File size: 4,526 Bytes
3afeebb
 
 
 
 
5c7307b
 
3dcb747
 
3afeebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7307b
3afeebb
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7307b
 
 
 
 
 
 
 
 
 
 
3afeebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7307b
 
 
3afeebb
 
 
 
 
 
 
 
 
 
5c7307b
3afeebb
 
 
 
 
 
 
 
5c7307b
 
 
7c4579a
3dcb747
5c7307b
 
814dcde
7c4579a
 
 
 
 
 
 
 
 
 
7376c1e
7c4579a
3dcb747
7376c1e
 
4a804e2
5cddd15
7c4579a
58fcc18
7c4579a
 
217a7da
7c4579a
 
8103bf2
7c4579a
 
 
 
7e19fce
 
8103bf2
7e19fce
7c4579a
 
5c7307b
 
 
3afeebb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os

import datasets
from datasets.tasks import ImageClassification

from requests import get

logger = datasets.logging.get_logger(__name__)


_HOMEPAGE = "https://nihcc.app.box.com/v/ChestXray-NIHCC"

_CITATION = """\
@ONLINE {beansdata,
    author="Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summer",
    title="ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases",
    month="January",
    year="2017",
    url="https://nihcc.app.box.com/v/ChestXray-NIHCC"
}
"""

_DESCRIPTION = """\
The NIH Chest X-ray dataset consists of 100,000 de-identified images of chest x-rays. The images are in PNG format.

The data is provided by the NIH Clinical Center and is available through the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
"""

_IMAGE_URLS2 = [
    'https://nihcc.box.com/shared/static/vfk49d74nhbxq3nqjg0900w5nvkorp5c.gz',
    'https://nihcc.box.com/shared/static/i28rlmbvmfjbl8p2n3ril0pptcmcu9d1.gz',
    'https://nihcc.box.com/shared/static/f1t00wrtdk94satdfb9olcolqx20z2jp.gz',
    'https://nihcc.box.com/shared/static/0aowwzs5lhjrceb3qp67ahp0rd1l1etg.gz',
    'https://nihcc.box.com/shared/static/v5e3goj22zr6h8tzualxfsqlqaygfbsn.gz',
    'https://nihcc.box.com/shared/static/asi7ikud9jwnkrnkj99jnpfkjdes7l6l.gz',
    'https://nihcc.box.com/shared/static/jn1b4mw4n6lnh74ovmcjb8y48h8xj07n.gz',
    'https://nihcc.box.com/shared/static/tvpxmn7qyrgl0w8wfh9kqfjskv6nmm1j.gz',
    'https://nihcc.box.com/shared/static/upyy3ml7qdumlgk2rfcvlb9k6gvqq2pj.gz',
    'https://nihcc.box.com/shared/static/l6nilvfa9cg3s28tqv1qc1olm3gnz54p.gz',
    'https://nihcc.box.com/shared/static/hhq8fkdgvcari67vfhs7ppg2w6ni4jze.gz',
    'https://nihcc.box.com/shared/static/ioqwiy20ihqwyr8pf4c24eazhh281pbu.gz'
]

_IMAGE_URLS = [
	'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_001.tar.gz',
	'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_002.tar.gz'
]

_URLS = {
	'train_val_list': 'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/raw/main/dummy/0.0.0/train_val_list.txt',
	'test_list': 'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/raw/main/dummy/0.0.0/test_list.txt',
	'image_urls': _IMAGE_URLS
}

LABEL2IDX = {'No Finding': 0,
	     'Atelactasis': 1,
	     'Cardiomegaly': 2,
	     'Effusion': 3,
	     'Infiltration': 4,
	     'Mass': 5,
	     'Nodule': 6,
	     'Pneumonia': 7,
	     'Pneumothorax': 8,
  	     'Consolidation': 9,
	     'Edema': 10,
	     'Emphysema': 11,
	     'Fibrosis': 12,
	     'Pleural_Thickening': 13,
	     'Hernia': 14}

_NAMES = list(LABEL2IDX.keys())


class XChest(datasets.GeneratorBasedBuilder):
	"""NIH Image Chest X-ray dataset."""

	def _info(self):
		return datasets.DatasetInfo(
		    description=_DESCRIPTION,
		    features=datasets.Features(
			{
			"image_file_path": datasets.Value("string"),
			"image": datasets.Image(),
			"labels": datasets.features.ClassLabel(names=_NAMES),
			}
		    ),
		    supervised_keys=("image", "labels"),
		    homepage=_HOMEPAGE,
		    citation=_CITATION,
		    task_templates=[ImageClassification(image_column="image",
							label_column="labels")],
		)


	def _split_generators(self, dl_manager):
		# Get the image names that belong to the train-val dataset
		logger.info("Downloading the train_val_list image names")
		train_val_list = get(_URLS['train_val_list']).iter_lines()
		train_val_list = set([x.decode('UTF8') for x in train_val_list])
		logger.info(f"Check train_val_list: {train_val_list}")

		# Create list for store the name of the images for each dataset
		train_files = []
		test_files = []
		
		# Download batches
		data_files = dl_manager.download_and_extract(_URLS['image_urls'])

		# Iterate trought image folder and check if they belong to
		# the trainset or testset

		for batch in data_files:
		  logger.info(f"Batch for data_files: {batch}")
		  path_files = dl_manager.iter_files(batch)
		  for img in path_files:
		    if img.split('/')[-1] in train_val_list:
		      train_files.append(img)
		    else:
		      test_files.append(img)
		
		return [
		    datasets.SplitGenerator(
			name=datasets.Split.TRAIN,
			gen_kwargs={
				'files': iter(train_files)
			}

		    ),
		    datasets.SplitGenerator(
			name=datasets.Split.TEST,
			gen_kwargs={
				'files': iter(test_files)
			}
		    )
		]

	def _generate_examples(self, files):
		pass