Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 9,639 Bytes
3234a60
5d20f54
3234a60
 
 
 
9834d7e
de719a1
 
3234a60
9834d7e
d9c4f08
3234a60
 
 
 
 
 
 
 
 
 
5d20f54
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b377720
3234a60
b377720
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b377720
 
 
3234a60
 
 
 
 
b377720
 
 
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b377720
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
pretty_name: QASPER
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
language_bcp47:
- en-US
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|s2orc
task_categories:
- question-answering
task_ids:
- closed-domain-qa
paperswithcode_id: qasper
---

# Dataset Card for Qasper

## Table of Contents
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://allenai.org/data/qasper](https://allenai.org/data/qasper)
- **Demo:** [https://qasper-demo.apps.allenai.org/](https://qasper-demo.apps.allenai.org/)
- **Paper:** [https://arxiv.org/abs/2105.03011](https://arxiv.org/abs/2105.03011)
- **Blogpost:** [https://medium.com/ai2-blog/question-answering-on-scientific-research-papers-f6d6da9fd55c](https://medium.com/ai2-blog/question-answering-on-scientific-research-papers-f6d6da9fd55c)
- **Leaderboards:** [https://paperswithcode.com/dataset/qasper](https://paperswithcode.com/dataset/qasper)

### Dataset Summary

QASPER is a dataset for question answering on scientific research papers. It consists of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers.

### Supported Tasks and Leaderboards

- `question-answering`: The dataset can be used to train a model for Question Answering. Success on this task is typically measured by achieving a *high* [F1 score](https://huggingface.co/metrics/f1). The [official baseline model](https://github.com/allenai/qasper-led-baseline) currently achieves 33.63 Token F1 score & uses [Longformer](https://huggingface.co/transformers/model_doc/longformer.html). This task has an active leaderboard which can be found [here](https://paperswithcode.com/sota/question-answering-on-qasper)

- `evidence-selection`: The dataset can be used to train a model for Evidence Selection. Success on this task is typically measured by achieving a *high* [F1 score](https://huggingface.co/metrics/f1). The [official baseline model](https://github.com/allenai/qasper-led-baseline) currently achieves 39.37 F1 score & uses [Longformer](https://huggingface.co/transformers/model_doc/longformer.html). This task has an active leaderboard which can be found [here](https://paperswithcode.com/sota/evidence-selection-on-qasper)


### Languages

English, as it is used in research papers.

## Dataset Structure

### Data Instances

A typical instance in the dataset:

```
{
  'id': "Paper ID (string)",
  'title': "Paper Title",
  'abstract': "paper abstract ...",
  'full_text': {
      'paragraphs':[["section1_paragraph1_text","section1_paragraph2_text",...],["section2_paragraph1_text","section2_paragraph2_text",...]],
      'section_name':["section1_title","section2_title"],...},
  'qas': {
  'answers':[{
      'annotation_id': ["q1_answer1_annotation_id","q1_answer2_annotation_id"]
      'answer': [{
          'unanswerable':False,
          'extractive_spans':["q1_answer1_extractive_span1","q1_answer1_extractive_span2"],
          'yes_no':False,
          'free_form_answer':"q1_answer1",
          'evidence':["q1_answer1_evidence1","q1_answer1_evidence2",..],
          'highlighted_evidence':["q1_answer1_highlighted_evidence1","q1_answer1_highlighted_evidence2",..]
          },
          {
          'unanswerable':False,
          'extractive_spans':["q1_answer2_extractive_span1","q1_answer2_extractive_span2"],
          'yes_no':False,
          'free_form_answer':"q1_answer2",
          'evidence':["q1_answer2_evidence1","q1_answer2_evidence2",..],
          'highlighted_evidence':["q1_answer2_highlighted_evidence1","q1_answer2_highlighted_evidence2",..]
          }],
      'worker_id':["q1_answer1_worker_id","q1_answer2_worker_id"]
      },{...["question2's answers"]..},{...["question3's answers"]..}],
  'question':["question1","question2","question3"...],
  'question_id':["question1_id","question2_id","question3_id"...],
  'question_writer':["question1_writer_id","question2_writer_id","question3_writer_id"...],
  'nlp_background':["question1_writer_nlp_background","question2_writer_nlp_background",...],
  'topic_background':["question1_writer_topic_background","question2_writer_topic_background",...],
  'paper_read': ["question1_writer_paper_read_status","question2_writer_paper_read_status",...],
  'search_query':["question1_search_query","question2_search_query","question3_search_query"...],
  }
}
```

### Data Fields

The following is an excerpt from the dataset README:

Within "qas", some fields should be obvious. Here is some explanation about the others:

#### Fields specific to questions:

 - "nlp_background" shows the experience the question writer had. The values can be "zero" (no experience), "two" (0 - 2 years of experience), "five" (2 - 5 years of experience), and "infinity" (> 5 years of experience). The field may be empty as well, indicating the writer has chosen not to share this information.

 - "topic_background" shows how familiar the question writer was with the topic of the paper. The values are "unfamiliar", "familiar", "research" (meaning that the topic is the research area of the writer), or null.

 - "paper_read", when specified shows whether the questionwriter has read the paper.

 - "search_query", if not empty, is the query the question writer used to find the abstract of the paper from a large pool of abstracts we made available to them.

#### Fields specific to answers

Unanswerable answers have "unanswerable" set to true. The remaining answers have exactly one of the following fields being non-empty.

 - "extractive_spans" are spans in the paper which serve as the answer.
 - "free_form_answer" is a written out answer.
 - "yes_no" is true iff the answer is Yes, and false iff the answer is No.

"evidence" is the set of paragraphs, figures or tables used to arrive at the answer. Tables or figures start with the string "FLOAT SELECTED"

"highlighted_evidence" is the set of sentences the answer providers selected as evidence if they chose textual evidence. The text in the "evidence" field is a mapping from these sentences to the paragraph level. That is, if you see textual evidence in the "evidence" field, it is guaranteed to be entire paragraphs, while that is not the case with "highlighted_evidence".


### Data Splits

|                            | Train   | Valid |
| -----                      | ------ | ----- |
| Number of papers            |     888   |      281 |
| Number of questions            |     2593   |      1005 |
| Number of answers            |     2675   |      1764 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

NLP papers: The full text of the papers is extracted from [S2ORC](https://huggingface.co/datasets/s2orc) (Lo et al., 2020)

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

"The annotators are NLP practitioners, not
expert researchers, and it is likely that an expert
would score higher"

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Crowdsourced NLP practitioners

### Licensing Information

[CC BY 4.0](https://creativecommons.org/licenses/by/4.0)

### Citation Information

```
@inproceedings{Dasigi2021ADO,
  title={A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers},
  author={Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner},
  year={2021}
}
```

### Contributions

Thanks to [@cceyda](https://github.com/cceyda) for adding this dataset.