
GQA: Training Generalized Multi-Query Transformer Models from
Multi-Head Checkpoints

Joshua Ainslie∗, James Lee-Thorp∗, Michiel de Jong∗ ††

Yury Zemlyanskiy, Federico Lebrón, Sumit Sanghai

Google Research

Abstract
Multi-query attention (MQA), which only uses
a single key-value head, drastically speeds up
decoder inference. However, MQA can lead to
quality degradation, and moreover it may not
be desirable to train a separate model just for
faster inference. We (1) propose a recipe for
uptraining existing multi-head language model
checkpoints into models with MQA using 5%
of original pre-training compute, and (2) intro-
duce grouped-query attention (GQA), a gener-
alization of multi-query attention which uses
an intermediate (more than one, less than num-
ber of query heads) number of key-value heads.
We show that uptrained GQA achieves quality
close to multi-head attention with comparable
speed to MQA.

1 Introduction

Autoregressive decoder inference is a severe bottle-
neck for Transformer models due to the memory
bandwidth overhead from loading decoder weights
and all attention keys and values at every decod-
ing step (Shazeer, 2019; Pope et al., 2022; de Jong
et al., 2022). The memory bandwidth from loading
keys and values can be sharply reduced through
multi-query attention (Shazeer, 2019), which uses
multiple query heads but single key and value
heads.

However, multi-query attention (MQA) can lead
to quality degradation and training instability, and
it may not be feasible to train separate models
optimized for quality and inference. Moreover,
while some language models already use multi-
query attention, such as PaLM (Chowdhery et al.,
2022), many do not, including publicly available
language models such as T5 (Raffel et al., 2020)
and LLaMA (Touvron et al., 2023).

This work contains two contributions for faster
inference with large language models. First, we

∗Equal contribution.
†University of Southern California. Work done at Google

Research.

show that language model checkpoints with multi-
head attention (MHA) can be uptrained (Komat-
suzaki et al., 2022) to use MQA with a small frac-
tion of original training compute. This presents a
cost-effective method to obtain fast multi-query as
well as high-quality MHA checkpoints.

Second, we propose grouped-query attention
(GQA), an interpolation between multi-head and
multi-query attention with single key and value
heads per subgroup of query heads. We show that
uptrained GQA achieves quality close to multi-
head attention while being almost as fast as multi-
query attention.

2 Method

2.1 Uptraining

Generating a multi-query model from a multi-head
model takes place in two steps: first, converting the
checkpoint, and second, additional pre-training to
allow the model to adapt to its new structure. Fig-
ure 1 shows the process for converting a multi-head
checkpoint into a multi-query checkpoint. The pro-
jection matrices for key and value heads are mean
pooled into single projection matrices, which we
find works better than selecting a single key and
value head or randomly initializing new key and
value heads from scratch.

Figure 1: Overview of conversion from multi-head to
multi-query attention. Key and value projection matri-
ces from all heads are mean pooled into a single head.

The converted checkpoint is then pre-trained for

ar
X

iv
:2

30
5.

13
24

5v
3 

 [
cs

.C
L

] 
 2

3 
D

ec
 2

02
3

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight



Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

a small proportion α of its original training steps
on the same pre-training recipe.

2.2 Grouped-query attention

Grouped-query attention divides query heads into
G groups, each of which shares a single key head
and value head. GQA-G refers to grouped-query
with G groups. GQA-1, with a single group and
therefore single key and value head, is equivalent to
MQA, while GQA-H, with groups equal to number
of heads, is equivalent to MHA. Figure 2 shows a
comparison of grouped-query attention and multi-
head/multi-query attention. When converting a
multi-head checkpoint to a GQA checkpoint, we
construct each group key and value head by mean-
pooling all the original heads within that group.

An intermediate number of groups leads to an
interpolated model that is higher quality than MQA
but faster than MHA, and, as we will show, rep-
resents a favorable trade-off. Going from MHA
to MQA reduces H key and value heads to a sin-
gle key and value head, reducing the size of the
key-value cache and therefore amount of data that
needs to be loaded by a factor of H . However,
larger models generally scale the number of heads,
such that multi-query attention represents a more
aggressive cut in both memory bandwidth and ca-
pacity. GQA lets us keep the same proportional
decrease in bandwidth and capacity as model size
increases.

Moreover, larger models suffer relatively less
from memory bandwidth overhead from attention,
as the KV-cache scales with model dimension
while model FLOPs and parameters scale with the
square of model dimension. Finally, standard shard-
ing for large models replicates the single key and
value head by the number of model partitions (Pope

et al., 2022); GQA removes the waste from such
partitioning. Therefore, we expect GQA to present
a particularly good trade-off for larger models.

We note that GQA is not applied to the encoder
self-attention layers; encoder representations are
computed in parallel, and memory bandwidth is
therefore generally not the primary bottleneck.

3 Experiments

3.1 Experimental setup
Configurations All models are based on the
T5.1.1 architecture (Raffel et al., 2020), im-
plemented with JAX (Bradbury et al., 2018),
Flax (Heek et al., 2020), and Flaxformer1. For
our main experiments we consider T5 Large and
XXL with multi-head attention, as well as up-
trained versions of T5 XXL with multi-query and
grouped-query attention. We use the Adafactor op-
timizer with the same hyperparameters and learn-
ing rate schedule as T5 (Raffel et al., 2020). We
apply MQA and GQA to decoder self-attention
and cross-attention, but not encoder self-attention.

Uptraining Uptrained models are initialized
from public T5.1.1 checkpoints. The key and value
heads are mean-pooled to the appropriate MQA or
GQA structure, and then pre-trained for a further
α proportion of original pre-training steps with the
original pre-training setup and dataset from (Raffel
et al., 2020). For α = 0.05, training took approxi-
mately 600 TPUv3 chip-days.

Data We evaluate on summarization datasets
CNN/Daily Mail (Nallapati et al., 2016), arXiv
and PubMed (Cohan et al., 2018), MediaSum (Zhu
et al., 2021), and Multi-News (Fabbri et al., 2019);

1https://github.com/google/flaxformer

https://github.com/google/flaxformer
arion
Highlight

arion
Highlight

arion
Highlight



Model Tinfer Average CNN arXiv PubMed MediaSum MultiNews WMT TriviaQA

s R1 R1 R1 R1 R1 BLEU F1

MHA-Large 0.37 46.0 42.9 44.6 46.2 35.5 46.6 27.7 78.2
MHA-XXL 1.51 47.2 43.8 45.6 47.5 36.4 46.9 28.4 81.9
MQA-XXL 0.24 46.6 43.0 45.0 46.9 36.1 46.5 28.5 81.3
GQA-8-XXL 0.28 47.1 43.5 45.4 47.7 36.3 47.2 28.4 81.6

Table 1: Inference time and average dev set performance comparison of T5 Large and XXL models with multi-head
attention, and 5% uptrained T5-XXL models with multi-query and grouped-query attention on summarization
datasets CNN/Daily Mail, arXiv, PubMed, MediaSum, and MultiNews, translation dataset WMT, and question-
answering dataset TriviaQA.

translation dataset WMT 2014 English-to-German;
and question answering dataset TriviaQA (Joshi
et al., 2017). We do not evaluate on popular clas-
sification benchmarks such as GLUE (Wang et al.,
2019) as autoregressive inference is less applicable
for those tasks.

Fine-tuning For fine-tuning, we use a constant
learning rate of 0.001, batch size 128, and dropout
rate 0.1 for all tasks. CNN/Daily Mail and WMT
use input length of 512 and output length 256.
Other summarization datasets use input length
2048 and output length 512. Finally, TriviaQA
uses input length 2048 and output length 32. We
train until convergence and select the checkpoint
with the highest dev performance. We use greedy
decoding for inference.

Timing We report time per sample per TPUv4
chip, as measured by xprof (Google, 2020). For
timing experiments we use 8 TPUs with the largest
batch size that fits up to 32 per TPU, and paral-
lelization optimized separately for each model.

3.2 Main results

Figure 3 shows average performance over all
datasets as a function of average inference time
for MHA T5-Large and T5-XXL, and uptrained
MQA and GQA-8 XXL models with uptraining
proportion α = 0.05. We see that a larger up-
trained MQA model provides a favorable trade-
off relative to MHA models, with higher quality
and faster inference than MHA-Large. Moreover,
GQA achieves significant additional quality gains,
achieving performance close to MHA-XXL with
speed close to MQA. Table 1 contains full results
for all datasets.

3.3 Ablations

This section presents experiments to investigate
the effect of different modeling choices. We eval-

0 0.5 1 1.5

46

46.5

47

MHA-Large

MHA-XXL

MQA-XXL

GQA-XXL

Time per sample (ms)

Pe
rf

or
m

an
ce

Figure 3: Uptrained MQA yields a favorable tradeoff
compared to MHA with higher quality and faster
speed than MHA-Large, and GQA achieves even
better performance with similar speed gains and
comparable quality to MHA-XXL. Average perfor-
mance on all tasks as a function of average inference
time per sample for T5-Large and T5-XXL with multi-
head attention, and 5% uptrained T5-XXL with MQA
and GQA-8 attention.

uate performance on a representive subsample of
tasks: CNN/Daily Mail, (short-form summariza-
tion), MultiNews (long-form summarization), and
TriviaQA (question-answering).

Checkpoint conversion Figure 4 compares the
performance of different methods for checkpoint
conversion. Mean pooling appears to work best,
followed by selecting a single head and then ran-
dom initialization. Intuitively, results are ordered
by the degree to which information is preserved
from the pre-trained model.

Uptraining steps Figure 5 shows how perfor-
mance varies with uptraining proportion for T5
XXL with MQA and GQA. First, we note that
GQA already achieves reasonable performance af-
ter conversion while MQA requires uptraining to



54.4 54.6 54.8 55 55.2 55.4 55.6

Mean

First

Random

Figure 4: Performance comparison of different check-
point conversion methods for T5-Large uptrained to
MQA with proportion α = 0.05. ‘Mean’ mean-pools
key and value heads, ‘First’ selects the first head and
‘Random’ initializes heads from scratch.

be useful. Both MQA and GQA gain from 5%
uptraining with diminishing returns from 10%.

0 0.02 0.04 0.06 0.08 0.1

54

55

56

57

Uptraining proportion α

Pe
rf

or
m

an
ce

MHA
GQA
MQA

Figure 5: Performance as a function of uptraining pro-
portion for T5 XXL models with MQA and GQA-8.

Number of groups Figure 6 demonstrates the
effect of the number of GQA groups on infer-
ence speed. For larger models the memory band-
width overhead from the KV cache is less con-
straining (Shazeer, 2019), while the reduction in
key-value size is sharper due to the increased num-
ber of heads. As a result, increasing the number
of groups from MQA only results in modest slow-
downs initially, with increasing cost as we move
closer to MHA. We selected 8 groups as a favor-
able middle ground.

4 Related Work

This work is focused on achieving a better trade-
off between decoder quality and inference time
through reducing the memory bandwidth over-
head (Williams et al., 2009) from loading keys
and values. Shazeer (2019) first proposed reduc-
ing this overhead through multi-query attention.
Follow-up work showed that multi-query attention

1 4 8 16 32 64

1

2

GQA groups

Ti
m

e
pe

rs
am

pl
e

(s
)

MHA
GQA
MQA

Figure 6: Time per sample for GQA-XXL as a function
of the number of GQA groups with input length 2048
and output length 512. Going from 1 (MQA) to 8
groups adds modest inference overhead, with increasing
cost to adding more groups.

is especially helpful for long inputs (Pope et al.,
2022; de Jong et al., 2022). Rabe (2023) indepen-
dently developed GQA with public implementa-
tion. Other works have explored grouping atten-
tion heads for computational efficiency (Park et al.,
2020; Luo et al., 2022; Ni et al., 2023) without
focusing specifically on key-value heads, which
determine memory bandwidth overhead.

A number of other methods have been proposed
to reduce memory bandwidth overhead from keys
and values, as well as parameters. Flash atten-
tion (Dao et al., 2022) structures the attention com-
putation to avoid materializing the quadratic at-
tention scores, reducing memory and speeding up
training. Quantization (Dettmers et al., 2022; Fran-
tar et al., 2022) reduces the size of weights and
activations, including keys and values, by lowering
precision. Model distillation (Hinton et al., 2015;
Gou et al., 2021) instead reduces model size at
a given precision, using data generated from the
larger model to finetune the smaller model. Layer-
sparse cross-attention (de Jong et al., 2022) elim-
inates most cross-attention layers which make up
the primary expense for longer inputs. Speculative
sampling (Chen et al., 2023; Leviathan et al., 2022)
ameliorates the memory bandwidth bottleneck by
proposing multiple tokens with a smaller model
which are then scored in parallel by a larger model.

Finally, the uptraining procedure we propose
is inspired by Komatsuzaki et al. (2022), which
uptrains standard T5 checkpoints into sparsely acti-
vated Mixture-of-Experts models.



5 Conclusion

Language models are expensive for inference pri-
marily due to the memory bandwidth overhead
from loading keys and values. Multi-query atten-
tion reduces this overhead at the cost of decreased
model capacity and quality. We propose to convert
multi-head attention models to multi-query models
with a small fraction of original pre-training com-
pute. Moreover, we introduce grouped-query atten-
tion, an interpolation of multi-query and multi-head
attention that achieves quality close to multi-head
at comparable speed to multi-query attention.

Limitations

This paper focuses on ameliorating the memory
bandwidth overhead from loading keys and values.
This overhead is most important when generating
longer sequences, for which quality is inherently
difficult to evaluate. For summarization we employ
Rouge score, which we know is a flawed evaluation
that does not tell the whole story; for that reason,
it is difficult to be certain our trade-offs are cor-
rect. Due to limited computation, we also do not
compare our XXL GQA model to a comparitive
model trained from scratch, so we do not know the
relative performance of uptraining vs training from
scratch. Finally, we evaluate the impact of uptrain-
ing and GQA only on encoder-decoder models.
Recently, decoder-only models are extremely pop-
ular, and since these models do not have separate
self-attention and cross-attention, we expect GQA
to have a stronger advantage over MQA.

Acknowlegements

We thank Santiago Ontañón, Afroz Mohiuddin,
William Cohen and others at Google Research for
insightful advice and discussion.

References
James Bradbury, Roy Frostig, Peter Hawkins,

Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023. Accelerating large language
model decoding with speculative sampling. CoRR,
abs/2302.01318.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615–621, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
CoRR, abs/2205.14135.

Michiel de Jong, Yury Zemlyanskiy, Joshua Ainslie,
Nicholas FitzGerald, Sumit Sanghai, Fei Sha, and
William Cohen. 2022. FiDO: Fusion-in-decoder opti-
mized for stronger performance and faster inference.
arXiv preprint arXiv:2212.08153.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit ma-
trix multiplication for transformers at scale. CoRR,
abs/2208.07339.

Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir R. Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 1074–1084.
Association for Computational Linguistics.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: accurate post-training
quantization for generative pre-trained transformers.
CoRR, abs/2210.17323.

http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.48550/arXiv.2205.14135
https://doi.org/10.48550/arXiv.2205.14135
https://arxiv.org/abs/2212.08153
https://arxiv.org/abs/2212.08153
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.18653/v1/p19-1102
https://doi.org/10.18653/v1/p19-1102
https://doi.org/10.18653/v1/p19-1102
https://doi.org/10.48550/arXiv.2210.17323
https://doi.org/10.48550/arXiv.2210.17323


Google. 2020. Profile your model with cloud tpu
tools. https://cloud.google.com/tpu/docs/
cloud-tpu-tools. Accessed: 2022-11-11.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A sur-
vey. Int. J. Comput. Vis., 129(6):1789–1819.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Van-
couver, Canada. Association for Computational Lin-
guistics.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2022.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2022. Fast inference from transformers via spec-
ulative decoding. CoRR, abs/2211.17192.

Gen Luo, Yiyi Zhou, Xiaoshuai Sun, Yan Wang, Liujuan
Cao, Yongjian Wu, Feiyue Huang, and Rongrong Ji.
2022. Towards lightweight transformer via group-
wise transformation for vision-and-language tasks.
IEEE Trans. Image Process., 31:3386–3398.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280–290. ACL.

Jinjie Ni, Rui Mao, Zonglin Yang, Han Lei, and Erik
Cambria. 2023. Finding the pillars of strength for
multi-head attention. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 14526–
14540. Association for Computational Linguistics.

Sungrae Park, Geewook Kim, Junyeop Lee, Jun-
bum Cha, Ji-Hoon Kim, and Hwalsuk Lee. 2020.
Scale down transformer by grouping features for
a lightweight character-level language model. In
Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 6883–6893. International Committee on Com-
putational Linguistics.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. 2022. Efficiently scaling transformer in-
ference. arXiv preprint arXiv:2211.05102.

Markus Rabe. 2023. Memory-efficient attention.
https://github.com/google/flaxformer/
blob/main/flaxformer/components/
attention/memory_efficient_attention.py.
Accessed: 2023-05-23.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Samuel Williams, Andrew Waterman, and David A. Pat-
terson. 2009. Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun.
ACM, 52(4):65–76.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021. Mediasum: A large-scale media interview
dataset for dialogue summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 5927–5934. Associa-
tion for Computational Linguistics.

https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
http://github.com/google/flax
http://github.com/google/flax
http://arxiv.org/abs/1503.02531
https://doi.org/10.48550/ARXIV.2212.05055
https://doi.org/10.48550/ARXIV.2212.05055
https://doi.org/10.48550/arXiv.2211.17192
https://doi.org/10.48550/arXiv.2211.17192
https://doi.org/10.1109/TIP.2021.3139234
https://doi.org/10.1109/TIP.2021.3139234
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/V1/2023.ACL-LONG.812
https://doi.org/10.18653/V1/2023.ACL-LONG.812
https://doi.org/10.18653/V1/2020.COLING-MAIN.607
https://doi.org/10.18653/V1/2020.COLING-MAIN.607
https://github.com/google/flaxformer/blob/main/flaxformer/components/attention/memory_efficient_attention.py
https://github.com/google/flaxformer/blob/main/flaxformer/components/attention/memory_efficient_attention.py
https://github.com/google/flaxformer/blob/main/flaxformer/components/attention/memory_efficient_attention.py
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.18653/v1/2021.naacl-main.474
https://doi.org/10.18653/v1/2021.naacl-main.474


A Training Stability

We find that multi-query attention can lead to train-
ing instability during fine-tuning, in particular com-
bined with long input tasks. We trained multiple
T5-Large models with multi-query attention from
scratch. In each case, pre-training suffered from
frequent loss spikes and the final models diverged
immediately when fine-tuning on long-input tasks.
Uptrained multi-query attention models are more
stable but still display high variance, so for multi-
query models on unstable tasks we report average
performance over three fine-tuning runs. Uptrained
grouped-query attention models, however, appear
to be stable, so we did not investigate futher on the
root causes of multi-query instability.


