File size: 7,468 Bytes
0f1836a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
{
"metadata": {
"kernelspec": {
"language": "python",
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.7.12",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
}
},
"nbformat_minor": 4,
"nbformat": 4,
"cells": [
{
"cell_type": "code",
"source": [
"import json\n",
"import cv2\n",
"import os\n",
"import re\n",
"import requests\n",
"import numpy as np\n",
"import base64\n",
"import urllib\n",
"import traceback\n",
"import threading\n",
"import time\n",
"from concurrent.futures import ThreadPoolExecutor, wait\n",
"from tqdm.notebook import tqdm\n",
"from pathlib import Path\n",
"from PIL import Image\n",
"\n",
"headers = {\n",
" \"user-agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36\",\n",
"}\n",
"headers_pixiv = {\n",
" \"user-agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36\",\n",
" 'referer': 'https://www.pixiv.net/'\n",
"}\n",
"banned_tags = ['furry', \"realistic\", \"3d\", \"1940s_(style)\",\"1950s_(style)\",\"1960s_(style)\",\"1970s_(style)\",\"1980s_(style)\",\"1990s_(style)\",\"retro_artstyle\",\"screentones\",\"pixel_art\",\"magazine_scan\",\"scan\"]\n",
"bad_tags = [\"absurdres\",\"jpeg_artifacts\", \"highres\", \"translation_request\", \"translated\", \"commentary\", \"commentary_request\", \"commentary_typo\", \"character_request\", \"bad_id\", \"bad_link\", \"bad_pixiv_id\", \"bad_twitter_id\", \"bad_tumblr_id\", \"bad_deviantart_id\", \"bad_nicoseiga_id\", \"md5_mismatch\", \"cosplay_request\", \"artist_request\", \"wide_image\", \"author_request\", \"artist_name\"]\n",
"\n",
"def save_img(img_id, img,tags):\n",
" output_dir = Path(f\"imgs\")\n",
" output_dir.mkdir(exist_ok=True)\n",
" img_path = output_dir / f'{img_id}.jpg'\n",
" cv2.imwrite(str(img_path), cv2.cvtColor((img * 255).astype(\"uint8\"), cv2.COLOR_RGB2BGR))\n",
" with open(output_dir / f'{img_id}.txt',\"w\") as f:\n",
" tags = \", \".join(tags).replace(\"_\",\" \").strip()\n",
" f.write(tags)\n",
"\n",
"def rescale(image, output_size):\n",
" h,w = image.shape[:2]\n",
" r = max(output_size / h, output_size / w)\n",
" new_h, new_w = int(h * r), int(w * r)\n",
" return cv2.resize(image,(new_w, new_h))\n",
"\n",
"def getImage(img_id, retry=0):\n",
" def retry_fun(msg):\n",
" if retry < 3:\n",
" time.sleep(3)\n",
" print(f\"{img_id} {msg}, retry\")\n",
" return getImage(img_id, retry + 1)\n",
" else:\n",
" return None\n",
" url = f'https://danbooru.donmai.us/posts/{img_id}.json'\n",
" try:\n",
" res = requests.get(url=url, headers=headers, timeout=20)\n",
" if res.status_code == 404:\n",
" print(f\"{img_id} get image failed\")\n",
" return None\n",
" success = res.status_code == 200\n",
" except requests.exceptions.RequestException:\n",
" success = False\n",
" if not success:\n",
" return retry_fun(\"get image failed\")\n",
"\n",
" res = json.loads(res.text)\n",
" if res[\"file_ext\"] not in [\"jpg\", \"png\"]:\n",
" return None\n",
" img_url = None\n",
" if 'file_url' in res:\n",
" img_url = res[\"file_url\"]\n",
" elif 'source' in res and 'i.pximg.net' in res['source']:\n",
" img_url = res['source']\n",
" if img_url is None:\n",
" return None\n",
" tags = res[\"tag_string\"]\n",
" tags = tags.split()\n",
" tags = [tag for tag in tags if tag not in bad_tags]\n",
" for tag in banned_tags:\n",
" if tag in tags:\n",
" return None\n",
" try:\n",
" img_res = requests.get(url=img_url, headers=headers_pixiv, timeout=20)\n",
" if img_res.status_code == 404:\n",
" print(f\"{img_id} download failed\")\n",
" return None\n",
" success = img_res.status_code == 200\n",
" except requests.exceptions.RequestException:\n",
" success = False\n",
" if not success:\n",
" return retry_fun(\"download failed\")\n",
"\n",
" img = cv2.imdecode(np.frombuffer(img_res.content, np.uint8), cv2.IMREAD_UNCHANGED)\n",
" if img is None:\n",
" return retry_fun(\"image decode failed\")\n",
" img = img.astype(np.float32) / np.iinfo(img.dtype).max\n",
" if min(img.shape[:2]) < 400:\n",
" return None\n",
" if img.shape[0]*img.shape[1] > 25000000:\n",
" return None\n",
" if img.shape[-1] == 4:\n",
" alpha = img[:, :, -1][:, :, np.newaxis]\n",
" img = (1 - alpha) * 1 + alpha * img[:, :, :-1]\n",
" if len(img.shape) < 3 or img.shape[-1] == 1:\n",
" img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n",
" if min(img.shape[:2]) > 768:\n",
" img = rescale(img, 768)\n",
" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
" return img, tags\n",
"\n",
"def download_all(start_id, end_id, worker_num=4):\n",
" global image_total_count\n",
" image_total_count = 0\n",
" image_list = list(reversed(range(end_id, start_id)))\n",
" progres = tqdm(total=len(image_list))\n",
" max_num = len(image_list)\n",
" last = {\"id\":-1}\n",
" def work_fn(iid, idx):\n",
" try:\n",
" img_tags = getImage(iid)\n",
" if img_tags is not None:\n",
" save_img(iid,img_tags[0],img_tags[1])\n",
" progres.update(1)\n",
" except Exception as e:\n",
" traceback.print_exc()\n",
" pool = ThreadPoolExecutor(max_workers=worker_num)\n",
" all_task = []\n",
" for i, iid in enumerate(image_list):\n",
" all_task.append(pool.submit(work_fn, iid,i))\n",
" wait(all_task)\n",
" pool.shutdown()"
],
"metadata": {
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
"execution": {
"iopub.status.busy": "2023-02-14T11:44:24.070496Z",
"iopub.execute_input": "2023-02-14T11:44:24.071422Z",
"iopub.status.idle": "2023-02-14T11:44:24.430445Z",
"shell.execute_reply.started": "2023-02-14T11:44:24.071315Z",
"shell.execute_reply": "2023-02-14T11:44:24.429283Z"
},
"trusted": true,
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 1,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"download_all(6019085,6019085 - 50000,8)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
]
} |