|
|
|
import argparse |
|
import functools |
|
import json |
|
import re |
|
import shutil |
|
from pathlib import Path |
|
from typing import Any, Iterator, cast |
|
|
|
import polars as pl |
|
|
|
|
|
|
|
|
|
|
|
|
|
def main() -> None: |
|
args = read_args() |
|
|
|
data = read_data( |
|
args.related_subjects, args.grades_lower, args.grades_higher |
|
) |
|
done_print("Read data.") |
|
load_print("Adding possible documents...") |
|
data = add_possible_documents(data) |
|
done_print("Added possible documents.") |
|
|
|
load_print("Writing data...") |
|
path = write_data(data) |
|
done_print( |
|
f"Wrote data to {path.resolve().relative_to(Path('.').resolve())}." |
|
) |
|
done_print("Data creation complete.") |
|
|
|
|
|
def read_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
parser.add_argument( |
|
"--related-subjects", |
|
default="", |
|
help="Path of the related subjects json file" |
|
+ " (see data/related_subjects.json)." |
|
+ " Leave empty to not use any related subjects.", |
|
) |
|
parser.add_argument( |
|
"--grades-lower", |
|
type=int, |
|
default=0, |
|
help="Number of grades lower than the minimum document grade for" |
|
+ " which to consider it possible.", |
|
) |
|
parser.add_argument( |
|
"--grades-higher", |
|
type=int, |
|
default=0, |
|
help="Number of grades higher than the maximum document grade for" |
|
+ " which to consider it possible.", |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def read_data( |
|
related_subjects_file: str, grades_lower: int, grades_higher: int |
|
) -> pl.DataFrame: |
|
path = Path(__file__).parent / ".." / "data" |
|
load_print("Reading questions...") |
|
questions = read_questions(path) |
|
done_print("Read questions.") |
|
load_print("Reading pages...") |
|
pages = read_pages( |
|
path, related_subjects_file, grades_lower, grades_higher |
|
) |
|
done_print("Read pages.") |
|
load_print("Combining pages and questions...") |
|
return combine_documents(questions, pages) |
|
|
|
|
|
def combine_documents( |
|
questions: pl.DataFrame, pages: pl.DataFrame |
|
) -> pl.DataFrame: |
|
|
|
page_hashes = { |
|
hash(url): id_ for url, id_ in zip(pages["url"], pages["id"]) |
|
} |
|
|
|
questions = ( |
|
questions.with_columns( |
|
[ |
|
|
|
|
|
pl.col("page_links").apply( |
|
lambda list_: list( |
|
{ |
|
id_ |
|
for url in list_ |
|
if ( |
|
id_ := page_hashes.get( |
|
hash( |
|
url.replace( |
|
"https://www.alloprof.qc.ca", "" |
|
) |
|
) |
|
) |
|
) |
|
is not None |
|
} |
|
) |
|
), |
|
|
|
pl.col("question_links").apply( |
|
lambda list_: list( |
|
{ |
|
id_ |
|
for x in list_ |
|
if ( |
|
id_ := x.replace( |
|
"https://www.alloprof.qc.ca/zonedentraide/discussion/", |
|
"", |
|
).split("/")[0] |
|
) |
|
!= "https:" |
|
} |
|
) |
|
), |
|
] |
|
) |
|
|
|
.with_columns( |
|
pl.col("page_links").arr.concat("question_links").alias("links") |
|
) |
|
.drop(["page_links", "question_links"]) |
|
.with_columns( |
|
[ |
|
|
|
pl.lit(True).alias("is_query"), |
|
|
|
pl.col("id") |
|
.apply( |
|
lambda x: f"https://www.alloprof.qc.ca/zonedentraide/discussion/{x}" |
|
) |
|
.alias("url"), |
|
] |
|
) |
|
) |
|
|
|
pages = ( |
|
pages |
|
|
|
.with_columns( |
|
[ |
|
pl.col("id") |
|
.apply(lambda _: []) |
|
.cast(pl.List(pl.Utf8)) |
|
.alias("links"), |
|
pl.lit(False).alias("is_query"), |
|
pl.col("id") |
|
.apply(lambda _: []) |
|
.cast(pl.List(pl.Utf8)) |
|
.alias("images"), |
|
pl.col("url").apply( |
|
lambda x: f"https://www.alloprof.qc.ca{x}" |
|
), |
|
] |
|
) |
|
|
|
.explode("grade").explode("subject") |
|
) |
|
|
|
return ( |
|
pl.concat([questions, pages], how="diagonal") |
|
.rename({"links": "relevant"}) |
|
.with_columns(pl.col("relevant").apply(sorted)) |
|
) |
|
|
|
|
|
def add_possible_documents(data: pl.DataFrame) -> pl.DataFrame: |
|
|
|
|
|
data = data.with_columns( |
|
( |
|
pl.col("subject") |
|
+ "," |
|
+ pl.col("grade") |
|
+ "," |
|
+ pl.col("language") |
|
).alias("categories") |
|
) |
|
possible = ( |
|
data.select(["id", "categories"]) |
|
.unique() |
|
.groupby("categories") |
|
.agg(pl.list("id")) |
|
.rename({"id": "possible"}) |
|
) |
|
|
|
data = pl.concat( |
|
[ |
|
data.filter(pl.col("is_query")) |
|
.join(possible, on="categories") |
|
.drop("categories"), |
|
data.filter(~pl.col("is_query")).with_columns( |
|
pl.col("id") |
|
.apply(lambda _: []) |
|
.cast(pl.List(pl.Utf8)) |
|
.alias("possible") |
|
), |
|
], |
|
how="diagonal", |
|
) |
|
|
|
|
|
return ( |
|
|
|
data.groupby(["id", "subject"]) |
|
.agg([pl.exclude("grade").first(), pl.list("grade")]) |
|
|
|
.groupby("id") |
|
.agg([pl.exclude("subject").first(), pl.list("subject")]) |
|
|
|
.with_columns(pl.col("grade").arr.unique()) |
|
) |
|
|
|
|
|
def write_data(data: pl.DataFrame) -> Path: |
|
path = Path(__file__).parent / ".." / "data" / "alloprof.csv" |
|
data = data.with_columns( |
|
[ |
|
pl.col("subject").arr.join(";"), |
|
pl.col("grade").arr.join(";"), |
|
pl.col("images").arr.join(";"), |
|
pl.col("relevant").arr.join(";"), |
|
pl.col("possible").arr.join(";"), |
|
] |
|
) |
|
data.write_csv(path) |
|
return path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_questions(path: Path) -> pl.DataFrame: |
|
path = path / "questions" |
|
questions = read_questions_(path) |
|
answers = read_answers(path) |
|
grades = read_grades(path) |
|
subjects = read_subjects(path) |
|
|
|
return ( |
|
questions |
|
|
|
.join(subjects, on="CategoryID") |
|
.drop("CategoryID") |
|
.join(grades, on="GradeID") |
|
.drop("GradeID") |
|
|
|
.join(answers, on="id", how="left") |
|
.pipe(extract_relevant_links) |
|
.with_columns( |
|
[ |
|
pl.col("id").cast(pl.Utf8), |
|
pl.col("text").apply(extract_text_from_json), |
|
pl.col("text").apply(extract_images_from_json).alias("images"), |
|
] |
|
) |
|
) |
|
|
|
|
|
def read_questions_(path: Path) -> pl.DataFrame: |
|
return pl.read_json(path / "discussions.json").select( |
|
[ |
|
pl.col("DiscussionID").alias("id"), |
|
pl.col("Body").alias("text"), |
|
pl.col("Language").alias("language"), |
|
pl.col("InsertUserID").alias("user"), |
|
pl.col("CategoryID"), |
|
pl.col("GradeID"), |
|
] |
|
) |
|
|
|
|
|
def read_answers(path: Path) -> pl.DataFrame: |
|
return ( |
|
pl.read_json(path / "comments.json") |
|
.filter(~pl.col("DateAccepted").is_null()) |
|
.select( |
|
[ |
|
pl.col("DiscussionID").alias("id"), |
|
pl.col("Body").alias("answer"), |
|
] |
|
) |
|
) |
|
|
|
|
|
def read_grades(path: Path) -> pl.DataFrame: |
|
return pl.read_json(path / "grades.json").select( |
|
[pl.col("GradeID"), pl.col("Name").alias("grade")] |
|
) |
|
|
|
|
|
def read_subjects(path: Path) -> pl.DataFrame: |
|
|
|
return pl.read_json(path / "categories.json").select( |
|
[ |
|
pl.col("CategoryID"), |
|
|
|
|
|
pl.col("Name").apply(convert_subject).alias("subject"), |
|
] |
|
) |
|
|
|
|
|
def extract_relevant_links(data: pl.DataFrame) -> pl.DataFrame: |
|
def extract_links(text: str) -> list[str]: |
|
return list( |
|
set( |
|
re.findall( |
|
r"(https?:(?:\\)?/(?:\\)?/[a-zA-Z0-9/\\\.-]+)", |
|
text.replace("\\/", "/"), |
|
) |
|
) |
|
) |
|
|
|
def extract_page_links(links: list[str]) -> list[str]: |
|
return [link for link in links if "/eleves/bv/" in link] |
|
|
|
def extract_question_links(links: list[str]) -> list[str]: |
|
return [link for link in links if "/zonedentraide/discussion" in link] |
|
|
|
return ( |
|
data.with_columns(pl.col("answer").fill_null("")) |
|
.with_columns(pl.col("answer").apply(extract_links).alias("links")) |
|
.with_columns( |
|
[ |
|
pl.col("links").apply(extract_page_links).alias("page_links"), |
|
pl.col("links") |
|
.apply(extract_question_links) |
|
.alias("question_links"), |
|
] |
|
) |
|
) |
|
|
|
|
|
def extract_text_from_json(json_: str) -> str: |
|
|
|
try: |
|
return " ".join(list(extract_text(json.loads(json_)))) |
|
except json.JSONDecodeError: |
|
return "" |
|
|
|
|
|
def extract_text(raw_section: list[dict] | dict) -> Iterator[str]: |
|
if isinstance(raw_section, list): |
|
for section_content in raw_section: |
|
yield from extract_text(section_content) |
|
|
|
elif isinstance(raw_section, dict): |
|
for section_tag, section_content in raw_section.items(): |
|
if section_tag == "insert" and isinstance(section_content, str): |
|
yield re.sub(r"\s+", " ", section_content.strip()) |
|
elif section_tag == "url": |
|
yield section_content.strip() |
|
else: |
|
yield from extract_text(section_content) |
|
|
|
|
|
def extract_images_from_json(json_: str) -> list[str]: |
|
|
|
try: |
|
return list(extract_images(json.loads(json_))) |
|
except json.JSONDecodeError: |
|
return [] |
|
|
|
|
|
def extract_images(raw_section: list[dict] | dict) -> Iterator[str]: |
|
if isinstance(raw_section, list): |
|
for section_content in raw_section: |
|
yield from extract_images(section_content) |
|
|
|
elif isinstance(raw_section, dict): |
|
for section_tag, section_content in raw_section.items(): |
|
if section_tag == "url": |
|
yield cast(str, section_content) |
|
else: |
|
yield from extract_images(section_content) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_pages( |
|
path: Path, |
|
related_subjects_file: str, |
|
grades_lower: int, |
|
grades_higher: int, |
|
) -> pl.DataFrame: |
|
grades = read_grades(path / "questions") |
|
fr_pages = pl.read_json(path / "pages" / "page-content-fr.json")["data"] |
|
en_pages = pl.read_json(path / "pages" / "page-content-en.json")["data"] |
|
return ( |
|
pl.DataFrame( |
|
[parse_page_data(page) for page in [*fr_pages, *en_pages]] |
|
) |
|
.with_columns( |
|
pl.col("subject") |
|
.apply(convert_subject) |
|
.apply(lambda subject: [subject]) |
|
) |
|
.filter(pl.col("url") != "") |
|
.pipe( |
|
functools.partial( |
|
convert_grades, |
|
grades=grades, |
|
grades_lower=grades_lower, |
|
grades_higher=grades_higher, |
|
) |
|
) |
|
.pipe( |
|
functools.partial( |
|
add_related_subjects, |
|
related_subjects_file=related_subjects_file, |
|
) |
|
) |
|
.pipe(extract_page_text) |
|
) |
|
|
|
|
|
def parse_page_data(data: dict[str, Any]) -> dict[str, str | int | list[str]]: |
|
try: |
|
page = { |
|
"id": data["file"]["uuid"], |
|
"url": data["file"]["breadcrumbs"]["current"]["routerLink"], |
|
"language": data["file"]["lang"], |
|
"subject": data["file"]["topic"], |
|
"grade": data["file"]["levels"], |
|
"title": data["file"]["title"], |
|
"tags": data["file"]["tags"], |
|
"content": " ".join( |
|
d["attributes"]["content"] |
|
for d in data["file"]["metatags"] |
|
if d["attributes"]["content"] |
|
), |
|
} |
|
return {**page, "id": f"{page['id']}-{page['language']}"} |
|
except TypeError: |
|
return {} |
|
|
|
|
|
def convert_grades( |
|
data: pl.DataFrame, |
|
grades: pl.DataFrame, |
|
grades_lower: int, |
|
grades_higher: int, |
|
) -> pl.DataFrame: |
|
return ( |
|
|
|
data.with_columns( |
|
pl.col("grade").apply( |
|
lambda grades_: ( |
|
list( |
|
range( |
|
max(min(grades_) - grades_lower, 1), |
|
min(grades_), |
|
) |
|
) |
|
+ list(grades_) |
|
+ list( |
|
range( |
|
max(grades_) + 1, |
|
min(max(grades_) + grades_higher, 12) + 1, |
|
) |
|
) |
|
) |
|
if grades_ is not None |
|
else [] |
|
) |
|
) |
|
|
|
.with_columns( |
|
pl.col("grade").apply( |
|
lambda grades_: pl.DataFrame({"GradeID": grades_}) |
|
.join(grades, on="GradeID", how="left")["grade"] |
|
.to_list() |
|
) |
|
) |
|
) |
|
|
|
|
|
def add_related_subjects( |
|
data: pl.DataFrame, related_subjects_file: str |
|
) -> pl.DataFrame: |
|
if related_subjects_file == "": |
|
return data |
|
else: |
|
with open(related_subjects_file) as f: |
|
related_subjects = json.load(f) |
|
return data.with_columns( |
|
pl.col("subject").apply( |
|
lambda subject: list(subject) + related_subjects[subject[0]] |
|
) |
|
) |
|
|
|
|
|
def extract_page_text(data: pl.DataFrame) -> pl.DataFrame: |
|
return data.with_columns( |
|
( |
|
pl.col("title") |
|
+ " " |
|
+ pl.col("tags").arr.join(" ") |
|
+ " " |
|
+ pl.col("content") |
|
).alias("text") |
|
).drop(["title", "tags", "content"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_print(text: str, symbol: str = "*") -> None: |
|
symbol = f"\033[1m[{symbol}]\033[0m" |
|
print( |
|
f"\r{symbol} {text}".ljust(shutil.get_terminal_size().columns), |
|
end="\r", |
|
) |
|
|
|
|
|
def done_print(text: str, symbol: str = "+") -> None: |
|
symbol = f"\033[1m\033[92m[{symbol}]\033[0m" |
|
print(f"\r{symbol} {text}".ljust(shutil.get_terminal_size().columns)) |
|
|
|
|
|
def convert_subject(subject: str) -> str: |
|
subject_conversions = { |
|
"chemistry": ["chimie"], |
|
"contemporary_world": ["monde contemporain", "contemporary world"], |
|
"english": ["anglais"], |
|
"financial_ed": ["éducation financière", "financial education"], |
|
"french": ["français"], |
|
"geography": ["géographie"], |
|
"history": ["histoire"], |
|
"math": ["mathématiques", "mathematics"], |
|
"other": ["autre"], |
|
"physics": ["physique"], |
|
"science": ["sciences"], |
|
} |
|
match = [ |
|
key |
|
for key, val in subject_conversions.items() |
|
if subject.lower() in [key, *val] |
|
] |
|
if match: |
|
return match[0] |
|
else: |
|
return "other" |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|