import csv import json import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = "" # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This is an ancient mortars dataset. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = "https://huggingface.co/apetulante/mortars_test/mortars_data.zip" _METADATA_URLS = { "train": "https://huggingface.co/apetulante/mortars_test/train.txt", "valid": "https://huggingface.co/apetulante/mortars_test/valid.txt", "test": "https://huggingface.co/apetulante/mortars_test/test.txt", } _NAMES = { "Chert", "Obsidian", "Sand" } # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class MortarsData(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel(names=_NAMES) # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract(_BASE_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": dl_manager.iter_archive(archive_path) }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "images": dl_manager.iter_archive(archive_path) }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": dl_manager.iter_archive(archive_path) }, ), ] def _generate_examples(self, images, metadata_path): """Generate images and labels for splits.""" with open(metadata_path, encoding="utf-8") as f: files_to_keep = set(f.read().split("\n")) for file_path, file_obj in images: if file_path.startswith(_IMAGES_DIR): if file_path[len(_IMAGES_DIR) : -len(".bmp")] in files_to_keep: label = file_path.split("/")[-2].split('-')[0] yield file_path, { "image": {"path": file_path, "bytes": file_obj.read()}, "label": label, }