anindyamondal commited on
Commit
5e50a8c
·
verified ·
1 Parent(s): 5bb52c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- license: openrail
3
  language:
4
  - en
5
  tags:
@@ -8,29 +7,24 @@ tags:
8
  ---
9
  # Dataset Card for Dataset Name
10
 
11
- Omnicount-191 is a dataset that caters to a broad spectrum of visual categories and instances featuring various visual categories with multiple instances and classes per image. The current datasets, primarily designed for object counting, focusing on singular object categories like humans and vehicles, fall short for multi-label object counting tasks. Despite the presence of multi-class datasets like MS COCO their utility is limited for counting due to the sparse nature of object appearance. Addressing this gap, we created a new dataset with 30,230 images spanning 191 diverse categories, including kitchen utensils, office supplies, vehicles, and animals. This dataset, featuring a wide range of object instance counts per image ranging from 1 to 160 and an average count of 10, bridges the existing void and establishes a benchmark for assessing counting models in varied scenarios.
12
-
13
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
14
 
15
  ## Dataset Details
16
 
17
  ### Dataset Description
18
 
19
- <!-- Provide a longer summary of what this dataset is. -->
20
 
21
 
22
 
23
- - **Curated by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
 
29
- ### Dataset Sources [optional]
30
 
31
- <!-- Provide the basic links for the dataset. -->
32
 
33
- - **Repository:** [More Information Needed]
34
  - **Paper [optional]:** [More Information Needed]
35
  - **Demo [optional]:** [More Information Needed]
36
 
@@ -120,11 +114,17 @@ Users should be made aware of the risks, biases and limitations of the dataset.
120
 
121
  **BibTeX:**
122
 
123
- [More Information Needed]
 
 
 
 
 
 
 
 
124
 
125
- **APA:**
126
 
127
- [More Information Needed]
128
 
129
  ## Glossary [optional]
130
 
@@ -136,9 +136,9 @@ Users should be made aware of the risks, biases and limitations of the dataset.
136
 
137
  [More Information Needed]
138
 
139
- ## Dataset Card Authors [optional]
140
 
141
- [More Information Needed]
142
 
143
  ## Dataset Card Contact
144
 
 
1
  ---
 
2
  language:
3
  - en
4
  tags:
 
7
  ---
8
  # Dataset Card for Dataset Name
9
 
10
+ OmniCount-191 is a first-of-its-kind dataset with multi-label object counts, including points, bounding boxes, and VQA annotations.
 
 
11
 
12
  ## Dataset Details
13
 
14
  ### Dataset Description
15
 
16
+ Omnicount-191 is a dataset that caters to a broad spectrum of visual categories and instances featuring various visual categories with multiple instances and classes per image. The current datasets, primarily designed for object counting, focusing on singular object categories like humans and vehicles, fall short for multi-label object counting tasks. Despite the presence of multi-class datasets like MS COCO their utility is limited for counting due to the sparse nature of object appearance. Addressing this gap, we created a new dataset with 30,230 images spanning 191 diverse categories, including kitchen utensils, office supplies, vehicles, and animals. This dataset, featuring a wide range of object instance counts per image ranging from 1 to 160 and an average count of 10, bridges the existing void and establishes a benchmark for assessing counting models in varied scenarios.
17
 
18
 
19
 
20
+ - **Curated by:** [Anindya Mondal](https://mondalanindya.github.io), [Sauradip Nag](http://sauradip.github.io/), [Xiatian Zhu](https://surrey-uplab.github.io), [Anjan Dutta](https://www.surrey.ac.uk/people/anjan-dutta)
21
+ - **License:** [OpenRAIL]
 
 
 
22
 
23
+ ### Dataset Sources
24
 
25
+ **To be added soon**
26
 
27
+ - **Repository:** []
28
  - **Paper [optional]:** [More Information Needed]
29
  - **Demo [optional]:** [More Information Needed]
30
 
 
114
 
115
  **BibTeX:**
116
 
117
+ ```
118
+
119
+ @article{mondal2024omnicount,
120
+ title={OmniCount: Multi-label Object Counting with Semantic-Geometric Priors},
121
+ author={Mondal, Anindya and Nag, Sauradip and Zhu, Xiatian and Dutta, Anjan},
122
+ journal={arXiv preprint arXiv:2403.05435},
123
+ year={2024}
124
+ }
125
+ ```
126
 
 
127
 
 
128
 
129
  ## Glossary [optional]
130
 
 
136
 
137
  [More Information Needed]
138
 
139
+ ## Dataset Card Authors
140
 
141
+ [Anindya Mondal](https://mondalanindya.github.io), [Sauradip Nag](http://sauradip.github.io/), [Xiatian Zhu](https://surrey-uplab.github.io), [Anjan Dutta](https://www.surrey.ac.uk/people/anjan-dutta)
142
 
143
  ## Dataset Card Contact
144