# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import xml.etree.ElementTree as ET | |
import os | |
import datasets | |
from datasets import ClassLabel | |
_CITATION = """\ | |
@inproceedings{pontiki-etal-2014-semeval, | |
title = "{S}em{E}val-2014 Task 4: Aspect Based Sentiment Analysis", | |
author = "Pontiki, Maria and | |
Galanis, Dimitris and | |
Pavlopoulos, John and | |
Papageorgiou, Harris and | |
Androutsopoulos, Ion and | |
Manandhar, Suresh", | |
booktitle = "Proceedings of the 8th International Workshop on Semantic Evaluation ({S}em{E}val 2014)", | |
month = aug, | |
year = "2014", | |
address = "Dublin, Ireland", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/S14-2004", | |
doi = "10.3115/v1/S14-2004", | |
pages = "27--35", | |
} | |
""" | |
_DESCRIPTION = """\ | |
These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 4 of SemEval-2014. | |
""" | |
_HOMEPAGE = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"restaurants": {"trial": "restaurants-trial.xml", | |
"train": "SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Restaurants_Train_v2.xml", | |
"test": "ABSA_Gold_TestData/Restaurants_Test_Gold.xml"}, | |
"laptops": {"trial": "laptops-trial.xml", | |
"train": "SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Laptop_Train_v2.xml", | |
"test": "ABSA_Gold_TestData/Laptops_Test_Gold.xml"}, | |
} | |
class SemEval2014Task4(datasets.GeneratorBasedBuilder): | |
"""These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 4 of SemEval-2014.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Restaurant review sentences"), | |
datasets.BuilderConfig(name="laptops", version=VERSION, description="Laptop review sentences"), | |
] | |
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if self.config.name == "restaurants": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{'sentenceId': datasets.Value(dtype='string'), | |
'text': datasets.Value(dtype='string'), | |
'aspectTerms': [ | |
{'term': datasets.Value(dtype='string'), | |
# 'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict']), | |
'polarity': datasets.Value(dtype='string'), | |
'from': datasets.Value(dtype='string'), | |
'to': datasets.Value(dtype='string')} | |
], | |
'aspectCategories': [ | |
# {'category': ClassLabel(num_classes=5, names=['food', 'service', 'price', 'ambience', 'anecdotes/miscellaneous']), | |
# 'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict'])} | |
{'category': datasets.Value(dtype='string'), | |
'polarity': datasets.Value(dtype='string')} | |
], | |
# 'domain': ClassLabel(num_classes=2, names=['restaurants', 'laptops']) | |
} | |
) | |
elif self.config.name == "laptops": | |
features = datasets.Features( | |
{'sentenceId': datasets.Value(dtype='string'), | |
'text': datasets.Value(dtype='string'), | |
'aspectTerms': [ | |
{'term': datasets.Value(dtype='string'), | |
# 'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict']), | |
'polarity': datasets.Value(dtype='string'), | |
'from': datasets.Value(dtype='string'), | |
'to': datasets.Value(dtype='string')} | |
], | |
# 'domain': ClassLabel(num_classes=2, names=['restaurants', 'laptops']) | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split("trial"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir['trial'], | |
"split": "trial" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir['train'], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir['test'], | |
"split": "test" | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `id_` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
tree = ET.parse(filepath) | |
root = tree.getroot() | |
for id_, sentence in enumerate(root.iter("sentence")): | |
sentenceId = sentence.attrib.get("id") | |
text = sentence.find("text").text | |
aspectTerms = [] | |
for aspectTerm in sentence.iter("aspectTerm"): | |
aspectTerms.append(aspectTerm.attrib) | |
if self.config.name == "restaurants": | |
aspectCategories = [] | |
for aspectCategory in sentence.iter("aspectCategory"): | |
aspectCategories.append(aspectCategory.attrib) | |
yield id_, { | |
"sentenceId": sentenceId, | |
"text": text, | |
"aspectTerms": aspectTerms, | |
"aspectCategories": aspectCategories, | |
# "domain": self.config.name, | |
} | |
elif self.config.name == 'laptops': | |
yield id_, { | |
"sentenceId": sentenceId, | |
"text": text, | |
"aspectTerms": aspectTerms, | |
# "domain": self.config.name, | |
} |