Commit
·
3517760
1
Parent(s):
aa1a292
Upload 6 files
Browse files- ABSA_Gold_TestData/Laptops_Test_Gold.xml +0 -0
- ABSA_Gold_TestData/Restaurants_Test_Gold.xml +0 -0
- SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Laptop_Train_v2.xml +0 -0
- SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Restaurants_Train_v2.xml +0 -0
- SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/SemEval14_ABSA_AnnotationGuidelines.pdf +0 -0
- SemEval2014Task4.py +193 -0
ABSA_Gold_TestData/Laptops_Test_Gold.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ABSA_Gold_TestData/Restaurants_Test_Gold.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Laptop_Train_v2.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Restaurants_Train_v2.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/SemEval14_ABSA_AnnotationGuidelines.pdf
ADDED
Binary file (621 kB). View file
|
|
SemEval2014Task4.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import xml.etree.ElementTree as ET
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
from datasets import ClassLabel
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{pontiki-etal-2014-semeval,
|
27 |
+
title = "{S}em{E}val-2014 Task 4: Aspect Based Sentiment Analysis",
|
28 |
+
author = "Pontiki, Maria and
|
29 |
+
Galanis, Dimitris and
|
30 |
+
Pavlopoulos, John and
|
31 |
+
Papageorgiou, Harris and
|
32 |
+
Androutsopoulos, Ion and
|
33 |
+
Manandhar, Suresh",
|
34 |
+
booktitle = "Proceedings of the 8th International Workshop on Semantic Evaluation ({S}em{E}val 2014)",
|
35 |
+
month = aug,
|
36 |
+
year = "2014",
|
37 |
+
address = "Dublin, Ireland",
|
38 |
+
publisher = "Association for Computational Linguistics",
|
39 |
+
url = "https://aclanthology.org/S14-2004",
|
40 |
+
doi = "10.3115/v1/S14-2004",
|
41 |
+
pages = "27--35",
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 4 of SemEval-2014.
|
47 |
+
"""
|
48 |
+
|
49 |
+
_HOMEPAGE = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools"
|
50 |
+
|
51 |
+
# TODO: Add the licence for the dataset here if you can find it
|
52 |
+
_LICENSE = ""
|
53 |
+
|
54 |
+
# TODO: Add link to the official dataset URLs here
|
55 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
56 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
57 |
+
_URLS = {
|
58 |
+
"restaurants": {"train": "SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Restaurants_Train_v2.xml",
|
59 |
+
"test": "ABSA_Gold_TestData/Restaurants_Test_Gold.xml"},
|
60 |
+
"laptops": {"train": "SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Laptop_Train_v2.xml",
|
61 |
+
"test": "ABSA_Gold_TestData/Laptops_Test_Gold.xml"},
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
class SemEval2014Task4(datasets.GeneratorBasedBuilder):
|
66 |
+
"""These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 4 of SemEval-2014."""
|
67 |
+
|
68 |
+
VERSION = datasets.Version("1.1.0")
|
69 |
+
|
70 |
+
# This is an example of a dataset with multiple configurations.
|
71 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
72 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
73 |
+
|
74 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
75 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
76 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
77 |
+
|
78 |
+
# You will be able to load one or the other configurations in the following list with
|
79 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
80 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
81 |
+
BUILDER_CONFIGS = [
|
82 |
+
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Restaurant review sentences"),
|
83 |
+
datasets.BuilderConfig(name="laptops", version=VERSION, description="Laptop review sentences"),
|
84 |
+
]
|
85 |
+
|
86 |
+
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
87 |
+
|
88 |
+
def _info(self):
|
89 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
90 |
+
if self.config.name == "restaurants": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
91 |
+
features = datasets.Features(
|
92 |
+
{'sentenceId': datasets.Value(dtype='string'),
|
93 |
+
'text': datasets.Value(dtype='string'),
|
94 |
+
'aspectTerms': [
|
95 |
+
{'term': datasets.Value(dtype='string'),
|
96 |
+
'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict']),
|
97 |
+
'from': datasets.Value(dtype='string'),
|
98 |
+
'to': datasets.Value(dtype='string')}
|
99 |
+
],
|
100 |
+
'aspectCategories': [
|
101 |
+
{'category': ClassLabel(num_classes=5, names=['food', 'service', 'price', 'ambience', 'anecdotes/miscellaneous']),
|
102 |
+
'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict'])}
|
103 |
+
],
|
104 |
+
'domain': ClassLabel(num_classes=2, names=['restaurants', 'laptops'])
|
105 |
+
}
|
106 |
+
)
|
107 |
+
elif self.config.name == "laptops":
|
108 |
+
features = datasets.Features(
|
109 |
+
{'sentenceId': datasets.Value(dtype='string'),
|
110 |
+
'text': datasets.Value(dtype='string'),
|
111 |
+
'aspectTerms': [
|
112 |
+
{'term': datasets.Value(dtype='string'),
|
113 |
+
'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict']),
|
114 |
+
'from': datasets.Value(dtype='string'),
|
115 |
+
'to': datasets.Value(dtype='string')}
|
116 |
+
],
|
117 |
+
'domain': ClassLabel(num_classes=2, names=['restaurants', 'laptops'])
|
118 |
+
}
|
119 |
+
)
|
120 |
+
return datasets.DatasetInfo(
|
121 |
+
# This is the description that will appear on the datasets page.
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
# This defines the different columns of the dataset and their types
|
124 |
+
features=features, # Here we define them above because they are different between the two configurations
|
125 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
126 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
127 |
+
# supervised_keys=("sentence", "label"),
|
128 |
+
# Homepage of the dataset for documentation
|
129 |
+
homepage=_HOMEPAGE,
|
130 |
+
# License for the dataset if available
|
131 |
+
license=_LICENSE,
|
132 |
+
# Citation for the dataset
|
133 |
+
citation=_CITATION,
|
134 |
+
)
|
135 |
+
|
136 |
+
def _split_generators(self, dl_manager):
|
137 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
138 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
139 |
+
|
140 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
141 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
142 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
143 |
+
urls = _URLS[self.config.name]
|
144 |
+
data_dir = dl_manager.download_and_extract(urls)
|
145 |
+
return [
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.TRAIN,
|
148 |
+
# These kwargs will be passed to _generate_examples
|
149 |
+
gen_kwargs={
|
150 |
+
"filepath": data_dir['train'],
|
151 |
+
"split": "train",
|
152 |
+
},
|
153 |
+
),
|
154 |
+
datasets.SplitGenerator(
|
155 |
+
name=datasets.Split.TEST,
|
156 |
+
# These kwargs will be passed to _generate_examples
|
157 |
+
gen_kwargs={
|
158 |
+
"filepath": data_dir['test'],
|
159 |
+
"split": "test"
|
160 |
+
},
|
161 |
+
),
|
162 |
+
]
|
163 |
+
|
164 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
165 |
+
def _generate_examples(self, filepath, split):
|
166 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
167 |
+
# The `id_` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
168 |
+
tree = ET.parse(filepath)
|
169 |
+
root = tree.getroot()
|
170 |
+
for id_, sentence in enumerate(root.iter("sentence")):
|
171 |
+
sentenceId = sentence.attrib.get("id")
|
172 |
+
text = sentence.find("text").text
|
173 |
+
aspectTerms = []
|
174 |
+
for aspectTerm in sentence.iter("aspectTerm"):
|
175 |
+
aspectTerms.append(aspectTerm.attrib)
|
176 |
+
if self.config.name == "restaurants":
|
177 |
+
aspectCategories = []
|
178 |
+
for aspectCategory in sentence.iter("aspectCategory"):
|
179 |
+
aspectCategories.append(aspectCategory.attrib)
|
180 |
+
yield id_, {
|
181 |
+
"sentenceId": sentenceId,
|
182 |
+
"text": text,
|
183 |
+
"aspectTerms": aspectTerms,
|
184 |
+
"aspectCategories": aspectCategories,
|
185 |
+
"domain": self.config.name,
|
186 |
+
}
|
187 |
+
elif self.config.name == 'laptops':
|
188 |
+
yield id_, {
|
189 |
+
"sentenceId": sentenceId,
|
190 |
+
"text": text,
|
191 |
+
"aspectTerms": aspectTerms,
|
192 |
+
"domain": self.config.name,
|
193 |
+
}
|