mortars_test / mortars_test3.py
apetulante's picture
Create new file
d7ecb2f
raw
history blame
2.77 kB
"""Dataset class for image dataset."""
import datasets
import os
from datasets.tasks import ImageClassification
_URLS = "mortars_data.zip"
_HOMEPAGE = "http://https://huggingface.co/datasets/apetulante/mortars_test"
_DESCRIPTION = (
"This dataset consists of test dataset of ancient mortar and with only obsidian images as zip file in it"
)
_NAMES = [
"Obsidian-1to2mm",
]
_CITATION = ""
class AncientMortarConfig(datasets.BuilderConfig):
"""BuilderConfig for COCO cats image."""
def __init__(
self,
data_url,
url,
task_templates=None,
**kwargs,
):
super(AncientMortarConfig, self).__init__(
version=datasets.Version("1.9.0", ""), **kwargs
)
self.data_url = data_url
self.url = url
self.task_templates = task_templates
class AncientMortar(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
AncientMortarConfig(
name="image",
url="",
data_url="",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files]),
},
)
]
def _generate_examples(self, files):
"""Generate images and labels for splits."""
for i, path in enumerate(files):
file_name = os.path.basename(path)
if file_name.endswith(".bmp"):
yield i, {
"image_file_path": path,
"image": path,
"labels": os.path.basename(os.path.dirname(path)).lower(),
}
# for file_path in files:
## if file_path.startswith(_IMAGES_DIR):
# if file_path[len(_IMAGES_DIR) : -len(".bmp")] in files_to_keep:
# label = file_path.split("/")[2]
# yield file_path, {
# "image": {"path": file_path},
# "label": label,
# }