Datasets:

ArXiv:
License:
File size: 4,786 Bytes
bc0ee5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""MKQA: Multilingual Knowledge Questions & Answers"""


import json

import datasets


_CITATION = """\
@misc{mkqa,
    title = {MKQA: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering},
    author = {Shayne Longpre and Yi Lu and Joachim Daiber},
    year = {2020},
    URL = {https://arxiv.org/pdf/2007.15207.pdf}
}
"""

_DESCRIPTION = """\
We introduce MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs sampled from the Google Natural Questions dataset, aligned across 26 typologically diverse languages (260k question-answer pairs in total). For each query we collected new passage-independent answers. These queries and answers were then human translated into 25 Non-English languages.
"""
_HOMEPAGE = "https://github.com/apple/ml-mkqa"
_LICENSE = "CC BY-SA 3.0"


_URLS = {"train": "https://github.com/apple/ml-mkqa/raw/master/dataset/mkqa.jsonl.gz"}


class Mkqa(datasets.GeneratorBasedBuilder):
    """MKQA dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="mkqa",
            version=VERSION,
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        langs = [
            "ar",
            "da",
            "de",
            "en",
            "es",
            "fi",
            "fr",
            "he",
            "hu",
            "it",
            "ja",
            "ko",
            "km",
            "ms",
            "nl",
            "no",
            "pl",
            "pt",
            "ru",
            "sv",
            "th",
            "tr",
            "vi",
            "zh_cn",
            "zh_hk",
            "zh_tw",
        ]

        # Preferring list type instead of datasets.Sequence
        queries_features = {lan: datasets.Value("string") for lan in langs}
        answer_feature = [
            {
                "type": datasets.ClassLabel(
                    names=[
                        "entity",
                        "long_answer",
                        "unanswerable",
                        "date",
                        "number",
                        "number_with_unit",
                        "short_phrase",
                        "binary",
                    ]
                ),
                "entity": datasets.Value("string"),
                "text": datasets.Value("string"),
                "aliases": [datasets.Value("string")],
            }
        ]
        answer_features = {lan: answer_feature for lan in langs}

        features = datasets.Features(
            {
                "example_id": datasets.Value("string"),
                "queries": queries_features,
                "query": datasets.Value("string"),
                "answers": answer_features,
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # download and extract URLs
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})]

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            for row in f:
                data = json.loads(row)
                data["example_id"] = str(data["example_id"])
                id_ = data["example_id"]
                for language in data["answers"].keys():
                    # Add default values for possible missing keys
                    for a in data["answers"][language]:
                        if "aliases" not in a:
                            a["aliases"] = []
                        if "entity" not in a:
                            a["entity"] = ""

                yield id_, data