Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
Create a dataset card
Browse files
README.md
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- machine-generated
|
4 |
+
- expert-generated
|
5 |
+
language_creators:
|
6 |
+
- machine-generated
|
7 |
+
- expert-generated
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
license:
|
11 |
+
- unknown
|
12 |
+
multilinguality:
|
13 |
+
- monolingual
|
14 |
+
pretty_name: NIH-CXR8
|
15 |
+
size_categories:
|
16 |
+
- 100K<n<1M
|
17 |
+
task_categories:
|
18 |
+
- image-classification
|
19 |
+
task_ids:
|
20 |
+
- multi-class-image-classification
|
21 |
+
---
|
22 |
+
|
23 |
+
# Dataset Card for NIH Chest X-ray dataset
|
24 |
+
|
25 |
+
## Table of Contents
|
26 |
+
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Languages](#languages)
|
31 |
+
- [Dataset Structure](#dataset-structure)
|
32 |
+
- [Data Instances](#data-instances)
|
33 |
+
- [Data Fields](#data-fields)
|
34 |
+
- [Data Splits](#data-splits)
|
35 |
+
- [Dataset Creation](#dataset-creation)
|
36 |
+
- [Curation Rationale](#curation-rationale)
|
37 |
+
- [Source Data](#source-data)
|
38 |
+
- [Annotations](#annotations)
|
39 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
40 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
41 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
42 |
+
- [Discussion of Biases](#discussion-of-biases)
|
43 |
+
- [Other Known Limitations](#other-known-limitations)
|
44 |
+
- [Additional Information](#additional-information)
|
45 |
+
- [Dataset Curators](#dataset-curators)
|
46 |
+
- [Licensing Information](#licensing-information)
|
47 |
+
- [Citation Information](#citation-information)
|
48 |
+
- [Contributions](#contributions)
|
49 |
+
|
50 |
+
## Dataset Description
|
51 |
+
|
52 |
+
- **Homepage:** [NIH Chest X-ray Dataset of 10 Common Thorax Disease Categories](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345)
|
53 |
+
- **Repository:**
|
54 |
+
- **Paper:** [ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases](https://arxiv.org/abs/1705.02315)
|
55 |
+
- **Leaderboard:**
|
56 |
+
- **Point of Contact:** [email protected]
|
57 |
+
|
58 |
+
### Dataset Summary
|
59 |
+
|
60 |
+
_ChestX-ray dataset comprises 112,120 frontal-view X-ray images of 30,805 unique patients with the text-mined fourteen disease image labels (where each image can have multi-labels), mined from the associated radiological reports using natural language processing. Fourteen common thoracic pathologies include Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural_thickening, Cardiomegaly, Nodule, Mass and Hernia, which is an extension of the 8 common disease patterns listed in our CVPR2017 paper. Note that original radiology reports (associated with these chest x-ray studies) are not meant to be publicly shared for many reasons. The text-mined disease labels are expected to have accuracy >90%.Please find more details and benchmark performance of trained models based on 14 disease labels in our arxiv paper: [1705.02315](https://arxiv.org/abs/1705.02315)_
|
61 |
+
|
62 |
+
|
63 |
+
## Dataset Structure
|
64 |
+
|
65 |
+
### Data Instances
|
66 |
+
|
67 |
+
A sample from the training set is provided below:
|
68 |
+
|
69 |
+
```
|
70 |
+
{'image_file_path': '/root/.cache/huggingface/datasets/downloads/extracted/95db46f21d556880cf0ecb11d45d5ba0b58fcb113c9a0fff2234eba8f74fe22a/images/00000798_022.png',
|
71 |
+
'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=1024x1024 at 0x7F2151B144D0>,
|
72 |
+
'labels': [9, 3]}
|
73 |
+
```
|
74 |
+
|
75 |
+
### Data Fields
|
76 |
+
|
77 |
+
The data instances have the following fields:
|
78 |
+
- `image_file_path` a `str` with the image path
|
79 |
+
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
|
80 |
+
- `labels`: an `int` classification label.
|
81 |
+
<details>
|
82 |
+
<summary>Class Label Mappings</summary>
|
83 |
+
```json
|
84 |
+
{
|
85 |
+
"No Finding": 0,
|
86 |
+
"Atelectasis": 1,
|
87 |
+
"Cardiomegaly": 2,
|
88 |
+
"Effusion": 3,
|
89 |
+
"Infiltration": 4,
|
90 |
+
"Mass": 5,
|
91 |
+
"Nodule": 6,
|
92 |
+
"Pneumonia": 7,
|
93 |
+
"Pneumothorax": 8,
|
94 |
+
"Consolidation": 9,
|
95 |
+
"Edema": 10,
|
96 |
+
"Emphysema": 11,
|
97 |
+
"Fibrosis": 12,
|
98 |
+
"Pleural_Thickening": 13,
|
99 |
+
"Hernia": 14
|
100 |
+
}
|
101 |
+
```
|
102 |
+
</details>
|
103 |
+
|
104 |
+
### Data Splits
|
105 |
+
|
106 |
+
|
107 |
+
| |train|validation| test|
|
108 |
+
|-------------|----:|---------:|----:|
|
109 |
+
|# of examples|75750| 25250|23132|
|
110 |
+
|
111 |
+
|
112 |
+
## Dataset Creation
|
113 |
+
|
114 |
+
### Curation Rationale
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
### Source Data
|
119 |
+
|
120 |
+
#### Initial Data Collection and Normalization
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
#### Who are the source language producers?
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
### Annotations
|
129 |
+
|
130 |
+
#### Annotation process
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
#### Who are the annotators?
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
### Personal and Sensitive Information
|
139 |
+
|
140 |
+
[More Information Needed]
|
141 |
+
|
142 |
+
## Considerations for Using the Data
|
143 |
+
|
144 |
+
### Social Impact of Dataset
|
145 |
+
|
146 |
+
[More Information Needed]
|
147 |
+
|
148 |
+
### Discussion of Biases
|
149 |
+
|
150 |
+
[More Information Needed]
|
151 |
+
|
152 |
+
### Other Known Limitations
|
153 |
+
|
154 |
+
[More Information Needed]
|
155 |
+
|
156 |
+
## Additional Information
|
157 |
+
|
158 |
+
### Dataset Curators
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
### License and attribution
|
163 |
+
|
164 |
+
There are no restrictions on the use of the NIH chest x-ray images. However, the dataset has the following attribution requirements:
|
165 |
+
|
166 |
+
- Provide a link to the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
|
167 |
+
- Include a citation to the CVPR 2017 paper (see Citation information section)
|
168 |
+
- Acknowledge that the NIH Clinical Center is the data provider
|
169 |
+
|
170 |
+
|
171 |
+
### Citation Information
|
172 |
+
|
173 |
+
```
|
174 |
+
@inproceedings{Wang_2017,
|
175 |
+
doi = {10.1109/cvpr.2017.369},
|
176 |
+
url = {https://doi.org/10.1109%2Fcvpr.2017.369},
|
177 |
+
year = 2017,
|
178 |
+
month = {jul},
|
179 |
+
publisher = {{IEEE}
|
180 |
+
},
|
181 |
+
author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers},
|
182 |
+
title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases},
|
183 |
+
booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})}
|
184 |
+
}
|
185 |
+
```
|
186 |
+
|
187 |
+
### Contributions
|
188 |
+
|
189 |
+
Thanks to [@alcazar90](https://github.com/alcazar90) for adding this dataset.
|
190 |
+
|