|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib.animation import FuncAnimation |
|
|
|
def generate_brainwave(frequency, t, phase_shift=0): |
|
return np.sin(2 * np.pi * frequency * t + phase_shift) |
|
|
|
def portal_organize(frequencies): |
|
|
|
organized_data = np.mean(frequencies, axis=0) |
|
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data)) |
|
return normalized_data |
|
|
|
def scramble_data(data, delay): |
|
|
|
scrambled_data = np.roll(data, delay) |
|
scrambled_data += np.random.normal(0, 0.1, size=data.shape) |
|
return scrambled_data |
|
|
|
def update(frame, lines, t, duration, sampling_rate): |
|
|
|
t_shifted1 = t + frame / (sampling_rate * 1.0) |
|
t_shifted2 = t + frame / (sampling_rate * 1.25) |
|
t_shifted3 = t + frame / (sampling_rate * 1.75) |
|
t_shifted4 = t + frame / (sampling_rate * 2.25) |
|
t_shifted5 = t + frame / (sampling_rate * 3.0) |
|
t_shifted6 = t + frame / (sampling_rate * 4.0) |
|
|
|
|
|
alpha_wave = generate_brainwave(10, t_shifted1) |
|
beta_wave = generate_brainwave(20, t_shifted1) |
|
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
|
|
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave) |
|
|
|
theta_frequency = 6 + influence_factor |
|
gamma_frequency = 40 + influence_factor |
|
|
|
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
|
|
transfer_factor = np.mean(theta_wave) |
|
delta_frequency = 2 + transfer_factor |
|
high_beta_frequency = 30 + transfer_factor |
|
|
|
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
|
|
transfer_factor_3_to_4 = np.mean(delta_wave) |
|
mu_frequency = 12 + transfer_factor_3_to_4 |
|
low_gamma_frequency = 50 + transfer_factor_3_to_4 |
|
|
|
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
|
|
|
|
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
|
|
portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave])) |
|
|
|
|
|
lines[0].set_ydata(combined_wave1) |
|
lines[1].set_ydata(combined_wave2) |
|
lines[2].set_ydata(combined_wave3) |
|
lines[3].set_ydata(combined_mirrored_wave4) |
|
lines[4].set_ydata(combined_wave5) |
|
lines[5].set_ydata(scrambled_wave6) |
|
lines[6].set_ydata(portal_data) |
|
|
|
return lines |
|
|
|
|
|
duration = 5 |
|
sampling_rate = 1000 |
|
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
alpha_wave = generate_brainwave(10, t) |
|
beta_wave = generate_brainwave(20, t) |
|
financial_wave = generate_brainwave(15, t, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
theta_wave = generate_brainwave(6, t, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(40, t, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
delta_wave = generate_brainwave(2, t, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
mu_wave = generate_brainwave(12, t, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
|
|
|
|
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave])) |
|
|
|
line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue') |
|
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--') |
|
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':') |
|
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.') |
|
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-') |
|
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red') |
|
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple') |
|
|
|
ax.set_xlim(0, duration) |
|
ax.set_ylim(-2, 2) |
|
ax.set_title("6517.159.252") |
|
ax.set_xlabel("Time (s)") |
|
ax.set_ylabel("Amplitude") |
|
ax.legend() |
|
|
|
|
|
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True) |
|
|
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib.animation import FuncAnimation |
|
from scipy.fftpack import fft, ifft |
|
|
|
def generate_brainwave(frequency, t, phase_shift=0): |
|
return np.sin(2 * np.pi * frequency * t + phase_shift) |
|
|
|
def portal_organize(frequencies): |
|
organized_data = np.mean(frequencies, axis=0) |
|
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data)) |
|
return normalized_data |
|
|
|
def scramble_data(data, delay): |
|
scrambled_data = np.roll(data, delay) |
|
scrambled_data += np.random.normal(0, 0.1, size=data.shape) |
|
return scrambled_data |
|
|
|
def encrypt_data(data): |
|
|
|
encrypted_data = fft(data) |
|
return encrypted_data |
|
|
|
def decrypt_data(data): |
|
|
|
decrypted_data = ifft(data) |
|
return decrypted_data.real |
|
|
|
def detect_anomalies(data): |
|
|
|
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data))) |
|
return anomalies |
|
|
|
def update(frame, lines, t, duration, sampling_rate): |
|
t_shifted1 = t + frame / (sampling_rate * 1.0) |
|
t_shifted2 = t + frame / (sampling_rate * 1.25) |
|
t_shifted3 = t + frame / (sampling_rate * 1.75) |
|
t_shifted4 = t + frame / (sampling_rate * 2.25) |
|
t_shifted5 = t + frame / (sampling_rate * 3.0) |
|
t_shifted6 = t + frame / (sampling_rate * 4.0) |
|
|
|
alpha_wave = generate_brainwave(10, t_shifted1) |
|
beta_wave = generate_brainwave(20, t_shifted1) |
|
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave) |
|
theta_frequency = 6 + influence_factor |
|
gamma_frequency = 40 + influence_factor |
|
|
|
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
transfer_factor = np.mean(theta_wave) |
|
delta_frequency = 2 + transfer_factor |
|
high_beta_frequency = 30 + transfer_factor |
|
|
|
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
transfer_factor_3_to_4 = np.mean(delta_wave) |
|
mu_frequency = 12 + transfer_factor_3_to_4 |
|
low_gamma_frequency = 50 + transfer_factor_3_to_4 |
|
|
|
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
|
|
encrypted_wave6 = encrypt_data(scrambled_wave6) |
|
|
|
|
|
anomalies = detect_anomalies(scrambled_wave6) |
|
|
|
if np.any(anomalies): |
|
print("Security Alert: Anomalies detected in the data!") |
|
|
|
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave])) |
|
|
|
lines[0].set_ydata(combined_wave1) |
|
lines[1].set_ydata(combined_wave2) |
|
lines[2].set_ydata(combined_wave3) |
|
lines[3].set_ydata(combined_mirrored_wave4) |
|
lines[4].set_ydata(combined_wave5) |
|
lines[5].set_ydata(scrambled_wave6) |
|
lines[6].set_ydata(portal_data) |
|
|
|
return lines |
|
|
|
duration = 5 |
|
sampling_rate = 1000 |
|
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) |
|
|
|
fig, ax = plt.subplots() |
|
alpha_wave = generate_brainwave(10, t) |
|
beta_wave = generate_brainwave(20, t) |
|
financial_wave = generate_brainwave(15, t, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
theta_wave = generate_brainwave(6, t, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(40, t, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
delta_wave = generate_brainwave(2, t, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
mu_wave = generate_brainwave(12, t, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
encrypted_wave6 = encrypt_data(scrambled_wave6) |
|
anomalies = detect_anomalies(scrambled_wave6) |
|
|
|
if np.any(anomalies): |
|
print("Security Alert: Anomalies detected in the data!") |
|
|
|
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave])) |
|
|
|
line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue') |
|
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--') |
|
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':') |
|
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.') |
|
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-') |
|
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red') |
|
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple') |
|
|
|
ax.set_xlim(0, duration) |
|
ax.set_ylim(-2, 2) |
|
ax.set_title("Complex Backend Security with Encrypted Waves and Anomaly Detection") |
|
ax.set_xlabel("Time (s)") |
|
ax.set_ylabel("Amplitude") |
|
ax.legend() |
|
|
|
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True) |
|
|
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib.animation import FuncAnimation |
|
from scipy.fftpack import fft, ifft |
|
|
|
def generate_brainwave(frequency, t, phase_shift=0): |
|
return np.sin(2 * np.pi * frequency * t + phase_shift) |
|
|
|
def portal_organize(frequencies): |
|
organized_data = np.mean(frequencies, axis=0) |
|
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data)) |
|
return normalized_data |
|
|
|
def scramble_data(data, delay): |
|
scrambled_data = np.roll(data, delay) |
|
scrambled_data += np.random.normal(0, 0.1, size=data.shape) |
|
return scrambled_data |
|
|
|
def encrypt_data(data): |
|
encrypted_data = fft(data) |
|
return encrypted_data |
|
|
|
def decrypt_data(data): |
|
decrypted_data = ifft(data) |
|
return decrypted_data.real |
|
|
|
def detect_anomalies(data): |
|
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data))) |
|
return anomalies |
|
|
|
def detect_anomalies(data): |
|
|
|
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data))) |
|
|
|
anomalies = np.concatenate((anomalies, [False])) |
|
return anomalies |
|
|
|
def update(frame, lines, t, duration, sampling_rate): |
|
t_shifted1 = t + frame / (sampling_rate * 1.0) |
|
t_shifted2 = t + frame / (sampling_rate * 1.25) |
|
t_shifted3 = t + frame / (sampling_rate * 1.75) |
|
t_shifted4 = t + frame / (sampling_rate * 2.25) |
|
t_shifted5 = t + frame / (sampling_rate * 3.0) |
|
t_shifted6 = t + frame / (sampling_rate * 4.0) |
|
|
|
alpha_wave = generate_brainwave(10, t_shifted1) |
|
beta_wave = generate_brainwave(20, t_shifted1) |
|
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave) |
|
theta_frequency = 6 + influence_factor |
|
gamma_frequency = 40 + influence_factor |
|
|
|
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
transfer_factor = np.mean(theta_wave) |
|
delta_frequency = 2 + transfer_factor |
|
high_beta_frequency = 30 + transfer_factor |
|
|
|
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
transfer_factor_3_to_4 = np.mean(delta_wave) |
|
mu_frequency = 12 + transfer_factor_3_to_4 |
|
low_gamma_frequency = 50 + transfer_factor_3_to_4 |
|
|
|
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
encrypted_wave6 = encrypt_data(scrambled_wave6) |
|
|
|
anomalies = detect_anomalies(scrambled_wave6) |
|
|
|
if np.any(anomalies): |
|
print("Security Alert: Anomalies detected in the data!") |
|
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies) |
|
|
|
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave])) |
|
|
|
lines[0].set_ydata(combined_wave1) |
|
lines[1].set_ydata(combined_wave2) |
|
lines[2].set_ydata(combined_wave3) |
|
lines[3].set_ydata(combined_mirrored_wave4) |
|
lines[4].set_ydata(combined_wave5) |
|
lines[5].set_ydata(scrambled_wave6) |
|
lines[6].set_ydata(portal_data) |
|
|
|
return lines |
|
|
|
duration = 5 |
|
sampling_rate = 1000 |
|
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) |
|
|
|
fig, ax = plt.subplots() |
|
alpha_wave = generate_brainwave(10, t) |
|
beta_wave = generate_brainwave(20, t) |
|
financial_wave = generate_brainwave(15, t, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
theta_wave = generate_brainwave(6, t, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(40, t, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
delta_wave = generate_brainwave(2, t, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
mu_wave = generate_brainwave(12, t, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
encrypted_wave6 = encrypt_data(scrambled_wave6) |
|
anomalies = detect_anomalies(scrambled_wave6) |
|
|
|
if np.any(anomalies): |
|
print("Security Alert: Anomalies detected in the data!") |
|
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies) |
|
|
|
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave])) |
|
|
|
line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue') |
|
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--') |
|
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':') |
|
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.') |
|
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-') |
|
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red') |
|
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple') |
|
|
|
ax.set_xlim(0, duration) |
|
ax.set_ylim(-2, 2) |
|
ax.set_title("TRCSIngenuity") |
|
ax.set_xlabel("Time (s)") |
|
ax.set_ylabel("Amplitude") |
|
ax.legend() |
|
|
|
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True) |
|
|
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib.animation import FuncAnimation |
|
from scipy.fftpack import fft, ifft |
|
|
|
def generate_brainwave(frequency, t, phase_shift=0): |
|
return np.sin(2 * np.pi * frequency * t + phase_shift) |
|
|
|
def portal_organize(frequencies): |
|
organized_data = np.mean(frequencies, axis=0) |
|
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data)) |
|
return normalized_data |
|
|
|
def scramble_data(data, delay): |
|
scrambled_data = np.roll(data, delay) |
|
scrambled_data += np.random.normal(0, 0.1, size=data.shape) |
|
return scrambled_data |
|
|
|
def encrypt_data(data): |
|
encrypted_data = fft(data) |
|
return encrypted_data |
|
|
|
def decrypt_data(data): |
|
decrypted_data = ifft(data) |
|
return decrypted_data.real |
|
|
|
def detect_anomalies(data): |
|
|
|
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data))) |
|
|
|
anomalies = np.concatenate(([False], anomalies)) |
|
return anomalies |
|
|
|
def clear_anomalies(data, anomalies): |
|
correction_frequency = np.cos(2 * np.pi * 2 * np.arange(len(data)) / len(data)) |
|
data[anomalies] -= correction_frequency[:len(data[anomalies])] |
|
return data |
|
|
|
def update(frame, lines, t, duration, sampling_rate): |
|
t_shifted1 = t + frame / (sampling_rate * 1.0) |
|
t_shifted2 = t + frame / (sampling_rate * 1.25) |
|
t_shifted3 = t + frame / (sampling_rate * 1.75) |
|
t_shifted4 = t + frame / (sampling_rate * 2.25) |
|
t_shifted5 = t + frame / (sampling_rate * 3.0) |
|
t_shifted6 = t + frame / (sampling_rate * 4.0) |
|
|
|
alpha_wave = generate_brainwave(10, t_shifted1) |
|
beta_wave = generate_brainwave(20, t_shifted1) |
|
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave) |
|
theta_frequency = 6 + influence_factor |
|
gamma_frequency = 40 + influence_factor |
|
|
|
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
transfer_factor = np.mean(theta_wave) |
|
delta_frequency = 2 + transfer_factor |
|
high_beta_frequency = 30 + transfer_factor |
|
|
|
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
transfer_factor_3_to_4 = np.mean(delta_wave) |
|
mu_frequency = 12 + transfer_factor_3_to_4 |
|
low_gamma_frequency = 50 + transfer_factor_3_to_4 |
|
|
|
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
encrypted_wave6 = encrypt_data(scrambled_wave6) |
|
|
|
anomalies = detect_anomalies(scrambled_wave6) |
|
|
|
if np.any(anomalies): |
|
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies) |
|
|
|
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave])) |
|
|
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
line.set_ydata(combined_wave1) |
|
elif i == 1: |
|
line.set_ydata(combined_wave2) |
|
elif i == 2: |
|
line.set_ydata(combined_wave3) |
|
elif i == 3: |
|
line.set_ydata(combined_mirrored_wave4) |
|
elif i == 4: |
|
line.set_ydata(combined_wave5) |
|
elif i == 5: |
|
line.set_ydata(scrambled_wave6) |
|
elif i == 6: |
|
line.set_ydata(portal_data) |
|
|
|
return lines |
|
|
|
duration = 5 |
|
sampling_rate = 1000 |
|
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) |
|
|
|
fig, axs = plt.subplots(7, 1, figsize=(10, 14), sharex=True) |
|
fig.tight_layout(pad=3.0) |
|
|
|
alpha_wave = generate_brainwave(10, t) |
|
beta_wave = generate_brainwave(20, t) |
|
financial_wave = generate_brainwave(15, t, phase_shift=0.5) |
|
combined_wave1 = (alpha_wave + beta_wave) / 2 |
|
|
|
theta_wave = generate_brainwave(6, t, phase_shift=0.3) |
|
gamma_wave = generate_brainwave(40, t, phase_shift=0.7) |
|
combined_wave2 = (theta_wave + gamma_wave) / 2 |
|
|
|
delta_wave = generate_brainwave(2, t, phase_shift=1.0) |
|
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5) |
|
combined_wave3 = (delta_wave + high_beta_wave) / 2 |
|
|
|
mu_wave = generate_brainwave(12, t, phase_shift=2.0) |
|
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5) |
|
combined_wave4 = (mu_wave + low_gamma_wave) / 2 |
|
|
|
mirrored_wave4 = -combined_wave4 |
|
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2 |
|
|
|
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4 |
|
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data |
|
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5) |
|
combined_wave5 = (retained_frequency + beta_high_wave) / 2 |
|
|
|
delay = 100 |
|
scrambled_wave6 = scramble_data(combined_wave5, delay) |
|
|
|
encrypted_wave6 = encrypt_data(scrambled_wave6) |
|
anomalies = detect_anomalies(scrambled_wave6) |
|
|
|
if np.any(anomalies): |
|
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies) |
|
|
|
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave])) |
|
|
|
lines = [] |
|
for i, (wave, label, color) in enumerate([ |
|
(combined_wave1, "Alpha & Beta Layer with Financial Frequencies", 'blue'), |
|
(combined_wave2, "Theta & Gamma Layer (Influenced)", 'green'), |
|
(combined_wave3, "Delta & High Beta Layer (Transferred)", 'orange'), |
|
(combined_mirrored_wave4, "Mu & Low Gamma Layer (Mirrored)", 'purple'), |
|
(combined_wave5, "Retained Frequency in Fifth Layer", 'cyan'), |
|
(scrambled_wave6, "Delayed and Scrambled Sixth Layer", 'red'), |
|
(portal_data, "Portal Output", 'magenta') |
|
]): |
|
line, = axs[i].plot(t, wave, color=color) |
|
axs[i].set_title(label) |
|
axs[i].set_ylim(-2, 2) |
|
lines.append(line) |
|
|
|
axs[-1].set_xlabel("Time (s)") |
|
|
|
ani = FuncAnimation(fig, update, frames=range(200), fargs=(lines, t, duration, sampling_rate), blit=True) |
|
|
|
plt.show() |