alkzar90 commited on
Commit
a607951
·
1 Parent(s): 2295dae

Create a dataset card

Browse files
Files changed (1) hide show
  1. README.md +190 -0
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ - expert-generated
5
+ language_creators:
6
+ - machine-generated
7
+ - expert-generated
8
+ language:
9
+ - en
10
+ license:
11
+ - unknown
12
+ multilinguality:
13
+ - monolingual
14
+ pretty_name: NIH-CXR8
15
+ size_categories:
16
+ - 100K<n<1M
17
+ task_categories:
18
+ - image-classification
19
+ task_ids:
20
+ - multi-class-image-classification
21
+ ---
22
+
23
+ # Dataset Card for NIH Chest X-ray dataset
24
+
25
+ ## Table of Contents
26
+
27
+ - [Table of Contents](#table-of-contents)
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-fields)
34
+ - [Data Splits](#data-splits)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+ - [Contributions](#contributions)
49
+
50
+ ## Dataset Description
51
+
52
+ - **Homepage:** [NIH Chest X-ray Dataset of 10 Common Thorax Disease Categories](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345)
53
+ - **Repository:**
54
+ - **Paper:** [ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases](https://arxiv.org/abs/1705.02315)
55
+ - **Leaderboard:**
56
+ - **Point of Contact:** [email protected]
57
+
58
+ ### Dataset Summary
59
+
60
+ _ChestX-ray dataset comprises 112,120 frontal-view X-ray images of 30,805 unique patients with the text-mined fourteen disease image labels (where each image can have multi-labels), mined from the associated radiological reports using natural language processing. Fourteen common thoracic pathologies include Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural_thickening, Cardiomegaly, Nodule, Mass and Hernia, which is an extension of the 8 common disease patterns listed in our CVPR2017 paper. Note that original radiology reports (associated with these chest x-ray studies) are not meant to be publicly shared for many reasons. The text-mined disease labels are expected to have accuracy >90%.Please find more details and benchmark performance of trained models based on 14 disease labels in our arxiv paper: [1705.02315](https://arxiv.org/abs/1705.02315)_
61
+
62
+
63
+ ## Dataset Structure
64
+
65
+ ### Data Instances
66
+
67
+ A sample from the training set is provided below:
68
+
69
+ ```
70
+ {'image_file_path': '/root/.cache/huggingface/datasets/downloads/extracted/95db46f21d556880cf0ecb11d45d5ba0b58fcb113c9a0fff2234eba8f74fe22a/images/00000798_022.png',
71
+ 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=1024x1024 at 0x7F2151B144D0>,
72
+ 'labels': [9, 3]}
73
+ ```
74
+
75
+ ### Data Fields
76
+
77
+ The data instances have the following fields:
78
+ - `image_file_path` a `str` with the image path
79
+ - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
80
+ - `labels`: an `int` classification label.
81
+ <details>
82
+ <summary>Class Label Mappings</summary>
83
+ ```json
84
+ {
85
+ "No Finding": 0,
86
+ "Atelectasis": 1,
87
+ "Cardiomegaly": 2,
88
+ "Effusion": 3,
89
+ "Infiltration": 4,
90
+ "Mass": 5,
91
+ "Nodule": 6,
92
+ "Pneumonia": 7,
93
+ "Pneumothorax": 8,
94
+ "Consolidation": 9,
95
+ "Edema": 10,
96
+ "Emphysema": 11,
97
+ "Fibrosis": 12,
98
+ "Pleural_Thickening": 13,
99
+ "Hernia": 14
100
+ }
101
+ ```
102
+ </details>
103
+
104
+ ### Data Splits
105
+
106
+
107
+ | |train|validation| test|
108
+ |-------------|----:|---------:|----:|
109
+ |# of examples|75750| 25250|23132|
110
+
111
+
112
+ ## Dataset Creation
113
+
114
+ ### Curation Rationale
115
+
116
+ [More Information Needed]
117
+
118
+ ### Source Data
119
+
120
+ #### Initial Data Collection and Normalization
121
+
122
+ [More Information Needed]
123
+
124
+ #### Who are the source language producers?
125
+
126
+ [More Information Needed]
127
+
128
+ ### Annotations
129
+
130
+ #### Annotation process
131
+
132
+ [More Information Needed]
133
+
134
+ #### Who are the annotators?
135
+
136
+ [More Information Needed]
137
+
138
+ ### Personal and Sensitive Information
139
+
140
+ [More Information Needed]
141
+
142
+ ## Considerations for Using the Data
143
+
144
+ ### Social Impact of Dataset
145
+
146
+ [More Information Needed]
147
+
148
+ ### Discussion of Biases
149
+
150
+ [More Information Needed]
151
+
152
+ ### Other Known Limitations
153
+
154
+ [More Information Needed]
155
+
156
+ ## Additional Information
157
+
158
+ ### Dataset Curators
159
+
160
+ [More Information Needed]
161
+
162
+ ### License and attribution
163
+
164
+ There are no restrictions on the use of the NIH chest x-ray images. However, the dataset has the following attribution requirements:
165
+
166
+ - Provide a link to the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
167
+ - Include a citation to the CVPR 2017 paper (see Citation information section)
168
+ - Acknowledge that the NIH Clinical Center is the data provider
169
+
170
+
171
+ ### Citation Information
172
+
173
+ ```
174
+ @inproceedings{Wang_2017,
175
+ doi = {10.1109/cvpr.2017.369},
176
+ url = {https://doi.org/10.1109%2Fcvpr.2017.369},
177
+ year = 2017,
178
+ month = {jul},
179
+ publisher = {{IEEE}
180
+ },
181
+ author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers},
182
+ title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases},
183
+ booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})}
184
+ }
185
+ ```
186
+
187
+ ### Contributions
188
+
189
+ Thanks to [@alcazar90](https://github.com/alcazar90) for adding this dataset.
190
+