|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
CORD-19 dataset implementation initiated by @ggdupont |
|
""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{Wang2020CORD19TC, |
|
title={CORD-19: The Covid-19 Open Research Dataset}, |
|
author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and |
|
K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and |
|
Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and |
|
D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier}, |
|
journal={ArXiv}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19 and related |
|
historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information |
|
retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 |
|
has been downloaded over 75K times and has served as the basis of many Covid-19 text mining and discovery systems. |
|
|
|
The dataset itself isn't defining a specific task, but there is a Kaggle challenge that define 17 open research |
|
questions to be solved with the dataset: https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks |
|
""" |
|
|
|
|
|
|
|
CORD19_DATASET_DATE = "2020-11-29" |
|
_URL = ( |
|
"https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases/cord-19_" |
|
+ CORD19_DATASET_DATE |
|
+ ".tar.gz" |
|
) |
|
|
|
|
|
class Cord19(datasets.GeneratorBasedBuilder): |
|
"""The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19.""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="metadata", |
|
description="The set of documents but loading some metadata like title and " "abstract for each article.", |
|
), |
|
datasets.BuilderConfig( |
|
name="fulltext", |
|
description="The set of documents loading some metadata like title and " |
|
"abstract and full text for each article.", |
|
), |
|
datasets.BuilderConfig( |
|
name="embeddings", |
|
description="The set of documents loading some metadata like title and " |
|
"abstract and document embeddings for each article.", |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
features_dict = { |
|
"cord_uid": datasets.Value("string"), |
|
"sha": datasets.Value("string"), |
|
"source_x": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"doi": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"publish_time": datasets.Value("string"), |
|
"authors": datasets.Value("string"), |
|
"journal": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
|
|
if "fulltext" in self.config.name: |
|
|
|
features_dict["fulltext"] = datasets.Value("string") |
|
|
|
if "embeddings" in self.config.name: |
|
|
|
features_dict["doc_embeddings"] = datasets.Sequence(datasets.Value("float64")) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features(features_dict), |
|
supervised_keys=None, |
|
homepage="https://www.semanticscholar.org/cord19/download", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URL |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
|
|
files = dict() |
|
files["metadata"] = os.path.join(data_dir, CORD19_DATASET_DATE, "metadata.csv") |
|
|
|
if "fulltext" in self.config.name: |
|
fulltext_dir_path = dl_manager.extract( |
|
os.path.join(data_dir, CORD19_DATASET_DATE, "document_parses.tar.gz") |
|
) |
|
files["fulltext"] = fulltext_dir_path |
|
|
|
if "embeddings" in self.config.name: |
|
embeddings_dir_path = dl_manager.extract( |
|
os.path.join(data_dir, CORD19_DATASET_DATE, "cord_19_embeddings.tar.gz") |
|
) |
|
files["embeddings"] = os.path.join( |
|
embeddings_dir_path, "cord_19_embeddings_" + CORD19_DATASET_DATE + ".csv" |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": files, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
metadata_filepath = filepath["metadata"] |
|
|
|
if "fulltext" in self.config.name: |
|
fulltext_dir_path = filepath["fulltext"] |
|
|
|
fh = None |
|
if "embeddings" in self.config.name: |
|
embeddings_filepath = filepath["embeddings"] |
|
fh = open(embeddings_filepath, mode="r", encoding="utf-8") |
|
|
|
with open(metadata_filepath, mode="r", encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter=",") |
|
|
|
next(reader, None) |
|
|
|
for i, line in enumerate(reader): |
|
doc_fields = { |
|
"cord_uid": line[0], |
|
"sha": line[1], |
|
"source_x": line[2], |
|
"title": line[3], |
|
"doi": line[4], |
|
"abstract": line[8], |
|
"publish_time": line[9], |
|
"authors": line[10], |
|
"journal": line[11], |
|
"url": line[17], |
|
} |
|
|
|
if "fulltext" in self.config.name: |
|
doc_fields["fulltext"] = "" |
|
json_filepath = line[15] |
|
|
|
if len(json_filepath) > 0: |
|
|
|
if ";" in json_filepath: |
|
json_filepath = json_filepath.split(";")[0] |
|
|
|
|
|
with open( |
|
os.path.join(fulltext_dir_path, json_filepath), mode="r", encoding="utf-8" |
|
) as json_file: |
|
data = json.load(json_file) |
|
doc_fields["fulltext"] = "\n".join(text_block["text"] for text_block in data["body_text"]) |
|
|
|
if "embeddings" in self.config.name: |
|
|
|
data = fh.readline().split(",") |
|
doc_id = data[0] |
|
|
|
doc_fields["doc_embeddings"] = [] |
|
|
|
if doc_id == doc_fields["cord_uid"]: |
|
doc_fields["doc_embeddings"] = [float(v) for v in data[1:-1]] |
|
|
|
yield i, doc_fields |
|
|
|
if "embeddings" in self.config.name and fh is not None: |
|
fh.close() |
|
|