Some colormap presets autumn=Colormap([(1., 0., 0., 1.), (1., 1., 0., 1.)]), blues=Colormap([(1., 1., 1., 1.), (0., 0., 1., 1.)]), cool=Colormap([(0., 1., 1., 1.), (1., 0., 1., 1.)]), greens=Colormap([(1., 1., 1., 1.), (0., 1., 0., 1.)]), reds=Colormap([(1., 1., 1., 1.), (1., 0., 0., 1.)]), spring=Colormap([(1., 0., 1., 1.), (1., 1., 0., 1.)]), summer=Colormap([(0., .5, .4, 1.), (1., 1., .4, 1.)]), fire=_Fire(), grays=_Grays(), hot=_Hot(), ice=_Ice(), winter=_Winter(), light_blues=_SingleHue(), orange=_SingleHue(hue=35), viridis=Colormap(ColorArray(_viridis_data[::2])), # Diverging presets coolwarm=Colormap(ColorArray( [ (226, 0.59, 0.92), (222, 0.44, 0.99), (218, 0.26, 0.97), (30, 0.01, 0.87), (20, 0.3, 0.96), (15, 0.5, 0.95), (8, 0.66, 0.86) ], color_space="hsv" )), PuGr=_Diverging(145, 280, 0.85, 0.30), GrBu=_Diverging(255, 133, 0.75, 0.6), GrBu_d=_Diverging(255, 133, 0.75, 0.6, "dark"), RdBu=_Diverging(220, 20, 0.75, 0.5), # Configurable colormaps cubehelix=CubeHelixColormap, single_hue=_SingleHue, hsl=_HSL, husl=_HUSL, diverging=_Diverging ) def get_colormap(name, *args, **kwargs): """Obtain a colormap Some colormaps can have additional configuration parameters. Refer to their corresponding documentation for more information. Parameters ---------- name : str | Colormap Colormap name. Can also be a Colormap for pass-through. Examples -------- >>> get_colormap('autumn') >>> get_colormap('single_hue', hue=10) """ if isinstance(name, BaseColormap): cmap = name else: if not isinstance(name, string_types): raise TypeError('colormap must be a Colormap or string name') if name not in _colormaps: raise KeyError('colormap name %s not found' % name) cmap = _colormaps[name] if inspect.isclass(cmap): cmap = cmap(*args, **kwargs) return cmap def get_colormaps(): """Return the list of colormap names.""" return _colormaps.copy()
bsd-3-clause
iproduct/course-social-robotics
11-dnn-keras/venv/Lib/site-packages/pandas/core/indexes/multi.py
1
133109
from functools import wraps from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Hashable, Iterable, List, Optional, Sequence, Tuple, Union, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, index as libindex, lib from pandas._libs.hashtable import duplicated_int64 from pandas._typing import AnyArrayLike, DtypeObj, Label, Scalar, Shape from pandas.compat.numpy import function as nv from pandas.errors import InvalidIndexError, PerformanceWarning, UnsortedIndexError from pandas.util._decorators import Appender, cache_readonly, doc from pandas.core.dtypes.cast import coerce_indexer_dtype from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_categorical_dtype, is_hashable, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCDataFrame, ABCDatetimeIndex, ABCTimedeltaIndex from pandas.core.dtypes.missing import array_equivalent, isna import pandas.core.algorithms as algos from pandas.core.arrays import Categorical from pandas.core.arrays.categorical import factorize_from_iterables import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, _index_shared_docs, ensure_index, get_unanimous_names, ) from pandas.core.indexes.frozen import FrozenList from pandas.core.indexes.numeric import Int64Index import pandas.core.missing as missing from pandas.core.ops.invalid import make_invalid_op from pandas.core.sorting import ( get_group_index, indexer_from_factorized, lexsort_indexer, ) from pandas.io.formats.printing import ( format_object_attrs, format_object_summary, pprint_thing, ) if TYPE_CHECKING: from pandas import Series _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update( {"klass": "MultiIndex", "target_klass": "MultiIndex or list of tuples"} ) class MultiIndexUIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.UInt64Engine): """ This class manages a MultiIndex by mapping label combinations to positive integers. """ _base = libindex.UInt64Engine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one uint64 (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- scalar or 1-dimensional array, of dtype uint64 Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits: codes <<= self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer: if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) class MultiIndexPyIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.ObjectEngine): """ This class manages those (extreme) cases in which the number of possible label combinations overflows the 64 bits integers, and uses an ObjectEngine containing Python integers. """ _base = libindex.ObjectEngine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one Python integer (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- int, or 1-dimensional array of dtype object Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits. Since this can overflow uint64, first make sure we are # working with Python integers: codes = codes.astype("object") << self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer (per row): if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) def names_compat(meth): """ A decorator to allow either `name` or `names` keyword but not both. This makes it easier to share code with base class. """ @wraps(meth) def new_meth(self_or_cls, *args, **kwargs): if "name" in kwargs and "names" in kwargs: raise TypeError("Can only provide one of `names` and `name`") elif "name" in kwargs: kwargs["names"] = kwargs.pop("name") return meth(self_or_cls, *args, **kwargs) return new_meth class MultiIndex(Index): """ A multi-level, or hierarchical, index object for pandas objects. Parameters ---------- levels : sequence of arrays The unique labels for each level. codes : sequence of arrays Integers for each level designating which label at each location. .. versionadded:: 0.24.0 sortorder : optional int Level of sortedness (must be lexicographically sorted by that level). names : optional sequence of objects Names for each of the index levels. (name is accepted for compat). copy : bool, default False Copy the meta-data. verify_integrity : bool, default True Check that the levels/codes are consistent and valid. Attributes ---------- names levels codes nlevels levshape Methods ------- from_arrays from_tuples from_product from_frame set_levels set_codes to_frame to_flat_index is_lexsorted sortlevel droplevel swaplevel reorder_levels remove_unused_levels get_locs See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Create a MultiIndex from the cartesian product of iterables. MultiIndex.from_tuples : Convert list of tuples to a MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Index : The base pandas Index type. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html>`_ for more. Examples -------- A new ``MultiIndex`` is typically constructed using one of the helper methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product` and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``): >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods. """ _hidden_attrs = Index._hidden_attrs | frozenset() # initialize to zero-length tuples to make everything work _typ = "multiindex" _names = FrozenList() _levels = FrozenList() _codes = FrozenList() _comparables = ["names"] rename = Index.set_names sortorder: Optional[int] # -------------------------------------------------------------------- # Constructors def __new__( cls, levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity: bool = True, ): # compat with Index if name is not None: names = name if levels is None or codes is None: raise TypeError("Must pass both levels and codes") if len(levels) != len(codes): raise ValueError("Length of levels and codes must be the same.") if len(levels) == 0: raise ValueError("Must pass non-zero number of levels/codes") result = object.__new__(MultiIndex) result._cache = {} # we've already validated levels and codes, so shortcut here result._set_levels(levels, copy=copy, validate=False) result._set_codes(codes, copy=copy, validate=False) result._names = [None] * len(levels) if names is not None: # handles name validation result._set_names(names) if sortorder is not None: result.sortorder = int(sortorder) else: result.sortorder = sortorder if verify_integrity: new_codes = result._verify_integrity() result._codes = new_codes result._reset_identity() return result def _validate_codes(self, level: List, code: List): """ Reassign code values as -1 if their corresponding levels are NaN. Parameters ---------- code : list Code to reassign. level : list Level to check for missing values (NaN, NaT, None). Returns ------- new code where code value = -1 if it corresponds to a level with missing values (NaN, NaT, None). """ null_mask = isna(level) if np.any(null_mask): code = np.where(null_mask[code], -1, code) return code def _verify_integrity( self, codes: Optional[List] = None, levels: Optional[List] = None ): """ Parameters ---------- codes : optional list Codes to check for validity. Defaults to current codes. levels : optional list Levels to check for validity. Defaults to current levels. Raises ------ ValueError If length of levels and codes don't match, if the codes for any level would exceed level bounds, or there are any duplicate levels. Returns ------- new codes where code value = -1 if it corresponds to a NaN level. """ # NOTE: Currently does not check, among other things, that cached # nlevels matches nor that sortorder matches actually sortorder. codes = codes or self.codes levels = levels or self.levels if len(levels) != len(codes): raise ValueError( "Length of levels and codes must match. NOTE: " "this index is in an inconsistent state." ) codes_length = len(codes[0]) for i, (level, level_codes) in enumerate(zip(levels, codes)): if len(level_codes) != codes_length: raise ValueError( f"Unequal code lengths: {[len(code_) for code_ in codes]}" ) if len(level_codes) and level_codes.max() >= len(level): raise ValueError( f"On level {i}, code max ({level_codes.max()}) >= length of " f"level ({len(level)}). NOTE: this index is in an " "inconsistent state" ) if len(level_codes) and level_codes.min() < -1: raise ValueError(f"On level {i}, code value ({level_codes.min()}) < -1") if not level.is_unique: raise ValueError( f"Level values must be unique: {list(level)} on level {i}" ) if self.sortorder is not None: if self.sortorder > self._lexsort_depth(): raise ValueError( "Value for sortorder must be inferior or equal to actual " f"lexsort_depth: sortorder {self.sortorder} " f"with lexsort_depth {self._lexsort_depth()}" ) codes = [ self._validate_codes(level, code) for level, code in zip(levels, codes) ] new_codes = FrozenList(codes) return new_codes @classmethod def from_arrays(cls, arrays, sortorder=None, names=lib.no_default) -> "MultiIndex": """ Convert arrays to MultiIndex. Parameters ---------- arrays : list / sequence of array-likes Each array-like gives one level's value for each data point. len(arrays) is the number of levels. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ error_msg = "Input must be a list / sequence of array-likes." if not is_list_like(arrays): raise TypeError(error_msg) elif is_iterator(arrays): arrays = list(arrays) # Check if elements of array are list-like for array in arrays: if not is_list_like(array): raise TypeError(error_msg) # Check if lengths of all arrays are equal or not, # raise ValueError, if not for i in range(1, len(arrays)): if len(arrays[i]) != len(arrays[i - 1]): raise ValueError("all arrays must be same length") codes, levels = factorize_from_iterables(arrays) if names is lib.no_default: names = [getattr(arr, "name", None) for arr in arrays] return cls( levels=levels, codes=codes, sortorder=sortorder, names=names, verify_integrity=False, ) @classmethod @names_compat def from_tuples( cls, tuples, sortorder: Optional[int] = None, names: Optional[Sequence[Label]] = None, ): """ Convert list of tuples to MultiIndex. Parameters ---------- tuples : list / sequence of tuple-likes Each tuple is the index of one row/column. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> tuples = [(1, 'red'), (1, 'blue'), ... (2, 'red'), (2, 'blue')] >>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ if not is_list_like(tuples): raise TypeError("Input must be a list / sequence of tuple-likes.") elif is_iterator(tuples): tuples = list(tuples) arrays: List[Sequence[Label]] if len(tuples) == 0: if names is None: raise TypeError("Cannot infer number of levels from empty list") arrays = [[]] * len(names) elif isinstance(tuples, (np.ndarray, Index)): if isinstance(tuples, Index): tuples = tuples._values arrays = list(lib.tuples_to_object_array(tuples).T) elif isinstance(tuples, list): arrays = list(lib.to_object_array_tuples(tuples).T) else: arrays = zip(*tuples) return cls.from_arrays(arrays, sortorder=sortorder, names=names) @classmethod def from_product(cls, iterables, sortorder=None, names=lib.no_default): """ Make a MultiIndex from the cartesian product of multiple iterables. Parameters ---------- iterables : list / sequence of iterables Each iterable has unique labels for each level of the index. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. .. versionchanged:: 1.0.0 If not explicitly provided, names will be inferred from the elements of iterables if an element has a name attribute Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> numbers = [0, 1, 2] >>> colors = ['green', 'purple'] >>> pd.MultiIndex.from_product([numbers, colors], ... names=['number', 'color']) MultiIndex([(0, 'green'), (0, 'purple'), (1, 'green'), (1, 'purple'), (2, 'green'), (2, 'purple')], names=['number', 'color']) """ from pandas.core.reshape.util import cartesian_product if not is_list_like(iterables): raise TypeError("Input must be a list / sequence of iterables.") elif is_iterator(iterables): iterables = list(iterables) codes, levels = factorize_from_iterables(iterables) if names is lib.no_default: names = [getattr(it, "name", None) for it in iterables] # codes are all ndarrays, so cartesian_product is lossless codes = cartesian_product(codes) return cls(levels, codes, sortorder=sortorder, names=names) @classmethod def from_frame(cls, df, sortorder=None, names=None): """ Make a MultiIndex from a DataFrame. .. versionadded:: 0.24.0 Parameters ---------- df : DataFrame DataFrame to be converted to MultiIndex. sortorder : int, optional Level of sortedness (must be lexicographically sorted by that level). names : list-like, optional If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence. Returns ------- MultiIndex The MultiIndex representation of the given DataFrame. See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. Examples -------- >>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip >>> pd.MultiIndex.from_frame(df) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b']) Using explicit names, instead of the column names >>> pd.MultiIndex.from_frame(df, names=['state', 'observation']) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation']) """ if not isinstance(df, ABCDataFrame): raise TypeError("Input must be a DataFrame") column_names, columns = zip(*df.items()) names = column_names if names is None else names return cls.from_arrays(columns, sortorder=sortorder, names=names) # -------------------------------------------------------------------- @cache_readonly def _values(self): # We override here, since our parent uses _data, which we don't use. values = [] for i in range(self.nlevels): vals = self._get_level_values(i) if is_categorical_dtype(vals.dtype): vals = vals._internal_get_values() if isinstance(vals.dtype, ExtensionDtype) or isinstance( vals, (ABCDatetimeIndex, ABCTimedeltaIndex) ): vals = vals.astype(object) vals = np.array(vals, copy=False) values.append(vals) arr = lib.fast_zip(values) return arr @property def values(self): return self._values @property def array(self): """ Raises a ValueError for `MultiIndex` because there's no single array backing a MultiIndex. Raises ------ ValueError """ raise ValueError( "MultiIndex has no single backing array. Use " "'MultiIndex.to_numpy()' to get a NumPy array of tuples." ) @property def shape(self) -> Shape: """ Return a tuple of the shape of the underlying data. """ # overriding the base Index.shape definition to avoid materializing # the values (GH-27384, GH-27775) return (len(self),) def __len__(self) -> int: return len(self.codes[0]) # -------------------------------------------------------------------- # Levels Methods @cache_readonly def levels(self): # Use cache_readonly to ensure that self.get_locs doesn't repeatedly # create new IndexEngine # https://github.com/pandas-dev/pandas/issues/31648 result = [ x._shallow_copy(name=name) for x, name in zip(self._levels, self._names) ] for level in result: # disallow midx.levels[0].name = "foo" level._no_setting_name = True return FrozenList(result) def _set_levels( self, levels, level=None, copy: bool = False, validate: bool = True, verify_integrity: bool = False, ) -> None: # This is NOT part of the levels property because it should be # externally not allowed to set levels. User beware if you change # _levels directly if validate: if len(levels) == 0: raise ValueError("Must set non-zero number of levels.") if level is None and len(levels) != self.nlevels: raise ValueError("Length of levels must match number of levels.") if level is not None and len(levels) != len(level): raise ValueError("Length of levels must match length of level.") if level is None: new_levels = FrozenList( ensure_index(lev, copy=copy)._shallow_copy() for lev in levels ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_levels_list = list(self._levels) for lev_num, lev in zip(level_numbers, levels): new_levels_list[lev_num] = ensure_index(lev, copy=copy)._shallow_copy() new_levels = FrozenList(new_levels_list) if verify_integrity: new_codes = self._verify_integrity(levels=new_levels) self._codes = new_codes names = self.names self._levels = new_levels if any(names): self._set_names(names) self._reset_cache() def set_levels(self, levels, level=None, inplace=None, verify_integrity=True): """ Set new levels on MultiIndex. Defaults to returning new index. Parameters ---------- levels : sequence or list of sequence New level(s) to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. .. deprecated:: 1.2.0 verify_integrity : bool, default True If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) or None The same type as the caller or None if ``inplace=True``. Examples -------- >>> idx = pd.MultiIndex.from_tuples( ... [ ... (1, "one"), ... (1, "two"), ... (2, "one"), ... (2, "two"), ... (3, "one"), ... (3, "two") ... ], ... names=["foo", "bar"] ... ) >>> idx MultiIndex([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two'), (3, 'one'), (3, 'two')], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2]]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b', 'c'], level=0) MultiIndex([('a', 'one'), ('a', 'two'), ('b', 'one'), ('b', 'two'), ('c', 'one'), ('c', 'two')], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b'], level='bar') MultiIndex([(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')], names=['foo', 'bar']) If any of the levels passed to ``set_levels()`` exceeds the existing length, all of the values from that argument will be stored in the MultiIndex levels, though the values will be truncated in the MultiIndex output. >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]).levels FrozenList([['a', 'b', 'c'], [1, 2, 3, 4]]) """ if inplace is not None: warnings.warn( "inplace is deprecated and will be removed in a future version.", FutureWarning, stacklevel=2, ) else: inplace = False if is_list_like(levels) and not isinstance(levels, Index): levels = list(levels) if level is not None and not is_list_like(level): if not is_list_like(levels): raise TypeError("Levels must be list-like") if is_list_like(levels[0]): raise TypeError("Levels must be list-like") level = [level] levels = [levels] elif level is None or is_list_like(level): if not is_list_like(levels) or not is_list_like(levels[0]): raise TypeError("Levels must be list of lists-like") if inplace: idx = self else: idx = self._shallow_copy() idx._reset_identity() idx._set_levels( levels, level=level, validate=True, verify_integrity=verify_integrity ) if not inplace: return idx @property def nlevels(self) -> int: """ Integer number of levels in this MultiIndex. Examples -------- >>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']]) >>> mi MultiIndex([('a', 'b', 'c')], ) >>> mi.nlevels 3 """ return len(self._levels) @property def levshape(self): """ A tuple with the length of each level. Examples -------- >>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']]) >>> mi MultiIndex([('a', 'b', 'c')], ) >>> mi.levshape (1, 1, 1) """ return tuple(len(x) for x in self.levels) # -------------------------------------------------------------------- # Codes Methods @property def codes(self): return self._codes def _set_codes( self, codes, level=None, copy: bool = False, validate: bool = True, verify_integrity: bool = False, ) -> None: if validate: if level is None and len(codes) != self.nlevels: raise ValueError("Length of codes must match number of levels") if level is not None and len(codes) != len(level): raise ValueError("Length of codes must match length of levels.") if level is None: new_codes = FrozenList( _coerce_indexer_frozen(level_codes, lev, copy=copy).view() for lev, level_codes in zip(self._levels, codes) ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_codes_list = list(self._codes) for lev_num, level_codes in zip(level_numbers, codes): lev = self.levels[lev_num] new_codes_list[lev_num] = _coerce_indexer_frozen( level_codes, lev, copy=copy ) new_codes = FrozenList(new_codes_list) if verify_integrity: new_codes = self._verify_integrity(codes=new_codes) self._codes = new_codes self._reset_cache() def set_codes(self, codes, level=None, inplace=None, verify_integrity=True): """ Set new codes on MultiIndex. Defaults to returning new index. .. versionadded:: 0.24.0 New name for deprecated method `set_labels`. Parameters ---------- codes : sequence or list of sequence New codes to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. .. deprecated:: 1.2.0 verify_integrity : bool (default True) If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) or None The same type as the caller or None if ``inplace=True``. Examples -------- >>> idx = pd.MultiIndex.from_tuples( ... [(1, "one"), (1, "two"), (2, "one"), (2, "two")], names=["foo", "bar"] ... ) >>> idx MultiIndex([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([1, 0, 1, 0], level=0) MultiIndex([(2, 'one'), (1, 'two'), (2, 'one'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([0, 0, 1, 1], level='bar') MultiIndex([(1, 'one'), (1, 'one'), (2, 'two'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]], level=[0, 1]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) """ if inplace is not None: warnings.warn( "inplace is deprecated and will be removed in a future version.", FutureWarning, stacklevel=2, ) else: inplace = False if level is not None and not is_list_like(level): if not is_list_like(codes): raise TypeError("Codes must be list-like") if is_list_like(codes[0]): raise TypeError("Codes must be list-like") level = [level] codes = [codes] elif level is None or is_list_like(level): if not is_list_like(codes) or not is_list_like(codes[0]): raise TypeError("Codes must be list of lists-like") if inplace: idx = self else: idx = self._shallow_copy() idx._reset_identity() idx._set_codes(codes, level=level, verify_integrity=verify_integrity) if not inplace: return idx # -------------------------------------------------------------------- # Index Internals @cache_readonly def _engine(self): # Calculate the number of bits needed to represent labels in each # level, as log2 of their sizes (including -1 for NaN): sizes = np.ceil(np.log2([len(level) + 1 for level in self.levels])) # Sum bit counts, starting from the _right_.... lev_bits = np.cumsum(sizes[::-1])[::-1] # ... in order to obtain offsets such that sorting the combination of # shifted codes (one for each level, resulting in a unique integer) is # equivalent to sorting lexicographically the codes themselves. Notice # that each level needs to be shifted by the number of bits needed to # represent the _previous_ ones: offsets = np.concatenate([lev_bits[1:], [0]]).astype("uint64") # Check the total number of bits needed for our representation: if lev_bits[0] > 64: # The levels would overflow a 64 bit uint - use Python integers: return MultiIndexPyIntEngine(self.levels, self.codes, offsets) return MultiIndexUIntEngine(self.levels, self.codes, offsets) @property def _constructor(self): return type(self).from_tuples @doc(Index._shallow_copy) def _shallow_copy(self, values=None, name=lib.no_default): names = name if name is not lib.no_default else self.names if values is not None: return type(self).from_tuples(values, sortorder=None, names=names) result = type(self)( levels=self.levels, codes=self.codes, sortorder=None, names=names, verify_integrity=False, ) result._cache = self._cache.copy() result._cache.pop("levels", None) # GH32669 return result # -------------------------------------------------------------------- def copy( self, names=None, dtype=None, levels=None, codes=None, deep=False, name=None, ): """ Make a copy of this object. Names, dtype, levels and codes can be passed and will be set on new copy. Parameters ---------- names : sequence, optional dtype : numpy dtype or pandas type, optional .. deprecated:: 1.2.0 levels : sequence, optional .. deprecated:: 1.2.0 codes : sequence, optional .. deprecated:: 1.2.0 deep : bool, default False name : Label Kept for compatibility with 1-dimensional Index. Should not be used. Returns ------- MultiIndex Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. This could be potentially expensive on large MultiIndex objects. """ names = self._validate_names(name=name, names=names, deep=deep) if levels is not None: warnings.warn( "parameter levels is deprecated and will be removed in a future " "version. Use the set_levels method instead.", FutureWarning, stacklevel=2, ) if codes is not None: warnings.warn( "parameter codes is deprecated and will be removed in a future " "version. Use the set_codes method instead.", FutureWarning, stacklevel=2, ) if deep: from copy import deepcopy if levels is None: levels = deepcopy(self.levels) if codes is None: codes = deepcopy(self.codes) levels = levels if levels is not None else self.levels codes = codes if codes is not None else self.codes new_index = type(self)( levels=levels, codes=codes, sortorder=self.sortorder, names=names, verify_integrity=False, ) new_index._cache = self._cache.copy() new_index._cache.pop("levels", None) # GH32669 if dtype: warnings.warn( "parameter dtype is deprecated and will be removed in a future " "version. Use the astype method instead.", FutureWarning, stacklevel=2, ) new_index = new_index.astype(dtype) return new_index def __array__(self, dtype=None) -> np.ndarray: """ the array interface, return my values """ return self.values def view(self, cls=None): """ this is defined as a copy with the same identity """ result = self.copy() result._id = self._id return result @doc(Index.__contains__) def __contains__(self, key: Any) -> bool: hash(key) try: self.get_loc(key) return True except (LookupError, TypeError, ValueError): return False @cache_readonly def dtype(self) -> np.dtype: return np.dtype("O") def _is_memory_usage_qualified(self) -> bool: """ return a boolean if we need a qualified .info display """ def f(level): return "mixed" in level or "string" in level or "unicode" in level return any(f(level) for level in self._inferred_type_levels) @doc(Index.memory_usage) def memory_usage(self, deep: bool = False) -> int: # we are overwriting our base class to avoid # computing .values here which could materialize # a tuple representation unnecessarily return self._nbytes(deep) @cache_readonly def nbytes(self) -> int: """ return the number of bytes in the underlying data """ return self._nbytes(False) def _nbytes(self, deep: bool = False) -> int: """ return the number of bytes in the underlying data deeply introspect the level data if deep=True include the engine hashtable *this is in internal routine* """ # for implementations with no useful getsizeof (PyPy) objsize = 24 level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels) label_nbytes = sum(i.nbytes for i in self.codes) names_nbytes = sum(getsizeof(i, objsize) for i in self.names) result = level_nbytes + label_nbytes + names_nbytes # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # -------------------------------------------------------------------- # Rendering Methods def _formatter_func(self, tup): """ Formats each item in tup according to its level's formatter function. """ formatter_funcs = [level._formatter_func for level in self.levels] return tuple(func(val) for func, val in zip(formatter_funcs, tup)) def _format_data(self, name=None): """ Return the formatted data as a unicode string """ return format_object_summary( self, self._formatter_func, name=name, line_break_each_value=True ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self, include_dtype=False) def _format_native_types(self, na_rep="nan", **kwargs): new_levels = [] new_codes = [] # go through the levels and format them for level, level_codes in zip(self.levels, self.codes): level = level._format_native_types(na_rep=na_rep, **kwargs) # add nan values, if there are any mask = level_codes == -1 if mask.any(): nan_index = len(level) level = np.append(level, na_rep) assert not level_codes.flags.writeable # i.e. copy is needed level_codes = level_codes.copy() # make writeable level_codes[mask] = nan_index new_levels.append(level) new_codes.append(level_codes) if len(new_levels) == 1: # a single-level multi-index return Index(new_levels[0].take(new_codes[0]))._format_native_types() else: # reconstruct the multi-index mi = MultiIndex( levels=new_levels, codes=new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) return mi._values def format( self, name: Optional[bool] = None, formatter: Optional[Callable] = None, na_rep: Optional[str] = None, names: bool = False, space: int = 2, sparsify=None, adjoin: bool = True, ) -> List: if name is not None: names = name if len(self) == 0: return [] stringified_levels = [] for lev, level_codes in zip(self.levels, self.codes): na = na_rep if na_rep is not None else _get_na_rep(lev.dtype.type) if len(lev) > 0: formatted = lev.take(level_codes).format(formatter=formatter) # we have some NA mask = level_codes == -1 if mask.any(): formatted = np.array(formatted, dtype=object) formatted[mask] = na formatted = formatted.tolist() else: # weird all NA case formatted = [ pprint_thing(na if isna(x) else x, escape_chars=("\t", "\r", "\n")) for x in algos.take_1d(lev._values, level_codes) ] stringified_levels.append(formatted) result_levels = [] for lev, lev_name in zip(stringified_levels, self.names): level = [] if names: level.append( pprint_thing(lev_name, escape_chars=("\t", "\r", "\n")) if lev_name is not None else "" ) level.extend(np.array(lev, dtype=object)) result_levels.append(level) if sparsify is None: sparsify = get_option("display.multi_sparse") if sparsify: sentinel = "" # GH3547 use value of sparsify as sentinel if it's "Falsey" assert isinstance(sparsify, bool) or sparsify is lib.no_default if sparsify in [False, lib.no_default]: sentinel = sparsify # little bit of a kludge job for #1217 result_levels = sparsify_labels( result_levels, start=int(names), sentinel=sentinel ) if adjoin: from pandas.io.formats.format import get_adjustment adj = get_adjustment() return adj.adjoin(space, *result_levels).split("\n") else: return result_levels # -------------------------------------------------------------------- # Names Methods def _get_names(self): return FrozenList(self._names) def _set_names(self, names, level=None, validate=True): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None validate : boolean, default True validate that the names match level lengths Raises ------ TypeError if each name is not hashable. Notes ----- sets names on levels. WARNING: mutates! Note that you generally want to set this *after* changing levels, so that it only acts on copies """ # GH 15110 # Don't allow a single string for names in a MultiIndex if names is not None and not is_list_like(names): raise ValueError("Names should be list-like for a MultiIndex") names = list(names) if validate: if level is not None and len(names) != len(level): raise ValueError("Length of names must match length of level.") if level is None and len(names) != self.nlevels: raise ValueError( "Length of names must match number of levels in MultiIndex." ) if level is None: level = range(self.nlevels) else: level = [self._get_level_number(lev) for lev in level] # set the name for lev, name in zip(level, names): if name is not None: # GH 20527 # All items in 'names' need to be hashable: if not is_hashable(name): raise TypeError( f"{type(self).__name__}.name must be a hashable type" ) # pandas\core\indexes\multi.py:1448: error: Cannot determine type # of '__setitem__' [has-type] self._names[lev] = name # type: ignore[has-type] # If .levels has been accessed, the names in our cache will be stale. self._reset_cache() names = property( fset=_set_names, fget=_get_names, doc=""" Names of levels in MultiIndex. Examples -------- >>> mi = pd.MultiIndex.from_arrays( ... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z']) >>> mi MultiIndex([(1, 3, 5), (2, 4, 6)], names=['x', 'y', 'z']) >>> mi.names FrozenList(['x', 'y', 'z']) """, ) # -------------------------------------------------------------------- @doc(Index._get_grouper_for_level) def _get_grouper_for_level(self, mapper, level): indexer = self.codes[level] level_index = self.levels[level] if mapper is not None: # Handle group mapping function and return level_values = self.levels[level].take(indexer) grouper = level_values.map(mapper) return grouper, None, None codes, uniques = algos.factorize(indexer, sort=True) if len(uniques) > 0 and uniques[0] == -1: # Handle NAs mask = indexer != -1 ok_codes, uniques = algos.factorize(indexer[mask], sort=True) codes = np.empty(len(indexer), dtype=indexer.dtype) codes[mask] = ok_codes codes[~mask] = -1 if len(uniques) < len(level_index): # Remove unobserved levels from level_index level_index = level_index.take(uniques) else: # break references back to us so that setting the name # on the output of a groupby doesn't reflect back here. level_index = level_index.copy() if level_index._can_hold_na: grouper = level_index.take(codes, fill_value=True) else: grouper = level_index.take(codes) return grouper, codes, level_index @cache_readonly def inferred_type(self) -> str: return "mixed" def _get_level_number(self, level) -> int: count = self.names.count(level) if (count > 1) and not is_integer(level): raise ValueError( f"The name {level} occurs multiple times, use a level number" ) try: level = self.names.index(level) except ValueError as err: if not is_integer(level): raise KeyError(f"Level {level} not found") from err elif level < 0: level += self.nlevels if level < 0: orig_level = level - self.nlevels raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"{orig_level} is not a valid level number" ) from err # Note: levels are zero-based elif level >= self.nlevels: raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"not {level + 1}" ) from err return level @property def _has_complex_internals(self) -> bool: # used to avoid libreduction code paths, which raise or require conversion return True @cache_readonly def is_monotonic_increasing(self) -> bool: """ return if the index is monotonic increasing (only equal or increasing) values. """ if any(-1 in code for code in self.codes): return False if all(level.is_monotonic for level in self.levels): # If each level is sorted, we can operate on the codes directly. GH27495 return libalgos.is_lexsorted( [x.astype("int64", copy=False) for x in self.codes] ) # reversed() because lexsort() wants the most significant key last. values = [ self._get_level_values(i)._values for i in reversed(range(len(self.levels))) ] try: sort_order = np.lexsort(values) return Index(sort_order).is_monotonic except TypeError: # we have mixed types and np.lexsort is not happy return Index(self._values).is_monotonic @cache_readonly def is_monotonic_decreasing(self) -> bool: """ return if the index is monotonic decreasing (only equal or decreasing) values. """ # monotonic decreasing if and only if reverse is monotonic increasing return self[::-1].is_monotonic_increasing @cache_readonly def _inferred_type_levels(self): """ return a list of the inferred types, one for each level """ return [i.inferred_type for i in self.levels] @doc(Index.duplicated) def duplicated(self, keep="first"): shape = map(len, self.levels) ids = get_group_index(self.codes, shape, sort=False, xnull=False) return duplicated_int64(ids, keep) def fillna(self, value=None, downcast=None): """ fillna is not implemented for MultiIndex """ raise NotImplementedError("isna is not defined for MultiIndex") @doc(Index.dropna) def dropna(self, how="any"): nans = [level_codes == -1 for level_codes in self.codes] if how == "any": indexer = np.any(nans, axis=0) elif how == "all": indexer = np.all(nans, axis=0) else: raise ValueError(f"invalid how option: {how}") new_codes = [level_codes[~indexer] for level_codes in self.codes] return self.set_codes(codes=new_codes) def _get_level_values(self, level, unique=False): """ Return vector of label values for requested level, equal to the length of the index **this is an internal method** Parameters ---------- level : int level unique : bool, default False if True, drop duplicated values Returns ------- values : ndarray """ lev = self.levels[level] level_codes = self.codes[level] name = self._names[level] if unique: level_codes = algos.unique(level_codes) filled = algos.take_1d(lev._values, level_codes, fill_value=lev._na_value) return lev._shallow_copy(filled, name=name) def get_level_values(self, level): """ Return vector of label values for requested level. Length of returned vector is equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index Values is a level of this MultiIndex converted to a single :class:`Index` (or subclass thereof). Examples -------- Create a MultiIndex: >>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def'))) >>> mi.names = ['level_1', 'level_2'] Get level values by supplying level as either integer or name: >>> mi.get_level_values(0) Index(['a', 'b', 'c'], dtype='object', name='level_1') >>> mi.get_level_values('level_2') Index(['d', 'e', 'f'], dtype='object', name='level_2') """ level = self._get_level_number(level) values = self._get_level_values(level) return values @doc(Index.unique) def unique(self, level=None): if level is None: return super().unique() else: level = self._get_level_number(level) return self._get_level_values(level=level, unique=True) def to_frame(self, index=True, name=None): """ Create a DataFrame with the levels of the MultiIndex as columns. Column ordering is determined by the DataFrame constructor with data as a dict. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original MultiIndex. name : list / sequence of str, optional The passed names should substitute index level names. Returns ------- DataFrame : a DataFrame containing the original MultiIndex data. See Also -------- DataFrame : Two-dimensional, size-mutable, potentially heterogeneous tabular data. Examples -------- >>> mi = pd.MultiIndex.from_arrays([['a', 'b'], ['c', 'd']]) >>> mi MultiIndex([('a', 'c'), ('b', 'd')], ) >>> df = mi.to_frame() >>> df 0 1 a c a c b d b d >>> df = mi.to_frame(index=False) >>> df 0 1 0 a c 1 b d >>> df = mi.to_frame(name=['x', 'y']) >>> df x y a c a c b d b d """ from pandas import DataFrame if name is not None: if not is_list_like(name): raise TypeError("'name' must be a list / sequence of column names.") if len(name) != len(self.levels): raise ValueError( "'name' should have same length as number of levels on index." ) idx_names = name else: idx_names = self.names # Guarantee resulting column order - PY36+ dict maintains insertion order result = DataFrame( { (level if lvlname is None else lvlname): self._get_level_values(level) for lvlname, level in zip(idx_names, range(len(self.levels))) }, copy=False, ) if index: result.index = self return result def to_flat_index(self): """ Convert a MultiIndex to an Index of Tuples containing the level values. .. versionadded:: 0.24.0 Returns ------- pd.Index Index with the MultiIndex data represented in Tuples. Notes ----- This method will simply return the caller if called by anything other than a MultiIndex. Examples -------- >>> index = pd.MultiIndex.from_product( ... [['foo', 'bar'], ['baz', 'qux']], ... names=['a', 'b']) >>> index.to_flat_index() Index([('foo', 'baz'), ('foo', 'qux'), ('bar', 'baz'), ('bar', 'qux')], dtype='object') """ return Index(self._values, tupleize_cols=False) @property def _is_all_dates(self) -> bool: return False def is_lexsorted(self) -> bool: """ Return True if the codes are lexicographically sorted. Returns ------- bool Examples -------- In the below examples, the first level of the MultiIndex is sorted because a<b<c, so there is no need to look at the next level. >>> pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['d', 'e', 'f']]).is_lexsorted() True >>> pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['d', 'f', 'e']]).is_lexsorted() True In case there is a tie, the lexicographical sorting looks at the next level of the MultiIndex. >>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'b', 'c']]).is_lexsorted() True >>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'c', 'b']]).is_lexsorted() False >>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], ... ['aa', 'bb', 'aa', 'bb']]).is_lexsorted() True >>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], ... ['bb', 'aa', 'aa', 'bb']]).is_lexsorted() False """ return self.lexsort_depth == self.nlevels @cache_readonly def lexsort_depth(self): if self.sortorder is not None: return self.sortorder return self._lexsort_depth() def _lexsort_depth(self) -> int: """ Compute and return the lexsort_depth, the number of levels of the MultiIndex that are sorted lexically Returns ------- int """ int64_codes = [ensure_int64(level_codes) for level_codes in self.codes] for k in range(self.nlevels, 0, -1): if libalgos.is_lexsorted(int64_codes[:k]): return k return 0 def _sort_levels_monotonic(self): """ This is an *internal* function. Create a new MultiIndex from the current to monotonically sorted items IN the levels. This does not actually make the entire MultiIndex monotonic, JUST the levels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.sort_values() MultiIndex([('a', 'aa'), ('a', 'bb'), ('b', 'aa'), ('b', 'bb')], ) """ if self.is_lexsorted() and self.is_monotonic: return self new_levels = [] new_codes = [] for lev, level_codes in zip(self.levels, self.codes): if not lev.is_monotonic: try: # indexer to reorder the levels indexer = lev.argsort() except TypeError: pass else: lev = lev.take(indexer) # indexer to reorder the level codes indexer = ensure_int64(indexer) ri = lib.get_reverse_indexer(indexer, len(indexer)) level_codes = algos.take_1d(ri, level_codes) new_levels.append(lev) new_codes.append(level_codes) return MultiIndex( new_levels, new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def remove_unused_levels(self): """ Create new MultiIndex from current that removes unused levels. Unused level(s) means levels that are not expressed in the labels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex.from_product([range(2), list('ab')]) >>> mi MultiIndex([(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')], ) >>> mi[2:] MultiIndex([(1, 'a'), (1, 'b')], ) The 0 from the first level is not represented and can be removed >>> mi2 = mi[2:].remove_unused_levels() >>> mi2.levels FrozenList([[1], ['a', 'b']]) """ new_levels = [] new_codes = [] changed = False for lev, level_codes in zip(self.levels, self.codes): # Since few levels are typically unused, bincount() is more # efficient than unique() - however it only accepts positive values # (and drops order): uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1 has_na = int(len(uniques) and (uniques[0] == -1)) if len(uniques) != len(lev) + has_na: # We have unused levels changed = True # Recalculate uniques, now preserving order. # Can easily be cythonized by exploiting the already existing # "uniques" and stop parsing "level_codes" when all items # are found: uniques = algos.unique(level_codes) if has_na: na_idx = np.where(uniques == -1)[0] # Just ensure that -1 is in first position: uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]] # codes get mapped from uniques to 0:len(uniques) # -1 (if present) is mapped to last position code_mapping = np.zeros(len(lev) + has_na) # ... and reassigned value -1: code_mapping[uniques] = np.arange(len(uniques)) - has_na level_codes = code_mapping[level_codes] # new levels are simple lev = lev.take(uniques[has_na:]) new_levels.append(lev) new_codes.append(level_codes) result = self.view() if changed: result._reset_identity() result._set_levels(new_levels, validate=False) result._set_codes(new_codes, validate=False) return result # -------------------------------------------------------------------- # Pickling Methods def __reduce__(self): """Necessary for making this object picklable""" d = { "levels": list(self.levels), "codes": list(self.codes), "sortorder": self.sortorder, "names": list(self.names), } return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- def __getitem__(self, key): if is_scalar(key): key = com.cast_scalar_indexer(key, warn_float=True) retval = [] for lev, level_codes in zip(self.levels, self.codes): if level_codes[key] == -1: retval.append(np.nan) else: retval.append(lev[level_codes[key]]) return tuple(retval) else: if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) sortorder = self.sortorder else: # cannot be sure whether the result will be sorted sortorder = None if isinstance(key, Index): key = np.asarray(key) new_codes = [level_codes[key] for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, sortorder=sortorder, verify_integrity=False, ) @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take((), kwargs) indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value allow_fill = self._maybe_disallow_fill(allow_fill, fill_value, indices) na_value = -1 if allow_fill: taken = [lab.take(indices) for lab in self.codes] mask = indices == -1 if mask.any(): masked = [] for new_label in taken: label_values = new_label label_values[mask] = na_value masked.append(np.asarray(label_values)) taken = masked else: taken = [lab.take(indices) for lab in self.codes] return MultiIndex( levels=self.levels, codes=taken, names=self.names, verify_integrity=False ) def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ if not isinstance(other, (list, tuple)): other = [other] if all( (isinstance(o, MultiIndex) and o.nlevels >= self.nlevels) for o in other ): arrays = [] for i in range(self.nlevels): label = self._get_level_values(i) appended = [o._get_level_values(i) for o in other] arrays.append(label.append(appended)) return MultiIndex.from_arrays(arrays, names=self.names) to_concat = (self._values,) + tuple(k._values for k in other) new_tuples = np.concatenate(to_concat) # if all(isinstance(x, MultiIndex) for x in other): try: return MultiIndex.from_tuples(new_tuples, names=self.names) except (TypeError, IndexError): return Index(new_tuples) def argsort(self, *args, **kwargs) -> np.ndarray: return self._values.argsort(*args, **kwargs) @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): nv.validate_repeat((), {"axis": axis}) repeats = ensure_platform_int(repeats) return MultiIndex( levels=self.levels, codes=[ level_codes.view(np.ndarray).astype(np.intp).repeat(repeats) for level_codes in self.codes ], names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def where(self, cond, other=None): raise NotImplementedError(".where is not supported for MultiIndex operations") def drop(self, codes, level=None, errors="raise"): """ Make new MultiIndex with passed list of codes deleted Parameters ---------- codes : array-like Must be a list of tuples when level is not specified level : int or level name, default None errors : str, default 'raise' Returns ------- dropped : MultiIndex """ if level is not None: return self._drop_from_level(codes, level, errors) if not isinstance(codes, (np.ndarray, Index)): try: codes = com.index_labels_to_array(codes, dtype=object) except ValueError: pass inds = [] for level_codes in codes: try: loc = self.get_loc(level_codes) # get_loc returns either an integer, a slice, or a boolean # mask if isinstance(loc, int): inds.append(loc) elif isinstance(loc, slice): step = loc.step if loc.step is not None else 1 inds.extend(range(loc.start, loc.stop, step)) elif com.is_bool_indexer(loc): if self.lexsort_depth == 0: warnings.warn( "dropping on a non-lexsorted multi-index " "without a level parameter may impact performance.", PerformanceWarning, stacklevel=3, ) loc = loc.nonzero()[0] inds.extend(loc) else: msg = f"unsupported indexer of type {type(loc)}" raise AssertionError(msg) except KeyError: if errors != "ignore": raise return self.delete(inds) def _drop_from_level(self, codes, level, errors="raise"): codes = com.index_labels_to_array(codes) i = self._get_level_number(level) index = self.levels[i] values = index.get_indexer(codes) # If nan should be dropped it will equal -1 here. We have to check which values # are not nan and equal -1, this means they are missing in the index nan_codes = isna(codes) values[(np.equal(nan_codes, False)) & (values == -1)] = -2 if index.shape[0] == self.shape[0]: values[np.equal(nan_codes, True)] = -2 not_found = codes[values == -2] if len(not_found) != 0 and errors != "ignore": raise KeyError(f"labels {not_found} not found in level") mask = ~algos.isin(self.codes[i], values) return self[mask] def swaplevel(self, i=-2, j=-1): """ Swap level i with level j. Calling this method does not change the ordering of the values. Parameters ---------- i : int, str, default -2 First level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. j : int, str, default -1 Second level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. Returns ------- MultiIndex A new MultiIndex. See Also -------- Series.swaplevel : Swap levels i and j in a MultiIndex. Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a particular axis. Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.swaplevel(0, 1) MultiIndex([('bb', 'a'), ('aa', 'a'), ('bb', 'b'), ('aa', 'b')], ) """ new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) i = self._get_level_number(i) j = self._get_level_number(j) new_levels[i], new_levels[j] = new_levels[j], new_levels[i] new_codes[i], new_codes[j] = new_codes[j], new_codes[i] new_names[i], new_names[j] = new_names[j], new_names[i] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def reorder_levels(self, order): """ Rearrange levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex.from_arrays([[1, 2], [3, 4]], names=['x', 'y']) >>> mi MultiIndex([(1, 3), (2, 4)], names=['x', 'y']) >>> mi.reorder_levels(order=[1, 0]) MultiIndex([(3, 1), (4, 2)], names=['y', 'x']) >>> mi.reorder_levels(order=['y', 'x']) MultiIndex([(3, 1), (4, 2)], names=['y', 'x']) """ order = [self._get_level_number(i) for i in order] if len(order) != self.nlevels: raise AssertionError( f"Length of order must be same as number of levels ({self.nlevels}), " f"got {len(order)}" ) new_levels = [self.levels[i] for i in order] new_codes = [self.codes[i] for i in order] new_names = [self.names[i] for i in order] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def _get_codes_for_sorting(self): """ we are categorizing our codes by using the available categories (all, not just observed) excluding any missing ones (-1); this is in preparation for sorting, where we need to disambiguate that -1 is not a valid valid """ def cats(level_codes): return np.arange( np.array(level_codes).max() + 1 if len(level_codes) else 0, dtype=level_codes.dtype, ) return [ Categorical.from_codes(level_codes, cats(level_codes), ordered=True) for level_codes in self.codes ] def sortlevel(self, level=0, ascending=True, sort_remaining=True): """ Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level. Parameters ---------- level : list-like, int or str, default 0 If a string is given, must be a name of the level. If list-like must be names or ints of levels. ascending : bool, default True False to sort in descending order. Can also be a list to specify a directed ordering. sort_remaining : sort by the remaining levels after level Returns ------- sorted_index : pd.MultiIndex Resulting index. indexer : np.ndarray Indices of output values in original index. Examples -------- >>> mi = pd.MultiIndex.from_arrays([[0, 0], [2, 1]]) >>> mi MultiIndex([(0, 2), (0, 1)], ) >>> mi.sortlevel() (MultiIndex([(0, 1), (0, 2)], ), array([1, 0])) >>> mi.sortlevel(sort_remaining=False) (MultiIndex([(0, 2), (0, 1)], ), array([0, 1])) >>> mi.sortlevel(1) (MultiIndex([(0, 1), (0, 2)], ), array([1, 0])) >>> mi.sortlevel(1, ascending=False) (MultiIndex([(0, 2), (0, 1)], ), array([0, 1])) """ if isinstance(level, (str, int)): level = [level] level = [self._get_level_number(lev) for lev in level] sortorder = None # we have a directed ordering via ascending if isinstance(ascending, list): if not len(level) == len(ascending): raise ValueError("level must have same length as ascending") indexer = lexsort_indexer( [self.codes[lev] for lev in level], orders=ascending ) # level ordering else: codes = list(self.codes) shape = list(self.levshape) # partition codes and shape primary = tuple(codes[lev] for lev in level) primshp = tuple(shape[lev] for lev in level) # Reverse sorted to retain the order of # smaller indices that needs to be removed for lev in sorted(level, reverse=True): codes.pop(lev) shape.pop(lev) if sort_remaining: primary += primary + tuple(codes) primshp += primshp + tuple(shape) else: sortorder = level[0] indexer = indexer_from_factorized(primary, primshp, compress=False) if not ascending: indexer = indexer[::-1] indexer = ensure_platform_int(indexer) new_codes = [level_codes.take(indexer) for level_codes in self.codes] new_index = MultiIndex( codes=new_codes, levels=self.levels, names=self.names, sortorder=sortorder, verify_integrity=False, ) return new_index, indexer def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.MultiIndex Resulting index indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "names") if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") # GH7774: preserve dtype/tz if target is empty and not an Index. # target may be an iterator target = ibase.ensure_has_len(target) if len(target) == 0 and not isinstance(target, Index): idx = self.levels[level] attrs = idx._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq target = type(idx)._simple_new(np.empty(0, dtype=idx.dtype), **attrs) else: target = ensure_index(target) target, indexer, _ = self._join_level( target, level, how="right", return_indexers=True, keep_order=False ) else: target = ensure_index(target) if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: raise ValueError("cannot handle a non-unique multi-index!") if not isinstance(target, MultiIndex): if indexer is None: target = self elif (indexer >= 0).all(): target = self.take(indexer) else: # hopefully? target = MultiIndex.from_tuples(target) if ( preserve_names and target.nlevels == self.nlevels and target.names != self.names ): target = target.copy(deep=False) target.names = self.names return target, indexer # -------------------------------------------------------------------- # Indexing Methods def _check_indexing_error(self, key): if not is_hashable(key) or is_iterator(key): # We allow tuples if they are hashable, whereas other Index # subclasses require scalar. # We have to explicitly exclude generators, as these are hashable. raise InvalidIndexError(key) def _should_fallback_to_positional(self) -> bool: """ Should integer key(s) be treated as positional? """ # GH#33355 return self.levels[0]._should_fallback_to_positional() def _get_values_for_loc(self, series: "Series", loc, key): """ Do a positional lookup on the given Series, returning either a scalar or a Series. Assumes that `series.index is self` """ new_values = series._values[loc] if is_scalar(loc): return new_values if len(new_values) == 1 and not self.nlevels > 1: # If more than one level left, we can not return a scalar return new_values[0] new_index = self[loc] new_index = maybe_droplevels(new_index, key) new_ser = series._constructor(new_values, index=new_index, name=series.name) return new_ser.__finalize__(series) def _convert_listlike_indexer(self, keyarr): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ indexer, keyarr = super()._convert_listlike_indexer(keyarr) # are we indexing a specific level if indexer is None and len(keyarr) and not isinstance(keyarr[0], tuple): level = 0 _, indexer = self.reindex(keyarr, level=level) # take all if indexer is None: indexer = np.arange(len(self)) check = self.levels[0].get_indexer(keyarr) mask = check == -1 if mask.any(): raise KeyError(f"{keyarr[mask]} not in index") return indexer, keyarr def _get_partial_string_timestamp_match_key(self, key): """ Translate any partial string timestamp matches in key, returning the new key. Only relevant for MultiIndex. """ # GH#10331 if isinstance(key, str) and self.levels[0]._supports_partial_string_indexing: # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = (key,) + (slice(None),) * (len(self.levels) - 1) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and self.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) # empty indexer if is_list_like(target) and not len(target): return ensure_platform_int(np.array([])) if not isinstance(target, MultiIndex): try: target = MultiIndex.from_tuples(target) except (TypeError, ValueError): # let's instead try with a straight Index if method is None: return Index(self._values).get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise ValueError("Reindexing only valid with uniquely valued Index objects") if method == "pad" or method == "backfill": if tolerance is not None: raise NotImplementedError( "tolerance not implemented yet for MultiIndex" ) indexer = self._engine.get_indexer( values=self._values, target=target, method=method, limit=limit ) elif method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet " "for MultiIndex; see GitHub issue 9365" ) else: indexer = self._engine.get_indexer(target) return ensure_platform_int(indexer) def get_slice_bound( self, label: Union[Hashable, Sequence[Hashable]], side: str, kind: str ) -> int: """ For an ordered MultiIndex, compute slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if `side=='right') position of given label. Parameters ---------- label : object or tuple of objects side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- int Index of label. Notes ----- This method only works if level 0 index of the MultiIndex is lexsorted. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbc'), list('gefd')]) Get the locations from the leftmost 'b' in the first level until the end of the multiindex: >>> mi.get_slice_bound('b', side="left", kind="loc") 1 Like above, but if you get the locations from the rightmost 'b' in the first level and 'f' in the second level: >>> mi.get_slice_bound(('b','f'), side="right", kind="loc") 3 See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ if not isinstance(label, tuple): label = (label,) return self._partial_tup_index(label, side=side) def slice_locs(self, start=None, end=None, step=None, kind=None): """ For an ordered MultiIndex, compute the slice locations for input labels. The input labels can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple. Parameters ---------- start : label or tuple, default None If None, defaults to the beginning end : label or tuple If None, defaults to the end step : int or None Slice step kind : string, optional, defaults None Returns ------- (start, end) : (int, int) Notes ----- This method only works if the MultiIndex is properly lexsorted. So, if only the first 2 levels of a 3-level MultiIndex are lexsorted, you can only pass two levels to ``.slice_locs``. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')], ... names=['A', 'B']) Get the slice locations from the beginning of 'b' in the first level until the end of the multiindex: >>> mi.slice_locs(start='b') (1, 4) Like above, but stop at the end of 'b' in the first level and 'f' in the second level: >>> mi.slice_locs(start='b', end=('b', 'f')) (1, 3) See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ # This function adds nothing to its parent implementation (the magic # happens in get_slice_bound method), but it adds meaningful doc. return super().slice_locs(start, end, step, kind=kind) def _partial_tup_index(self, tup, side="left"): if len(tup) > self.lexsort_depth: raise UnsortedIndexError( f"Key length ({len(tup)}) was greater than MultiIndex lexsort depth " f"({self.lexsort_depth})" ) n = len(tup) start, end = 0, len(self) zipped = zip(tup, self.levels, self.codes) for k, (lab, lev, labs) in enumerate(zipped): section = labs[start:end] if lab not in lev and not isna(lab): if not lev.is_type_compatible(lib.infer_dtype([lab], skipna=False)): raise TypeError(f"Level type mismatch: {lab}") # short circuit loc = lev.searchsorted(lab, side=side) if side == "right" and loc >= 0: loc -= 1 return start + section.searchsorted(loc, side=side) idx = self._get_loc_single_level_index(lev, lab) if isinstance(idx, slice) and k < n - 1: # Get start and end value from slice, necessary when a non-integer # interval is given as input GH#37707 start = idx.start end = idx.stop elif k < n - 1: end = start + section.searchsorted(idx, side="right") start = start + section.searchsorted(idx, side="left") elif isinstance(idx, slice): idx = idx.start return start + section.searchsorted(idx, side=side) else: return start + section.searchsorted(idx, side=side) def _get_loc_single_level_index(self, level_index: Index, key: Hashable) -> int: """ If key is NA value, location of index unify as -1. Parameters ---------- level_index: Index key : label Returns ------- loc : int If key is NA value, loc is -1 Else, location of key in index. See Also -------- Index.get_loc : The get_loc method for (single-level) index. """ if is_scalar(key) and isna(key): return -1 else: return level_index.get_loc(key) def get_loc(self, key, method=None): """ Get location for a label or a tuple of labels. The location is returned as an integer/slice or boolean mask. Parameters ---------- key : label or tuple of labels (one for each level) method : None Returns ------- loc : int, slice object or boolean mask If the key is past the lexsort depth, the return may be a boolean mask array, otherwise it is always a slice or int. See Also -------- Index.get_loc : The get_loc method for (single-level) index. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Notes ----- The key cannot be a slice, list of same-level labels, a boolean mask, or a sequence of such. If you want to use those, use :meth:`MultiIndex.get_locs` instead. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_loc('b') slice(1, 3, None) >>> mi.get_loc(('b', 'e')) 1 """ if method is not None: raise NotImplementedError( "only the default get_loc method is " "currently supported for MultiIndex" ) hash(key) def _maybe_to_slice(loc): """convert integer indexer to boolean mask or slice if possible""" if not isinstance(loc, np.ndarray) or loc.dtype != np.intp: return loc loc = lib.maybe_indices_to_slice(loc, len(self)) if isinstance(loc, slice): return loc mask = np.empty(len(self), dtype="bool") mask.fill(False) mask[loc] = True return mask if not isinstance(key, tuple): loc = self._get_level_indexer(key, level=0) return _maybe_to_slice(loc) keylen = len(key) if self.nlevels < keylen: raise KeyError( f"Key length ({keylen}) exceeds index depth ({self.nlevels})" ) if keylen == self.nlevels and self.is_unique: return self._engine.get_loc(key) # -- partial selection or non-unique index # break the key into 2 parts based on the lexsort_depth of the index; # the first part returns a continuous slice of the index; the 2nd part # needs linear search within the slice i = self.lexsort_depth lead_key, follow_key = key[:i], key[i:] start, stop = ( self.slice_locs(lead_key, lead_key) if lead_key else (0, len(self)) ) if start == stop: raise KeyError(key) if not follow_key: return slice(start, stop) warnings.warn( "indexing past lexsort depth may impact performance.", PerformanceWarning, stacklevel=10, ) loc = np.arange(start, stop, dtype=np.intp) for i, k in enumerate(follow_key, len(lead_key)): mask = self.codes[i][loc] == self._get_loc_single_level_index( self.levels[i], k ) if not mask.all(): loc = loc[mask] if not len(loc): raise KeyError(key) return _maybe_to_slice(loc) if len(loc) != stop - start else slice(start, stop) def get_loc_level(self, key, level=0, drop_level: bool = True): """ Get location and sliced index for requested label(s)/level(s). Parameters ---------- key : label or sequence of labels level : int/level name or list thereof, optional drop_level : bool, default True If ``False``, the resulting index will not drop any level. Returns ------- loc : A 2-tuple where the elements are: Element 0: int, slice object or boolean array Element 1: The resulting sliced multiindex/index. If the key contains all levels, this will be ``None``. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')], ... names=['A', 'B']) >>> mi.get_loc_level('b') (slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B')) >>> mi.get_loc_level('e', level='B') (array([False, True, False]), Index(['b'], dtype='object', name='A')) >>> mi.get_loc_level(['b', 'e']) (1, None) """ if not isinstance(level, (list, tuple)): level = self._get_level_number(level) else: level = [self._get_level_number(lev) for lev in level] return self._get_loc_level(key, level=level, drop_level=drop_level) def _get_loc_level( self, key, level: Union[int, List[int]] = 0, drop_level: bool = True ): """ get_loc_level but with `level` known to be positional, not name-based. """ # different name to distinguish from maybe_droplevels def maybe_mi_droplevels(indexer, levels, drop_level: bool): if not drop_level: return self[indexer] # kludge around orig_index = new_index = self[indexer] for i in sorted(levels, reverse=True): try: new_index = new_index._drop_level_numbers([i]) except ValueError: # no dropping here return orig_index return new_index if isinstance(level, (tuple, list)): if len(key) != len(level): raise AssertionError( "Key for location must have same length as number of levels" ) result = None for lev, k in zip(level, key): loc, new_index = self._get_loc_level(k, level=lev) if isinstance(loc, slice): mask = np.zeros(len(self), dtype=bool) mask[loc] = True loc = mask result = loc if result is None else result & loc return result, maybe_mi_droplevels(result, level, drop_level) # kludge for #1796 if isinstance(key, list): key = tuple(key) if isinstance(key, tuple) and level == 0: try: if key in self.levels[0]: indexer = self._get_level_indexer(key, level=level) new_index = maybe_mi_droplevels(indexer, [0], drop_level) return indexer, new_index except (TypeError, InvalidIndexError): pass if not any(isinstance(k, slice) for k in key): # partial selection # optionally get indexer to avoid re-calculation def partial_selection(key, indexer=None): if indexer is None: indexer = self.get_loc(key) ilevels = [ i for i in range(len(key)) if key[i] != slice(None, None) ] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) if len(key) == self.nlevels and self.is_unique: # Complete key in unique index -> standard get_loc try: return (self._engine.get_loc(key), None) except KeyError as e: raise KeyError(key) from e else: return partial_selection(key) else: indexer = None for i, k in enumerate(key): if not isinstance(k, slice): k = self._get_level_indexer(k, level=i) if isinstance(k, slice): # everything if k.start == 0 and k.stop == len(self): k = slice(None, None) else: k_index = k if isinstance(k, slice): if k == slice(None, None): continue else: raise TypeError(key) if indexer is None: indexer = k_index else: # pragma: no cover indexer &= k_index if indexer is None: indexer = slice(None, None) ilevels = [i for i in range(len(key)) if key[i] != slice(None, None)] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) else: indexer = self._get_level_indexer(key, level=level) return indexer, maybe_mi_droplevels(indexer, [level], drop_level) def _get_level_indexer(self, key, level: int = 0, indexer=None): # `level` kwarg is _always_ positional, never name # return an indexer, boolean array or a slice showing where the key is # in the totality of values # if the indexer is provided, then use this level_index = self.levels[level] level_codes = self.codes[level] def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes): # given the inputs and the codes/indexer, compute an indexer set # if we have a provided indexer, then this need not consider # the entire labels set if step is not None and step < 0: # Switch elements for negative step size start, stop = stop - 1, start - 1 r = np.arange(start, stop, step) if indexer is not None and len(indexer) != len(codes): # we have an indexer which maps the locations in the labels # that we have already selected (and is not an indexer for the # entire set) otherwise this is wasteful so we only need to # examine locations that are in this set the only magic here is # that the result are the mappings to the set that we have # selected from pandas import Series mapper = Series(indexer) indexer = codes.take(ensure_platform_int(indexer)) result = Series(Index(indexer).isin(r).nonzero()[0]) m = result.map(mapper) m = np.asarray(m) else: m = np.zeros(len(codes), dtype=bool) m[np.in1d(codes, r, assume_unique=Index(codes).is_unique)] = True return m if isinstance(key, slice): # handle a slice, returning a slice if we can # otherwise a boolean indexer try: if key.start is not None: start = level_index.get_loc(key.start) else: start = 0 if key.stop is not None: stop = level_index.get_loc(key.stop) elif isinstance(start, slice): stop = len(level_index) else: stop = len(level_index) - 1 step = key.step except KeyError: # we have a partial slice (like looking up a partial date # string) start = stop = level_index.slice_indexer( key.start, key.stop, key.step, kind="loc" ) step = start.step if isinstance(start, slice) or isinstance(stop, slice): # we have a slice for start and/or stop # a partial date slicer on a DatetimeIndex generates a slice # note that the stop ALREADY includes the stopped point (if # it was a string sliced) start = getattr(start, "start", start) stop = getattr(stop, "stop", stop) return convert_indexer(start, stop, step) elif level > 0 or self.lexsort_depth == 0 or step is not None: # need to have like semantics here to right # searching as when we are using a slice # so include the stop+1 (so we include stop) return convert_indexer(start, stop + 1, step) else: # sorted, so can return slice object -> view i = level_codes.searchsorted(start, side="left") j = level_codes.searchsorted(stop, side="right") return slice(i, j, step) else: idx = self._get_loc_single_level_index(level_index, key) if level > 0 or self.lexsort_depth == 0: # Desired level is not sorted locs = np.array(level_codes == idx, dtype=bool, copy=False) if not locs.any(): # The label is present in self.levels[level] but unused: raise KeyError(key) return locs if isinstance(idx, slice): start = idx.start end = idx.stop else: start = level_codes.searchsorted(idx, side="left") end = level_codes.searchsorted(idx, side="right") if start == end: # The label is present in self.levels[level] but unused: raise KeyError(key) return slice(start, end) def get_locs(self, seq): """ Get location for a sequence of labels. Parameters ---------- seq : label, slice, list, mask or a sequence of such You should use one of the above for each level. If a level should not be used, set it to ``slice(None)``. Returns ------- numpy.ndarray NumPy array of integers suitable for passing to iloc. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_locs('b') # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([slice(None), ['e', 'f']]) # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([[True, False, True], slice('e', 'f')]) # doctest: +SKIP array([2], dtype=int64) """ # must be lexsorted to at least as many levels true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s] if true_slices and true_slices[-1] >= self.lexsort_depth: raise UnsortedIndexError( "MultiIndex slicing requires the index to be lexsorted: slicing " f"on levels {true_slices}, lexsort depth {self.lexsort_depth}" ) # indexer # this is the list of all values that we want to select n = len(self) indexer = None def _convert_to_indexer(r) -> Int64Index: # return an indexer if isinstance(r, slice): m = np.zeros(n, dtype=bool) m[r] = True r = m.nonzero()[0] elif com.is_bool_indexer(r): if len(r) != n: raise ValueError( "cannot index with a boolean indexer " "that is not the same length as the " "index" ) r = r.nonzero()[0] return Int64Index(r) def _update_indexer( idxr: Optional[Index], indexer: Optional[Index], key ) -> Index: if indexer is None: indexer = Index(np.arange(n)) if idxr is None: return indexer indexer_intersection = indexer.intersection(idxr) if indexer_intersection.empty and not idxr.empty and not indexer.empty: raise KeyError(key) return indexer_intersection for i, k in enumerate(seq): if com.is_bool_indexer(k): # a boolean indexer, must be the same length! k = np.asarray(k) indexer = _update_indexer( _convert_to_indexer(k), indexer=indexer, key=seq ) elif is_list_like(k): # a collection of labels to include from this level (these # are or'd) indexers: Optional[Int64Index] = None for x in k: try: idxrs = _convert_to_indexer( self._get_level_indexer(x, level=i, indexer=indexer) ) indexers = (idxrs if indexers is None else indexers).union( idxrs, sort=False ) except KeyError: # ignore not founds continue if indexers is not None: indexer = _update_indexer(indexers, indexer=indexer, key=seq) else: # no matches we are done return np.array([], dtype=np.int64) elif com.is_null_slice(k): # empty slice indexer = _update_indexer(None, indexer=indexer, key=seq) elif isinstance(k, slice): # a slice, include BOTH of the labels indexer = _update_indexer( _convert_to_indexer( self._get_level_indexer(k, level=i, indexer=indexer) ), indexer=indexer, key=seq, ) else: # a single label indexer = _update_indexer( _convert_to_indexer( self.get_loc_level(k, level=i, drop_level=False)[0] ), indexer=indexer, key=seq, ) # empty indexer if indexer is None: return np.array([], dtype=np.int64) assert isinstance(indexer, Int64Index), type(indexer) indexer = self._reorder_indexer(seq, indexer) return indexer._values # -------------------------------------------------------------------- def _reorder_indexer( self, seq: Tuple[Union[Scalar, Iterable, AnyArrayLike], ...], indexer: Int64Index, ) -> Int64Index: """ Reorder an indexer of a MultiIndex (self) so that the label are in the same order as given in seq Parameters ---------- seq : label/slice/list/mask or a sequence of such indexer: an Int64Index indexer of self Returns ------- indexer : a sorted Int64Index indexer of self ordered as seq """ # If the index is lexsorted and the list_like label in seq are sorted # then we do not need to sort if self.is_lexsorted(): need_sort = False for i, k in enumerate(seq): if is_list_like(k): if not need_sort: k_codes = self.levels[i].get_indexer(k) k_codes = k_codes[k_codes >= 0] # Filter absent keys # True if the given codes are not ordered need_sort = (k_codes[:-1] > k_codes[1:]).any() elif isinstance(k, slice) and k.step is not None and k.step < 0: need_sort = True # Bail out if both index and seq are sorted if not need_sort: return indexer n = len(self) keys: Tuple[np.ndarray, ...] = () # For each level of the sequence in seq, map the level codes with the # order they appears in a list-like sequence # This mapping is then use to reorder the indexer for i, k in enumerate(seq): if is_scalar(k): # GH#34603 we want to treat a scalar the same as an all equal list k = [k] if com.is_bool_indexer(k): new_order = np.arange(n)[indexer] elif is_list_like(k): # Generate a map with all level codes as sorted initially key_order_map = np.ones(len(self.levels[i]), dtype=np.uint64) * len( self.levels[i] ) # Set order as given in the indexer list level_indexer = self.levels[i].get_indexer(k) level_indexer = level_indexer[level_indexer >= 0] # Filter absent keys key_order_map[level_indexer] = np.arange(len(level_indexer)) new_order = key_order_map[self.codes[i][indexer]] elif isinstance(k, slice) and k.step is not None and k.step < 0: new_order = np.arange(n)[k][indexer] elif isinstance(k, slice) and k.start is None and k.stop is None: # slice(None) should not determine order GH#31330 new_order = np.ones((n,))[indexer] else: # For all other case, use the same order as the level new_order = np.arange(n)[indexer] keys = (new_order,) + keys # Find the reordering using lexsort on the keys mapping ind = np.lexsort(keys) return indexer[ind] def truncate(self, before=None, after=None): """ Slice index between two labels / tuples, return new MultiIndex Parameters ---------- before : label or tuple, can be partial. Default None None defaults to start after : label or tuple, can be partial. Default None None defaults to end Returns ------- truncated : MultiIndex """ if after and before and after < before: raise ValueError("after < before") i, j = self.levels[0].slice_locs(before, after) left, right = self.slice_locs(before, after) new_levels = list(self.levels) new_levels[0] = new_levels[0][i:j] new_codes = [level_codes[left:right] for level_codes in self.codes] new_codes[0] = new_codes[0] - i return MultiIndex( levels=new_levels, codes=new_codes, names=self._names, verify_integrity=False, ) def equals(self, other: object) -> bool: """ Determines if two MultiIndex objects have the same labeling information (the levels themselves do not necessarily have to be the same) See Also -------- equal_levels """ if self.is_(other): return True if not isinstance(other, Index): return False if len(self) != len(other): return False if not isinstance(other, MultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(other.dtype): # other cannot contain tuples, so cannot match self return False return array_equivalent(self._values, other._values) if self.nlevels != other.nlevels: return False for i in range(self.nlevels): self_codes = self.codes[i] self_codes = self_codes[self_codes != -1] self_values = algos.take_nd( np.asarray(self.levels[i]._values), self_codes, allow_fill=False ) other_codes = other.codes[i] other_codes = other_codes[other_codes != -1] other_values = algos.take_nd( np.asarray(other.levels[i]._values), other_codes, allow_fill=False ) # since we use NaT both datetime64 and timedelta64 we can have a # situation where a level is typed say timedelta64 in self (IOW it # has other values than NaT) but types datetime64 in other (where # its all NaT) but these are equivalent if len(self_values) == 0 and len(other_values) == 0: continue if not array_equivalent(self_values, other_values): return False return True def equal_levels(self, other) -> bool: """ Return True if the levels of both MultiIndex objects are the same """ if self.nlevels != other.nlevels: return False for i in range(self.nlevels): if not self.levels[i].equals(other.levels[i]): return False return True # -------------------------------------------------------------------- # Set Methods def union(self, other, sort=None): """ Form the union of two MultiIndex objects Parameters ---------- other : MultiIndex or array / Index of tuples sort : False or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- Index Examples -------- >>> idx1 = pd.MultiIndex.from_arrays( ... [[1, 1, 2, 2], ["Red", "Blue", "Red", "Blue"]] ... ) >>> idx1 MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue')], ) >>> idx2 = pd.MultiIndex.from_arrays( ... [[3, 3, 2, 2], ["Red", "Green", "Red", "Green"]] ... ) >>> idx2 MultiIndex([(3, 'Red'), (3, 'Green'), (2, 'Red'), (2, 'Green')], ) >>> idx1.union(idx2) MultiIndex([(1, 'Blue'), (1, 'Red'), (2, 'Blue'), (2, 'Green'), (2, 'Red'), (3, 'Green'), (3, 'Red')], ) >>> idx1.union(idx2, sort=False) MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue'), (3, 'Red'), (3, 'Green'), (2, 'Green')], ) """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if len(other) == 0 or self.equals(other): return self.rename(result_names) return self._union(other, sort=sort) def _union(self, other, sort): other, result_names = self._convert_can_do_setop(other) # TODO: Index.union returns other when `len(self)` is 0. if not is_object_dtype(other.dtype): raise NotImplementedError( "Can only union MultiIndex with MultiIndex or Index of tuples, " "try mi.to_flat_index().union(other) instead." ) uniq_tuples = lib.fast_unique_multiple([self._values, other._values], sort=sort) return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: return is_object_dtype(dtype) def intersection(self, other, sort=False): """ Form the intersection of two MultiIndex objects. Parameters ---------- other : MultiIndex or array / Index of tuples sort : False or None, default False Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match behaviour from before 0.24.0 Returns ------- Index """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if self.equals(other): if self.has_duplicates: return self.unique().rename(result_names) return self.rename(result_names) return self._intersection(other, sort=sort) def _intersection(self, other, sort=False): other, result_names = self._convert_can_do_setop(other) if not self._is_comparable_dtype(other.dtype): # The intersection is empty return self[:0].rename(result_names) lvals = self._values rvals = other._values uniq_tuples = None # flag whether _inner_indexer was successful if self.is_monotonic and other.is_monotonic: try: inner_tuples = self._inner_indexer(lvals, rvals)[0] sort = False # inner_tuples is already sorted except TypeError: pass else: uniq_tuples = algos.unique(inner_tuples) if uniq_tuples is None: other_uniq = set(rvals) seen = set() # pandas\core\indexes\multi.py:3503: error: "add" of "set" does not # return a value [func-returns-value] uniq_tuples = [ x for x in lvals if x in other_uniq and not (x in seen or seen.add(x)) # type: ignore[func-returns-value] ] if sort is None: uniq_tuples = sorted(uniq_tuples) if len(uniq_tuples) == 0: return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def difference(self, other, sort=None): """ Compute set difference of two MultiIndex objects Parameters ---------- other : MultiIndex sort : False or None, default None Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- diff : MultiIndex """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if len(other) == 0: return self.rename(result_names) if self.equals(other): return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) difference = this._values.take(label_diff) if sort is None: difference = sorted(difference) if len(difference) == 0: return MultiIndex( levels=[[]] * self.nlevels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_tuples(difference, sortorder=0, names=result_names) def _convert_can_do_setop(self, other): result_names = self.names if not isinstance(other, Index): if len(other) == 0: return self[:0], self.names else: msg = "other must be a MultiIndex or a list of tuples" try: other = MultiIndex.from_tuples(other, names=self.names) except (ValueError, TypeError) as err: # ValueError raised by tuples_to_object_array if we # have non-object dtype raise TypeError(msg) from err else: result_names = get_unanimous_names(self, other) return other, result_names def symmetric_difference(self, other, result_name=None, sort=None): # On equal symmetric_difference MultiIndexes the difference is empty. # Therefore, an empty MultiIndex is returned GH13490 tups = Index.symmetric_difference(self, other, result_name, sort) if len(tups) == 0: return type(self)( levels=[[] for _ in range(self.nlevels)], codes=[[] for _ in range(self.nlevels)], names=tups.name, ) return type(self).from_tuples(tups, names=tups.name) # -------------------------------------------------------------------- @doc(Index.astype) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_categorical_dtype(dtype): msg = "> 1 ndim Categorical are not supported at this time" raise NotImplementedError(msg) elif not is_object_dtype(dtype): raise TypeError( "Setting a MultiIndex dtype to anything other than object " "is not supported" ) elif copy is True: return self._shallow_copy() return self def _validate_fill_value(self, item): if not isinstance(item, tuple): # Pad the key with empty strings if lower levels of the key # aren't specified: item = (item,) + ("",) * (self.nlevels - 1) elif len(item) != self.nlevels: raise ValueError("Item must have length equal to number of levels.") return item def insert(self, loc: int, item): """ Make new MultiIndex inserting new item at location Parameters ---------- loc : int item : tuple Must be same length as number of levels in the MultiIndex Returns ------- new_index : Index """ item = self._validate_fill_value(item) new_levels = [] new_codes = [] for k, level, level_codes in zip(item, self.levels, self.codes): if k not in level: # have to insert into level # must insert at end otherwise you have to recompute all the # other codes lev_loc = len(level) try: level = level.insert(lev_loc, k) except TypeError: # TODO: Should this be done inside insert? # TODO: smarter casting rules? level = level.astype(object).insert(lev_loc, k) else: lev_loc = level.get_loc(k) new_levels.append(level) new_codes.append(np.insert(ensure_int64(level_codes), loc, lev_loc)) return MultiIndex( levels=new_levels, codes=new_codes, names=self.names, verify_integrity=False ) def delete(self, loc): """ Make new index with passed location deleted Returns ------- new_index : MultiIndex """ new_codes = [np.delete(level_codes, loc) for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, verify_integrity=False, ) @doc(Index.isin) def isin(self, values, level=None): if level is None: values = MultiIndex.from_tuples(values, names=self.names)._values return algos.isin(self._values, values) else: num = self._get_level_number(level) levs = self.get_level_values(num) if levs.size == 0: return np.zeros(len(levs), dtype=np.bool_) return levs.isin(values) # --------------------------------------------------------------- # Arithmetic/Numeric Methods - Disabled __add__ = make_invalid_op("__add__") __radd__ = make_invalid_op("__radd__") __iadd__ = make_invalid_op("__iadd__") __sub__ = make_invalid_op("__sub__") __rsub__ = make_invalid_op("__rsub__") __isub__ = make_invalid_op("__isub__") __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") # Unary methods disabled __neg__ = make_invalid_op("__neg__") __pos__ = make_invalid_op("__pos__") __abs__ = make_invalid_op("__abs__") __inv__ = make_invalid_op("__inv__") def sparsify_labels(label_list, start: int = 0, sentinel=""): pivoted = list(zip(*label_list)) k = len(label_list) result = pivoted[: start + 1] prev = pivoted[start] for cur in pivoted[start + 1 :]: sparse_cur = [] for i, (p, t) in enumerate(zip(prev, cur)): if i == k - 1: sparse_cur.append(t) result.append(sparse_cur) break if p == t: sparse_cur.append(sentinel) else: sparse_cur.extend(cur[i:]) result.append(sparse_cur) break prev = cur return list(zip(*result)) def _get_na_rep(dtype) -> str: return {np.datetime64: "NaT", np.timedelta64: "NaT"}.get(dtype, "NaN") def maybe_droplevels(index, key): """ Attempt to drop level or levels from the given index. Parameters ---------- index: Index key : scalar or tuple Returns ------- Index """ # drop levels original_index = index if isinstance(key, tuple): for _ in key: try: index = index._drop_level_numbers([0]) except ValueError: # we have dropped too much, so back out return original_index else: try: index = index._drop_level_numbers([0]) except ValueError: pass return index def _coerce_indexer_frozen(array_like, categories, copy: bool = False) -> np.ndarray: """ Coerce the array_like indexer to the smallest integer dtype that can encode all of the given categories. Parameters ---------- array_like : array-like categories : array-like copy : bool Returns ------- np.ndarray Non-writeable. """ array_like = coerce_indexer_dtype(array_like, categories) if copy: array_like = array_like.copy() array_like.flags.writeable = False return array_like
gpl-2.0
ininex/geofire-python
resource/lib/python2.7/site-packages/gcloud/monitoring/_dataframe.py
7
4353
# Copyright 2016 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Time series as :mod:`pandas` dataframes.""" import itertools TOP_RESOURCE_LABELS = ( 'project_id', 'aws_account', 'location', 'region', 'zone', ) def _build_dataframe(time_series_iterable, label=None, labels=None): # pragma: NO COVER """Build a :mod:`pandas` dataframe out of time series. :type time_series_iterable: iterable over :class:`~gcloud.monitoring.timeseries.TimeSeries` :param time_series_iterable: An iterable (e.g., a query object) yielding time series. :type label: string or None :param label: The label name to use for the dataframe header. This can be the name of a resource label or metric label (e.g., ``"instance_name"``), or the string ``"resource_type"``. :type labels: list of strings, or None :param labels: A list or tuple of label names to use for the dataframe header. If more than one label name is provided, the resulting dataframe will have a multi-level column header. Specifying neither ``label`` or ``labels`` results in a dataframe with a multi-level column header including the resource type and all available resource and metric labels. Specifying both ``label`` and ``labels`` is an error. :rtype: :class:`pandas.DataFrame` :returns: A dataframe where each column represents one time series. """ import pandas # pylint: disable=import-error if labels is not None: if label is not None: raise ValueError('Cannot specify both "label" and "labels".') elif not labels: raise ValueError('"labels" must be non-empty or None.') columns = [] headers = [] for time_series in time_series_iterable: pandas_series = pandas.Series( data=[point.value for point in time_series.points], index=[point.end_time for point in time_series.points], ) columns.append(pandas_series) headers.append(time_series.header()) # Implement a smart default of using all available labels. if label is None and labels is None: resource_labels = set(itertools.chain.from_iterable( header.resource.labels for header in headers)) metric_labels = set(itertools.chain.from_iterable( header.metric.labels for header in headers)) labels = (['resource_type'] + _sorted_resource_labels(resource_labels) + sorted(metric_labels)) # Assemble the columns into a DataFrame. dataframe = pandas.DataFrame.from_records(columns).T # Convert the timestamp strings into a DatetimeIndex. dataframe.index = pandas.to_datetime(dataframe.index) # Build a multi-level stack of column headers. Some labels may # be undefined for some time series. levels = [] for key in labels or [label]: level = [header.labels.get(key, '') for header in headers] levels.append(level) # Build a column Index or MultiIndex. Do not include level names # in the column header if the user requested a single-level header # by specifying "label". dataframe.columns = pandas.MultiIndex.from_arrays( levels, names=labels or None) # Sort the rows just in case (since the API doesn't guarantee the # ordering), and sort the columns lexicographically. return dataframe.sort_index(axis=0).sort_index(axis=1) def _sorted_resource_labels(labels): """Sort label names, putting well-known resource labels first.""" head = [label for label in TOP_RESOURCE_LABELS if label in labels] tail = sorted(label for label in labels if label not in TOP_RESOURCE_LABELS) return head + tail
mit
sragain/pcmc-nips
infer.py
1
3056
import numpy as np import matplotlib.pyplot as plt from random import random import lib.mnl_utils,lib.mmnl_utils,lib.pcmc_utils import pickle import os,sys def split_samples(samples,nep,split=.25,alpha=.1): """splits a list of samples into nep dictionaries containing their summary statistics Arguments: samples- list of (Set, choice) tuples nep- number of ways to split input data split- proprotion of data assigned as test data alpha- amount of additive smoothing applied to data """ Ctest = {} splitidx = int((1-split)*len(samples)) testsamples = samples[splitidx:] for (S,choice) in testsamples: if S not in Ctest: Ctest[S]=np.zeros(len(S)) Ctest[S][choice]+=1 trainsamples = samples[:splitidx] trainlist = [{} for i in range(nep)] a = len(trainsamples)/nep for i in range(nep): for (S,choice) in trainsamples[i*a:(i+1)*a]: if S not in trainlist[i]: trainlist[i][S]=np.ones(len(S))*alpha trainlist[i][S][choice]+=1 return trainlist,Ctest def run_sims(samples,n=6,nsim=10,nep=5,maxiter=25,split=.25,alpha=.1): """ computes learning error on input models for input data for nsim simluations consisting of traning and computing test error on nep splits of the data Arguments: samples- list of samples n- number of choices in union of choice sets nsim- number of simulations to run nep- number of episodes per simulation maxiter- iterations allowed to scipy.minimize when performing MLE split- proportion of samples used for testing alpha- amount of additive smoothing applied """ mnl_errors=np.empty((nsim,nep)) mmnl_errors=np.empty((nsim,nep)) pcmc_errors=np.empty((nsim,nep)) for sim in range(nsim): print 'sim number %d' %(sim+1) np.random.shuffle(samples) #throw away any inferred parameters mnl_params = None;pcmc_params = None;mmnl_params = None #split data trainlist,Ctest = split_samples(samples,nep,split=split,alpha=alpha) Ctrain={} for ep in range(nep): #add new training data for S in trainlist[ep]: if S not in Ctrain: Ctrain[S]=trainlist[ep][S] else: Ctrain[S]+=trainlist[ep][S] #infer parameters mnl_params = lib.mnl_utils.ILSR(C=Ctrain,n=n) mmnl_params = lib.mmnl_utils.infer(C=Ctrain,n=n,x=mmnl_params,maxiter=maxiter) pcmc_params = lib.pcmc_utils.infer(C=Ctrain,x=pcmc_params,n=n,maxiter=maxiter,delta=1) #track errors mnl_errors[sim,ep]=lib.mnl_utils.comp_error(x=mnl_params,C=Ctest) mmnl_errors[sim,ep]=lib.mmnl_utils.comp_error(x=mmnl_params,C=Ctest,n=n) pcmc_errors[sim,ep]=lib.pcmc_utils.comp_error(x=pcmc_params,C=Ctest) np.save('mnl_errors.npy',mnl_errors) np.save('mmnl_errors.npy',mmnl_errors) np.save('pcmc_errors.npy',pcmc_errors) np.save('pcmc_params.npy',lib.pcmc_utils.comp_Q(pcmc_params)) if __name__=='__main__': nsim=100;nep=15;n=6;alpha=.1;samples=pickle.load(open('worklist.p','rb'));split=.25 #nsim=100;nep=15;n=8;alpha=5;samples=pickle.load(open('shoplist.p','rb'));split=.25 run_sims(samples=samples,n=n,nsim=nsim,nep=nep,split=split,alpha=alpha)
mit
rbalda/neural_ocr
env/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/axes_rgb.py
3
7028
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import numpy as np from .axes_divider import make_axes_locatable, Size, locatable_axes_factory import sys from .mpl_axes import Axes def make_rgb_axes(ax, pad=0.01, axes_class=None, add_all=True): """ pad : fraction of the axes height. """ divider = make_axes_locatable(ax) pad_size = Size.Fraction(pad, Size.AxesY(ax)) xsize = Size.Fraction((1.-2.*pad)/3., Size.AxesX(ax)) ysize = Size.Fraction((1.-2.*pad)/3., Size.AxesY(ax)) divider.set_horizontal([Size.AxesX(ax), pad_size, xsize]) divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize]) ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1)) ax_rgb = [] if axes_class is None: try: axes_class = locatable_axes_factory(ax._axes_class) except AttributeError: axes_class = locatable_axes_factory(type(ax)) for ny in [4, 2, 0]: ax1 = axes_class(ax.get_figure(), ax.get_position(original=True), sharex=ax, sharey=ax) locator = divider.new_locator(nx=2, ny=ny) ax1.set_axes_locator(locator) for t in ax1.yaxis.get_ticklabels() + ax1.xaxis.get_ticklabels(): t.set_visible(False) try: for axis in ax1.axis.values(): axis.major_ticklabels.set_visible(False) except AttributeError: pass ax_rgb.append(ax1) if add_all: fig = ax.get_figure() for ax1 in ax_rgb: fig.add_axes(ax1) return ax_rgb def imshow_rgb(ax, r, g, b, **kwargs): ny, nx = r.shape R = np.zeros([ny, nx, 3], dtype="d") R[:,:,0] = r G = np.zeros_like(R) G[:,:,1] = g B = np.zeros_like(R) B[:,:,2] = b RGB = R + G + B im_rgb = ax.imshow(RGB, **kwargs) return im_rgb class RGBAxesBase(object): """base class for a 4-panel imshow (RGB, R, G, B) Layout: +---------------+-----+ | | R | + +-----+ | RGB | G | + +-----+ | | B | +---------------+-----+ Attributes ---------- _defaultAxesClass : matplotlib.axes.Axes defaults to 'Axes' in RGBAxes child class. No default in abstract base class RGB : _defaultAxesClass The axes object for the three-channel imshow R : _defaultAxesClass The axes object for the red channel imshow G : _defaultAxesClass The axes object for the green channel imshow B : _defaultAxesClass The axes object for the blue channel imshow """ def __init__(self, *kl, **kwargs): """ Parameters ---------- pad : float fraction of the axes height to put as padding. defaults to 0.0 add_all : bool True: Add the {rgb, r, g, b} axes to the figure defaults to True. axes_class : matplotlib.axes.Axes kl : Unpacked into axes_class() init for RGB kwargs : Unpacked into axes_class() init for RGB, R, G, B axes """ pad = kwargs.pop("pad", 0.0) add_all = kwargs.pop("add_all", True) try: axes_class = kwargs.pop("axes_class", self._defaultAxesClass) except AttributeError: new_msg = ("A subclass of RGBAxesBase must have a " "_defaultAxesClass attribute. If you are not sure which " "axes class to use, consider using " "mpl_toolkits.axes_grid1.mpl_axes.Axes.") six.reraise(AttributeError, AttributeError(new_msg), sys.exc_info()[2]) ax = axes_class(*kl, **kwargs) divider = make_axes_locatable(ax) pad_size = Size.Fraction(pad, Size.AxesY(ax)) xsize = Size.Fraction((1.-2.*pad)/3., Size.AxesX(ax)) ysize = Size.Fraction((1.-2.*pad)/3., Size.AxesY(ax)) divider.set_horizontal([Size.AxesX(ax), pad_size, xsize]) divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize]) ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1)) ax_rgb = [] for ny in [4, 2, 0]: ax1 = axes_class(ax.get_figure(), ax.get_position(original=True), sharex=ax, sharey=ax, **kwargs) locator = divider.new_locator(nx=2, ny=ny) ax1.set_axes_locator(locator) ax1.axis[:].toggle(ticklabels=False) ax_rgb.append(ax1) self.RGB = ax self.R, self.G, self.B = ax_rgb if add_all: fig = ax.get_figure() fig.add_axes(ax) self.add_RGB_to_figure() self._config_axes() def _config_axes(self, line_color='w', marker_edge_color='w'): """Set the line color and ticks for the axes Parameters ---------- line_color : any matplotlib color marker_edge_color : any matplotlib color """ for ax1 in [self.RGB, self.R, self.G, self.B]: ax1.axis[:].line.set_color(line_color) ax1.axis[:].major_ticks.set_markeredgecolor(marker_edge_color) def add_RGB_to_figure(self): """Add the red, green and blue axes to the RGB composite's axes figure """ self.RGB.get_figure().add_axes(self.R) self.RGB.get_figure().add_axes(self.G) self.RGB.get_figure().add_axes(self.B) def imshow_rgb(self, r, g, b, **kwargs): """Create the four images {rgb, r, g, b} Parameters ---------- r : array-like The red array g : array-like The green array b : array-like The blue array kwargs : imshow kwargs kwargs get unpacked into the imshow calls for the four images Returns ------- rgb : matplotlib.image.AxesImage r : matplotlib.image.AxesImage g : matplotlib.image.AxesImage b : matplotlib.image.AxesImage """ ny, nx = r.shape if not ((nx, ny) == g.shape == b.shape): raise ValueError('Input shapes do not match.' '\nr.shape = {}' '\ng.shape = {}' '\nb.shape = {}' ''.format(r.shape, g.shape, b.shape)) R = np.zeros([ny, nx, 3], dtype="d") R[:,:,0] = r G = np.zeros_like(R) G[:,:,1] = g B = np.zeros_like(R) B[:,:,2] = b RGB = R + G + B im_rgb = self.RGB.imshow(RGB, **kwargs) im_r = self.R.imshow(R, **kwargs) im_g = self.G.imshow(G, **kwargs) im_b = self.B.imshow(B, **kwargs) return im_rgb, im_r, im_g, im_b class RGBAxes(RGBAxesBase): _defaultAxesClass = Axes
mit
etkirsch/scikit-learn
examples/manifold/plot_manifold_sphere.py
258
5101
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================= Manifold Learning methods on a severed sphere ============================================= An application of the different :ref:`manifold` techniques on a spherical data-set. Here one can see the use of dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning techniques to 'spread it open' whilst projecting it onto two dimensions. For a similar example, where the methods are applied to the S-curve dataset, see :ref:`example_manifold_plot_compare_methods.py` Note that the purpose of the :ref:`MDS <multidimensional_scaling>` is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem matches fairly that of representing a flat map of the Earth, as with `map projection <http://en.wikipedia.org/wiki/Map_projection>`_ """ # Author: Jaques Grobler <[email protected]> # License: BSD 3 clause print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold from sklearn.utils import check_random_state # Next line to silence pyflakes. Axes3D # Variables for manifold learning. n_neighbors = 10 n_samples = 1000 # Create our sphere. random_state = check_random_state(0) p = random_state.rand(n_samples) * (2 * np.pi - 0.55) t = random_state.rand(n_samples) * np.pi # Sever the poles from the sphere. indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))) colors = p[indices] x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \ np.sin(t[indices]) * np.sin(p[indices]), \ np.cos(t[indices]) # Plot our dataset. fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(251, projection='3d') ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow) try: # compatibility matplotlib < 1.0 ax.view_init(40, -10) except: pass sphere_data = np.array([x, y, z]).T # Perform Locally Linear Embedding Manifold learning methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() trans_data = manifold\ .LocallyLinearEmbedding(n_neighbors, 2, method=method).fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Isomap Manifold learning. t0 = time() trans_data = manifold.Isomap(n_neighbors, n_components=2)\ .fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % ('ISO', t1 - t0)) ax = fig.add_subplot(257) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Multi-dimensional scaling. t0 = time() mds = manifold.MDS(2, max_iter=100, n_init=1) trans_data = mds.fit_transform(sphere_data).T t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Spectral Embedding. t0 = time() se = manifold.SpectralEmbedding(n_components=2, n_neighbors=n_neighbors) trans_data = se.fit_transform(sphere_data).T t1 = time() print("Spectral Embedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform t-distributed stochastic neighbor embedding. t0 = time() tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) trans_data = tsne.fit_transform(sphere_data).T t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
JanNash/sms-tools
lectures/03-Fourier-properties/plots-code/fft-zero-phase.py
24
1140
import matplotlib.pyplot as plt import numpy as np from scipy.fftpack import fft, fftshift import sys sys.path.append('../../../software/models/') import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') N = 512 M = 401 hN = N/2 hM = (M+1)/2 start = .8*fs xw = x[start-hM:start+hM-1] * np.hamming(M) plt.figure(1, figsize=(9.5, 6.5)) plt.subplot(411) plt.plot(np.arange(-hM, hM-1), xw, lw=1.5) plt.axis([-hN, hN-1, min(xw), max(xw)]) plt.title('x (oboe-A4.wav), M = 401') fftbuffer = np.zeros(N) fftbuffer[:hM] = xw[hM-1:] fftbuffer[N-hM+1:] = xw[:hM-1] plt.subplot(412) plt.plot(np.arange(0, N), fftbuffer, lw=1.5) plt.axis([0, N, min(xw), max(xw)]) plt.title('fftbuffer: N = 512') X = fftshift(fft(fftbuffer)) mX = 20 * np.log10(abs(X)/N) pX = np.unwrap(np.angle(X)) plt.subplot(413) plt.plot(np.arange(-hN, hN), mX, 'r', lw=1.5) plt.axis([-hN,hN-1,-100,max(mX)]) plt.title('mX') plt.subplot(414) plt.plot(np.arange(-hN, hN), pX, 'c', lw=1.5) plt.axis([-hN,hN-1,min(pX),max(pX)]) plt.title('pX') plt.tight_layout() plt.savefig('fft-zero-phase.png') plt.show()
agpl-3.0
devanshdalal/scikit-learn
examples/tree/plot_tree_regression.py
95
1516
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
evidation-health/pymc3
pymc3/examples/ARM5_4.py
14
1026
''' Created on May 18, 2012 @author: jsalvatier ''' import numpy as np from pymc3 import * import theano.tensor as t import pandas as pd wells = get_data_file('pymc3.examples', 'data/wells.dat') data = pd.read_csv(wells, delimiter=u' ', index_col=u'id', dtype={u'switch': np.int8}) data.dist /= 100 data.educ /= 4 col = data.columns P = data[col[1:]] P = P - P.mean() P['1'] = 1 Pa = np.array(P) with Model() as model: effects = Normal( 'effects', mu=0, tau=100. ** -2, shape=len(P.columns)) p = sigmoid(dot(Pa, effects)) s = Bernoulli('s', p, observed=np.array(data.switch)) def run(n=3000): if n == "short": n = 50 with model: # move the chain to the MAP which should be a good starting point start = find_MAP() H = model.fastd2logp() # find a good orientation using the hessian at the MAP h = H(start) step = HamiltonianMC(model.vars, h) trace = sample(n, step, start) if __name__ == '__main__': run()
apache-2.0
florian-f/sklearn
sklearn/utils/tests/test_random.py
20
3872
from __future__ import division import numpy as np from scipy.misc import comb as combinations from sklearn.utils.random import sample_without_replacement from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected))
bsd-3-clause
pkruskal/scikit-learn
examples/feature_selection/plot_permutation_test_for_classification.py
250
2233
""" ================================================================= Test with permutations the significance of a classification score ================================================================= In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold, permutation_test_score from sklearn import datasets ############################################################################## # Loading a dataset iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(y, 2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) ############################################################################### # View histogram of permutation scores plt.hist(permutation_scores, 20, label='Permutation scores') ylim = plt.ylim() # BUG: vlines(..., linestyle='--') fails on older versions of matplotlib #plt.vlines(score, ylim[0], ylim[1], linestyle='--', # color='g', linewidth=3, label='Classification Score' # ' (pvalue %s)' % pvalue) #plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--', # color='k', linewidth=3, label='Luck') plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show()
bsd-3-clause
huzq/scikit-learn
sklearn/mixture/_gaussian_mixture.py
2
28253
"""Gaussian Mixture Model.""" # Author: Wei Xue <[email protected]> # Modified by Thierry Guillemot <[email protected]> # License: BSD 3 clause import numpy as np from scipy import linalg from ._base import BaseMixture, _check_shape from ..utils import check_array from ..utils.extmath import row_norms from ..utils.validation import _deprecate_positional_args ############################################################################### # Gaussian mixture shape checkers used by the GaussianMixture class def _check_weights(weights, n_components): """Check the user provided 'weights'. Parameters ---------- weights : array-like of shape (n_components,) The proportions of components of each mixture. n_components : int Number of components. Returns ------- weights : array, shape (n_components,) """ weights = check_array(weights, dtype=[np.float64, np.float32], ensure_2d=False) _check_shape(weights, (n_components,), 'weights') # check range if (any(np.less(weights, 0.)) or any(np.greater(weights, 1.))): raise ValueError("The parameter 'weights' should be in the range " "[0, 1], but got max value %.5f, min value %.5f" % (np.min(weights), np.max(weights))) # check normalization if not np.allclose(np.abs(1. - np.sum(weights)), 0.): raise ValueError("The parameter 'weights' should be normalized, " "but got sum(weights) = %.5f" % np.sum(weights)) return weights def _check_means(means, n_components, n_features): """Validate the provided 'means'. Parameters ---------- means : array-like of shape (n_components, n_features) The centers of the current components. n_components : int Number of components. n_features : int Number of features. Returns ------- means : array, (n_components, n_features) """ means = check_array(means, dtype=[np.float64, np.float32], ensure_2d=False) _check_shape(means, (n_components, n_features), 'means') return means def _check_precision_positivity(precision, covariance_type): """Check a precision vector is positive-definite.""" if np.any(np.less_equal(precision, 0.0)): raise ValueError("'%s precision' should be " "positive" % covariance_type) def _check_precision_matrix(precision, covariance_type): """Check a precision matrix is symmetric and positive-definite.""" if not (np.allclose(precision, precision.T) and np.all(linalg.eigvalsh(precision) > 0.)): raise ValueError("'%s precision' should be symmetric, " "positive-definite" % covariance_type) def _check_precisions_full(precisions, covariance_type): """Check the precision matrices are symmetric and positive-definite.""" for prec in precisions: _check_precision_matrix(prec, covariance_type) def _check_precisions(precisions, covariance_type, n_components, n_features): """Validate user provided precisions. Parameters ---------- precisions : array-like 'full' : shape of (n_components, n_features, n_features) 'tied' : shape of (n_features, n_features) 'diag' : shape of (n_components, n_features) 'spherical' : shape of (n_components,) covariance_type : string n_components : int Number of components. n_features : int Number of features. Returns ------- precisions : array """ precisions = check_array(precisions, dtype=[np.float64, np.float32], ensure_2d=False, allow_nd=covariance_type == 'full') precisions_shape = {'full': (n_components, n_features, n_features), 'tied': (n_features, n_features), 'diag': (n_components, n_features), 'spherical': (n_components,)} _check_shape(precisions, precisions_shape[covariance_type], '%s precision' % covariance_type) _check_precisions = {'full': _check_precisions_full, 'tied': _check_precision_matrix, 'diag': _check_precision_positivity, 'spherical': _check_precision_positivity} _check_precisions[covariance_type](precisions, covariance_type) return precisions ############################################################################### # Gaussian mixture parameters estimators (used by the M-Step) def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar): """Estimate the full covariance matrices. Parameters ---------- resp : array-like of shape (n_samples, n_components) X : array-like of shape (n_samples, n_features) nk : array-like of shape (n_components,) means : array-like of shape (n_components, n_features) reg_covar : float Returns ------- covariances : array, shape (n_components, n_features, n_features) The covariance matrix of the current components. """ n_components, n_features = means.shape covariances = np.empty((n_components, n_features, n_features)) for k in range(n_components): diff = X - means[k] covariances[k] = np.dot(resp[:, k] * diff.T, diff) / nk[k] covariances[k].flat[::n_features + 1] += reg_covar return covariances def _estimate_gaussian_covariances_tied(resp, X, nk, means, reg_covar): """Estimate the tied covariance matrix. Parameters ---------- resp : array-like of shape (n_samples, n_components) X : array-like of shape (n_samples, n_features) nk : array-like of shape (n_components,) means : array-like of shape (n_components, n_features) reg_covar : float Returns ------- covariance : array, shape (n_features, n_features) The tied covariance matrix of the components. """ avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(nk * means.T, means) covariance = avg_X2 - avg_means2 covariance /= nk.sum() covariance.flat[::len(covariance) + 1] += reg_covar return covariance def _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar): """Estimate the diagonal covariance vectors. Parameters ---------- responsibilities : array-like of shape (n_samples, n_components) X : array-like of shape (n_samples, n_features) nk : array-like of shape (n_components,) means : array-like of shape (n_components, n_features) reg_covar : float Returns ------- covariances : array, shape (n_components, n_features) The covariance vector of the current components. """ avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis] avg_means2 = means ** 2 avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis] return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covar def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar): """Estimate the spherical variance values. Parameters ---------- responsibilities : array-like of shape (n_samples, n_components) X : array-like of shape (n_samples, n_features) nk : array-like of shape (n_components,) means : array-like of shape (n_components, n_features) reg_covar : float Returns ------- variances : array, shape (n_components,) The variance values of each components. """ return _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar).mean(1) def _estimate_gaussian_parameters(X, resp, reg_covar, covariance_type): """Estimate the Gaussian distribution parameters. Parameters ---------- X : array-like of shape (n_samples, n_features) The input data array. resp : array-like of shape (n_samples, n_components) The responsibilities for each data sample in X. reg_covar : float The regularization added to the diagonal of the covariance matrices. covariance_type : {'full', 'tied', 'diag', 'spherical'} The type of precision matrices. Returns ------- nk : array-like of shape (n_components,) The numbers of data samples in the current components. means : array-like of shape (n_components, n_features) The centers of the current components. covariances : array-like The covariance matrix of the current components. The shape depends of the covariance_type. """ nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps means = np.dot(resp.T, X) / nk[:, np.newaxis] covariances = {"full": _estimate_gaussian_covariances_full, "tied": _estimate_gaussian_covariances_tied, "diag": _estimate_gaussian_covariances_diag, "spherical": _estimate_gaussian_covariances_spherical }[covariance_type](resp, X, nk, means, reg_covar) return nk, means, covariances def _compute_precision_cholesky(covariances, covariance_type): """Compute the Cholesky decomposition of the precisions. Parameters ---------- covariances : array-like The covariance matrix of the current components. The shape depends of the covariance_type. covariance_type : {'full', 'tied', 'diag', 'spherical'} The type of precision matrices. Returns ------- precisions_cholesky : array-like The cholesky decomposition of sample precisions of the current components. The shape depends of the covariance_type. """ estimate_precision_error_message = ( "Fitting the mixture model failed because some components have " "ill-defined empirical covariance (for instance caused by singleton " "or collapsed samples). Try to decrease the number of components, " "or increase reg_covar.") if covariance_type == 'full': n_components, n_features, _ = covariances.shape precisions_chol = np.empty((n_components, n_features, n_features)) for k, covariance in enumerate(covariances): try: cov_chol = linalg.cholesky(covariance, lower=True) except linalg.LinAlgError: raise ValueError(estimate_precision_error_message) precisions_chol[k] = linalg.solve_triangular(cov_chol, np.eye(n_features), lower=True).T elif covariance_type == 'tied': _, n_features = covariances.shape try: cov_chol = linalg.cholesky(covariances, lower=True) except linalg.LinAlgError: raise ValueError(estimate_precision_error_message) precisions_chol = linalg.solve_triangular(cov_chol, np.eye(n_features), lower=True).T else: if np.any(np.less_equal(covariances, 0.0)): raise ValueError(estimate_precision_error_message) precisions_chol = 1. / np.sqrt(covariances) return precisions_chol ############################################################################### # Gaussian mixture probability estimators def _compute_log_det_cholesky(matrix_chol, covariance_type, n_features): """Compute the log-det of the cholesky decomposition of matrices. Parameters ---------- matrix_chol : array-like Cholesky decompositions of the matrices. 'full' : shape of (n_components, n_features, n_features) 'tied' : shape of (n_features, n_features) 'diag' : shape of (n_components, n_features) 'spherical' : shape of (n_components,) covariance_type : {'full', 'tied', 'diag', 'spherical'} n_features : int Number of features. Returns ------- log_det_precision_chol : array-like of shape (n_components,) The determinant of the precision matrix for each component. """ if covariance_type == 'full': n_components, _, _ = matrix_chol.shape log_det_chol = (np.sum(np.log( matrix_chol.reshape( n_components, -1)[:, ::n_features + 1]), 1)) elif covariance_type == 'tied': log_det_chol = (np.sum(np.log(np.diag(matrix_chol)))) elif covariance_type == 'diag': log_det_chol = (np.sum(np.log(matrix_chol), axis=1)) else: log_det_chol = n_features * (np.log(matrix_chol)) return log_det_chol def _estimate_log_gaussian_prob(X, means, precisions_chol, covariance_type): """Estimate the log Gaussian probability. Parameters ---------- X : array-like of shape (n_samples, n_features) means : array-like of shape (n_components, n_features) precisions_chol : array-like Cholesky decompositions of the precision matrices. 'full' : shape of (n_components, n_features, n_features) 'tied' : shape of (n_features, n_features) 'diag' : shape of (n_components, n_features) 'spherical' : shape of (n_components,) covariance_type : {'full', 'tied', 'diag', 'spherical'} Returns ------- log_prob : array, shape (n_samples, n_components) """ n_samples, n_features = X.shape n_components, _ = means.shape # det(precision_chol) is half of det(precision) log_det = _compute_log_det_cholesky( precisions_chol, covariance_type, n_features) if covariance_type == 'full': log_prob = np.empty((n_samples, n_components)) for k, (mu, prec_chol) in enumerate(zip(means, precisions_chol)): y = np.dot(X, prec_chol) - np.dot(mu, prec_chol) log_prob[:, k] = np.sum(np.square(y), axis=1) elif covariance_type == 'tied': log_prob = np.empty((n_samples, n_components)) for k, mu in enumerate(means): y = np.dot(X, precisions_chol) - np.dot(mu, precisions_chol) log_prob[:, k] = np.sum(np.square(y), axis=1) elif covariance_type == 'diag': precisions = precisions_chol ** 2 log_prob = (np.sum((means ** 2 * precisions), 1) - 2. * np.dot(X, (means * precisions).T) + np.dot(X ** 2, precisions.T)) elif covariance_type == 'spherical': precisions = precisions_chol ** 2 log_prob = (np.sum(means ** 2, 1) * precisions - 2 * np.dot(X, means.T * precisions) + np.outer(row_norms(X, squared=True), precisions)) return -.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_det class GaussianMixture(BaseMixture): """Gaussian Mixture. Representation of a Gaussian mixture model probability distribution. This class allows to estimate the parameters of a Gaussian mixture distribution. Read more in the :ref:`User Guide <gmm>`. .. versionadded:: 0.18 Parameters ---------- n_components : int, default=1 The number of mixture components. covariance_type : {'full', 'tied', 'diag', 'spherical'}, default='full' String describing the type of covariance parameters to use. Must be one of: 'full' each component has its own general covariance matrix 'tied' all components share the same general covariance matrix 'diag' each component has its own diagonal covariance matrix 'spherical' each component has its own single variance tol : float, default=1e-3 The convergence threshold. EM iterations will stop when the lower bound average gain is below this threshold. reg_covar : float, default=1e-6 Non-negative regularization added to the diagonal of covariance. Allows to assure that the covariance matrices are all positive. max_iter : int, default=100 The number of EM iterations to perform. n_init : int, default=1 The number of initializations to perform. The best results are kept. init_params : {'kmeans', 'random'}, default='kmeans' The method used to initialize the weights, the means and the precisions. Must be one of:: 'kmeans' : responsibilities are initialized using kmeans. 'random' : responsibilities are initialized randomly. weights_init : array-like of shape (n_components, ), default=None The user-provided initial weights. If it None, weights are initialized using the `init_params` method. means_init : array-like of shape (n_components, n_features), default=None The user-provided initial means, If it None, means are initialized using the `init_params` method. precisions_init : array-like, default=None The user-provided initial precisions (inverse of the covariance matrices). If it None, precisions are initialized using the 'init_params' method. The shape depends on 'covariance_type':: (n_components,) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' random_state : int, RandomState instance or None, default=None Controls the random seed given to the method chosen to initialize the parameters (see `init_params`). In addition, it controls the generation of random samples from the fitted distribution (see the method `sample`). Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. warm_start : bool, default=False If 'warm_start' is True, the solution of the last fitting is used as initialization for the next call of fit(). This can speed up convergence when fit is called several times on similar problems. In that case, 'n_init' is ignored and only a single initialization occurs upon the first call. See :term:`the Glossary <warm_start>`. verbose : int, default=0 Enable verbose output. If 1 then it prints the current initialization and each iteration step. If greater than 1 then it prints also the log probability and the time needed for each step. verbose_interval : int, default=10 Number of iteration done before the next print. Attributes ---------- weights_ : array-like of shape (n_components,) The weights of each mixture components. means_ : array-like of shape (n_components, n_features) The mean of each mixture component. covariances_ : array-like The covariance of each mixture component. The shape depends on `covariance_type`:: (n_components,) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' precisions_ : array-like The precision matrices for each component in the mixture. A precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently parameterized by the precision matrices. Storing the precision matrices instead of the covariance matrices makes it more efficient to compute the log-likelihood of new samples at test time. The shape depends on `covariance_type`:: (n_components,) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' precisions_cholesky_ : array-like The cholesky decomposition of the precision matrices of each mixture component. A precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently parameterized by the precision matrices. Storing the precision matrices instead of the covariance matrices makes it more efficient to compute the log-likelihood of new samples at test time. The shape depends on `covariance_type`:: (n_components,) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. n_iter_ : int Number of step used by the best fit of EM to reach the convergence. lower_bound_ : float Lower bound value on the log-likelihood (of the training data with respect to the model) of the best fit of EM. Examples -------- >>> import numpy as np >>> from sklearn.mixture import GaussianMixture >>> X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) >>> gm = GaussianMixture(n_components=2, random_state=0).fit(X) >>> gm.means_ array([[10., 2.], [ 1., 2.]]) >>> gm.predict([[0, 0], [12, 3]]) array([1, 0]) See Also -------- BayesianGaussianMixture : Gaussian mixture model fit with a variational inference. """ @_deprecate_positional_args def __init__(self, n_components=1, *, covariance_type='full', tol=1e-3, reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10): super().__init__( n_components=n_components, tol=tol, reg_covar=reg_covar, max_iter=max_iter, n_init=n_init, init_params=init_params, random_state=random_state, warm_start=warm_start, verbose=verbose, verbose_interval=verbose_interval) self.covariance_type = covariance_type self.weights_init = weights_init self.means_init = means_init self.precisions_init = precisions_init def _check_parameters(self, X): """Check the Gaussian mixture parameters are well defined.""" _, n_features = X.shape if self.covariance_type not in ['spherical', 'tied', 'diag', 'full']: raise ValueError("Invalid value for 'covariance_type': %s " "'covariance_type' should be in " "['spherical', 'tied', 'diag', 'full']" % self.covariance_type) if self.weights_init is not None: self.weights_init = _check_weights(self.weights_init, self.n_components) if self.means_init is not None: self.means_init = _check_means(self.means_init, self.n_components, n_features) if self.precisions_init is not None: self.precisions_init = _check_precisions(self.precisions_init, self.covariance_type, self.n_components, n_features) def _initialize(self, X, resp): """Initialization of the Gaussian mixture parameters. Parameters ---------- X : array-like of shape (n_samples, n_features) resp : array-like of shape (n_samples, n_components) """ n_samples, _ = X.shape weights, means, covariances = _estimate_gaussian_parameters( X, resp, self.reg_covar, self.covariance_type) weights /= n_samples self.weights_ = (weights if self.weights_init is None else self.weights_init) self.means_ = means if self.means_init is None else self.means_init if self.precisions_init is None: self.covariances_ = covariances self.precisions_cholesky_ = _compute_precision_cholesky( covariances, self.covariance_type) elif self.covariance_type == 'full': self.precisions_cholesky_ = np.array( [linalg.cholesky(prec_init, lower=True) for prec_init in self.precisions_init]) elif self.covariance_type == 'tied': self.precisions_cholesky_ = linalg.cholesky(self.precisions_init, lower=True) else: self.precisions_cholesky_ = self.precisions_init def _m_step(self, X, log_resp): """M step. Parameters ---------- X : array-like of shape (n_samples, n_features) log_resp : array-like of shape (n_samples, n_components) Logarithm of the posterior probabilities (or responsibilities) of the point of each sample in X. """ n_samples, _ = X.shape self.weights_, self.means_, self.covariances_ = ( _estimate_gaussian_parameters(X, np.exp(log_resp), self.reg_covar, self.covariance_type)) self.weights_ /= n_samples self.precisions_cholesky_ = _compute_precision_cholesky( self.covariances_, self.covariance_type) def _estimate_log_prob(self, X): return _estimate_log_gaussian_prob( X, self.means_, self.precisions_cholesky_, self.covariance_type) def _estimate_log_weights(self): return np.log(self.weights_) def _compute_lower_bound(self, _, log_prob_norm): return log_prob_norm def _get_parameters(self): return (self.weights_, self.means_, self.covariances_, self.precisions_cholesky_) def _set_parameters(self, params): (self.weights_, self.means_, self.covariances_, self.precisions_cholesky_) = params # Attributes computation _, n_features = self.means_.shape if self.covariance_type == 'full': self.precisions_ = np.empty(self.precisions_cholesky_.shape) for k, prec_chol in enumerate(self.precisions_cholesky_): self.precisions_[k] = np.dot(prec_chol, prec_chol.T) elif self.covariance_type == 'tied': self.precisions_ = np.dot(self.precisions_cholesky_, self.precisions_cholesky_.T) else: self.precisions_ = self.precisions_cholesky_ ** 2 def _n_parameters(self): """Return the number of free parameters in the model.""" _, n_features = self.means_.shape if self.covariance_type == 'full': cov_params = self.n_components * n_features * (n_features + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * n_features elif self.covariance_type == 'tied': cov_params = n_features * (n_features + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = n_features * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model on the input X. Parameters ---------- X : array of shape (n_samples, n_dimensions) Returns ------- bic : float The lower the better. """ return (-2 * self.score(X) * X.shape[0] + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model on the input X. Parameters ---------- X : array of shape (n_samples, n_dimensions) Returns ------- aic : float The lower the better. """ return -2 * self.score(X) * X.shape[0] + 2 * self._n_parameters()
bsd-3-clause
TheHonestGene/imputor
setup.py
1
1812
from setuptools import setup, find_packages # Always prefer setuptools over distutils from codecs import open # To use a consistent encoding from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='Imputor', version='0.0.1', description='A library for imputation', long_description=long_description, url='https://github.com/TheHonestGene/imputor', author=['Bjarni Vilhjalmsson','Uemit Seren'], author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], keywords='Risk Prediction', packages=find_packages(exclude=['contrib', 'docs', 'tests*']), install_requires=[ "numpy", "scipy", "h5py", "snpy==0.1", "matplotlib >= 1.4.3" ], dependency_links=['https://github.com/timeu/snpy/tarball/master#egg=snpy-0.1'], setup_requires=[ "pytest-runner" ], tests_require=[ "pytest", "pytest-cov", "pytest-pep8", "coverage" ], entry_points={ 'console_scripts': [ 'imputor=imputor:main' ], }, )
mit
zygmuntz/numer.ai
march/validate_lr.py
1
2651
#!/usr/bin/env python "Load data, create the validation split, optionally scale data, train a linear model, evaluate" "Code updated for march 2016 data" import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import Normalizer, PolynomialFeatures from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, StandardScaler, RobustScaler from sklearn.linear_model import LogisticRegression as LR from sklearn.metrics import roc_auc_score as AUC, accuracy_score as accuracy, log_loss # def train_and_evaluate( y_train, x_train, y_val, x_val ): lr = LR() lr.fit( x_train, y_train ) p = lr.predict_proba( x_val ) auc = AUC( y_val, p[:,1] ) ll = log_loss( y_val, p[:,1] ) return ( auc, ll ) def transform_train_and_evaluate( transformer ): global x_train, x_val, y_train x_train_new = transformer.fit_transform( x_train ) x_val_new = transformer.transform( x_val ) return train_and_evaluate( y_train, x_train_new, y_val, x_val_new ) # input_file = 'data/numerai_training_data.csv' d = pd.read_csv( input_file ) train, val = train_test_split( d, test_size = 5000 ) y_train = train.target.values y_val = val.target.values x_train = train.drop( 'target', axis = 1 ) x_val = val.drop( 'target', axis = 1 ) # train, predict, evaluate auc, ll = train_and_evaluate( y_train, x_train, y_val, x_val ) print "No transformation" print "AUC: {:.2%}, log loss: {:.2%} \n".format( auc, ll ) # try different transformations for X # X is already scaled to (0,1) so these won't make much difference transformers = [ MaxAbsScaler(), MinMaxScaler(), RobustScaler(), StandardScaler(), Normalizer( norm = 'l1' ), Normalizer( norm = 'l2' ), Normalizer( norm = 'max' ) ] #poly_scaled = Pipeline([ ( 'poly', PolynomialFeatures()), ( 'scaler', MinMaxScaler()) ]) #transformers.append( PolynomialFeatures(), poly_scaled ) for transformer in transformers: print transformer auc, ll = transform_train_and_evaluate( transformer ) print "AUC: {:.2%}, log loss: {:.2%} \n".format( auc, ll ) """ No transformation AUC: 52.35%, log loss: 69.20% MaxAbsScaler(copy=True) AUC: 52.35%, log loss: 69.20% MinMaxScaler(copy=True, feature_range=(0, 1)) AUC: 52.35%, log loss: 69.20% RobustScaler(copy=True, with_centering=True, with_scaling=True) AUC: 52.35%, log loss: 69.20% StandardScaler(copy=True, with_mean=True, with_std=True) AUC: 52.35%, log loss: 69.20% Normalizer(copy=True, norm='l1') AUC: 51.26%, log loss: 69.26% Normalizer(copy=True, norm='l2') AUC: 52.18%, log loss: 69.21% Normalizer(copy=True, norm='max') AUC: 52.40%, log loss: 69.19% """
bsd-3-clause
dr-nate/msmbuilder
msmbuilder/preprocessing/__init__.py
9
3185
# Author: Carlos Xavier Hernandez <[email protected]> # Contributors: # Copyright (c) 2016, Stanford University and the Authors # All rights reserved. from __future__ import print_function, division, absolute_import from sklearn import preprocessing from .base import (MultiSequencePreprocessingMixin, MultiSequenceOnlinePreprocessingMixin) from .timeseries import Butterworth, EWMA, DoubleEWMA __all__ = ['Binarizer', 'Butterworth', 'DoubleEWMA', 'EWMA', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'MultiLabelBinarizer', 'Normalizer', 'PolynomialFeatures'] class Binarizer(MultiSequencePreprocessingMixin, preprocessing.Binarizer): __doc__ = preprocessing.Binarizer.__doc__ # Older versions of sklearn might not have this if hasattr(preprocessing, 'FunctionTransformer'): __all__.append('FunctionTransformer') class FunctionTransformer(MultiSequencePreprocessingMixin, preprocessing.FunctionTransformer): __doc__ = preprocessing.FunctionTransformer.__doc__ class Imputer(MultiSequencePreprocessingMixin, preprocessing.Imputer): __doc__ = preprocessing.Imputer.__doc__ class KernelCenterer(MultiSequencePreprocessingMixin, preprocessing.KernelCenterer): __doc__ = preprocessing.KernelCenterer.__doc__ class LabelBinarizer(MultiSequencePreprocessingMixin, preprocessing.LabelBinarizer): __doc__ = preprocessing.LabelBinarizer.__doc__ class MultiLabelBinarizer(MultiSequencePreprocessingMixin, preprocessing.MultiLabelBinarizer): __doc__ = preprocessing.MultiLabelBinarizer.__doc__ # Older versions of sklearn might not have this if hasattr(preprocessing.MinMaxScaler, 'partial_fit'): __all__.append('MinMaxScaler') class MinMaxScaler(MultiSequenceOnlinePreprocessingMixin, preprocessing.MinMaxScaler): __doc__ = preprocessing.MinMaxScaler.__doc__ # Older versions of sklearn might not have this if hasattr(preprocessing, 'MaxAbsScaler'): __all__.append('MaxAbsScaler') class MaxAbsScaler(MultiSequenceOnlinePreprocessingMixin, preprocessing.MaxAbsScaler): __doc__ = preprocessing.MaxAbsScaler.__doc__ class Normalizer(MultiSequencePreprocessingMixin, preprocessing.Normalizer): __doc__ = preprocessing.Normalizer.__doc__ # Older versions of sklearn might not have this if hasattr(preprocessing, 'RobustScaler'): __all__.append('RobustScaler') class RobustScaler(MultiSequencePreprocessingMixin, preprocessing.RobustScaler): __doc__ = preprocessing.RobustScaler.__doc__ # Older versions of sklearn might not have this if hasattr(preprocessing.StandardScaler, 'partial_fit'): __all__.append('StandardScaler') class StandardScaler(MultiSequenceOnlinePreprocessingMixin, preprocessing.StandardScaler): __doc__ = preprocessing.StandardScaler.__doc__ class PolynomialFeatures(MultiSequencePreprocessingMixin, preprocessing.PolynomialFeatures): __doc__ = preprocessing.PolynomialFeatures.__doc__
lgpl-2.1
CharlesGulian/Deconv
coadd_fits_editor.py
1
3366
# -*- coding: utf-8 -*- """ Created on Tue Nov 8 21:35:06 2016 @author: charlesgulian """ import os os.chdir('/home/cgulian2/Deconv') curr_dir = os.getcwd() import glob import numpy as np from astropy.io import fits import matplotlib.pyplot as plt #import fits_tools as tools # =============================================================================== # Getting image file paths for co-add frames # Image directory: image_dir = '/home/DATA/STRIPE82_330-360_AlignCropped/test7' image_files = glob.glob(os.path.join(image_dir,'*alignCropped.fits')) image_files.remove('/home/DATA/STRIPE82_330-360_AlignCropped/test7/fpC-4927-x4127-y118_stitched_alignCropped.fits') #print image_files all_image_files = os.path.join(os.getcwd(),'imagelist.txt') with open(all_image_files,'w') as f: f.write('# Complete list of images \n') f.write('\n') for i in image_files: f.write('{} \n'.format(i)) #print type(image_files) #print image_files[0:5] # =============================================================================== # Getting image file paths for unaligned frames, extracting data from header, rewriting to headers of aligned frames # Unaligned image directory og_dir = '/home/DATA/STRIPE82_330-360' # Search for co-add frame counterparts in unaligned image directory og_files = [] bad_image_files = [] for image_file in image_files: image_tag = os.path.split(image_file)[1] tag = image_tag[0:8] tag = tag.replace('-','-00') #print os.path.join(og_dir,tag+'*.fit') og_file_list = glob.glob(os.path.join(og_dir,tag+'*.fit')) if len(og_file_list) == 0: print 'Error: non-aligned image not found' continue flux0,flux20,bias,skylevel=None,None,None,None # Select an image from unaligned image directory with appropriate header information print 'Selecting corresponding image from unaligned directory' for i in range(len(og_file_list)): og_file = og_file_list[i] og_header = fits.getheader(og_file) print '\nChecking image {0} header for appropriate keywords'.format(str(i)) print og_file try: flux0 = og_header['flux0'] flux20 = og_header['flux20'] bias = og_header['softbias'] skylevel = og_header['sky'] except KeyError: del(og_header) continue break if i == len(og_file_list)-1: print 'WARNING: No suitable image found for {0}'.format(image_file) print "flux0",flux0 print "flux20",flux20 print "bias",bias print "sky",skylevel bad_image_files.append(image_file) continue header = fits.getheader(image_file) header['flux0'] = flux0 header['flux20'] = flux20 header['softbias'] = bias header['sky'] = skylevel print 'Header data:' print 'Sky level: {0} | Flux 20: {1}'.format(skylevel, flux20) new_image_file = image_file.replace('DATA','DATA/charlie') fits.writeto(new_image_file,fits.getdata(image_file),header,clobber=True) og_files.append(og_file) del(og_header) del(header) print og_files print len(og_files) print len(bad_image_files) print len(image_files) missing_keyword_files = os.path.join(os.getcwd(),'missing_keyword_imagelist.txt') with open(missing_keyword_files,'w') as g: g.write('# List of images with missing header keywords \n') g.write('\n') for i in bad_image_files: g.write('{} \n'.format(i))
gpl-3.0
dandanvidi/capacity-usage
scripts/model_reactions_protein_weights.py
3
1452
# -*- coding: utf-8 -*- """ Created on Wed Mar 16 13:53:05 2016 @author: dan """ import pandas as pd import re import numpy as np from collections import defaultdict from cobra.io.sbml import create_cobra_model_from_sbml_file from cobra.manipulation.modify import convert_to_irreversible model = create_cobra_model_from_sbml_file("../data/iJO1366.xml") enzyme_genes = pd.DataFrame.from_csv("../data/model_genes.csv") gr_mol = enzyme_genes["Molecular weight (Da)"].copy() convert_to_irreversible(model) complexes = pd.DataFrame.from_csv("../data/enzyme_complexes.csv") comp = list(complexes["Gene composition"].values) comp = [dict(zip(re.findall(r"b[0-9]+", s),re.findall(r"\(([0-9]+)\)", s))) for s in comp] # # all_genes = defaultdict(list) for s in comp: for k,v in s.iteritems(): all_genes[k].append(float(v)) for b in gr_mol.index: if b not in all_genes.keys(): all_genes[b].append(1.0) subunit_comp = {k:np.mean(v) for k,v in all_genes.iteritems()} r_to_weights = {} for r in model.reactions: isozymes = r.gene_reaction_rule.split("or") isozymes = [re.findall(r"b[0-9]+", iso) for iso in isozymes] weights = [] for genes_list in isozymes: for b in genes_list: if b in gr_mol.index: weights.append(subunit_comp[b]*gr_mol[b]) else: weights.append(np.nan) # print r.id, weights r_to_weights[r.id] = np.mean(weights)
mit
GeoMop/GeoMop
src/LayerEditor/bem/side_project_map.py
1
3361
import numpy as np import matplotlib.pyplot as plt class SideProjectMapping: """ Class to define mapping through displacement of set of edges. The mapping is defined by a set of edges 'orig_edges' and set of moved edges 'new_edges'. Than a set of points may be mapped using the map_points or map_point functions. The mapping should have following properties: - points on original edges are mapped to corresponding points on new edges (do not hold on intersection of edges). - if the edges forms a decomposition of the plane to (nonconvex) polygons, the points inside old polygons are mapped to ppoints in new polygons. - the mapping is continuous - mapping is smooth inside polygons Mapping of point P is weighted average of its projections to individual edges. Weights are 1/r^2 where 'r' is the distances to the projection. """ def __init__(self, orig_edges, new_edges): """ :param orig_edges: Initial set of edges. :param new_edges: Set of displaced edges (same number of edges). """ assert (len(orig_edges) == len(new_edges)) self.displ = np.array(new_edges) - np.array(orig_edges) self.edges = [(np.array(a), np.array(b)) for a, b in orig_edges] def map_points(self, points): """ :param points: list of points [(x,y), ...] :return: list of transformed points """ return [self.map_point(np.array(p)) for p in points] def _weight_displ(self, sides): displ = np.array([0.0, 0.0]) wsum = 0.0 for w, d in sides: displ += w * d wsum += w return displ / wsum def map_point(self, p): """ :param p: point as numpy array of size 2 :return: transformed point """ print("Map p: ", p) epsilon = 1e-13 sides = [] singular_sides = [] #ax = plt.gca() #ax.margins(0.5) for i in range(len(self.edges)): X1, X2 = self.edges[i] UX1, UX2 = self.displ[i] # project to edge dX = X2 - X1 norm = np.array([-dX[1], dX[0]]) norm = norm / np.linalg.norm(norm) dist = np.dot(p - X1, norm) # projection of the point to the element t_proj = np.linalg.norm(p - X1 - dist * norm) / np.linalg.norm(dX) t_proj = max(0.0, t_proj) t_proj = min(1.0, t_proj) proj_p = X1 + t_proj * dX dist = np.linalg.norm( proj_p - p) print(t_proj, proj_p, dist) dU = UX2 - UX1 Up = UX1 + t_proj * dU #ax.quiver(proj_p[0], proj_p[1], Up[0], Up[1], angles='xy', scale_units='xy', scale=1, color='b') #ax.quiver(X1[0], X1[1], UX1[0], UX1[1], angles='xy', scale_units='xy', scale=1, color='g') #ax.quiver(X2[0], X2[1], UX2[0], UX2[1], angles='xy', scale_units='xy', scale=1, color='g') print(t_proj, proj_p, dist, Up) if (dist < epsilon): singular_sides.append((1.0, Up)) else: sides.append((1.0 / dist /dist, Up)) if singular_sides: displ = self._weight_displ(singular_sides) else: displ = self._weight_displ(sides) print(displ) return p + displ
gpl-3.0
bhzunami/Immo
immo/scikit/pipeline.py
1
46523
import os import pdb import logging import json import argparse import datetime import numpy as np import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import ast # Scikit from sklearn.ensemble import ExtraTreesRegressor, IsolationForest from sklearn.externals import joblib from sklearn.metrics import confusion_matrix, mean_squared_error from sklearn.grid_search import GridSearchCV from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.neighbors import KNeighborsRegressor from sklearn.pipeline import make_pipeline from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.preprocessing import RobustScaler from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.linear_model import LassoLarsCV, Ridge, RidgeCV, LassoCV, Lasso, LinearRegression, LogisticRegression from sklearn.metrics.scorer import make_scorer import xgboost as xgb #import lightgbm as lgb from sklearn import cross_validation, metrics #Additional scklearn functions # NLTK #import nltk #from nltk.corpus import stopwords # Import the stop word list #from nltk.stem import SnowballStemmer from .a_detection import AnomalyDetection from .helper import generate_matrix, ape, mape, mdape, gen_subplots, plot, train_statistics, feature_importance from .combined_ensemble import CombinedEnsemble from .stacked_regressor import StackedRegressor RNG = np.random.RandomState(42) def score_function(y_test, y_pred, **kwargs): return mape(y_test, y_pred) scorer = make_scorer(score_function, greater_is_better=False) class Pipeline(): def __init__(self, goal, settings, directory): self.goal = goal self.settings = settings self.directory = directory self.image_folder = os.path.abspath(os.path.join(directory, settings['image_folder'])) self.model_folder = os.path.abspath(os.path.join(directory, settings['model_folder'])) # Create folder if they do not exist if not os.path.exists('{}'.format(self.image_folder)): logging.info("Directory for images does not exists. Create one") os.makedirs('{}'.format(self.image_folder)) if not os.path.exists('{}'.format(self.model_folder)): logging.info("Directory for models does not exists. Create one") os.makedirs('{}'.format(self.model_folder)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Load and Save Methods def load_csv(self, filename): def load_csv_inner(ads): try: return pd.read_csv(filename, index_col=0, engine='c') except FileNotFoundError: logging.info("File {} does not exist. Please run data_analyse.py first".format(filename)) return None return load_csv_inner def save_as_df(self, name): def inner_save_as_df(ads): joblib.dump(ads, name) return ads return inner_save_as_df def load_df(self, name): def inner_load_df(ads): advertisements = joblib.load(name) X, y = generate_matrix(advertisements, 'price') self.X, self.y = X.values, y.values self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=RNG) logging.info("Size of X_train: {}, size of X_test: {}".format(len(self.X_train), len(self.X_test))) return advertisements return inner_load_df def echo(self, message): def inner_echo(ads): logging.info("{}".format(message)) return ads return inner_echo def remove(self, name): def inner_remove(ads): try: os.remove('{}/{}'.format(self.model_folder, name)) except Exception: logging.error("Could not remove pkl") pass return inner_remove def load_pipeline(self, pipeline): filename = "{}/ads_prepared.pkl".format(self.model_folder) if os.path.isfile(filename): return [self.load_df(filename)] else: return pipeline # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Feature engineering # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def cleanup(self, remove): def inner_cleanup(ads): ads = ads.drop(ads[ads['price'] < 10].index) ads = ads.drop(ads[ads['build_year'] < 1200].index) ads = ads.drop(ads[ads['build_year'] > 2030].index) ads = ads.drop(ads[(ads['ogroup'] == 'raum') | (ads['ogroup'] == 'invalid')].index) ads = ads.drop_duplicates(keep='first') # Remove empty prices dropna = ['price', 'build_year', 'num_rooms', 'living_area'] ads = ads.dropna(subset=dropna) # Remove unwanted cols return ads.drop(remove, axis=1) return inner_cleanup def simple_stats(self, title): """Show how many NaN has one Feature and how many we can use """ def run(ads): total_amount_of_data = ads.shape[0] logging.info("{}".format(title)) logging.info("="*70) logging.info("We have total {} values".format(total_amount_of_data)) logging.info("{:25} | {:17} | {:8}".format("Feature", "NaN-Values", "usable Values")) logging.info("-"*70) total_nan = 0 total_use = total_amount_of_data for key in ads.keys(): if key == 'id' or key == 'Unnamed': # Keys from pandas we do not want continue # for i, key in KEYS: nan_values = ads[key].isnull().sum() useful_values = total_amount_of_data - nan_values # Sum up total_nan += nan_values total_use = total_use if total_use < useful_values else useful_values logging.info("{:25} | {:8} ({:5.2f}%) | {:8} ({:3.0f}%)".format(key, nan_values, (nan_values/total_amount_of_data)*100, useful_values, (useful_values/total_amount_of_data)*100)) logging.info("-"*70) logging.info("{:25} | {:17} | {}".format('Total', total_nan, total_use)) return ads return run def show_crawler_stats(self, ads): logging.info(ads.groupby('crawler')['price'].count()) return ads def transform_noise_level(self, ads): """ If we have no nose_level at the address we use the municipality noise_level """ def lambdarow(row): if np.isnan(row.noise_level): return row.m_noise_level return row.noise_level if 'noise_level' in ads.keys(): ads['noise_level'] = ads.apply(lambdarow, axis=1) return ads return ads def replace_zeros_with_nan(self, ads): """ replace 0 values into np.nan for statistic """ ads.loc[ads.living_area == 0, 'living_area'] = np.nan ads.loc[ads.num_rooms == 0, 'num_rooms'] = np.nan return ads def transform_misc_living_area(self, ads): ads['avg_room_area'] = ads['living_area'] / ads['num_rooms'] return ads def transform_build_renovation(self, ads): """Set was_renovated to 1 if we have a date in renovation_year """ ads['was_renovated'] = ads.apply(lambda row: not np.isnan(row['last_renovation_year']), axis=1) def last_const(row): current_year = datetime.date.today().year if row['build_year'] >= current_year or row['last_renovation_year'] >= current_year: return 0 elif np.isnan(row['last_renovation_year']): return current_year - row['build_year'] else: return current_year - row['last_renovation_year'] ads['last_construction'] = ads.apply(last_const, axis=1) return ads.drop(['last_renovation_year'], axis=1) def transform_onehot(self, ads): """Build one hot encoding for all columns with string as value """ logging.debug("Features: {}".format(ads.keys())) ads = pd.get_dummies(ads, columns=self.settings.get('one_hot_columns')) return ads def transform_tags(self, ads): """Transform tags """ with open(os.path.join(self.directory, '../crawler/taglist.txt')) as f: search_words = set(["tags_" + x.split(':')[0] for x in f.read().splitlines()]) template_dict = dict.fromkeys(search_words, 0) def transformer(row): the_dict = template_dict.copy() for tag in ast.literal_eval(row.tags): the_dict["tags_" + tag] = 1 return pd.Series(the_dict) tag_columns = ads.apply(transformer, axis=1) return ads.drop(['tags'], axis=1).merge(tag_columns, left_index=True, right_index=True) def predict_living_area(self, ads): """If living area is missing try to predict one and set the predicted flag to 1 """ try: model = joblib.load('{}/living_area.pkl'.format(self.model_folder)) except FileNotFoundError: logging.error("Could not load living area model. Did you forget to train living area?") return ads.dropna(subset=['living_area']) tempdf = ads.drop(['price'], axis=1) ads.living_area_predicted = 0 nan_idxs = tempdf.living_area.index[tempdf.living_area.apply(np.isnan)] if len(nan_idxs) > 0: ads.loc[nan_idxs, 'living_area'] = model.predict(tempdf.drop(['living_area'], axis=1).ix[nan_idxs]) ads.loc[nan_idxs, 'living_area_predicted'] = 1 return ads def transform_features(self, ads): """Transfrom features to more global one """ # Merge some Features: ads['bath'] = np.where((ads['tags_badewanne'] == 1) | (ads['tags_badezimmer'] == 1) | (ads['tags_dusche'] == 1) | (ads['tags_lavabo'] == 1), 1, 0) ads['interior'] = np.where((ads['tags_anschluss'] == 1) | (ads['tags_abstellplatz'] == 1) | (ads['tags_cheminée'] == 1) | (ads['tags_eingang'] == 1) | (ads['tags_esszimmer'] == 1) | (ads['tags_gross'] == 1) | (ads['tags_heizung'] == 1) | (ads['tags_lift'] == 1) | (ads['tags_minergie'] == 1) | (ads['tags_schlafzimmer'] == 1) | (ads['tags_wohnzimmer'] == 1) | (ads['tags_rollstuhlgängig'] == 1) | (ads['tags_tv'] == 1) | (ads['tags_küche'] == 1) | (ads['tags_waschküche'] == 1) | (ads['tags_waschmaschine'] == 1) | (ads['tags_wc'] == 1) | (ads['tags_keller'] == 1) | (ads['tags_raum'] == 1) | (ads['tags_zimmer'] == 1), 1, 0) ads['exterior'] = np.where((ads['tags_aussicht'] == 1) | (ads['tags_balkon'] == 1) | (ads['tags_garten'] == 1) | (ads['tags_garage'] == 1) | (ads['tags_lage'] == 1) | (ads['tags_liegenschaft'] == 1) | (ads['tags_parkplatz'] == 1) | (ads['tags_sitzplatz'] == 1) | (ads['tags_terrasse'] == 1), 1, 0) ads['neighbourhood'] = np.where((ads['tags_autobahnanschluss'] == 1) | (ads['tags_einkaufen'] == 1) | (ads['tags_kinderfreundlich'] == 1) | (ads['tags_kindergarten'] == 1) | (ads['tags_oberstufe'] == 1) | (ads['tags_primarschule'] == 1) | (ads['tags_quartier'] == 1) | (ads['tags_ruhig'] == 1) | (ads['tags_sommer'] == 1) | (ads['tags_verkehr'] == 1) | (ads['tags_zentral'] == 1), 1, 0) # Drop the concatenated features drop_features = ['tags_badewanne', 'tags_badezimmer', 'tags_dusche', 'tags_lavabo', 'tags_anschluss', 'tags_abstellplatz', 'tags_cheminée', 'tags_eingang', 'tags_esszimmer', 'tags_gross', 'tags_heizung', 'tags_lift', 'tags_minergie', 'tags_schlafzimmer', 'tags_wohnzimmer', 'tags_rollstuhlgängig', 'tags_tv', 'tags_küche', 'tags_waschküche', 'tags_waschmaschine', 'tags_wc', 'tags_zimmer', 'tags_aussicht', 'tags_balkon', 'tags_garten', 'tags_garage', 'tags_lage', 'tags_liegenschaft', 'tags_parkplatz', 'tags_sitzplatz', 'tags_terrasse', 'tags_autobahnanschluss', 'tags_einkaufen', 'tags_kinderfreundlich', 'tags_kindergarten', 'tags_oberstufe', 'tags_primarschule', 'tags_quartier', 'tags_ruhig', 'tags_sommer', 'tags_verkehr', 'tags_zentral', 'tags_keller', 'tags_raum'] return ads.drop(drop_features, axis=1) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Outlier detection # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def outlier_detection(self, ads): """Detect outliers we do not want in our training phase The outlier model must be trained first """ # if os.path.isfile("{}/ads_cleaned.pkl".format(self.model_folder)): # logging.info("Clean file found skipping outlier detection load data from file.") # return self.load_df("{}/ads_cleaned.pkl".format(self.model_folder))(ads) meshgrid = { 'build_year': np.meshgrid(np.linspace(0, max(ads['build_year']), 400), np.linspace(0, max(ads['price']), 1000)), 'num_rooms': np.meshgrid(np.linspace(-1, max(ads['num_rooms']), 400), np.linspace(0, max(ads['price']), 1000)), 'living_area': np.meshgrid(np.linspace(0, max(ads['living_area']), 400), np.linspace(0, max(ads['price']), 1000)), 'last_construction': np.meshgrid(np.linspace(0, max(ads['last_construction']), 400), np.linspace(0, max(ads['price']), 1000)), 'noise_level': np.meshgrid(np.linspace(0, max(ads['noise_level']), 400), np.linspace(0, max(ads['price']), 1000)) } anomaly_detection = AnomalyDetection(ads, self.image_folder, self.model_folder) ads = anomaly_detection.isolation_forest(self.settings['anomaly_detection'], meshgrid, self.goal) return ads def train_outlier_detection(self, ads): """Check which contamination is the best for the features Run isolation forest with different contamination and check difference in the standard derivation. If the diff is < 1 we found our c """ for feature in self.settings['anomaly_detection']['features']: # Do not run outlier detection if model exists if os.path.isfile('{}/isolation_forest_{}.pkl'.format(self.model_folder, feature)): logging.info("Outlier detection for feature {} exists.".format(feature)) continue logging.info("Check feature: {}".format(feature)) # Only use the this specific feature with our target tmp_ad = ads[[feature, self.goal]] # Initialize std and std_percent std = [np.std(tmp_ad[feature].astype(int))] std_percent = [100] difference = [0] # We are in train phase so best_c should always be 0 best_c, self.settings['anomaly_detection'][feature] = 0, 0 last_model, cls_ = None, None chosen_std_percent = 0 # Run isolation forest for diffrent contamination for c in np.arange(0.01, self.settings['anomaly_detection']['limit'], self.settings['anomaly_detection']['step']): last_model, cls_ = cls_ , IsolationForest(max_samples=0.6, contamination=c, n_estimators=self.settings['anomaly_detection']['estimator'], random_state=RNG) logging.debug("Check C: {}".format(c)) cls_.fit(tmp_ad.values) outlierIdx = cls_.predict(tmp_ad.values) # Remove entries which are detected as outliers filtered = tmp_ad.drop(tmp_ad.index[np.where(outlierIdx == -1)[0]]) # Calculate standard derivation of the new filtered ads std.append(np.std(filtered[feature].astype(int))) std_percent.append((std[-1]/std[0])*100) logging.info("New std: with c {}: {}".format(c, std[-1])) logging.info("New std in percent with c {}: {}".format(c, std_percent[-1])) # Calculate diff from last standard derivation to check if we found our contamination diff = std_percent[-2] - std_percent[-1] logging.info("Diff when using c {}: {}".format(c, diff)) # We stop after diff is the first time < 1. So best_c must be 0 # But we can not stop the calculation because we want to make the whole diagramm if diff < 2.5 and best_c == 0: # We do not need this c, we need the last c - step best_c = np.around(c - self.settings['anomaly_detection']['step'], 2) chosen_std_percent = std_percent[-2] joblib.dump(last_model, '{}/isolation_forest_{}.pkl'.format(self.model_folder, feature)) difference.append(diff) # Store best c in our settings to use it later self.settings['anomaly_detection'][feature] = best_c if best_c > 0 else 0 + self.settings['anomaly_detection']['step'] # Plot stuff # Create directory if not exists if not os.path.exists('{}/outlier_detection'.format(self.image_folder)): logging.info("Directory for outliers does not exists. Create one") os.makedirs('{}/outlier_detection'.format(self.image_folder)) logging.info("Best C for feature {}: {} chosen_std: {}".format(feature, best_c, chosen_std_percent)) # Plot the standard derivation for this feature fig, ax1 = plt.subplots() plt.title('Reduction of σ for feature {}'.format(feature.replace("_", " "))) plt.plot(list(map(lambda x: x*100, np.arange(0.0, self.settings['anomaly_detection']['limit'], self.settings['anomaly_detection']['step']))), std_percent, c='r') plt.ylabel('Decline of σ in %') plt.xlabel('% removed of {} outliers'.format(feature.replace("_", " "))) # Draw lines to choosen c plt.plot([best_c*100, best_c*100], [40, chosen_std_percent], linewidth=1, color='b', linestyle='--') plt.plot([0, best_c*100], [chosen_std_percent, chosen_std_percent], linewidth=1, color='b', linestyle='--') ax1.set_xlim([0, 10]) ax1.set_ylim([35, 100]) plt.axis('tight') plt.savefig('{}/outlier_detection/{}_std.png'.format(self.image_folder, feature), dpi=250) plt.close() # Plot the difference between the standard derivation fig, ax1 = plt.subplots() ax1.set_title('Difference of σ from previous σ for feature: {}'.format(feature.replace("_", " "))) ax1.plot(list(np.arange(0.0, self.settings['anomaly_detection']['limit'], self.settings['anomaly_detection']['step'])), difference, c='r') ax1.set_ylabel('% decline of σ to previous σ') ax1.set_xlabel('% removed of {} outliers'.format(feature.replace("_", " "))) plt.savefig('{}/outlier_detection/{}_diff_of_std.png'.format(self.image_folder, feature), dpi=250) plt.close() # Save best c for all features with open('{}/settings.json'.format(self.directory), 'w') as f: f.write(json.dumps(self.settings)) return ads def predict(self, name): def inner_predict(ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values idx = 0 model = joblib.load('{}/{}.pkl'.format(self.model_folder, name)) for train_index, test_index in KFold(n_splits=3, shuffle=True).split(X): logging.info('New split') X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] logging.info("Size of training data: {}".format(len(X_train))) logging.info("Size of testing data: {}".format(len(X_test))) y_pred = model.predict(X_test) train_statistics(y_test, y_pred, title="{}_{}".format(name, idx)) plot(y_test, y_pred, self.image_folder, show=False, title="{}_{}".format(name, idx)) idx += 1 return ads return inner_predict # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Linear Regression # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def linear_regression(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values for train_index, test_index in KFold(n_splits=3, shuffle=True).split(X): logging.info('Linear regression new split') X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] logging.info("Size of training data: {}".format(len(X_train))) logging.info("Size of testing data: {}".format(len(X_test))) linreg = LinearRegression(normalize=True, n_jobs=-1) linreg.fit(X_train, y_train) y_pred = linreg.predict(X_test) train_statistics(y_test, y_pred) plot(y_test, y_pred, self.image_folder, show=False, title="simpel_linear_regresion") return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Ridge # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_ridge(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=RNG) ridge = RidgeCV(alphas=[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]) ridge.fit(X_train, y_train) alpha = ridge.alpha_ logging.info("Try again for more precision with alphas centered around " + str(alpha)) ridge = RidgeCV(alphas=[alpha * .6, alpha * .65, alpha * .7, alpha * .75, alpha * .8, alpha * .85, alpha * .9, alpha * .95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], cv=5) ridge.fit(X_train, y_train) alpha = ridge.alpha_ logging.info("Best alpha: {}".format(alpha)) idx = 0 for train_index, test_index in KFold(n_splits=5, shuffle=True).split(X): logging.info('New split') X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] ridgereg = Ridge(alpha=alpha, normalize=True) ridgereg.fit(X_train, y_train) joblib.dump(ridgereg, '{}/ridge_{}.pkl'.format(self.model_folder, idx)) y_pred = ridgereg.predict(X_test) train_statistics(y_test, y_pred, title="Ridge_{}".format(idx)) plot(y_test, y_pred, self.image_folder, show=False, title="ridge_regression_{}".format(idx)) idx +=1 return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Lasso # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_lasso(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=RNG) lasso = LassoCV(alphas=[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]) lasso.fit(X_train, y_train) alpha = lasso.alpha_ logging.info("Try again for more precision with alphas centered around " + str(alpha)) lasso = LassoCV(alphas=[alpha * .6, alpha * .65, alpha * .7, alpha * .75, alpha * .8, alpha * .85, alpha * .9, alpha * .95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], cv=5) lasso.fit(X_train, y_train) alpha = lasso.alpha_ logging.info("Best alpha: {}".format(alpha)) idx = 0 for train_index, test_index in KFold(n_splits=5, shuffle=True).split(X): logging.info('New split') X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] lassoreg = Lasso(alpha=alpha, normalize=True, max_iter=1e5) lassoreg.fit(X_train, y_train) joblib.dump(lassoreg, '{}/lasso_{}.pkl'.format(self.model_folder, idx)) y_pred = lassoreg.predict(X_test) train_statistics(y_test, y_pred, title="lasso_{}".format(idx)) plot(y_test, y_pred, self.image_folder, show=False, title="lasso_regression_{}".format(idx)) idx += 1 return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # K nearest Neighbour # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_kneighbours(self, ads): # X, y = generate_matrix(ads, 'price') # X, y = X.values, y.values # parameters = {"n_neighbors": [2, 3, 5], "leaf_size":[50, 100, 200]} # neigh = KNeighborsRegressor(weights='distance', n_jobs=-1) # gd = GridSearchCV(neigh, parameters, verbose=1, scoring=scorer, cv=5) # logging.info("Start Fit") # gd.fit(X, y) # logging.info("Best score: {}".format(gd.best_score_)) # logging.info("Best params: {}".format(gd.best_params_)) # params = gd.best_params_ params = {} self.settings['k-neighbour'] = {} self.settings['k-neighbour']['n_neighbors'] = params.get('n_neighbors', 2) self.settings['k-neighbour']['leaf_size'] = params.get('leaf_size', 100) # Save best c for all features with open('{}/settings.json'.format(self.directory), 'w') as f: f.write(json.dumps(self.settings)) neigh = KNeighborsRegressor(weights='distance', n_jobs=-1, leaf_size=params.get('leaf_size', 100), n_neighbors=params.get('n_neighbors', 2)) neigh.fit(self.X_train, self.y_train) joblib.dump(neigh, '{}/kneighbour.pkl'.format(self.model_folder)) y_pred = neigh.predict(self.X_test) train_statistics(self.y_test, y_pred, title="KNeighbour") plot(self.y_test, y_pred, self.image_folder, show=False, title="KNeighbour") return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # adaBOOST # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_adaBoost(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values # parameters = {"n_estimators": [17, 18, 19, 20], "learning_rate": [0.01, 0.1, 0.3]} # adaboost = AdaBoostRegressor(DecisionTreeRegressor(), random_state=RNG) # gd = GridSearchCV(adaboost, parameters, verbose=1, scoring=scorer, cv=5) # gd.fit(X, y) # logging.info("Best score: {}".format(gd.best_score_)) # logging.info("Best params: {}".format(gd.best_params_)) # params = gd.best_params_ params = {} self.settings['adaboost'] = {} self.settings['adaboost']['n_estimators'] = params.get('n_estimators', 18) self.settings['adaboost']['learning_rate'] = params.get('learning_rate', 1) # Save best c for all features with open('{}/settings.json'.format(self.directory), 'w') as f: f.write(json.dumps(self.settings)) boost = AdaBoostRegressor(DecisionTreeRegressor(), n_estimators=params.get('n_estimators', 18), learning_rate=params.get('learning_rate', 1), random_state=RNG) boost.fit(self.X_train, self.y_train) joblib.dump(boost, '{}/adaboost.pkl'.format(self.model_folder)) y_pred = boost.predict(self.X_test) train_statistics(self.y_test, y_pred, title="adaboost") plot(self.y_test, y_pred, self.image_folder, show=False, title="adaboost") # X values is numpy matrix with no keys() X, y = generate_matrix(ads, 'price') try: feature_importance(boost, X) except Exception: logging.error("Could not get Feature importance") pass return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Random Forest # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_random_forest(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values # parameters = {"n_estimators": [100, 500, 700, 1000], "min_samples_leaf":[1, 5]} # random = RandomForestRegressor(n_jobs=-1) # gd = GridSearchCV(random, parameters, verbose=1, scoring=scorer, cv=5) # logging.info("Start Fit") # gd.fit(X, y) # logging.info("Best score: {}".format(gd.best_score_)) # logging.info("Best score: {}".format(gd.best_params_)) # params = gd.best_params_ params = {} self.settings['random_forest'] = {} self.settings['random_forest']['n_estimators'] = params.get('n_estimators', 700) self.settings['random_forest']['min_samples_leaf'] = params.get('min_samples_leaf', 1) # Save best c for all features with open('{}/settings.json'.format(self.directory), 'w') as f: f.write(json.dumps(self.settings)) model = RandomForestRegressor(n_estimators=params.get('n_estimators', 700), max_features="auto", n_jobs=-1, min_samples_leaf=params.get('min_samples_leaf', 1)) model.fit(self.X_train, self.y_train) joblib.dump(model, '{}/random_forest.pkl'.format(self.model_folder)) y_pred = model.predict(self.X_test) train_statistics(self.y_test, y_pred, title="random_forest") plot(self.y_test, y_pred, self.image_folder, show=False, title="random_forest") # X values is numpy matrix with no keys() X, y = generate_matrix(ads, 'price') try: feature_importance(model, X) except Exception: logging.error("Could not get Feature importance") pass return ads return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # XGBoost # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_xgboost(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values # parameters = {"max_depth": [10, 100, 500], # "learning_rate": [0.01, 0.1, 0.3], # "n_estimators": [10, 50, 100, 250, 500]} # xgb_model = xgb.XGBRegressor(silent=False) # logging.info("Create GridSearch") # clf = GridSearchCV(xgb_model, parameters, verbose=1, scoring=scorer, cv=5) # logging.info("Start Fit") # clf.fit(X_train, y_train) # logging.info("Best score: {}".format(gd.best_score_)) # logging.info("Best score: {}".format(gd.best_params_)) # params = gd.best_params_ params = {} self.settings['xgboost'] = {} self.settings['xgboost']['max_depth'] = params.get('max_depth', 100) self.settings['xgboost']['learning_rate'] = params.get('learning_rate', 0.1) self.settings['xgboost']['n_estimators'] = params.get('n_estimators', 350) # Save best c for all features with open('{}/settings.json'.format(self.directory), 'w') as f: f.write(json.dumps(self.settings)) xgb_model = xgb.XGBRegressor(silent=False, max_depth=params.get('max_depth', 100), learning_rate=params.get('learning_rate', 0.1), n_estimators=params.get('n_estimators', 350), n_jobs=-1) xgb_model.fit(self.X_train, self.y_train) xgb_model._Booster.save_model('{}/xgbooster.pkl'.format(self.model_folder)) y_pred = xgb_model.predict(self.X_test) train_statistics(self.y_test, y_pred, title="xgb") plot(self.y_test, y_pred, self.image_folder, show=False, title="xgboost") return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Extra Tree # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def train_extra_tree(self, ads): X, y = generate_matrix(ads, 'price') X, y = X.values, y.values # parameters = {"n_estimators": [100, 500, 700, 1000]} # extra = ExtraTreesRegressor(warm_start=True, n_jobs=-1, random_state=RNG) # gd = GridSearchCV(extra, parameters, verbose=1, scoring=scorer, cv=5) # logging.info("Start Fit") # gd.fit(X, y) # logging.info("Best score: {}".format(gd.best_score_)) # logging.info("Best score: {}".format(gd.best_params_)) # params = gd.best_params_ params = {} self.settings['extraTree'] = {} self.settings['extraTree']['n_estimators'] = params.get('n_estimators', 700) # Save best c for all features with open('{}/settings.json'.format(self.directory), 'w') as f: f.write(json.dumps(self.settings)) extra = ExtraTreesRegressor(n_estimators=params.get('n_estimators', 700), warm_start=True, n_jobs=-1, random_state=RNG) extra.fit(self.X_train, self.y_train) joblib.dump(extra, '{}/extraTree.pkl'.format(self.model_folder)) y_pred = extra.predict(self.X_test) train_statistics(self.y_test, y_pred, title="ExtraTree_train") plot(self.y_test, y_pred, self.image_folder, show=False, title="extra") # X values is numpy matrix with no keys() X, y = generate_matrix(ads, 'price') try: feature_importance(extra, X) except Exception: logging.error("Could not get Feature importance") pass return ads return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Stacked model # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def stacked_models(self, ads): logging.info("Start extra Tree") params_tree = {} params_xgb = {} params_ada = {} estimator = StackedRegressor(estimators=[ ExtraTreesRegressor(n_estimators=params_tree.get('n_estimators', 700), warm_start=True, n_jobs=-1, random_state=RNG), xgb.XGBRegressor(silent=False, max_depth=params_xgb.get('max_depth', 100), learning_rate=params_xgb.get('learning_rate', 0.1), n_estimators=params_xgb.get('n_estimators', 350), n_jobs=-1), AdaBoostRegressor(DecisionTreeRegressor(), n_estimators=params_ada.get('n_estimators', 18), learning_rate=params_ada.get('learning_rate', 1), random_state=RNG) ]) logging.info("Start stacked estimator fit") estimator.fit(self.X_train, self.y_train) t_predict, xg_predict, a_predict = estimator.predict_(self.X_test) y_pred = np.array(0.8*a_predict + 0.1*xg_predict + 0.1*t_predict) train_statistics(self.y_test, y_pred, title="08_01_01") plot(self.y_test, y_pred, self.image_folder, show=False, title="08_01_01") y_pred = np.array(0.7*a_predict + 0.2*xg_predict + 0.1*t_predict) train_statistics(self.y_test, y_pred, title="7_2_1") plot(self.y_test, y_pred, self.image_folder, show=False, title="7_2_1") y_pred = np.array(0.6*a_predict + 0.3*xg_predict + 0.1*t_predict) train_statistics(self.y_test, y_pred, title="6_3_1") plot(self.y_test, y_pred, self.image_folder, show=False, title="6_3_1") y_pred = np.array(0.6*a_predict + 0.2*xg_predict + 0.2*t_predict) train_statistics(self.y_test, y_pred, title="6_2_2") plot(self.y_test, y_pred, self.image_folder, show=False, title="6_2_2") y_pred = np.array(0.5*a_predict + 0.3*xg_predict + 0.2*t_predict) train_statistics(self.y_test, y_pred, title="5_3_2") plot(self.y_test, y_pred, self.image_folder, show=False, title="5_3_2") y_pred = np.array(0.5*a_predict + 0.4*xg_predict + 0.1*t_predict) train_statistics(self.y_test, y_pred, title="5_4_1") plot(self.y_test, y_pred, self.image_folder, show=False, title="5_4_1") y_pred = np.array(0.4*a_predict + 0.4*xg_predict + 0.2*t_predict) train_statistics(self.y_test, y_pred, title="4_4_2") plot(self.y_test, y_pred, self.image_folder, show=False, title="4_4_2") y_pred = np.array(0.4*a_predict + 0.3*xg_predict + 0.3*t_predict) train_statistics(self.y_test, y_pred, title="4_3_3") plot(self.y_test, y_pred, self.image_folder, show=False, title="4_3_3") y_pred = np.array(0.7*a_predict + 0.3*xg_predict + 0.0*t_predict) train_statistics(self.y_test, y_pred, title="7_3_0") plot(self.y_test, y_pred, self.image_folder, show=False, title="7_3_0") y_pred = np.array(0.8*a_predict + 0.2*xg_predict + 0.0*t_predict) train_statistics(self.y_test, y_pred, title="8_2_0") plot(self.y_test, y_pred, self.image_folder, show=False, title="8_2_0") estimator.set_weights([0.2, 0.6, 0.2]) joblib.dump(estimator, '{}/stacked.pkl'.format(self.model_folder)) return ads # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Combined # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def combinedEnsemble_settings(self, ads): self.n_estimators = 700 self.min_samples_leaf = 5 self.ensemble_estimator = 'extratrees' self.combinedEnsemble_identifier = 'combinedEnsemble_{}_{}_{}'.format(self.ensemble_estimator, self.n_estimators, self.min_samples_leaf) self.combinedEnsemble_identifier_long = 'combinedEnsemble ensemble_estimator={} n_estimators={}, min_samples_leaf={}'.format(self.ensemble_estimator, self.n_estimators, self.min_samples_leaf) self.estimators = { # 'linear': LinearRegression(normalize=True), # 'ridge': RidgeCV(alphas=[0.01, 0.03, 0.1, 0.3, 1, 3, 10]), 'knn2': KNeighborsRegressor(n_neighbors=2, weights='distance', leaf_size=100), 'knn3': KNeighborsRegressor(n_neighbors=3, weights='distance', leaf_size=100), # 'knn5': KNeighborsRegressor(n_neighbors=5, weights='distance'), # 'mean': MeanEstimator(), # 'rounded': RoundedMeanEstimator(), } return ads def combinedEnsemble_train(self, ads): model = CombinedEnsemble( verbose=True, ensemble_estimator=ExtraTreesRegressor(n_estimators=self.n_estimators, min_samples_leaf=self.min_samples_leaf, n_jobs=-1), ) logging.info('Fit {}'.format(self.combinedEnsemble_identifier_long)) model.fit(self.X_train, self.y_train) logging.info("Fit finished. Save model") joblib.dump(model, '{}/{}.pkl'.format(self.model_folder, self.combinedEnsemble_identifier)) self.combinedEnsemble = model return ads def combinedEnsemble_load(self, ads): self.combinedEnsemble = joblib.load('{}/{}.pkl'.format(self.model_folder, self.combinedEnsemble_identifier)) return ads def combinedEnsemble_test(self, ads): model = self.combinedEnsemble logging.info("Begin testing stage 2 estimators.") logging.info("-"*80) logging.info("") for name, estimator in self.estimators.items(): logging.info('Predict stage 2 estimator: {}'.format(name)) model.estimator2 = estimator y_pred = model.predict(self.X_test) logging.info('Statistics for stage 2 estimator: {}'.format(name)) train_statistics(self.y_test, y_pred, title="{} estimator2={}".format(self.combinedEnsemble_identifier_long, name)) plot(self.y_test, y_pred, self.image_folder, show=False, title="{}_{}".format(self.combinedEnsemble_identifier, name)) logging.info("-"*80) logging.info("") logging.info('Finished') return ads def combinedEnsemble_CV(self, ads): if 'crawler' in list(ads): ads = ads.drop(['crawler'], axis=1) all_y_test = defaultdict(list) all_y_pred = defaultdict(list) for train_index, test_index in KFold(n_splits=3, shuffle=True).split(self.X): logging.info('combinedEnsemble_CV: new split') X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] model = CombinedEnsemble( verbose=True, ensemble_estimator=ExtraTreesRegressor(n_estimators=self.n_estimators, min_samples_leaf=self.min_samples_leaf, n_jobs=-1), ) logging.info('combinedEnsemble_CV: fit') model.fit(X_train, y_train) for name, estimator in self.estimators.items(): logging.info('combinedEnsemble_CV: predict {}'.format(name)) model.estimator2 = estimator y_pred = model.predict(X_test) logging.info('combinedEnsemble_CV: statistics {}'.format(name)) train_statistics(y_test, y_pred, title="CV") all_y_test[name] += y_test.tolist() all_y_pred[name] += y_pred for name, _ in self.estimators.items(): logging.info('combinedEnsemble_CV: combined statistics {}'.format(name)) train_statistics(np.array(all_y_test[name]), np.array(all_y_pred[name]), title="CV combined") return ads def cut(self, n_ads): def cut_inner(ads): return ads[:n_ads] return cut_inner # def lgb(self, ads): # X, y = generate_matrix(ads, 'price') # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # model = lgb.LGBMRegressor(objective='regression',num_leaves=800, # learning_rate=0.05, n_estimators=720, # max_bin = 55, bagging_fraction = 0.8, # bagging_freq = 5, feature_fraction = 0.2319, # feature_fraction_seed=9, bagging_seed=9, # min_data_in_leaf =6, min_sum_hessian_in_leaf = 11) # model.fit(X_train, y_train) # joblib.dump(model, '{}/lgb.pkl'.format(self.model_folder)) # y_pred = model.predict(X_test) # train_statistics(y_test, y_pred, title="lgb") # plot(y_test, y_pred, self.image_folder, show=True, title="lgb") # return ads
mit
stormsson/procedural_city_generation_wrapper
vendor/josauder/GUI.py
2
10233
import matplotlib matplotlib.use("QT4Agg") import sys from PyQt4 import QtGui,QtCore from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import UI import os try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s class matplotlibWidget(QtGui.QWidget): """ MUST Preceed "from window import *" """ def __init__(self, parent = None): QtGui.QWidget.__init__(self, parent) self.canvas = MplCanvas() self.vbl = QtGui.QVBoxLayout() self.vbl.addWidget(self.canvas) self.setLayout(self.vbl) from window import * class GUI(QtGui.QMainWindow): """ Sets up Graphical User Interface for this Program. Requires PyQt4""" def __init__(self, parent=None): QtGui.QMainWindow.__init__(self, parent) self.ui = Ui_MainWindow() self.ui.setupUi(self) from procedural_city_generation.additional_stuff.IOHelper import StdoutRedirector redirector=StdoutRedirector(self.ui.console,app) sys.stdout=redirector #### 1: ROADMAP #### UI.setRoadmapGUI(self) self.ui.roadmap_widget.hide() self.ui.roadmap_Run.clicked.connect(self.start_roadmap) self.createTable("roadmap") self.ui.roadmap_splitter.setSizes([90, 800]) self.ui.roadmap_table.hide() #### 2: POLYGONS #### UI.setPolygonsGUI(self) self.ui.polygons_widget.hide() self.ui.polygons_Run.clicked.connect(self.start_polygons) self.createTable("polygons") self.ui.polygons_splitter.setSizes([90, 800]) #### 3: BUILDING_GENERATION #### UI.setBuilding_generationGUI(self) self.ui.building_generation_widget.hide() self.ui.building_generation_Run.clicked.connect(self.start_building_generation) self.createTable("building_generation") self.ui.building_generation_splitter.setSizes([90, 800]) #### 4: VISUALIZATION #### self.ui.visualization_Run.clicked.connect(UI.visualization) self.createTable("visualization") self.ui.visualization_splitter.setSizes([90, 800]) #### 5: ADVANCED #### self.ui.clean_directories.clicked.connect(self.clean_directories) sys.stderr=redirector #TODO Finish method def saveOptions(self, submodule="roadmap"): button=getattr(self.ui, submodule+"_save_button") table=getattr(self.ui, submodule+"_table") button.hide() table.hide() # return saver def createTable(self, submodule): """ Creates the Options Table as PyQT4 Objects when called with a submodule. Very messy code, needs to be rewritten. Parameters ---------- submodule: String, name of submodule """ #Initial Pixel Width and Height of Options Table - should be replaced by getWindowSize()-like h=411 w=891 from procedural_city_generation.additional_stuff.Param import paramsFromJson, jsonFromParams from procedural_city_generation.additional_stuff.Singleton import Singleton #Load Parameters from .conf params=paramsFromJson(os.getcwd()+"/procedural_city_generation/inputs/"+submodule+".conf") #Add Buttons and assign functions table=QtGui.QTableWidget(getattr(self.ui, submodule+"_frame")) save_button=QtGui.QPushButton(getattr(self.ui, submodule+"_frame"), text="Save") save_button.setGeometry(QtCore.QRect(w-100, h, 100, 31)) save_button.hide() default_button=QtGui.QPushButton(getattr(self.ui, submodule+"_frame"), text="Reset Defaults") default_button.setGeometry(QtCore.QRect(w-260, h, 150, 31)) default_button.hide() table.hide() #Set Table Geometry, code looks repetitive and should be reworked table.setGeometry(QtCore.QRect(0, 0, w, h)) table.setColumnCount(6) table.setHorizontalHeaderItem(0, QtGui.QTableWidgetItem("Parameter Name")) table.setColumnWidth(0, int(0.2*w)) table.setHorizontalHeaderItem(1, QtGui.QTableWidgetItem("Description")) table.setColumnWidth(1, int(0.5*w)) table.setHorizontalHeaderItem(2, QtGui.QTableWidgetItem("Default Value")) table.setColumnWidth(2, int(0.125*w)) table.setHorizontalHeaderItem(3, QtGui.QTableWidgetItem("Value")) table.setColumnWidth(3, int(0.125*w)) table.setHorizontalHeaderItem(4, QtGui.QTableWidgetItem("min")) table.setColumnWidth(4, int(0.1*w)) table.setHorizontalHeaderItem(5, QtGui.QTableWidgetItem("max")) table.setColumnWidth(5, int(0.1*w)) table.setRowCount(len(params)) #Fill out Table with Parameters. Code Looks repetitive, should be reworked i=0 for parameter in params: g=QtGui.QTableWidgetItem(str(parameter.name) ) g.setFlags( g.flags() & ~QtCore.Qt.ItemIsEditable ) g.setBackground(QtGui.QBrush(QtGui.QColor(235, 235, 235))) table.setItem( i, 0 , g) g=QtGui.QTableWidgetItem(str(parameter.description)) g.setFlags( g.flags() & ~QtCore.Qt.ItemIsEditable) g.setBackground(QtGui.QBrush(QtGui.QColor(235, 235, 235))) table.setItem( i, 1 , g) g=QtGui.QTableWidgetItem(str(parameter.default)) g.setFlags( g.flags() & ~QtCore.Qt.ItemIsEditable) g.setBackground(QtGui.QBrush(QtGui.QColor(235, 235, 235))) table.setItem( i, 2 , g) g=QtGui.QTableWidgetItem(str(parameter.value)) table.setItem( i, 3 , g) s = "" if parameter.value_lower_bound is None else str(parameter.value_lower_bound) g=QtGui.QTableWidgetItem(s) g.setFlags( g.flags() & ~QtCore.Qt.ItemIsEditable) g.setBackground(QtGui.QBrush(QtGui.QColor(235, 235, 235))) table.setItem( i, 4 , g) s = "" if parameter.value_upper_bound is None else str(parameter.value_upper_bound) g=QtGui.QTableWidgetItem(s) g.setFlags( g.flags() & ~QtCore.Qt.ItemIsEditable) g.setBackground(QtGui.QBrush(QtGui.QColor(235, 235, 235))) table.setItem( i, 5 , g) i+=1 #Connect functions to buttons getattr(self.ui, submodule+"_Options").clicked.connect(table.show) getattr(self.ui, submodule+"_Options").clicked.connect(save_button.show) getattr(self.ui, submodule+"_Options").clicked.connect(default_button.show) setattr(self.ui, submodule+"_table", table) def save_params(): for i, param in enumerate(params): it=table.item(i, 3).text() try: it=eval(str(it)) except: it=str(it) param.setValue(it) Singleton(submodule).kill() jsonFromParams(os.getcwd()+"/procedural_city_generation/inputs/"+submodule+".conf", params) print("Save successful") save_button.hide() default_button.hide() table.hide() print(UI.donemessage) save_button.clicked.connect(save_params) setattr(self.ui, submodule+"_save_button", save_button) def default_params(): for i, param in enumerate(params): table.item(i, 3).setText(_fromUtf8(str(param.default))) default_button.clicked.connect(default_params) setattr(self.ui, submodule+"_default_button", default_button) def plot(self, x, y, linewidth=1, color="red"): self.active_widget.canvas.ax.plot(x, y, linewidth=linewidth, color=color) def clear(self): self.active_widget.canvas.ax.clear() def start_roadmap(self): self.active_widget=self.ui.roadmap_widget self.active_widget.show() self.clear() UI.roadmap() def start_polygons(self): self.active_widget=self.ui.polygons_widget self.active_widget.show() self.clear() UI.polygons() def start_building_generation(self): self.active_widget=self.ui.building_generation_widget self.active_widget.show() self.clear() UI.building_generation() def clean_directories(self): from procedural_city_generation.additional_stuff.clean_tools import clean_pyc_files print("removing all .pyc files") clean_pyc_files(os.getcwd()) print("removing all items in /procedural_city_generation/temp/ directory") os.system("rm -f " +os.getcwd()+"/procedural_city_generation/temp/*") print("removing all items in /procedural_city_generation/outputs/ directory") os.system("rm -f " +os.getcwd()+"/procedural_city_generation/outputs/*") print(UI.donemessage) def set_xlim(self, tpl): self.active_widget.canvas.ax.set_xlim(tpl) def set_ylim(self, tpl): self.active_widget.canvas.ax.set_ylim(tpl) def update(self): self.active_widget.canvas.draw() global app app.processEvents() class FigureSaver: class __FigureSaver: def __init__(self, fig=None): self.plot=fig.plot self.show=fig.show instance=None def __init__(self, fig=None): if not FigureSaver.instance and (fig is not None): FigureSaver.instance=FigureSaver.__FigureSaver(fig) def __getattr__(self, name): return getattr(self.instance, name) def __setattr__(self, name, value): setattr(self.instance, name, value) class MplCanvas(FigureCanvas): def __init__(self): self.fig = Figure(frameon=False) self.ax = self.fig.add_subplot(111) self.ax.get_yaxis().set_visible(False) self.ax.get_xaxis().set_visible(False) FigureCanvas.__init__(self, self.fig) FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) if __name__ == "__main__": global app app = QtGui.QApplication(sys.argv) myapp = GUI() myapp.show() app.exec_()
mpl-2.0
ch3ll0v3k/scikit-learn
examples/manifold/plot_lle_digits.py
181
8510
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
poryfly/scikit-learn
sklearn/tests/test_random_projection.py
142
14033
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.metrics import euclidean_distances from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import gaussian_random_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.random_projection import SparseRandomProjection from sklearn.random_projection import GaussianRandomProjection from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils import DataDimensionalityWarning all_sparse_random_matrix = [sparse_random_matrix] all_dense_random_matrix = [gaussian_random_matrix] all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix) all_SparseRandomProjection = [SparseRandomProjection] all_DenseRandomProjection = [GaussianRandomProjection] all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection) # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros): rng = np.random.RandomState(0) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def densify(matrix): if not sp.issparse(matrix): return matrix else: return matrix.toarray() n_samples, n_features = (10, 1000) n_nonzeros = int(n_samples * n_features / 100.) data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros) ############################################################################### # test on JL lemma ############################################################################### def test_invalid_jl_domain(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5) def test_input_size_jl_min_dim(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)), 0.5 * np.ones((10, 10))) ############################################################################### # tests random matrix generation ############################################################################### def check_input_size_random_matrix(random_matrix): assert_raises(ValueError, random_matrix, 0, 0) assert_raises(ValueError, random_matrix, -1, 1) assert_raises(ValueError, random_matrix, 1, -1) assert_raises(ValueError, random_matrix, 1, 0) assert_raises(ValueError, random_matrix, -1, 0) def check_size_generated(random_matrix): assert_equal(random_matrix(1, 5).shape, (1, 5)) assert_equal(random_matrix(5, 1).shape, (5, 1)) assert_equal(random_matrix(5, 5).shape, (5, 5)) assert_equal(random_matrix(1, 1).shape, (1, 1)) def check_zero_mean_and_unit_norm(random_matrix): # All random matrix should produce a transformation matrix # with zero mean and unit norm for each columns A = densify(random_matrix(10000, 1, random_state=0)) assert_array_almost_equal(0, np.mean(A), 3) assert_array_almost_equal(1.0, np.linalg.norm(A), 1) def check_input_with_sparse_random_matrix(random_matrix): n_components, n_features = 5, 10 for density in [-1., 0.0, 1.1]: assert_raises(ValueError, random_matrix, n_components, n_features, density=density) def test_basic_property_of_random_matrix(): # Check basic properties of random matrix generation for random_matrix in all_random_matrix: yield check_input_size_random_matrix, random_matrix yield check_size_generated, random_matrix yield check_zero_mean_and_unit_norm, random_matrix for random_matrix in all_sparse_random_matrix: yield check_input_with_sparse_random_matrix, random_matrix random_matrix_dense = \ lambda n_components, n_features, random_state: random_matrix( n_components, n_features, random_state=random_state, density=1.0) yield check_zero_mean_and_unit_norm, random_matrix_dense def test_gaussian_random_matrix(): # Check some statical properties of Gaussian random matrix # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # a_ij ~ N(0.0, 1 / n_components). # n_components = 100 n_features = 1000 A = gaussian_random_matrix(n_components, n_features, random_state=0) assert_array_almost_equal(0.0, np.mean(A), 2) assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) def test_sparse_random_matrix(): # Check some statical properties of sparse random matrix n_components = 100 n_features = 500 for density in [0.3, 1.]: s = 1 / density A = sparse_random_matrix(n_components, n_features, density=density, random_state=0) A = densify(A) # Check possible values values = np.unique(A) assert_in(np.sqrt(s) / np.sqrt(n_components), values) assert_in(- np.sqrt(s) / np.sqrt(n_components), values) if density == 1.0: assert_equal(np.size(values), 2) else: assert_in(0., values) assert_equal(np.size(values), 3) # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # # - -sqrt(s) / sqrt(n_components) with probability 1 / 2s # - 0 with probability 1 - 1 / s # - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) ############################################################################### # tests on random projection transformer ############################################################################### def test_sparse_random_projection_transformer_invalid_density(): for RandomProjection in all_SparseRandomProjection: assert_raises(ValueError, RandomProjection(density=1.1).fit, data) assert_raises(ValueError, RandomProjection(density=0).fit, data) assert_raises(ValueError, RandomProjection(density=-0.1).fit, data) def test_random_projection_transformer_invalid_input(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').fit, [0, 1, 2]) assert_raises(ValueError, RandomProjection(n_components=-10).fit, data) def test_try_to_transform_before_fit(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').transform, data) def test_too_many_samples_to_find_a_safe_embedding(): data, _ = make_sparse_random_data(1000, 100, 1000) for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=0.1) expected_msg = ( 'eps=0.100000 and n_samples=1000 lead to a target dimension' ' of 5920 which is larger than the original space with' ' n_features=100') assert_raise_message(ValueError, expected_msg, rp.fit, data) def test_random_projection_embedding_quality(): data, _ = make_sparse_random_data(8, 5000, 15000) eps = 0.2 original_distances = euclidean_distances(data, squared=True) original_distances = original_distances.ravel() non_identical = original_distances != 0.0 # remove 0 distances to avoid division by 0 original_distances = original_distances[non_identical] for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=eps, random_state=0) projected = rp.fit_transform(data) projected_distances = euclidean_distances(projected, squared=True) projected_distances = projected_distances.ravel() # remove 0 distances to avoid division by 0 projected_distances = projected_distances[non_identical] distances_ratio = projected_distances / original_distances # check that the automatically tuned values for the density respect the # contract for eps: pairwise distances are preserved according to the # Johnson-Lindenstrauss lemma assert_less(distances_ratio.max(), 1 + eps) assert_less(1 - eps, distances_ratio.min()) def test_SparseRandomProjection_output_representation(): for SparseRandomProjection in all_SparseRandomProjection: # when using sparse input, the projected data can be forced to be a # dense numpy array rp = SparseRandomProjection(n_components=10, dense_output=True, random_state=0) rp.fit(data) assert isinstance(rp.transform(data), np.ndarray) sparse_data = sp.csr_matrix(data) assert isinstance(rp.transform(sparse_data), np.ndarray) # the output can be left to a sparse matrix instead rp = SparseRandomProjection(n_components=10, dense_output=False, random_state=0) rp = rp.fit(data) # output for dense input will stay dense: assert isinstance(rp.transform(data), np.ndarray) # output for sparse output will be sparse: assert sp.issparse(rp.transform(sparse_data)) def test_correct_RandomProjection_dimensions_embedding(): for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', random_state=0, eps=0.5).fit(data) # the number of components is adjusted from the shape of the training # set assert_equal(rp.n_components, 'auto') assert_equal(rp.n_components_, 110) if RandomProjection in all_SparseRandomProjection: assert_equal(rp.density, 'auto') assert_almost_equal(rp.density_, 0.03, 2) assert_equal(rp.components_.shape, (110, n_features)) projected_1 = rp.transform(data) assert_equal(projected_1.shape, (n_samples, 110)) # once the RP is 'fitted' the projection is always the same projected_2 = rp.transform(data) assert_array_equal(projected_1, projected_2) # fit transform with same random seed will lead to the same results rp2 = RandomProjection(random_state=0, eps=0.5) projected_3 = rp2.fit_transform(data) assert_array_equal(projected_1, projected_3) # Try to transform with an input X of size different from fitted. assert_raises(ValueError, rp.transform, data[:, 1:5]) # it is also possible to fix the number of components and the density # level if RandomProjection in all_SparseRandomProjection: rp = RandomProjection(n_components=100, density=0.001, random_state=0) projected = rp.fit_transform(data) assert_equal(projected.shape, (n_samples, 100)) assert_equal(rp.components_.shape, (100, n_features)) assert_less(rp.components_.nnz, 115) # close to 1% density assert_less(85, rp.components_.nnz) # close to 1% density def test_warning_n_components_greater_than_n_features(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: assert_warns(DataDimensionalityWarning, RandomProjection(n_components=n_features + 1).fit, data) def test_works_with_sparse_data(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: rp_dense = RandomProjection(n_components=3, random_state=1).fit(data) rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sp.csr_matrix(data)) assert_array_almost_equal(densify(rp_dense.components_), densify(rp_sparse.components_))
bsd-3-clause
OSSHealth/ghdata
workers/contributor_worker/setup.py
1
1396
#SPDX-License-Identifier: MIT import io import os import re from setuptools import find_packages from setuptools import setup def read(filename): filename = os.path.join(os.path.dirname(__file__), filename) text_type = type(u"") with io.open(filename, mode="r", encoding='utf-8') as fd: return re.sub(text_type(r':[a-z]+:`~?(.*?)`'), text_type(r'``\1``'), fd.read()) setup( name="contributor_worker", version="1.0.0", url="https://github.com/chaoss/augur", license='MIT', author="Augurlabs", author_email="[email protected]", description="Augur Worker that processes and inserts information related to contributors", packages=find_packages(exclude=('tests',)), install_requires=[ 'Flask==1.1.4', 'Flask-Cors==3.0.10', 'Flask-Login==0.5.0', 'Flask-WTF==0.14.3', 'requests==2.22.0', 'psycopg2-binary==2.8.6', 'click==7.1.2', 'scipy==1.4.1', 'sklearn==0.0' ], entry_points={ 'console_scripts': [ 'contributor_worker_start=workers.contributor_worker.runtime:main', ], }, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', ] )
mit
themrmax/scikit-learn
examples/gaussian_process/plot_compare_gpr_krr.py
84
5205
""" ========================================================== Comparison of kernel ridge and Gaussian process regression ========================================================== Both kernel ridge regression (KRR) and Gaussian process regression (GPR) learn a target function by employing internally the "kernel trick". KRR learns a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. The linear function in the kernel space is chosen based on the mean-squared error loss with ridge regularization. GPR uses the kernel to define the covariance of a prior distribution over the target functions and uses the observed training data to define a likelihood function. Based on Bayes theorem, a (Gaussian) posterior distribution over target functions is defined, whose mean is used for prediction. A major difference is that GPR can choose the kernel's hyperparameters based on gradient-ascent on the marginal likelihood function while KRR needs to perform a grid search on a cross-validated loss function (mean-squared error loss). A further difference is that GPR learns a generative, probabilistic model of the target function and can thus provide meaningful confidence intervals and posterior samples along with the predictions while KRR only provides predictions. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise. The figure compares the learned model of KRR and GPR based on a ExpSineSquared kernel, which is suited for learning periodic functions. The kernel's hyperparameters control the smoothness (l) and periodicity of the kernel (p). Moreover, the noise level of the data is learned explicitly by GPR by an additional WhiteKernel component in the kernel and by the regularization parameter alpha of KRR. The figure shows that both methods learn reasonable models of the target function. GPR correctly identifies the periodicity of the function to be roughly 2*pi (6.28), while KRR chooses the doubled periodicity 4*pi. Besides that, GPR provides reasonable confidence bounds on the prediction which are not available for KRR. A major difference between the two methods is the time required for fitting and predicting: while fitting KRR is fast in principle, the grid-search for hyperparameter optimization scales exponentially with the number of hyperparameters ("curse of dimensionality"). The gradient-based optimization of the parameters in GPR does not suffer from this exponential scaling and is thus considerable faster on this example with 3-dimensional hyperparameter space. The time for predicting is similar; however, generating the variance of the predictive distribution of GPR takes considerable longer than just predicting the mean. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.kernel_ridge import KernelRidge from sklearn.model_selection import GridSearchCV from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared rng = np.random.RandomState(0) # Generate sample data X = 15 * rng.rand(100, 1) y = np.sin(X).ravel() y += 3 * (0.5 - rng.rand(X.shape[0])) # add noise # Fit KernelRidge with parameter selection based on 5-fold cross validation param_grid = {"alpha": [1e0, 1e-1, 1e-2, 1e-3], "kernel": [ExpSineSquared(l, p) for l in np.logspace(-2, 2, 10) for p in np.logspace(0, 2, 10)]} kr = GridSearchCV(KernelRidge(), cv=5, param_grid=param_grid) stime = time.time() kr.fit(X, y) print("Time for KRR fitting: %.3f" % (time.time() - stime)) gp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \ + WhiteKernel(1e-1) gpr = GaussianProcessRegressor(kernel=gp_kernel) stime = time.time() gpr.fit(X, y) print("Time for GPR fitting: %.3f" % (time.time() - stime)) # Predict using kernel ridge X_plot = np.linspace(0, 20, 10000)[:, None] stime = time.time() y_kr = kr.predict(X_plot) print("Time for KRR prediction: %.3f" % (time.time() - stime)) # Predict using gaussian process regressor stime = time.time() y_gpr = gpr.predict(X_plot, return_std=False) print("Time for GPR prediction: %.3f" % (time.time() - stime)) stime = time.time() y_gpr, y_std = gpr.predict(X_plot, return_std=True) print("Time for GPR prediction with standard-deviation: %.3f" % (time.time() - stime)) # Plot results plt.figure(figsize=(10, 5)) lw = 2 plt.scatter(X, y, c='k', label='data') plt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True') plt.plot(X_plot, y_kr, color='turquoise', lw=lw, label='KRR (%s)' % kr.best_params_) plt.plot(X_plot, y_gpr, color='darkorange', lw=lw, label='GPR (%s)' % gpr.kernel_) plt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange', alpha=0.2) plt.xlabel('data') plt.ylabel('target') plt.xlim(0, 20) plt.ylim(-4, 4) plt.title('GPR versus Kernel Ridge') plt.legend(loc="best", scatterpoints=1, prop={'size': 8}) plt.show()
bsd-3-clause
alexanderpanchenko/vec2synset
jnt/common.py
1
9157
# coding=utf8 from __future__ import print_function import os import argparse import numpy as np import math import random from sys import stderr, stdout import six import plumbum.cmd as cmd import pprint from os.path import splitext, join import codecs from patterns import re_escape, re_amp, re_quote_escape from pandas import read_csv from itertools import islice import cPickle as pickle import os from os.path import join, abspath, dirname import jnt import gzip from ntpath import basename """ This namespace contains a set of small common purpose functions and constants. """ UNK_LABEL = "unknown" TRUE = ['true', '1', 't', 'y', 'yes'] LETTERS = [u'а',u'б',u'в',u'г',u'д',u'е',u'ё',u'ж',u'з',u'и',u'к',u'л',u'м',u'н',u'о',u'п',u'р',u'с',u'т',u'у',u'ф',u'х',u'ц',u'ч',u'ш',u'щ',u'э',u'ь',u'ы',u'ю',u'я',u'a',u'b',u'c',u'd',u'e',u'f',u'g',u'h',u'i',u'j',u'k',u'l',u'm',u'n',u'o',u'p',u'q',u'r',u's',u't',u'u',u'v',u'w',u'x',u'y',u'z'] def fpath2filename(fpath): """ Returns filename without up to two extensions e.g. /Users/alex/work/joint/src/isas-cc.csv.gz --> isas-cc """ return splitext(splitext(basename(fpath))[0])[0] def get_data_dir(): return abspath(join(join(dirname(jnt.__file__), os.pardir), "data")) def dt_scientific2fixed(dt_fpath, output_fpath): """ Convert similarity from scientific to normal format. """ dt = read_csv(dt_fpath, "\t", encoding='utf8', error_bad_lines=False) dt = dt.sort(["sim"], ascending=[0]) dt.to_csv(output_fpath, sep="\t", encoding="utf-8", float_format='%.12f', index=False) def strip_header(input_fpath): import fileinput for line in fileinput.input(files=[input_fpath], inplace=True): if fileinput.isfirstline(): continue print(line, end="") def add_header(input_fpath, header): import fileinput for line in fileinput.input(files=[input_fpath], inplace=True): if fileinput.isfirstline(): print(header) print(line, end="") def base(fpath): return base_ext(fpath)[0] def base_ext(fpath): components = splitext(fpath) if len(components) < 2: return components[0], "" else: return components[0], components[1] def prt(string): stdout.write("%s\n" % string) def prt2(tuple2): stdout.write("%s %s\n" % (tuple2[0], tuple2[1])) def wc(fpath): return int(cmd.wc["-l"](fpath).split()[0]) def profiling(function): import cProfile import pstats from cStringIO import StringIO pr = cProfile.Profile() pr.enable() function() pr.disable() s = StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() stderr.write(s.getvalue()) def ensure_utf8(text): """ Make sure that the string is in unicode. """ if six.PY2 and not isinstance(text, six.text_type): return text.decode('utf-8') else: return text def list2str(lst, short=True): """ Returns a string representing a list """ try: if short: return ', '.join(lst) else: return str(lst) except: if short: return "" else: return "[]" def str2list(str_list): """ Parses a string that supposed to contain a list (or something that has len). Returns a list. """ try: l = eval(str_list) if hasattr(l, "__len__"): return l else: print("Warning: cannot parse '%s'. " % str_list, file=stderr) return [] except: print("Warning: cannot parse '%s'. " % str_list, file=stderr) return [] def random_ints(): """ Returns a random integer from 0 to 100,000 """ return str(int(math.floor(random.random() * 100000))) from patterns import re_newlines def strip_newlines(input): return re_newlines.sub(" ", input) from patterns import re_whitespaces def normalize_whitespaces(input): return re_whitespaces.sub(" ", input) from patterns import re_url def get_urls(input): matches = re_url.findall(input) return matches def findnth(haystack, needle, n): parts = haystack.split(needle, n + 1) if len(parts) <= n + 1: return -1 return len(haystack) - len(parts[-1]) - len(needle) def whatisthis(s): if isinstance(s, str): return "str" elif isinstance(s, unicode): return "unicode" else: return "not str" def exists(dir_path): return os.path.isdir(dir_path) or os.path.isfile(dir_path) def try_remove(fpath): if exists(fpath): os.remove(fpath) def safe_remove(fpath): try: os.remove(fpath) print("File removed:", fpath) except OSError: print("Cannot remove file:", fpath) def ensure_dir(f): """ Make the directory. """ if not os.path.exists(f): os.makedirs(f) def chunks(l, n): """ Yield successive n-sized chunks from l. """ for i in xrange(0, len(l), n): yield zip(range(i,i+n), l[i:i+n]) def stat(lst, print_stat=True): sizes_arr = np.array(lst) s = {} s["sum"] = np.sum(sizes_arr, axis=0) s["mean"] = np.mean(sizes_arr, axis=0) s["std"] = np.std(sizes_arr, axis=0) s["median"] = np.median(sizes_arr, axis=0) s["min"] = np.min(sizes_arr, axis=0) s["max"] = np.max(sizes_arr, axis=0) if print_stat: print("number:", s["sum"], file=stderr) print("mean: %.0f +- %.0f" % (s["mean"], s["std"]), file=stderr) print("median: %.0f" % s["median"], file=stderr) print("min: %.0f" % s["min"], file=stderr) print("max: %.0f" % s["max"], file=stderr) return s class readable_dir(argparse.Action): """ Required for argparse parse.add_argument method. """ def __call__(self, parser, namespace, values, option_string=None): prospective_dir = values if not os.path.isdir(prospective_dir): raise argparse.ArgumentTypeError("readable_dir:{0} is not a valid path".format(prospective_dir)) if os.access(prospective_dir, os.R_OK): setattr(namespace, self.dest, prospective_dir) else: raise argparse.ArgumentTypeError("readable_dir:{0} is not a readable dir".format(prospective_dir)) class PrettyPrinterUtf8(pprint.PrettyPrinter): def format(self, object, context, maxlevels, level): if isinstance(object, unicode): return (object.encode('utf8'), True, False) return pprint.PrettyPrinter.format(self, object, context, maxlevels, level) def print_line(): print("...............................................................") def load_voc(voc_fpath, preprocess=True, sep='\t', use_pickle=True, silent=False): """ Reads vocabulary in the "word" format """ pkl_fpath = voc_fpath + ".pkl" if use_pickle and exists(pkl_fpath): voc = pickle.load(open(pkl_fpath, "rb")) else: if preprocess: freq_cln_fpath = voc_fpath + "-cln" preprocess_pandas_csv(voc_fpath, freq_cln_fpath) else: freq_cln_fpath = voc_fpath word_df = read_csv(freq_cln_fpath, sep, encoding='utf8', error_bad_lines=False) voc = set(row["word"] for i, row in word_df.iterrows()) print("vocabulary is loaded:", len(voc)) if use_pickle: pickle.dump(voc, open(pkl_fpath, "wb")) print("Pickled voc dictionary:", pkl_fpath) if not silent: print("Loaded %d words from: %s" % (len(voc), pkl_fpath if pkl_fpath else voc_fpath)) return voc def gunzip_file(input_gzipped_fpath, output_gunzipped_fpath): with codecs.open(output_gunzipped_fpath, "wb") as out: input_file = gzip.open(input_gzipped_fpath, "rb") try: out.write(input_file.read()) finally: input_file.close() def preprocess_pandas_csv(input_fpath, output_fpath=""): prefix, ext = splitext(input_fpath) if ext == ".gz": gunzipped_input_fpath = prefix + ".csv" gunzip_file(input_fpath, gunzipped_input_fpath) input_fpath = gunzipped_input_fpath out_fpath = output_fpath if output_fpath != "" else input_fpath + ".tmp" with codecs.open(input_fpath, "r", "utf-8") as input, codecs.open(out_fpath, "w", "utf-8") as output: for line in input: s = line.strip() s = re_amp.sub(" ", s) s = re_escape.sub(" ", s) s = re_quote_escape.sub(" ", s) print(s, file=output) if output_fpath == "": try_remove(input_fpath) os.rename(out_fpath, input_fpath) print("cleaned csv:", input_fpath) else: print("cleaned csv:", output_fpath) if ext == ".gz": try_remove(gunzipped_input_fpath) def lowercase_voc(voc): """ In case of conflict take the max of two. """ print("....") vocl = {} for v in voc: vl = v.lower() if vl not in vocl or vocl[vl] < voc[v]: vocl[vl] = voc[v] else: pass return vocl def take(n, iterable): "Return first n items of the iterable as a list" return list(islice(iterable, n))
apache-2.0
geodynamics/burnman
examples/example_chemical_potentials.py
2
6809
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU # GPL v2 or later. """ example_chemical_potentials --------------------------- This example shows how to use the chemical potentials library of functions. *Demonstrates:* * How to calculate chemical potentials * How to compute fugacities and relative fugacities """ from __future__ import absolute_import from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import burnman_path # adds the local burnman directory to the path import burnman import burnman.constants as constants import burnman.processchemistry as processchemistry import burnman.chemicalpotentials as chemical_potentials import burnman.minerals as minerals assert burnman_path # silence pyflakes warning if __name__ == "__main__": ''' Here we initialise the minerals we'll be using ''' P = 1.e9 T = 1000. fa = minerals.HP_2011_ds62.fa() mt = minerals.HP_2011_ds62.mt() qtz = minerals.HP_2011_ds62.q() FMQ = [fa, mt, qtz] for mineral in FMQ: mineral.set_state(P, T) ''' Here we find chemical potentials of FeO, SiO2 and O2 for an assemblage containing fayalite, magnetite and quartz, and a second assemblage of magnetite and wustite at 1 GPa, 1000 K ''' component_formulae = ['FeO', 'SiO2', 'O2'] component_formulae_dict = [processchemistry.dictionarize_formula(f) for f in component_formulae] chem_potentials = chemical_potentials.chemical_potentials(FMQ, component_formulae_dict) oxygen = minerals.HP_2011_fluids.O2() oxygen.set_state(P, T) hem = minerals.HP_2011_ds62.hem() MH = [mt, hem] for mineral in MH: mineral.set_state(P, T) print('log10(fO2) at the FMQ buffer:', np.log10(chemical_potentials.fugacity(oxygen, FMQ))) print('log10(fO2) at the mt-hem buffer:', np.log10(chemical_potentials.fugacity(oxygen, MH))) print('Relative log10(fO2):', np.log10(chemical_potentials.relative_fugacity(oxygen, FMQ, MH))) ''' Here we find the oxygen fugacity of the FMQ buffer, and compare it to published values. Fugacity is often defined relative to a material at some fixed reference pressure (in this case, O2) Here we use room pressure, 100 kPa ''' # Set up arrays temperatures = np.linspace(900., 1420., 100) log10fO2_FMQ_ONeill1987 = np.empty_like(temperatures) log10fO2_FMQ = np.empty_like(temperatures) invT = np.empty_like(temperatures) # Reference and assemblage pressure Pr = 1.e5 P = 1.e5 for i, T in enumerate(temperatures): # Set states oxygen.set_state(Pr, T) for mineral in FMQ: mineral.set_state(P, T) # The chemical potential and fugacity of O2 at the FMQ buffer # according to O'Neill, 1987 muO2_FMQ_ONeill1987 = -587474. + 1584.427 * \ T - 203.3164 * T * np.log(T) + 0.092710 * T * T log10fO2_FMQ_ONeill1987[i] = np.log10( np.exp((muO2_FMQ_ONeill1987) / (constants.gas_constant * T))) invT[i] = 10000. / (T) # The calculated chemical potential and fugacity of O2 at the FMQ # buffer log10fO2_FMQ[i] = np.log10(chemical_potentials.fugacity(oxygen, FMQ)) # Plot the FMQ log10(fO2) values plt.plot(temperatures, log10fO2_FMQ_ONeill1987, 'k', linewidth=1., label='FMQ (O\'Neill (1987)') plt.plot(temperatures, log10fO2_FMQ, 'b--', linewidth=2., label='FMQ (HP 2011 ds62)') # Do the same for Re-ReO2 ''' Here we define two minerals, Re (rhenium) and ReO2 (tugarinovite) ''' class Re (burnman.Mineral): def __init__(self): formula = 'Re1.0' formula = processchemistry.dictionarize_formula(formula) self.params = { 'name': 'Re', 'formula': formula, 'equation_of_state': 'hp_tmt', 'H_0': 0.0, 'S_0': 36.53, 'V_0': 8.862e-06, 'Cp': [23.7, 0.005448, 68.0, 0.0], 'a_0': 1.9e-05, 'K_0': 3.6e+11, 'Kprime_0': 4.05, 'Kdprime_0': -1.1e-11, 'n': sum(formula.values()), 'molar_mass': processchemistry.formula_mass(formula)} burnman.Mineral.__init__(self) class ReO2 (burnman.Mineral): def __init__(self): formula = 'Re1.0O2.0' formula = processchemistry.dictionarize_formula(formula) self.params = { 'name': 'ReO2', 'formula': formula, 'equation_of_state': 'hp_tmt', 'H_0': -445140.0, 'S_0': 47.82, 'V_0': 1.8779e-05, 'Cp': [76.89, 0.00993, -1207130.0, -208.0], 'a_0': 4.4e-05, 'K_0': 1.8e+11, 'Kprime_0': 4.05, 'Kdprime_0': -2.25e-11, 'n': sum(formula.values()), 'molar_mass': processchemistry.formula_mass(formula)} burnman.Mineral.__init__(self) ''' Here we find the oxygen fugacity of the Re-ReO2 buffer, and again compare it to published values. ''' # Mineral and assemblage definitions rhenium = Re() rheniumIVoxide = ReO2() ReReO2buffer = [rhenium, rheniumIVoxide] # Set up arrays temperatures = np.linspace(850., 1250., 100) log10fO2_Re_PO1994 = np.empty_like(temperatures) log10fO2_ReReO2buffer = np.empty_like(temperatures) for i, T in enumerate(temperatures): # Set states oxygen.set_state(Pr, T) for mineral in ReReO2buffer: mineral.set_state(P, T) # The chemical potential and fugacity of O2 at the Re-ReO2 buffer # according to Powncesby and O'Neill, 1994 muO2_Re_PO1994 = -451020 + 297.595 * T - 14.6585 * T * np.log(T) log10fO2_Re_PO1994[i] = np.log10( np.exp((muO2_Re_PO1994) / (constants.gas_constant * T))) invT[i] = 10000. / (T) # The chemical potential and fugacity of O2 at the Re-ReO2 buffer log10fO2_ReReO2buffer[i] = np.log10(chemical_potentials.fugacity(oxygen, ReReO2buffer)) # Plot the Re-ReO2 log10(fO2) values plt.plot(temperatures, log10fO2_Re_PO1994, 'k', linewidth=1., label='Re-ReO2 (Pownceby and O\'Neill (1994)') plt.plot(temperatures, log10fO2_ReReO2buffer, 'r--', linewidth=2., label='Re-ReO2 (HP 2011 ds62)') plt.ylabel("log_10 (fO2)") plt.xlabel("T (K)") plt.legend(loc='lower right') plt.show()
gpl-2.0
ahnitz/pycbc
pycbc/results/pygrb_plotting_utils.py
7
27260
# Copyright (C) 2019 Francesco Pannarale, Gino Contestabile # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # ============================================================================= # Preamble # ============================================================================= """ Module to generate PyGRB figures: scatter plots and timeseries. """ import sys import os import logging import argparse import copy import numpy from pycbc.results import save_fig_with_metadata # TODO: imports to fix/remove try: from glue import segments from glue.ligolw import utils, lsctables, ligolw, table except ImportError: pass try: from pylal import MultiInspiralUtils from pylal.coh_PTF_pyutils import get_bestnr, get_det_response from pylal.coh_PTF_pyutils import readSegFiles from pylal.dq import dqSegmentUtils except ImportError: pass # Only if a backend is not already set ... This should really *not* be done # here, but in the executables you should set matplotlib.use() # This matches the check that matplotlib does internally, but this *may* be # version dependenant. If this is a problem then remove this and control from # the executables directly. import matplotlib if 'matplotlib.backends' not in sys.modules: # nopep8 matplotlib.use('agg') from matplotlib import rc from matplotlib import pyplot as plt # ============================================================================= # Parse command line # ============================================================================= def pygrb_plot_opts_parser(usage='', description=None, version=None): """Parses options for PyGRB plotting scripts""" parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument("--version", action="version", version=version) parser.add_argument("-v", "--verbose", default=False, action="store_true", help="verbose output") parser.add_argument("-t", "--trig-file", action="store", default=None, required=True, help="The location of the trigger file") parser.add_argument("-I", "--inj-file", action="store", default=None, help="The location of the injection file") parser.add_argument("-a", "--segment-dir", action="store", required=True, help="directory holding buffer, on " + "and off source segment files.") parser.add_argument("-o", "--output-file", default=None, required=True, help="Output file.") parser.add_argument("-O", "--zoomed-output-file", default=None, required=False, help="Output file for a zoomed in " + "version of the plot.") parser.add_argument("-Q", "--chisq-index", action="store", type=float, default=4.0, help="chisq_index for newSNR calculation") parser.add_argument("-N", "--chisq-nhigh", action="store", type=float, default=3.0, help="nhigh for newSNR calculation") parser.add_argument("-B", "--sngl-snr-threshold", action="store", type=float, default=4.0, help="Single detector SNR " + "threshold, the two most sensitive detectors " + "should have SNR above this") parser.add_argument("-d", "--snr-threshold", action="store", type=float, default=6.0, help="SNR threshold for recording " + "triggers") parser.add_argument("-c", "--newsnr-threshold", action="store", type=float, default=None, help="NewSNR threshold for " + "calculating the chisq of triggers (based on value " + "of auto and bank chisq values. By default will " + "take the same value as snr-threshold") parser.add_argument("-A", "--null-snr-threshold", action="store", default="4.25,6", help="comma separated lower,higher null SNR " + "threshold for null SNR cut") parser.add_argument("-C", "--null-grad-thresh", action="store", type=float, default=20., help="Threshold above which to " + "increase the values of the null SNR cut") parser.add_argument("-D", "--null-grad-val", action="store", type=float, default=0.2, help="Rate the null SNR cut will " + "increase above the threshold") parser.add_argument("-l", "--veto-directory", action="store", default=None, help="The location of the CATX veto files") parser.add_argument("-b", "--veto-category", action="store", type=int, default=None, help="Apply vetoes up to this level " + "inclusive") parser.add_argument("-i", "--ifo", default=None, help="IFO used for IFO " + "specific plots") parser.add_argument("--use-sngl-ifo-snr", default=False, action="store_true", help="Plots are vs single IFO " + "SNR, rather than coherent SNR") parser.add_argument("--variable", default=None, help="Quantity to plot " + "the vertical axis. Supported choices are: " + "coherent, single, reweighted, or null (for " + "timeeries plots), standard, bank, or auto (for " + "chi-square veto plots), coincident, nullstat, " + "or overwhitened (for null statistics plots)") parser.add_argument('--plot-title', help="If given, use this as the plot caption") parser.add_argument('--plot-caption', help="If given, use this as the plot caption") return parser.parse_args() # ============================================================================= # Format single detector chi-square data as numpy array and floor at 0.005 # ============================================================================= def format_single_chisqs(trig_ifo_cs, ifos): """Format single IFO chi-square data as numpy array and floor at 0.005""" for ifo in ifos: trig_ifo_cs[ifo] = numpy.asarray(trig_ifo_cs[ifo]) numpy.putmask(trig_ifo_cs[ifo], trig_ifo_cs[ifo] == 0, 0.005) return trig_ifo_cs # ============================================================================= # Reset times so that t=0 is corresponds to the GRB trigger time # ============================================================================= def reset_times(seg_dir, trig_data, inj_data, inj_file): """Reset times so that t=0 is corresponds to the GRB trigger time""" segs = readSegFiles(seg_dir) grb_time = segs['on'][1] - 1 start = int(min(trig_data.time)) - grb_time end = int(max(trig_data.time)) - grb_time duration = end-start start -= duration*0.05 end += duration*0.05 trig_data.time = [t-grb_time for t in trig_data.time] if inj_file: inj_data.time = [t-grb_time for t in inj_data.time] return grb_time, start, end, trig_data, inj_data # ============================================================================= # Extract trigger/injection data produced by PyGRB # ============================================================================= class PygrbFilterOutput(object): """Extract trigger/injection data produced by PyGRB search""" def __init__(self, trigs_or_injs, ifos, columns, output_type, opts): logging.info("Extracting data from the %s just loaded...", output_type) # Initialize all content of self self.time = None self.snr = numpy.array(None) self.reweighted_snr = None self.null_snr = None self.null_stat = None self.trace_snr = None self.chi_square = numpy.array(None) self.bank_veto = None self.auto_veto = None self.coinc_snr = None self.ifo_snr = dict((ifo, None) for ifo in ifos) self.ifo_bank_cs = dict((ifo, None) for ifo in ifos) self.ifo_auto_cs = dict((ifo, None) for ifo in ifos) self.ifo_stan_cs = dict((ifo, None) for ifo in ifos) self.rel_amp_1 = None self.norm_3 = None self.rel_amp_2 = None self.inclination = None # Exctract data and fill in content of self null_thresh = map(float, opts.null_snr_threshold.split(',')) if trigs_or_injs is not None: # Work out if using sngl chisqs ifo_att = {'G1': 'g', 'H1': 'h1', 'H2': 'h2', 'L1': 'l', 'V1': 'v', 'T1': 't'} i = ifo_att[ifos[0]] self.sngl_chisq = 'chisq_%s' % i in columns self.sngl_bank_chisq = 'bank_chisq_%s' % i in columns self.sngl_cont_chisq = 'cont_chisq_%s' % i in columns # Set basic data self.time = numpy.asarray(trigs_or_injs.get_end()) self.snr = numpy.asarray(trigs_or_injs.get_column('snr')) self.reweighted_snr = [get_bestnr(t, q=opts.chisq_index, n=opts.chisq_nhigh, null_thresh=null_thresh, snr_threshold=opts.snr_threshold, sngl_snr_threshold=opts.sngl_snr_threshold, chisq_threshold=opts.newsnr_threshold, null_grad_thresh=opts.null_grad_thresh, null_grad_val=opts.null_grad_val) for t in trigs_or_injs] self.reweighted_snr = numpy.array(self.reweighted_snr) self.null_snr = numpy.asarray(trigs_or_injs.get_null_snr()) self.null_stat = numpy.asarray(trigs_or_injs.get_column( 'null_statistic')) self.trace_snr = numpy.asarray(trigs_or_injs.get_column( 'null_stat_degen')) # Get chisq data self.chi_square = numpy.asarray(trigs_or_injs.get_column('chisq')) self.bank_veto = numpy.asarray(trigs_or_injs.get_column( 'bank_chisq')) self.auto_veto = numpy.asarray(trigs_or_injs.get_column( 'cont_chisq')) numpy.putmask(self.chi_square, self.chi_square == 0, 0.005) numpy.putmask(self.bank_veto, self.bank_veto == 0, 0.005) numpy.putmask(self.auto_veto, self.auto_veto == 0, 0.005) # Get single detector data self.coinc_snr = (trigs_or_injs.get_column('coinc_snr')) self.ifo_snr = dict((ifo, trigs_or_injs.get_sngl_snr(ifo)) for ifo in ifos) if self.sngl_bank_chisq: self.ifo_bank_cs = trigs_or_injs.get_sngl_bank_chisqs(ifos) self.ifo_bank_cs = format_single_chisqs(self.ifo_bank_cs, ifos) if self.sngl_cont_chisq: self.ifo_auto_cs = trigs_or_injs.get_sngl_cont_chisqs(ifos) self.ifo_auto_cs = format_single_chisqs(self.ifo_auto_cs, ifos) if self.sngl_chisq: self.ifo_stan_cs = trigs_or_injs.get_sngl_chisqs(ifos) self.ifo_stan_cs = format_single_chisqs(self.ifo_stan_cs, ifos) # Initiate amplitude generator num_amp = 4 amplitudes = range(1, num_amp+1) # Get amplitude terms amp = dict((amplitude, numpy.asarray(trigs_or_injs.get_column( 'amp_term_%d' % amplitude))) for amplitude in amplitudes) # # All 0, hence the 3 warnings # for i in amplitudes: # print numpy.count_nonzero(amp[amplitudes]) # self.rel_amp_1 = numpy.sqrt((amp[1]**2 + amp[2]**2) / (amp[3]**2 + amp[4]**2)) gamma_r = amp[1] - amp[4] gamma_i = amp[2] + amp[3] delta_r = amp[1] + amp[4] delta_i = amp[3] - amp[2] norm_1 = delta_r*delta_r + delta_i*delta_i norm_2 = gamma_r*gamma_r + gamma_i*gamma_i self.norm_3 = ((norm_1**0.25) + (norm_2**0.25))**2 amp_plus = (norm_1)**0.5 + (norm_2)**0.5 amp_cross = abs((norm_1)**0.5 - (norm_2)**0.5) self.rel_amp_2 = amp_plus/amp_cross self.inclination = amp_cross/self.norm_3 num_trigs_or_injs = len(trigs_or_injs) if num_trigs_or_injs < 1: logging.warning("No %s found.", output_type) elif num_trigs_or_injs >= 1: logging.info("%d %s found.", num_trigs_or_injs, output_type) # Deal with the sigma-squares (historically called sigmas here) if output_type == "triggers": sigma = trigs_or_injs.get_sigmasqs() self.sigma_tot = numpy.zeros(num_trigs_or_injs) # Get antenna response based parameters self.longitude = numpy.degrees(trigs_or_injs.get_column('ra')) self.latitude = numpy.degrees(trigs_or_injs.get_column('dec')) self.f_resp = dict((ifo, numpy.empty(num_trigs_or_injs)) for ifo in ifos) for i in range(num_trigs_or_injs): # Calculate f_resp for each IFO if we haven't done so yet f_plus, f_cross = get_det_response(self.longitude[i], self.latitude[i], self.time[i]) for ifo in ifos: self.f_resp[ifo][i] = sum(numpy.array([f_plus[ifo], f_cross[ifo]] )**2) self.sigma_tot[i] += (sigma[ifo][i] * self.f_resp[ifo][i]) for ifo in ifos: self.f_resp[ifo] = self.f_resp[ifo].mean() # Normalise trig_sigma self.sigma_tot = numpy.array(self.sigma_tot) for ifo in ifos: sigma[ifo] = numpy.asarray(sigma[ifo]) / self.sigma_tot self.sigma_mean = {} self.sigma_max = {} self.sigma_min = {} for ifo in ifos: try: self.sigma_mean[ifo] = sigma[ifo].mean() self.sigma_max[ifo] = sigma[ifo].max() self.sigma_min[ifo] = sigma[ifo].min() except ValueError: self.sigma_mean[ifo] = 0 self.sigma_max[ifo] = 0 self.sigma_min[ifo] = 0 logging.info("%s parameters extracted", output_type) # ============================================================================= # Function to open trigger and injection xml files # ============================================================================= def load_xml_file(filename): """Wrapper to ligolw's utils.load_filename""" xml_doc = utils.load_filename(filename, gz=filename.endswith("gz"), contenthandler=lsctables.use_in( ligolw.LIGOLWContentHandler)) return xml_doc # ============================================================================= # Function to extract ifos # ============================================================================= def extract_ifos(trig_file): """Extracts IFOs from search summary table""" # Load search summary xml_doc = load_xml_file(trig_file) search_summ = table.get_table(xml_doc, lsctables.SearchSummaryTable.tableName) # Extract IFOs ifos = sorted(map(str, search_summ[0].get_ifos())) return ifos # ============================================================================= # Function to extract vetoes # ============================================================================= def extract_vetoes(veto_files, ifos): """Extracts vetoes from veto filelist""" # Initialize vetoe containers vetoes = segments.segmentlistdict() for ifo in ifos: vetoes[ifo] = segments.segmentlist() # Construct veto list from veto filelist if veto_files: for file in veto_files: ifo = os.path.basename(file)[:2] if ifo in ifos: # This returns a coalesced list of the vetoes tmp_veto_segs = dqSegmentUtils.fromsegmentxml(open(file, 'r')) for entry in tmp_veto_segs: vetoes[ifo].append(entry) for ifo in ifos: vetoes[ifo].coalesce() return vetoes # ============================================================================= # Function to load triggers # ============================================================================= def load_triggers(trig_file, vetoes, ifos): """"Loads triggers from PyGRB output file""" logging.info("Loading triggers...") # Extract time-slides multis, slide_dict, _ = \ MultiInspiralUtils.ReadMultiInspiralTimeSlidesFromFiles([trig_file]) num_slides = len(slide_dict) lsctables.MultiInspiralTable.loadcolumns =\ [slot for slot in multis[0].__slots__ if hasattr(multis[0], slot)] # Extract triggers trigs = lsctables.New(lsctables.MultiInspiralTable, columns=lsctables.MultiInspiralTable.loadcolumns) logging.info("%d triggers found.", len(trigs)) # Time-slid vetoes for slide_id in range(num_slides): slid_vetoes = copy.deepcopy(vetoes) for ifo in ifos: slid_vetoes[ifo].shift(-slide_dict[slide_id][ifo]) # Add time-slid triggers vets = slid_vetoes.union(slid_vetoes.keys()) trigs.extend(t for t in multis.veto(vets) if int(t.time_slide_id) == slide_id) logging.info("%d triggers found when including timeslides.", len(trigs)) return trigs # ============================================================================= # Function to load injections # ============================================================================= def load_injections(inj_file, vetoes): """"Loads injections from PyGRB output file""" logging.info("Loading injections...") # Load injection file xml_doc = load_xml_file(inj_file) multis = table.get_table(xml_doc, lsctables.MultiInspiralTable.tableName) # Extract injections injs = lsctables.New(lsctables.MultiInspiralTable, columns=lsctables.MultiInspiralTable.loadcolumns) # Injections in time-slid non-vetoed data injs.extend(t for t in multis if t.get_end() not in vetoes) logging.info("%d injections found.", len(injs)) return injs # ============================================================================= # Function to load injections # ============================================================================= def new_snr_chisq(snr, new_snr, chisq_dof, chisq_index=4.0, chisq_nhigh=3.0): """Returns the chi-square value needed to weight SNR into new SNR""" chisqnorm = (snr/new_snr)**chisq_index if chisqnorm <= 1: return 1E-20 return chisq_dof * (2*chisqnorm - 1)**(chisq_nhigh/chisq_index) # ============================================================================= # Given the trigger and injection values of a quantity, determine the maximum # ============================================================================= def axis_max_value(trig_values, inj_values, inj_file): """Deterime the maximum of a quantity in the trigger and injection data""" axis_max = trig_values.max() if inj_file and inj_values.size and inj_values.max() > axis_max: axis_max = inj_values.max() return axis_max # ============================================================================= # Calculate all chi-square contours for diagnostic plots # ============================================================================= def calculate_contours(trigs, opts, new_snrs=None): """Generate the plot contours for chisq variable plots""" if new_snrs is None: new_snrs = [5.5, 6, 6.5, 7, 8, 9, 10, 11] chisq_index = opts.chisq_index chisq_nhigh = opts.chisq_nhigh new_snr_thresh = opts.newsnr_threshold null_thresh = [] for val in map(float, opts.null_snr_threshold.split(',')): null_thresh.append(val) null_thresh = null_thresh[-1] null_grad_snr = opts.null_grad_thresh null_grad_val = opts.null_grad_val chisq_dof = trigs[0].chisq_dof bank_chisq_dof = trigs[0].bank_chisq_dof cont_chisq_dof = trigs[0].cont_chisq_dof # Add the new SNR threshold contour to the list if necessary # and keep track of where it is cont_value = None try: cont_value = new_snrs.index(new_snr_thresh) except ValueError: new_snrs.append(new_snr_thresh) cont_value = -1 # Initialise chisq contour values and colours colors = ["k-" if snr == new_snr_thresh else "y-" if snr == int(snr) else "y--" for snr in new_snrs] # Get SNR values for contours snr_low_vals = numpy.arange(4, 30, 0.1) snr_high_vals = numpy.arange(30, 500, 1) snr_vals = numpy.asarray(list(snr_low_vals) + list(snr_high_vals)) # Initialise contours bank_conts = numpy.zeros([len(new_snrs), len(snr_vals)], dtype=numpy.float64) auto_conts = numpy.zeros([len(new_snrs), len(snr_vals)], dtype=numpy.float64) chi_conts = numpy.zeros([len(new_snrs), len(snr_vals)], dtype=numpy.float64) null_cont = [] # Loop over each and calculate chisq variable needed for SNR contour for j, snr in enumerate(snr_vals): for i, new_snr in enumerate(new_snrs): bank_conts[i][j] = new_snr_chisq(snr, new_snr, bank_chisq_dof, chisq_index, chisq_nhigh) auto_conts[i][j] = new_snr_chisq(snr, new_snr, cont_chisq_dof, chisq_index, chisq_nhigh) chi_conts[i][j] = new_snr_chisq(snr, new_snr, chisq_dof, chisq_index, chisq_nhigh) if snr > null_grad_snr: null_cont.append(null_thresh + (snr-null_grad_snr)*null_grad_val) else: null_cont.append(null_thresh) null_cont = numpy.asarray(null_cont) return bank_conts, auto_conts, chi_conts, null_cont, snr_vals, \ cont_value, colors # ============================================================================= # Plot contours in a scatter plot where SNR is on the horizontal axis # ============================================================================= def contour_plotter(axis, snr_vals, contours, colors, vert_spike=False): """Plot contours in a scatter plot where SNR is on the horizontal axis""" for i, _ in enumerate(contours): plot_vals_x = [] plot_vals_y = [] if vert_spike: for j, _ in enumerate(snr_vals): # Workaround to ensure vertical spike is shown on veto plots if contours[i][j] > 1E-15 and not plot_vals_x: plot_vals_x.append(snr_vals[j]) plot_vals_y.append(0.1) if contours[i][j] > 1E-15 and plot_vals_x: plot_vals_x.append(snr_vals[j]) plot_vals_y.append(contours[i][j]) else: plot_vals_x = snr_vals plot_vals_y = contours[i] axis.plot(plot_vals_x, plot_vals_y, colors[i]) # ============================================================================= # Contains plotting setups shared by PyGRB plots # ============================================================================= def pygrb_shared_plot_setups(): """Master function to plot PyGRB results""" # Get rcParams rc('font', size=14) # Set color for out-of-range values plt.cm.spring.set_over('g') # ============================================================================= # Master plotting function: fits all plotting needs in for PyGRB results # ============================================================================= def pygrb_plotter(trig_x, trig_y, inj_x, inj_y, inj_file, xlabel, ylabel, fig_path, snr_vals=None, conts=None, shade_cont_value=None, colors=None, vert_spike=False, xlims=None, ylims=None, use_logs=True, cmd=None, plot_title=None, plot_caption=None): """Master function to plot PyGRB results""" fig_name = os.path.split(os.path.abspath(fig_path))[1] logging.info(" * %s (%s vs %s)...", fig_name, xlabel, ylabel) # Set up plot fig = plt.figure() cax = fig.gca() # Plot trigger-related quantities if use_logs: cax.loglog(trig_x, trig_y, 'bx') else: cax.plot(trig_x, trig_y, 'bx') cax.grid() # Plot injection-related quantities if inj_file: if use_logs: cax.loglog(inj_x, inj_y, 'r+') else: cax.plot(inj_x, inj_y, 'r+') # Plot contours if conts is not None: contour_plotter(cax, snr_vals, conts, colors, vert_spike=vert_spike) # Add shading above a specific contour (typically used for vetoed area) if shade_cont_value is not None: limy = cax.get_ylim()[1] polyx = copy.deepcopy(snr_vals) polyy = copy.deepcopy(conts[shade_cont_value]) polyx = numpy.append(polyx, [max(snr_vals), min(snr_vals)]) polyy = numpy.append(polyy, [limy, limy]) cax.fill(polyx, polyy, color='#dddddd') # Axes: labels and limits cax.set_xlabel(xlabel) cax.set_ylabel(ylabel) if xlims: cax.set_xlim(xlims) if ylims: cax.set_ylim(ylims) # Wrap up plt.tight_layout() save_fig_with_metadata(fig, fig_path, cmd=cmd, title=plot_title, caption=plot_caption) # fig_kwds=fig_kwds, plt.close()
gpl-3.0
PyWiFeS/tools
runscript.py
1
1264
import process_stellar import matplotlib.pyplot as plt conv_tlusty_spect = process_stellar.conv_tlusty_spect conv_phoenix_spect = process_stellar.conv_phoenix_spect rv_process_dir = process_stellar.rv_process_dir import pdb import time import numpy as np ##CONVOLVING TEMPLATES #conv_tlusty_spect('/Volumes/UTRAID/TLUSTY/BGvispec_v2/','tlusty_conv') #conv_phoenix_spect('/Volumes/UTRAID/phoenix_hires/PHOENIX-ACES-AGSS-COND-2011/Z-0.0/foruse/','phoenix_conv') ##RUNNING RV FITTER ON DATA ##Executing from the code directory: #rv_process_dir('/Volumes/UTRAID/wifes_data/140619/reduction_red_150806', #template_conv_dir='./phoenix_conv/',outdir='arizz_outputs/140619/phoenix',mask_ha_emission=True) #rv_process_dir('/Users/arizz/python/pywifes/tools/test_intput', #template_conv_dir='/Users/arizz/python/pywifes/tools/full_conv/',outdir='/Users/arizz/python/pywifes/tools/testing_outputs',mask_ha_emission=False) indirs = np.array(['140623','140622','140621','140619']) for ii in indirs: indir= '/Volumes/UTRAID/wifes_data/'+ii+'/reduction_red_150806' odir = 'arizz_outputs/'+indir.split('/')[4]+'/both' #pdb.set_trace() rv_process_dir(indir,template_conv_dir='/Users/arizz/python/pywifes/tools/full_conv/',outdir=odir,mask_ha_emission=False)
mit
e-mission/e-mission-server
emission/analysis/modelling/tour_model/cluster_groundtruth.py
2
5021
from __future__ import division from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import # standard imports from future import standard_library standard_library.install_aliases() from builtins import str from builtins import range from builtins import * from past.utils import old_div import logging from sklearn.metrics.cluster import homogeneity_score, completeness_score import numpy import matplotlib.pyplot as plt # our imports import emission.analysis.modelling.tour_model.cluster_pipeline as cp import emission.analysis.modelling.tour_model.similarity as similarity """ Functions to evaluate clustering based on groundtruth. To use these functions, an array of the length of the data must be passed in, with different values in the array indicating different groundtruth clusters. These functions can be used alongside the cluster pipeline to evaluate clustering. An example of how to run this with the cluster pipeline is in the main method. To run it, pass in a list of groundtruth. Note that the cluster pipeline works with trips, not sections, so to use the above code the groundtruth has to also be by trips. """ #turns color array into an array of integers def get_colors(data, colors): if len(data) != len(colors): raise ValueError('Data and groundtruth must have the same number of elements') indices = [] * len(set(colors)) for n in colors: if n not in indices: indices.append(n) for i in range(len(colors)): colors[i] = indices.index(colors[i]) return colors #update the ground truth after binning def update_colors(bins, colors): newcolors = [] for bin in bins: for b in bin: newcolors.append(colors[b]) indices = [] * len(set(newcolors)) for n in newcolors: if n not in indices: indices.append(n) for i in range(len(newcolors)): newcolors[i] = indices.index(newcolors[i]) return newcolors #evaluates the cluster labels against the groundtruth colors def evaluate(colors, labels): b = homogeneity_score(colors, labels) c = completeness_score(colors, labels) logging.debug('homogeneity is %d' % b) logging.debug('completeness is %d' % c) #maps the clusters, colored by the groundtruth #creates a map for each groundtruthed cluster and #a map showing all the clusters. def map_clusters_by_groundtruth(data, labels, colors, map_individuals=False): from matplotlib import colors as matcol colormap = plt.cm.get_cmap() import random r = random.sample(list(range(len(set(labels)))), len(set(labels))) rand = [] clusters = len(set(labels)) for i in range(len(labels)): rand.append(old_div(r[labels[i]],float(clusters))) if map_individuals: for color in set(colors): first = True num_paths = 0 for i in range(len(colors)): if colors[i] == color: num_paths += 1 start_lat = data[i].trip_start_location.lat start_lon = data[i].trip_start_location.lon end_lat = data[i].trip_end_location.lat end_lon = data[i].trip_end_location.lon if first: # mymap = pygmaps.maps(start_lat, start_lon, 10) first = False path = [(start_lat, start_lon), (end_lat, end_lon)] mymap.addpath(path, matcol.rgb2hex(colormap(rand[i]))) mymap.draw('./mycluster' + str(color) + '.html') # mymap = pygmaps.maps(37.5, -122.32, 10) for i in range(len(data)): start_lat = data[i].trip_start_location.lat start_lon = data[i].trip_start_location.lon end_lat = data[i].trip_end_location.lat end_lon = data[i].trip_end_location.lon path = [(start_lat, start_lon), (end_lat, end_lon)] mymap.addpath(path, matcol.rgb2hex(colormap(old_div(float(colors[i]),len(set(colors)))))) mymap.draw('./mymap.html') def main(colors): data = cp.read_data() #get the data colors = get_colors(data, colors) #make colors the right format data, bins = cp.remove_noise(data, .5, 300) #remove noise from data ###### the next few lines are to evaluate the binning sim = similarity.similarity(data, .5, 300) #create a similarity object sim.bins = bins #set the bins, since we calculated them above sim.evaluate_bins() #evaluate them to create the labels ###### colors = update_colors(bins, colors) #update the colors to reflect deleted bins labels = sim.labels #get labels evaluate(numpy.array(colors), numpy.array(labels)) #evaluate the bins clusters, labels, data = cp.cluster(data, len(bins)) #cluster evaluate(numpy.array(colors), numpy.array(labels)) #evaluate clustering map_clusters_by_groundtruth(data, labels, colors, map_individuals=False) #map clusters, make last parameter true to map individual clusters
bsd-3-clause
tigerneil/MLSS
classification/util.py
2
8466
import csv import numpy as np import scipy.linalg import matplotlib.pyplot as pl from mpl_toolkits.mplot3d import Axes3D from sklearn import svm from scipy.stats import multivariate_normal from scipy.stats import bernoulli print("version",1) class GaussianMixture: def __init__(self,mean0,cov0,mean1,cov1): """ construct a mixture of two gaussians. mean0 is 2x1 vector of means for class 0, cov0 is 2x2 covariance matrix for class 0. Similarly for class 1""" self.mean0 = mean0 self.mean1 = mean1 self.cov0 = cov0 self.cov1 = cov1 self.rv0 = multivariate_normal(mean0, cov0) self.rv1 = multivariate_normal(mean1, cov1) def plot(self,data=None): x1 = np.linspace(-4,4,100) x2 = np.linspace(-4,4,100) X1,X2 = np.meshgrid(x1,x2) pos = np.empty(X1.shape+(2,)) pos[:,:,0] = X1 pos[:,:,1]= X2 a = self.rv1.pdf(pos)/self.rv0.pdf(pos) if data: nplots = 4 else: nplots = 3 fig,ax = pl.subplots(1,nplots,figsize = (5*nplots,5)) [ax[i].spines['left'].set_position('zero') for i in range(0,nplots)] [ax[i].spines['right'].set_color('none') for i in range(0,nplots)] [ax[i].spines['bottom'].set_position('zero') for i in range(0,nplots)] [ax[i].spines['top'].set_color('none') for i in range(0,nplots)] ax[0].set_title("p(x1,x2|y = 1") ax[1].set_title("p(x1,x2|y = 0") ax[2].set_title("P(y = 1|x1,x2)") [ax[i].set_xlim([-4,4]) for i in range(0,3)] [ax[i].set_ylim([-4,4]) for i in range(0,3)] cn = ax[0].contourf(x1,x2,self.rv1.pdf(pos)) cn2 = ax[1].contourf(x1,x2,self.rv0.pdf(pos)) z = a/(1.0+a) cn3 = ax[2].contourf(x1,x2,z) ct = ax[2].contour(cn3,levels=[0.5]) ax[2].clabel(ct) if data: X,Y = data colors = ["blue" if target < 1 else "red" for target in Y] x = X[:,0] y = X[:,1] yis1 = np.where(Y==1)[0] yis0 = np.where(Y!=1)[0] ax[3].set_title("Samples colored by class") ax[3].scatter(x,y,s=30,c=colors,alpha=.5) ax[0].scatter(x[yis1],y[yis1],s=5,c=colors,alpha=.3) ax[1].scatter(x[yis0],y[yis0],s=5,c=colors,alpha=.3) ax[2].scatter(x,y,s=5,c=colors,alpha=.3) pl.show() def sample(self,n_samples,py,plot=False): """samples Y according to py and corresponding features x1,x2 according to the gaussian for the corresponding class""" Y = bernoulli.rvs(py,size=n_samples) X = np.zeros((n_samples,2)) for i in range(n_samples): if Y[i] == 1: X[i,:] = self.rv1.rvs() else: X[i,:] = self.rv0.rvs() if plot: self.plot(data=(X,Y)) return X,Y def load_data_(filename): with open(filename) as f: g = (",".join([i[1],i[2],i[4],i[5],i[6],i[7],i[9],i[11]]).encode(encoding='UTF-8') for i in csv.reader(f,delimiter=",",quotechar='"')) data = np.genfromtxt(g, delimiter=",",names=True, dtype=(int,int,np.dtype('a6'),float,int,int,float,np.dtype('a1'))) embark_dict = {b'S':0, b'C':1, b'Q':2, b'':3} survived = data['Survived'] passenger_class = data['Pclass'] is_female = (data['Sex'] == b'female').astype(int) age = data['Age'] sibsp = data['SibSp'] parch = data['Parch'] fare = data['Fare'] embarked = np.array([embark_dict[k] for k in data['Embarked']]) # skip age for the moment because of the missing data X = np.vstack((passenger_class, is_female, sibsp, parch, fare, embarked)).T Y = survived return X, Y def load_data(): return load_data_("titanic_train.csv") def load_test_data(): return load_data_("titanic_test.csv") def whitening_matrix(X): """The matrix of Eigenvectors that whitens the input vector X""" assert (X.ndim == 2) sigma = np.dot(X.T, X) e, m = scipy.linalg.eigh(sigma) return np.dot(m, np.diag(1.0/np.sqrt(e)))*np.sqrt((X.shape[0]-1)) def plot_svm(X, Y, svm_instance, xdim1=0, xdim2=1, minbound=(-3,-3), maxbound=(3,3), resolution=(100,100)): """ Plot any two dimensions from an SVM""" # build the meshgrid for the two dims we care about d = svm_instance.shape_fit_[1] n = resolution[0] * resolution[1] xx, yy = np.meshgrid(np.linspace(minbound[0], maxbound[0], resolution[0]), np.linspace(minbound[1], maxbound[1], resolution[1])) query2d = np.c_[xx.ravel(), yy.ravel()] query = np.zeros((n,d)) query[:,xdim1] = query2d[:, 0] query[:,xdim2] = query2d[:, 1] Z = svm_instance.decision_function(query) Z = Z.reshape(xx.shape) fig = pl.figure(figsize=(10,10)) ax = fig.add_subplot(111) ax.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=pl.cm.PuOr_r) contours = ax.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') ax.scatter(X[:, xdim1], X[:, xdim2], s=30, c=Y, cmap=pl.cm.Paired) # ax.set_xticks(()) # pl.yticks(()) ax.set_xlim((minbound[0], maxbound[0])) ax.set_ylim((minbound[1], maxbound[1])) pl.show() def illustrate_preprocessing(): x = np.random.multivariate_normal(np.array([5.0,5.0]), np.array([[5.0,3.0],[3.0,4.0]]),size=1000) x_demean = x - np.mean(x, axis=0) x_unitsd = x_demean/(np.std(x_demean,axis=0)) x_whiten = np.dot(x_demean, whitening_matrix(x_demean)) fig = pl.figure(figsize=(10,10)) def mk_subplot(n, data, label): ax = fig.add_subplot(2,2,n) ax.scatter(data[:,0], data[:,1]) ax.set_xlim((-10,10)) ax.set_ylim((-10,10)) ax.set_xlabel(label) mk_subplot(1, x, "Original") mk_subplot(2, x_demean, "De-meaned") mk_subplot(3, x_unitsd, "Unit SD") mk_subplot(4, x_whiten, "Whitened") pl.show() def margins_and_hyperplane(): #gen some data np.random.seed(0) n = 20 X = (np.vstack((np.ones((n,2))*np.array([0.5,1]), np.ones((n,2))*np.array([-0.5,-1]))) + np.random.randn(2*n,2)*0.3) Y = np.hstack((np.ones(n), np.zeros(n))) clf = svm.SVC(kernel='linear') clf.fit(X, Y) # Note the following code comes from a scikit learn example... # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xs = np.linspace(-2, 2) ys = a * xs - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] ys_down = a * xs + (b[1] - a * b[0]) b = clf.support_vectors_[-1] ys_up = a * xs + (b[1] - a * b[0]) #draw a bad margin def line_point_grad(x, grad, p1): y = grad*(x - p1[0]) + p1[1] return y minp = X[np.argmin(X[:n,0])] maxp = X[n + np.argmax(X[n:,0])] yb = line_point_grad(xs, a*20, np.array([0.5*(minp[0]+maxp[0]),0.0])) yb_down = line_point_grad(xs, a*20, minp) yb_up = line_point_grad(xs, a*20, maxp) # plot the line, the points, and the nearest vectors to the plane fig = pl.figure(figsize=(10,10)) ax = fig.add_subplot(111) ax.plot(xs, ys, 'g-') ax.plot(xs, yb, 'r-') ax.plot(xs, yb_down, 'r--') ax.plot(xs, yb_up, 'r--') ax.plot(xs, ys_down, 'g--') ax.plot(xs, ys_up, 'g--') ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') ax.scatter([minp[0],maxp[0]], [minp[1],maxp[1]], s=80, facecolors='none') ax.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired) ax.set_xlim((-2,2)) ax.set_ylim((-2,2)) pl.show() def hard_data(): #gen some data np.random.seed(0) epsilon = 0.05 n = 5000 X1 = np.random.randn(n,2) X2 = np.random.randn(n,2) valid1 = X1[:,0]**2 + X1[:,1]**2 < (0.5 - epsilon) valid2 = np.logical_and((X2[:,0]**2 + X2[:,1]**2 > (0.5 + epsilon)), (X2[:,0]**2 + X2[:,1]**2 < 1.0)) X1 = X1[valid1] X2 = X2[valid2] Y1 = np.ones(X1.shape[0]) Y2 = np.zeros(X2.shape[0]) X = np.vstack((X1,X2)) Y = np.hstack((Y1,Y2)) Z = np.sqrt(2)*X[:,0]*X[:,1] return X, Y, Z def nonlinear_example(): X, Y, Z = hard_data() fig = pl.figure(figsize=(10,20)) ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired) ax = fig.add_subplot(212, projection='3d') ax.scatter(X[:,0]**2, X[:,1]**2, Z, c=Y, cmap=pl.cm.Paired) pl.show() def nonlinear_svm(): X, Y, Z = hard_data() clf = svm.SVC(kernel='rbf') clf.fit(X, Y) plot_svm(X, Y, clf, 0,1, (-1.5,-1.5), (1.5,1.5)) #if __name__ == "__main__": # nonlinear_example()
gpl-2.0
Nyker510/scikit-learn
sklearn/feature_selection/__init__.py
244
1088
""" The :mod:`sklearn.feature_selection` module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm. """ from .univariate_selection import chi2 from .univariate_selection import f_classif from .univariate_selection import f_oneway from .univariate_selection import f_regression from .univariate_selection import SelectPercentile from .univariate_selection import SelectKBest from .univariate_selection import SelectFpr from .univariate_selection import SelectFdr from .univariate_selection import SelectFwe from .univariate_selection import GenericUnivariateSelect from .variance_threshold import VarianceThreshold from .rfe import RFE from .rfe import RFECV __all__ = ['GenericUnivariateSelect', 'RFE', 'RFECV', 'SelectFdr', 'SelectFpr', 'SelectFwe', 'SelectKBest', 'SelectPercentile', 'VarianceThreshold', 'chi2', 'f_classif', 'f_oneway', 'f_regression']
bsd-3-clause