
Longformer: The Long-Document Transformer

Iz Beltagy∗ Matthew E. Peters∗ Arman Cohan∗

Allen Institute for Artificial Intelligence, Seattle, WA, USA
{beltagy,matthewp,armanc}@allenai.org

Abstract

Transformer-based models are unable to pro-
cess long sequences due to their self-attention
operation, which scales quadratically with the
sequence length. To address this limitation,
we introduce the Longformer with an attention
mechanism that scales linearly with sequence
length, making it easy to process documents of
thousands of tokens or longer. Longformer’s
attention mechanism is a drop-in replacement
for the standard self-attention and combines
a local windowed attention with a task moti-
vated global attention. Following prior work
on long-sequence transformers, we evaluate
Longformer on character-level language mod-
eling and achieve state-of-the-art results on
text8 and enwik8. In contrast to most
prior work, we also pretrain Longformer and
finetune it on a variety of downstream tasks.
Our pretrained Longformer consistently out-
performs RoBERTa on long document tasks
and sets new state-of-the-art results on Wiki-
Hop and TriviaQA. We finally introduce the
Longformer-Encoder-Decoder (LED), a Long-
former variant for supporting long document
generative sequence-to-sequence tasks, and
demonstrate its effectiveness on the arXiv sum-
marization dataset.1

1 Introduction

Transformers (Vaswani et al., 2017) have achieved
state-of-the-art results in a wide range of natu-
ral language tasks including generative language
modeling (Dai et al., 2019; Radford et al., 2019)
and discriminative language understanding (De-
vlin et al., 2019). This success is partly due to
the self-attention component which enables the net-
work to capture contextual information from the
entire sequence. While powerful, the memory and
computational requirements of self-attention grow

∗ Equal contribution.
1https://github.com/allenai/longformer

Figure 1: Runtime and memory of full self-
attention and different implementations of Long-
former’s self-attention; Longformer-loop is non-
vectorized, Longformer-chunk is vectorized, and
Longformer-cuda is a custom cuda kernel im-
plementations. Longformer’s memory usage scales
linearly with the sequence length, unlike the full
self-attention mechanism that runs out of memory
for long sequences on current GPUs. Different
implementations vary in speed, with the vectorized
Longformer-chunk being the fastest. More details
are in section 3.2.

quadratically with sequence length, making it infea-
sible (or very expensive) to process long sequences.

To address this limitation, we present Long-
former, a modified Transformer architecture with
a self-attention operation that scales linearly with
the sequence length, making it versatile for pro-
cessing long documents (Fig 1). This is an advan-
tage for natural language tasks such as long docu-
ment classification, question answering (QA), and
coreference resolution, where existing approaches
partition or shorten the long context into smaller
sequences that fall within the typical 512 token
limit of BERT-style pretrained models. Such parti-
tioning could potentially result in loss of important
cross-partition information, and to mitigate this
problem, existing methods often rely on complex
architectures to address such interactions. On the
other hand, our proposed Longformer is able to
build contextual representations of the entire con-
text using multiple layers of attention, reducing the

ar
X

iv
:2

00
4.

05
15

0v
2 

 [
cs

.C
L

] 
 2

 D
ec

 2
02

0

https://github.com/allenai/longformer
arion
Highlight

arion
Highlight

arion
Highlight



need for task-specific architectures.
Recent work has addressed the computational in-

efficiency of Transformers on long sequences (see
Tab. 1). However, they primarily focus on autore-
gressive language modeling (LM), while the appli-
cation of long document transformers to document-
level NLP tasks in the transfer learning setting
(Dai and Le, 2015; Peters et al., 2018; Howard
and Ruder, 2018; Devlin et al., 2019) has remained
largely unexplored. We address this gap and show
that Longformer’s attention mechanism can act as
a drop-in replacement for the self-attention mecha-
nism in pretrained Transformers, and leads to gains
across a suite of document NLP tasks.

Longformer’s attention mechanism is a combina-
tion of a windowed local-context self-attention and
an end task motivated global attention that encodes
inductive bias about the task. Through ablations
and controlled trials we show both attention types
are essential – the local attention is primarily used
to build contextual representations, while the global
attention allows Longformer to build full sequence
representations for prediction.

We first evaluate Longformer on autoregressive
character-level language modeling using a com-
bination of windowed and a new dilated attention
pattern, allowing the model to process sequences of
up to 32K characters on modern GPUs. We achieve
state-of-the-art results on text8 and enwik8
benchmark datasets, demonstrating the effective-
ness of Longformer in long document modeling.

Then, to evaluate Longformer’s ability to re-
place the full self-attention operation of existing
pretrained models, we pretrain it with the masked
language modeling (MLM) objective, continuing
from the RoBERTa (Liu et al., 2019) released
checkpoint. After pretraining, we apply it to
downstream language tasks through finetuning and
demonstrate that Longformer consistently outper-
forms RoBERTa on a wide range of document-level
natural language tasks including text classification,
QA, and coreference resolution, achieving state-of-
the-art results on two of these datasets.

We finally introduce a variant of Longformer
which instead of an encoder-only Transformer
architecture, it follows an encoder-decoder ar-
chitecture similar to the original Transformer
model (Vaswani et al., 2017), and it is in-
tended for sequence-to-sequence (seq2seq) learn-
ing (Sutskever et al., 2014). We call this model
Longformer-Encoder-Decoder (LED) that uses

Model attention char-LM other pretrain
matrix tasks

Transformer-XL (2019) ltr yes no no
Adaptive Span (2019) ltr yes no no
Compressive (2020) ltr yes no no
Reformer (2020) sparse yes no no
Sparse (2019) sparse yes no no
Routing (2020) sparse yes no no
BP-Transformer (2019) sparse yes MT no
Blockwise (2019) sparse no QA yes
Our Longformer sparse yes multiple yes

Table 1: Summary of prior work on adapting Trans-
formers for long documents. ltr: left-to-right.

Longformer’s efficient attention pattern on the en-
coder network, allowing it to address long docu-
ment seq2seq tasks such as summarization. We
demonstrate the effectiveness of LED on the arXiv
summarization dataset (Cohan et al., 2018).

2 Related Work

Long-Document Transformers Tab. 1 summa-
rizes recent prior work on long documents. Two
types of self-attention approaches have been ex-
plored. The first is a left-to-right (ltr) approach that
processes the document in chunks moving from
left-to-right. While such models have been success-
ful in autoregressive language modeling, they are
unsuitable for transfer learning approaches with
tasks that benefit from bidirectional context.

Our work falls within the other general approach
that defines some form of sparse attention pattern
and avoids computing the full quadratic attention
matrix multiplication. The model with the most
similar attention pattern to ours is Sparse Trans-
former (Child et al., 2019), which uses a form of
dilated sliding window of blocks of size 8x8 pro-
vided by BlockSparse (Gray et al., 2017). Our
implementation (§3) also includes a custom CUDA
kernel, but it is more flexible and maintainable than
BlockSparse which is implemented in C++, and
designed for a specific version of TensorFlow. We
also introduce additional task motivated global at-
tention patterns suitable for common NLP tasks
(§3) and show they are essential for good perfor-
mance in the transfer learning setting.

A few models tried tasks other than autoregres-
sive language modeling, which is a step forward
because arguably focusing on language modeling
as the primary evaluation has led to the develop-
ment of models with limited applicability. BP-
Transformer (Ye et al., 2019) evaluated on machine

2

arion
Highlight



(a) Full n2 attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

translation (MT), but didn’t explore the pretrain-
finetune setting. Blockwise attention (Qiu et al.,
2019) pretrained their models and evaluated on
question answering (QA). However, the evaluation
is limited as it doesn’t include language modeling,
and the QA datasets are of relatively short docu-
ments,2 therefore the effectiveness of this model
on long document tasks remains unexplored.

Task-specific Models for Long Documents
Many task-specific approaches have been devel-
oped to workaround the 512 limit of pretrained
transformer models like BERT. The simplest ap-
proach just truncates the document, commonly
used for classification (Xie et al., 2019). An-
other approach chunks the document into chunks
of length 512 (could be overlapping), processes
each chunk separately, then combines the activa-
tions with a task specific model (Joshi et al., 2019).
A third approach popular for multihop and open
domain QA tasks uses a two-stage model where
the first stage retrieves relevant documents that are
passed onto the second stage for answer extrac-
tion (Clark and Gardner, 2017; Chen et al., 2017).
All of these approaches suffer from information
loss due to truncation or cascading errors from
the two stage approach. In contrast, Longformer
can process long sequences without truncating or
chunking, allowing us to adopt a much simpler ap-
proach that concatenates the available context and
processes it in a single pass.

A few contemporaneous works3 have explored
similar ideas to Longformer using local + global
attention in Transformers, and pre-training it for
long document natural language tasks. In particu-
lar, ETC (Ainslie et al., 2020) uses a similar local
+ global attention instead of full self-attention to
scale Transformers to long documents. Different
from Longformer, ETC uses relative position em-

2SQuAD contexts typically fit within the 512 limit, and
MRQA is constructed by dropping long-document examples.

3All were published on arXiv after Longformer.

beddings (which we only used for the Autoregres-
sive LM setting), introduces an additional training
objective (CPC loss) for pre-training, and config-
ures global attention in a slightly different way.
It shows strong results on several tasks including
reading comprehension and classification. GMAT
(Gupta and Berant, 2020) uses a similar idea of
few global locations in the input serving as global
memory. BigBird (Zaheer et al., 2020) is an exten-
sion over ETC with evaluation on additional tasks,
including summarization. Importantly, through the-
oretical analysis, BigBird shows that sparse Trans-
formers are universal approximators of sequence
functions and preserve these properties of the full
self-attention.

3 Longformer

The original Transformer model has a self-attention
component with O(n2) time and memory complex-
ity where n is the input sequence length. To address
this challenge, we sparsify the full self-attention
matrix according to an “attention pattern” specify-
ing pairs of input locations attending to one another.
Unlike the full self-attention, our proposed atten-
tion pattern scales linearly with the input sequence,
making it efficient for longer sequences. This sec-
tion discusses the design and implementation of
this attention pattern.

3.1 Attention Pattern
Sliding Window Given the importance of local
context (Kovaleva et al., 2019), our attention pat-
tern employs a fixed-size window attention sur-
rounding each token. Using multiple stacked lay-
ers of such windowed attention results in a large
receptive field, where top layers have access to all
input locations and have the capacity to build repre-
sentations that incorporate information across the
entire input, similar to CNNs (Wu et al., 2019).
Given a fixed window size w, each token attends
to 1

2w tokens on each side (Fig. 2b). The com-
putation complexity of this pattern is O(n × w),

3

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight



which scales linearly with input sequence length n.
In a transformer with ` layers, the receptive field
size at the top layer is `× w (assuming w is fixed
for all layers). Depending on the application, it
might be helpful to use different values of w for
each layer to balance between efficiency and model
representation capacity (§4.1).

Dilated Sliding Window To further increase the
receptive field without increasing computation, the
sliding window can be “dilated”. This is analogous
to dilated CNNs (van den Oord et al., 2016) where
the window has gaps of size dilation d (Fig. 2c).
Assuming a fixed d and w for all layers, the recep-
tive field is ` × d × w, which can reach tens of
thousands of tokens even for small values of d.

In multi-headed attention, each attention head
computes a different attention score. We found set-
tings with different dilation configurations per head
improves performance by allowing some heads
without dilation to focus on local context, while
others with dilation focus on longer context.

Global Attention In state-of-the-art BERT-style
models for natural language tasks, the optimal in-
put representation differs from language modeling
and varies by task. For masked language modeling
(MLM), the model uses local context to predict the
masked word, while for classification, the model ag-
gregates the representation of the whole sequence
into a special token ([CLS] in case of BERT). For
QA, the question and document are concatenated,
allowing the model to compare the question with
the document through self-attention.

In our case, the windowed and dilated attention
are not flexible enough to learn task-specific repre-
sentations. Accordingly, we add “global attention”
on few pre-selected input locations. Importantly,
we make this attention operation symmetric: that
is, a token with a global attention attends to all
tokens across the sequence, and all tokens in the
sequence attend to it. Fig. 2d shows an example
of a sliding window attention with global attention
at a few tokens at custom locations. For example
for classification, global attention is used for the
[CLS] token while in QA global attention is pro-
vided on all question tokens. Since the number of
such tokens is small relative to and independent of
n the complexity of the combined local and global
attention is still O(n). While specifying global
attention is task specific, it is a easy way to add in-
ductive bias to the model’s attention, and it is much

simpler than existing task specific approaches that
use complex architecture to combine information
across smaller input chunks.

Linear Projections for Global Attention Re-
call that given the linear projections Q, K, V , the
Transformer model (Vaswani et al., 2017) computes
attention scores as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

We use two sets of projections, Qs, Ks, Vs to com-
pute attention scores of sliding window attention,
and Qg, Kg, Vg to compute attention scores for the
global attention. The additional projections provide
flexibility to model the different types of attention,
which we show is critical for best performance on
downstream tasks. Qg, Kg, Vg are all initialized
with values that match Qs, Ks, Vs.

3.2 Implementation
In regular transformers, attention scores are com-
puted as in Eqn. 1. The expensive operation is
the matrix multiplication QKT because both Q
and K have n (sequence length) projections. For
Longformer, the dilated sliding window attention
computes only a fixed number of the diagonals of
QKT . As shown in Fig. 1, this results in a linear
increase in memory usage compared to quadratic
increase for full self-attention. However, imple-
menting it requires a form of banded matrix mul-
tiplication that is not supported in existing deep
learning libraries like PyTorch/Tensorflow. Fig. 1
compares the performance of three different ways
of implementing it: loop is a memory efficient Py-
Torch implementation that supports dilation but is
unusably slow and only used for testing; chunks
only supports the non-dilated case and is used for
the pretraining/finetuning setting; and cuda is our
fully functioning highly optimized custom CUDA
kernel implemented using TVM (Chen et al., 2018)
and used for the language modeling experiments
(see Appendix A for more details).

4 Autoregressive Language Modeling

Autoregressive or left-to-right language modeling
is loosely defined as estimating the probability dis-
tribution of an existing token/character given its
previous tokens/characters in an input sequence.
This task is considered one of the fundamental tasks
in natural language and recent prior work on mod-
eling long sequences using transformers has relied

4

In multi-head attn., heads without dilation focus on local context &
heads with dilation focus on longer context.

In Longformer, "windowed" & "dilated" attn. were not enough,
so they also used "global" attn.

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight



on this task as their primary evaluation (Dai et al.,
2019; Rae et al., 2020; Sukhbaatar et al., 2019).
Similarly, we develop and evaluate our model on
autoregressive language modeling.

4.1 Attention Pattern

For autoregressive language modeling we use
our dilated sliding window attention. Follow-
ing Sukhbaatar et al. (2019) we use differing win-
dow sizes across the layers. In particular, we use
small window sizes for the lower layers and in-
crease window sizes as we move to higher layers.
This allows the top layers to learn higher-level rep-
resentation of the entire sequence while having the
lower layers capture local information. In addition,
it provides balance between efficiency (smaller win-
dow sizes are less computationally expensive due
to fewer nonzero values) and performance (larger
window sizes have richer representation power and
often result in performance improvements).

We do not use dilated sliding windows for lower
layers to maximize their capacity to learn and uti-
lize the immediate local context. For the higher
layers, we use a small amount of increasing dila-
tion only on 2 heads. This gives the model the
ability to directly attend to distant tokens without
sacrificing local context.

4.2 Experiment Setup

To compare to prior work we focus on character-
level LM (text8 and enwik8; Mahoney, 2009).

Training Ideally, we would like to train our
model on the largest window size and sequence
length we can fit in a modern GPU memory. How-
ever, we found that the model needs a large number
of gradient updates to learn the local context first,
before learning to utilize longer context. To accom-
modate this, we adopt a staged training procedure
where we increase the attention window size and
sequence length across multiple training phases. In
particular, in the first phase we start with a short
sequence length and window size, then on each sub-
sequent phase, we double the window size and the
sequence length, and halve the learning rate. This
makes training fast, while keeping the slow part
(longest sequences and window sizes) to the end.
We train the model over 5 total phases with start-
ing sequence length of 2,048 and ending sequence
length of 23,040 on the last phase (see Appendix B
for detailed configurations of each phase, and for
all other hyperparameters).

Model #Param Dev Test

Dataset text8
T12 (Al-Rfou et al., 2018) 44M - 1.18
Adaptive (Sukhbaatar et al., 2019) 38M 1.05 1.11
BP-Transformer (Ye et al., 2019) 39M - 1.11
Our Longformer 41M 1.04 1.10

Dataset enwik8
T12 (Al-Rfou et al., 2018) 44M - 1.11
Transformer-XL (Dai et al., 2019) 41M - 1.06
Reformer (Kitaev et al., 2020) - - 1.05
Adaptive (Sukhbaatar et al., 2019) 39M 1.04 1.02
BP-Transformer (Ye et al., 2019) 38M - 1.02
Our Longformer 41M 1.02 1.00

Table 2: Small model BPC on text8 & enwik8

Model #Param Test BPC

Transformer-XL (18 layers) 88M 1.03
Sparse (Child et al., 2019) ≈100M 0.99
Transformer-XL (24 layers) 277M 0.99
Adaptive (Sukhbaatar et al., 2019) 209M 0.98
Compressive (Rae et al., 2020) 277M 0.97
Routing (Roy et al., 2020) ≈223M 0.99
Our Longformer 102M 0.99

Table 3: Performance of large models on enwik8

Evaluation We evaluate with sequences of
length 32,256. Following Dai et al. (2019), we
split the dataset into overlapping sequences of size
32,256 with a step of size 512, and report the per-
formance on the last 512 tokens on the sequence.

4.2.1 Results

Tab. 2 and 3 summarize evaluation results on
text8 and enwik8 datasets. We achieve a new
state-of-the-art on both text8 and enwik8 using
the small models with BPC of 1.10 and 1.00 on
text8 and enwik8 respectively, demonstrating
the effectiveness of our model.

For large models, given how expensive these
experiments are, and following recent work (Ki-
taev et al., 2020; Rae et al., 2020), we are only
evaluating on enwik8. Tab. 3 shows that Long-
former outperforms the comparable Transformer-
XL model, matches the performance of the compa-
rable Sparse Transformer (Child et al., 2019), and
matches or slightly underperforms recent models
that have more than twice the number of parameters.
It is worth noting that Adaptive Span (Sukhbaatar
et al., 2019) and Compressive Transformer (Rae
et al., 2020) are not good fit for the pretraining-
finetuning paradigm as discussed in §2.

5

dilated 
sliding attn is
not used for 
lower layers to
maximize their 
capacity to 
learn and 
utilize the
immediate 
local context.

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight

arion
Highlight



Model Dev BPC

Decreasing w (from 512 to 32) 1.24
Fixed w (= 230) 1.23
Increasing w (from 32 to 512) 1.21

No Dilation 1.21
Dilation on 2 heads 1.20

Table 4: Top: changing window size across layers. Bot-
tom: with/without dilation (@ 150K steps on phase1)

4.2.2 Ablation Study
To show the importance of the design choices of
our attention patterns, we tried different variants
and report their controlled experiment results. To
make the ablation study more manageable, we train
each configuration for 150K steps4 with phase 1
configuration on a small model on text8, then
report the BPC performance on the dev set.

The top of Tab. 4 demonstrates the impact of
different ways of configuring the window sizes
per layer. We observe that increasing the window
size from the bottom to the top layer leads to the
best performance, arranging them in the reverse
way leads to worse performance, and using a fixed
window size (the average of window sizes of the
other configuration) leads to a performance that
it is in between. The bottom of Tab. 4 shows the
impact of adding dilation. Adding some dilation to
two heads leads to some improvement compared
with no dilation at all.

5 Pretraining and Finetuning

Current state-of-the-art systems for many NLP
tasks finetune a pretrained model with task super-
vision (e.g. BERT). One of our main motivations
is to develop such a model suitable for long docu-
ment tasks. To do so, we pretrained Longformer
on a document corpus and finetune it for six tasks,
including classification, QA and coreference resolu-
tion. The resulting model can process sequences up
to 4,096 tokens long (8 times longer than BERT)5.

We pretrain Longformer with masked language
modeling (MLM), where the goal is to recover
randomly masked tokens in a sequence. Since
MLM pretraining is expensive, we continue pre-
training from the RoBERTa (Liu et al., 2019) re-
leased checkpoint, while only making the minimal

4One caveat is that the ordering of end performance will
not agree with that at step 150K. However, this approximation
saves the huge cost of running every experiment to completion.

5Sequences up to 16K are possible on current GPUs.

Model base large

RoBERTa (seqlen: 512) 1.846 1.496
Longformer (seqlen: 4,096) 10.299 8.738

+ copy position embeddings 1.957 1.597
+ 2K gradient updates 1.753 1.414
+ 65K gradient updates 1.705 1.358

Longformer (train extra pos. embed. only) 1.850 1.504

Table 5: MLM BPC for RoBERTa and various pre-
trained Longformer configurations.

changes necessary to support Longformer’s atten-
tion mechanism. Note that our attention pattern can
be plugged into any pretrained transformer model
without the need to change the model architecture.

Attention Pattern We use sliding window atten-
tion with window size of 512, therefore using the
same amount of computation as RoBERTa.6

Position Embeddings RoBERTa uses learned
absolute position embeddings with the maximum
position being 512. To support longer documents,
we add extra position embeddings to support up to
position 4,096. To leverage RoBERTa’s pretrained
weights, instead of randomly initializing the new
position embeddings, we initialize them by copying
the 512 position embeddings from RoBERTa mul-
tiple times as analysis of BERT’s attention heads
shows a strong learned bias to attending to local
context, including the previous or next token (Clark
et al., 2019). Using the copy initialization preserves
this local structure everywhere except at the parti-
tion boundaries. Despite its simplicity, we found
this to be a very effective (see Tab. 5), allowing
Longformer pretraining to rapidly converge with a
small number of gradient updates.

Continued MLM Pretraining We pretrain
Longformer using fairseq (Ott et al., 2019) on a
corpus of long documents that we compiled (see
Appendix C for corpus details). We train two model
sizes, a base model and a large model. Both models
are trained for 65K gradient updates with sequences
length 4,096, batch size 64 (218 tokens), maximum
learning rate of 3e-5, linear warmup of 500 steps,
followed by a power 3 polynomial decay. The rest
of the hyperparameters are the same as RoBERTa.

Tab. 5 shows the BPC on the development set of
our training corpus. The first row shows a 1.846

6Adding dilation on a few heads as in §4.1 hurt perfor-
mance, likely because it is not compatible with the pretrained
RoBERTa weights. Retraining such model from scratch might
be needed to improve performance.

6



Wordpieces WH TQA HQA ON IMDB HY

avg. 1,535 6,589 1,316 506 300 705
95th pctl. 3,627 17,126 1,889 1,147 705 1,975

Table 6: Average and 95th percentile of context length
of datasets in wordpieces. WH: WikiHop, TQA: Triv-
iaQA, HQA: HotpotQA, ON: OntoNotes, HY: Hyper-
partisan news

BPC using RoBERTa-base, which is comparable
to the 1.880 BPC reported on the RoBERTa paper
on their corpus. This indicates our training corpus
is from a distribution close to that used to train
RoBERTa. The following two rows show the per-
formance of Longformer before pretraining with
randomly initialized position embeddings and with
copied position embeddings. The significant differ-
ence indicates the importance of the copy initial-
ization, and the relative small difference between
the RoBERTa BPC and the initialized BPC indi-
cates that our sliding window attention is working
well with the RoBERTa weights. The following
two rows show the impact of continuing pretrain-
ing. Traininig for 2K steps improves BPC from
1.957 to 1.753, which further decreases to 1.705 af-
ter 65K steps, demonstrating the model is learning
to better utilize the sliding window attention and
longer context. Similar patterns are observed with
RoBERTa-large and Longformer-large.

Frozen RoBERTa Weights We also pretrained
Longformer while freezing all RoBERTa weights,
and only training the new position embeddings.
The motivation for this configuration is to perfectly
preserve the RoBERTa performance on short doc-
uments. This configuration has a BPC of 1.850
(down from 1.957 at initialization), but higher than
1.705 where all the weights are trainable.

6 Tasks

We apply Longformer to multiple long document
tasks, including QA, coreference resolution and
classification. Tab. 6 shows the evaluation datasets
have contexts significantly longer than 512 word-
pieces. Our primary goal is to evaluate whether
our attention mechanism can act as a replace-
ment for the standard self-attention mechanism in
BERT style models, and to perform controlled tri-
als against a strong baseline. We are also interested
in evaluating whether we can replace complicated
task specific models necessitated by BERT’s lim-
ited context with simpler models that just concate-

nate all available context into a single sequence.
Our baseline is a RoBERTa based model that

breaks the context into the longest possible seg-
ment, passes each individually through RoBERTa,
and concatenates the activations for further process-
ing. For QA tasks, we also concatenate the question
to each segment so that RoBERTa can condition
it’s contextual representations of the context on
the question. The Longformer variant replaces the
RoBERTa self-attention mechanism with our win-
dowed attention used during pretraining, plus a task
motivated global attention. The global attention
uses additional linear projections (§3.1).

6.1 Question answering
We used three datasets: WikiHop (Welbl et al.,
2018), TriviaQA (Joshi et al., 2017, Wikipedia set-
ting), and HotpotQA, (Yang et al., 2018, distractor
setting).7

For WikiHop and TriviaQA we follow the sim-
ple QA model of BERT (Devlin et al., 2019), and
concatenate question and documents into one long
sequence, run it through Longformer, then have a
dataset-specific prediction layer. WikiHop uses a
classification layer for the candidate while Trivi-
aQA uses the loss function of Clark and Gardner
(2017) to predict answer span. We include global
attention to question tokens and answer candidates
for WikiHop and to question tokens for TriviaQA.

HotpotQA is a multihop QA dataset that involves
extracting answer spans and evidence sentences
from 10 Wikipedia paragraphs, 2 of which are rele-
vant and the rest are distractors. We use a two-stage
model that first selects the most relevant paragraphs
then passes them to a second stage for answer ex-
traction. Both stages concatenate question and con-
text into one sequence, run it through Longformer,
then use task-specific prediction layers. We train
the models in a multi-task way to predict relevant
paragraphs, evidence sentences, answer spans and
question types (yes/no/span) jointly. Note that this
model is simpler than recent SOTA models that in-
clude complex task-specific architectures (e.g., (Tu
et al., 2019; Chen et al., 2019; Tu et al., 2020;
Groeneveld et al., 2020)). See Appendix D for fur-
ther details about the models and hyperparameters.

6.2 Coreference Resolution
We use OntoNotes (Pradhan et al., 2012), and the
model from Joshi et al. (2019), a modification of

7We use the full version of TriviaQA and HotpotQA, not
the simplified versions in MRQA (Fisch et al., 2019).

7



QA Coref. Classification

Model WikiHop TriviaQA HotpotQA OntoNotes IMDB Hyperpartisan

RoBERTa-base 72.4 74.3 63.5 78.4 95.3 87.4
Longformer-base 75.0 75.2 64.4 78.6 95.7 94.8

Table 7: Summary of finetuning results on QA, coreference resolution, and document classification. Results are on
the development sets comparing our Longformer-base with RoBERTa-base. TriviaQA, Hyperpartisan metrics are
F1, WikiHop and IMDB use accuracy, HotpotQA is joint F1, OntoNotes is average F1.

the system from Lee et al. (2018) to replace ELMo
with BERT. The Longformer system is a straightfor-
ward adaption of the baseline model by replacing
RoBERTa with Longformer and extending the se-
quence length. We didn’t use global attention for
this task.

6.3 Document Classification

We evaluate on IMDB (Maas et al., 2011) and Hy-
perpartisan news detection (Kiesel et al., 2019)
datasets.8 IMDB is a standard sentiment classifica-
tion datasets consisting of movie reviews. While
most documents in this dataset are short, about
13.6% of them are larger than 512 wordpieces
(Tab. 6). Documents in Hyperpartisan are relatively
long, and it is small with only 645 documents mak-
ing it a good test for Longformer’s ability to adapt
to limited data. We use global attention on the
[CLS] token.

6.4 Results

Main Result Tab. 7 summarizes the results of all
our finetuning experiments. We observe that Long-
former consistently outperforms the RoBERTa
baseline. Its performance gain is especially ob-
vious for tasks that require long context such as
WikiHop and Hyperpartisan. For TriviaQA, the
improvement is more modest as the local context
is often sufficient to answer the question. In the
case of HotpotQA, the supporting fact auxiliary
supervision allows models to easily find relevant
contexts and then focus on local context, leading to
smaller gains. This is contrasted with WikiHop that
only includes distant supervision of intermediate
reasoning chains, where our approach excels by
reasoning over the entire context. On the IMDB
and OntoNotes datasets the performance gains are
smaller. For IMDB, the majority of the dataset
consists of short documents and thus it is expected
to see smaller improvements. For OntoNotes, we

8For Hyperpartisan we split the training data into 80/10/10
train/dev/test sets, and report mean F1 across five seeds.

Model WikiHop TriviaQA HotpotQA

Current∗ SOTA 78.3 73.3 74.2
Longformer-large 81.9 77.3 73.2

Table 8: Leaderboard results of Longformer-large at
time of submission (May 2020). All numbers are F1
scores.

found that the distance between any two mentions
is typically quite small so that a baseline that pro-
cesses smaller chunks separately is able to stitch
together mentions into coreference chains without
considering cross chunk interactions.

Longformer-large for QA We also evaluate the
performance of Longformer-large on long context
QA tasks. Tab. 8 shows that our Longformer-large
achieves new state-of-the-art results9 on WikiHop
and TriviaQA by large margins (3.6 and 4 points
respectively), and for HotpotQA, it underperforms
the current state-of-the-art (Fang et al., 2020) by
a point. Tab. 9 shows the detailed results of Hot-
potQA compared with published and unpublished
concurrent models. Longformer places second
on the published leaderboard, outperforming all
other published results except for HGN (Fang et al.,
2020). All published top performing models in
this task (Tu et al., 2019; Fang et al., 2020; Shao
et al., 2020) use GNNs (Kipf and Welling, 2017)
or graph network of entities, which seem to encode
an important inductive bias for the task and can po-
tentially improve our results further. Nevertheless,
Longformer performs strongly outperforming all
other methods including the recent non-GNN meth-
ods (Glaß et al., 2019; Shao et al., 2020; Groen-
eveld et al., 2020).

8



Model ans. supp. joint

TAP 2 (ensemble) (Glaß et al., 2019) 79.8 86.7 70.7
SAE (Tu et al., 2019) 79.6 86.7 71.4
Quark (dev) (Groeneveld et al., 2020) 81.2 87.0 72.3
C2F Reader (Shao et al., 2020) 81.2 87.6 72.8

Longformer-large 81.3 88.3 73.2

ETC-large† (Ainslie et al., 2020) 81.2 89.1 73.6
GSAN-large† 81.6 88.7 73.9
HGN-large (Fang et al., 2020) 82.2 88.5 74.2

Table 9: HotpotQA results in distractor setting test set.
Quark’s test results are not available. All numbers are
F1 scores. † shows contemporaneous leaderboard sub-
missions.

Model Accuracy / ∆

Longformer (seqlen: 4,096) 73.8

RoBERTa-base (seqlen: 512) 72.4 / -1.4
Longformer (seqlen: 4,096, 15 epochs) 75.0 / +1.2
Longformer (seqlen: 512, attention: n2) 71.7 / -2.1
Longformer (seqlen: 2,048) 73.1 / -0.7
Longformer (no MLM pretraining) 73.2 / -0.6
Longformer (no linear proj.) 72.2 / -1.6
Longformer (no linear proj. no global atten.) 65.5 / -8.3
Longformer (pretrain extra position embed. only) 73.5 / -0.3

Table 10: WikiHop development set ablations

6.5 Ablations on WikiHop

Tab. 10 presents an ablation study for WikiHop on
the development set. All results use Longformer-
base, fine-tuned for five epochs with identical hy-
perparameters except where noted. Longformer
benefits from longer sequences, global attention,
separate projection matrices for global attention,
MLM pretraining, and longer training. In addition,
when configured as in RoBERTa-base (seqlen: 512,
and n2 attention) Longformer performs slightly
worse then RoBERTa-base, confirming that per-
formance gains are not due to additional pretrain-
ing. Performance drops slightly when using the
RoBERTa model pretrained when only unfreezing
the additional position embeddings, showing that
Longformer can learn to use long range context in
task specific fine-tuning with large training datasets
such as WikiHop.

9At submission time, May 2020. Later, BigBird (Zaheer
et al., 2020) improved leaderboard results on these datasets.
There are confounding factors such as using 16X more com-
pute in BigBird’s pretraining compared with Longformer, po-
tentially affecting the performance.

7 Longformer-Encoder-Decoder (LED)

The original Transformer (Vaswani et al., 2017)
consisted of an encoder-decoder architecture, in-
tended for sequence-to-sequence tasks (Sutskever
et al., 2014), such as summarization and transla-
tion. While encoder-only Transformers are effec-
tive on a variety of NLP tasks, pre-trained encoder-
decoder Transformer models (e.g. BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020)) have
achieved strong results on tasks like summariza-
tion. Yet, such models can’t efficiently scale to
seq2seq tasks with longer inputs.

To facilitate modeling long sequences for
seq2seq learning, we propose a Longformer variant
that has both the encoder and decoder Transformer
stacks but instead of the full self-attention in the
encoder, it uses the efficient local+global attention
pattern of the Longformer. The decoder uses the
full self-attention to the entire encoded tokens and
to previously decoded locations. We call this model
Longformer-Encoder-Decoder (LED) which scales
linearly with the input. Since pre-training LED is
expensive, we initialize LED parameters from the
BART, and follow BART’s exact architecture in
terms of number of layers and hidden sizes. The
only difference is that to process longer inputs,
we extend position embedding to 16K tokens (up
from BART’s 1K tokens) and we initialize the new
position embedding matrix by repeatedly copying
BART’s 1K position embeddings 16 times as in
Section 5 for RoBERTa. Following BART, we re-
lease two model sizes, LED-base and LED-large,
which respectively have 6 and 12 layers in both
encoder and decoder stacks.

We evaluate LED on the summarization task us-
ing the arXiv summarization dataset (Cohan et al.,
2018) which focuses on long document summariza-
tion in the scientific domain. The 90th percentile
of document lengths is 14.5K tokens, making it
an appropriate testbed for evaluating LED. LED’s
encoder reads the document and its decoder gener-
ates the output summary. The encoder uses local
attention with window size 1,024 tokens and global
attention on the first <s> token. The decoder uses
full attention to the entire encoder and previously
decoded locations. As standard in seq2seq models,
LED is trained using teacher forcing on gold train-
ing summaries and uses beam search at inference.

Tab. 11 demonstrates the results of LED-large
16K on the arXiv summarization task. This model
is merely initialized from BART, with no additional

9



R-1 R-2 R-L

Discourse-aware (2018) 35.80 11.05 31.80
Extr-Abst-TLM (2020) 41.62 14.69 38.03
Dancer (2020) 42.70 16.54 38.44
Pegasus (2020) 44.21 16.95 38.83
LED-large (seqlen: 4,096) (ours) 44.40 17.94 39.76
BigBird (seqlen: 4,096) (2020) 46.63 19.02 41.77
LED-large (seqlen: 16,384) (ours) 46.63 19.62 41.83

Table 11: Summarization results of Longformer-
Encoder-Decoder (LED) on the arXiv dataset. Met-
rics from left to right are ROUGE-1, ROUGE-2 and
ROUGE-L.

1K 4k 16k
10

15

20

25

30

35

40

45

35.21

44.48
46.23

11.54

17.99 19.62

R1
R2

Figure 3: ROUGE-1 and ROUGE-2 of LED when vary-
ing the input size (arXiv validation set).

pre-training. We observe that LED achieves state-
of-the-art results on arXiv, slightly outperform-
ing BigBird (Zaheer et al., 2020). Note that the
BigBird summarization model supports sequence
length of 4K tokens but starts from and continues
pre-training Pegasus (Zhang et al., 2020), a model
specifically designed and pre-trained for summa-
rization. With no pre-training or task-specific ini-
tialization, but with ability to process longer inputs,
LED can slightly outperform BigBird. Further im-
provements should be possible through pre-training
of LED. Fig. 3 further illustrates the importance
of sequence length showing the ablility to process
longer input significantly improves the results.

8 Conclusion and Future Work

We present Longformer, a transformer-based model
that is scalable for processing long documents
and that makes it easy to perform a wide range
of document-level NLP tasks without chunk-
ing/shortening the long input and without com-
plex architecture to combine information across
these chunks. Longformer employs an attention
pattern that combines local and global information
while also scaling linearly with the sequence length.
Longformer achieves state-of-the-art results on the
character-level language modeling tasks of text8

and enwik8. When pretrained, Longformer con-
sistently outperforms RoBERTa on long document
tasks and sets new state-of-the-art results on Wik-
iHop and TriviaQA. We further present LED, an
encoder-decoder variant of Longformer for model-
ing sequence-to-sequence tasks, and achieve state-
of-the-art results on the arXiv long document sum-
marization task. For future work, we would like
to study other pretraining objectives, especially for
LED, increase the sequence length, and explore
other tasks that might benefit from our model.

Acknowledgment

We would like to thank Noah Smith, Dan Weld,
Dirk Groeneveld, Kyle Lo, Daniel King and Doug
Downey for helpful discussions and feedback, and
the AI2 infrastructure team for technical support.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268–284, Online. Asso-
ciation for Computational Linguistics.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy
Guo, and Llion Jones. 2018. Character-level lan-
guage modeling with deeper self-attention. In AAAI.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL.

Jifan Chen, Shih-Ting Lin, and Greg Durrett. 2019.
Multi-hop question answering via reasoning chains.
arXiv preprint, abs/1910.02610.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018.
TVM: An automated end-to-end optimizing com-
piler for deep learning. In OSDI.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint, abs/1604.06174.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint,
abs/1904.10509.

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. In ACL.

10

https://www.aclweb.org/anthology/2020.emnlp-main.19
https://www.aclweb.org/anthology/2020.emnlp-main.19


Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint,
abs/1906.04341.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
NAACL-HLT 2018.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NeurIPS.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchical
graph network for multi-hop question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8823–8838, Online. Association for Computa-
tional Linguistics.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eu-
nsol Choi, and Danqi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In MRQA workshop at EMNLP.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of academic articles. ArXiv, abs/2004.06190.

Michael Glaß, Alfio Massimiliano Gliozzo, Rishav
Chakravarti, Anthony Ferritto, Lin Pan, Gaudani
Bhargav, Dinesh Garg, and Avirup Sil. 2019. Span
selection pre-training for question answering. arXiv
preprint, abs/1909.04120.

Scott Gray, Alec Radford, and Diederik P. Kingma.
2017. Gpu kernels for block-sparse weights.

Dirk Groeneveld, Tushar Khot, Mausam, and Ashish
Sabhwaral. 2020. A simple yet strong pipeline for
HotpotQA. arXiv preprint, abs/2004.06753.

Ankit Gupta and Jonathan Berant. 2020. Gmat: Global
memory augmentation for transformers. ArXiv,
abs/2006.03274.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In ACL.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference resolu-
tion: Baselines and analysis. In EMNLP-IJCNLP.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 829–839, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. ICLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In
ICLR.

Olga V. Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In EMNLP/IJCNLP.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In NAACL.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint, abs/1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Matt Mahoney. 2009. Large text compression bench-
mark.

Aäron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. 2016. Wavenet: A generative model
for raw audio. In SSW.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible

11

https://www.aclweb.org/anthology/2020.emnlp-main.710
https://www.aclweb.org/anthology/2020.emnlp-main.710
https://doi.org/10.18653/v1/S19-2145
https://doi.org/10.18653/v1/S19-2145
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages
1–40, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Yih, Sinong
Wang, and Jie Tang. 2019. Blockwise self-attention
for long document understanding. arXiv preprint,
abs/1911.02972.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, and Timothy P. Lillicrap. 2020. Compressive
transformers for long-range sequence modelling. In
ICLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
W. Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2020. Efficient content-based
sparse attention with routing transformers. arXiv
preprint, abs/2003.05997.

Nan Shao, Yiming Cui, Ting Liu, Shijin Wang, and
Guoping Hu. 2020. Is graph structure neces-
sary for multi-hop reasoning? arXiv preprint,
abs/2004.03096.

Sandeep Subramanian, Raymond Li, Jonathan Pilault,
and C. Pal. 2020. On extractive and abstractive neu-
ral document summarization with transformer lan-
guage models. In EMNLP.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Trieu H. Trinh and Quoc V. Le. 2018. A simple
method for commonsense reasoning. arXiv preprint,
abs/1806.02847.

Ming Tu, Jinke Huang, Xiaodong He, and Bowen
Zhou. 2020. Graph sequential network for reasoning
over sequences. In NeurIPS Graph Representation
Learning workshop.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bufang Zhou. 2019. Select, an-
swer and explain: Interpretable multi-hop reading
comprehension over multiple documents. arXiv
preprint, abs/1911.00484.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. TACL,
6:287–302.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. arXiv
preprint, abs/1901.10430.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang
Luong, and Quoc V. Le. 2019. Unsupervised
data augmentation for consistency training. arXiv
preprint, abs/1904.12848.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shu
xin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Li-Wei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. arXiv
preprint, abs/2002.04745.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question
answering. In EMNLP.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and
Zheng Zhang. 2019. BP-Transformer: Modelling
long-range context via binary partitioning. arXiv
preprint, abs/1911.04070.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, C. Alberti, S. Ontañón,
Philip Pham, Anirudh Ravula, Qifan Wang, L. Yang,
and A. Ahmed. 2020. Big bird: Transformers for
longer sequences. ArXiv, abs/2007.14062.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In NeurIPS.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter J Liu. 2020. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
ICML.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. ICCV, pages 19–27.

12

https://www.aclweb.org/anthology/W12-4501
https://www.aclweb.org/anthology/W12-4501
https://www.aclweb.org/anthology/W12-4501


A Implementation Details

Implementing Longformer’s dilated sliding win-
dow attention requires a form of banded matrix
multiplication (matrix multiplication where the out-
put is all zero except certain diagonals) that is
not directly supported in existing deep learning
libraries like PyTorch/Tensorflow. Fig. 1 compares
the runtime and memory of three different ways of
implementing it.
Longformer-loop is a naive implementation
that computes each diagonal separately in a loop.
It is memory efficient because it only computes the
non-zero values, but it is unusably slow. We only
use it for testing because it is easy to implement
but don’t use it to run experiments.
Longformer-chunks only supports the non-
dilated case. It chunks Q and K into overlapping
blocks of size w and overlap of size 1

2w, multiplies
the blocks, then mask out the diagonals. This is
very compute efficient because it uses a single ma-
trix multiplication operation from PyTorch, but it
consumes 2x the amount of memory a perfectly op-
timized implementation should consume because
it computes some of the zero values. Because of
the compute efficiency, this implementation is most
suitable for the pretrain/finetune case. We didn’t
find the increase in memory to be a problem for
this setting.
Longformer-cuda is a custom CUDA kernel
that we implement using TVM (Chen et al., 2018).
It is a fully functioning implementation of our at-
tention (not limited as Longformer-chunks),
it is the most memory efficient, and it is as fast
as the highly optimized full self-attention.10 We
mainly use this implementation for the autoregres-
sive language modeling experiments because of the
memory efficiency (allows the longest sequences)
and the support of dilation (needed for character-
LM experiments).

Tensor Virtual Machine (TVM) We build our
custom CUDA kernel using TVM (Chen et al.,
2018), a deep learning compiler stack that compiles
high level description of a function into optimized
device-specific code. Using TVM, we describe our
banded matrix multiplication in high-level python

10It is worth noting that theoretically, a perfectly optimized
Longformer-cuda should be faster than the n2 computa-
tion. However, achieving this level of performance requires
special knowledge of low-level GPU programming, similar to
implementing a highly optimized matrix multiplication. Our
current implementation is sufficiently fast and practical to use.

constructs, then TVM generates the corresponding
CUDA code and compiles it for GPUs.

B Character LM Hyperparameters

We evaluate on text8 and enwik8, both contain
100M characters from Wikipedia split into 90M,
5M, 5M for train, dev, test. Our model only speci-
fies how the self-attention component works, and it
is agnostic to the other design choices for the trans-
former model. Our implementation is based on the
Transformer-XL (Dai et al., 2019) code11 with the
memory mechanism disabled. We use relative posi-
tion embeddings with sinusoidal weights as in Dai
et al. (2019). We use two different model sizes, a
small (12 layers, 512 hidden size) model as in Dai
et al. (2019), and a large (30 layers, 512 hidden
size) model as in Child et al. (2019). We employed
mixed precision training (floating points 16 and 32)
using apex12 to reduce memory consumption and
speed-up training. However, we kept the attention
computation in fp32 to avoid numerical instability
issues.13 We used gradient checkpointing (Chen
et al., 2016) to reduce memory usage, and ran our
experiments on 48GB RTX8000 GPUs. All hyper-
parameters and stage configurations are listed in
Tab. 12. Our CUDA kernel supports the autoregres-
sive mode where each token attends to a window of
previous tokens only. Our implementation also in-
cludes a version of the relative position embedding
that is compatible with our dilated sliding window
attention.

We ran the small model experiments on 4
RTX8000 GPUs for 16 days. For the large model,
we ran experiments on 8 RTX8000 GPUs for 13
days. Most of our hyperparameter search is similar
to the ablation in Tab. 4 where we run the configu-
ration for 150K steps on text8. We experimented
with absolute position embeddings and learned po-
sition embeddings, dropout values of [0.1, 0.2]
(small model) and [0.1, 0.4] (large model), pre-
layernorm and post-layernorm (Xiong et al., 2020),
learning rate (LR) of phase1 of values [2.5e-5, 5e-
4, 1e-4] constant and cosine LR schedules, and
different configurations for dilation (on all heads,
on 2 heads, no dilation). Number of gradient up-
dates/phase reported in Tab. 12 is determined by
running each phase until the validation BPC stops

11https://github.com/kimiyoung/
transformer-xl

12https://github.com/NVIDIA/apex
13We found that using fp16 in attention operation results in

floating point overflow and NaNs in later stages of training.

13

https://github.com/kimiyoung/transformer-xl
https://github.com/kimiyoung/transformer-xl
https://github.com/NVIDIA/apex


getting better.

C Pretraining Data

In order to allow the model to learn long depen-
dencies in pretraining, we compiled a corpus of
long documents. Some of these data sources were
also included in the original RoBERTa pretraining
including the Books corpus (Zhu et al., 2015) plus
English Wikipedia. We additionally included one
third of a subset of the Realnews dataset (Zellers
et al., 2019) with documents longer than 1,200 to-
kens as well as one third of the Stories (Trinh and
Le, 2018) corpus. Our goal was to include a mix of
long and short documents to both allow the model
to learn longer dependencies while not to forget in-
formation from the original RoBERTa pretraining.
The statistics of the pretraining data is shown in
Tab. 13.

D Task specific model details

All the QA and classification models are imple-
mented using PyTorch-Lightning14. We use the
official train/dev/test splits of all datasets except
for the Hyperpartisan news which we randomely
split into 80/10/10 for train/dev/test.

WikiHop Instances in WikiHop consist of: a
question, answer candidates (ranging from two
candidates to 79 candidates), supporting contexts
(ranging from three paragraphs to 63 paragraphs),
and the correct answer. The dataset does not pro-
vide any intermediate annotation for the multihop
reasoning chains, requiring models to instead infer
them from the indirect answer supervision.

To prepare the data for input to Longformer
and RoBERTa, we first tokenize the question,
answer candidates, and support contexts using
RoBERTa’s wordpiece tokenizer. Then we
concatenate the question and answer candi-
dates with special tokens as [q] question
[/q] [ent] candidate1 [/ent] ...
[ent] candidateN [/ent]. The contexts
are also concatenated using RoBERTa’s doc-
ument delimiter tokens as separators: </s>
context1 </s> ... </s> contextM
</s>. The special tokens [q], [/q],
[ent], [/ent] were added to the RoBERTa
vocabulary and randomly initialized before task
finetuning.

14https://github.com/PyTorchLightning/
pytorch-lightning

After preparing the input data, we compute acti-
vations from the top layer of each model as follows.
We take the question and answer candidates and
concatenate them to as much context as possible up
to the model sequence length (512 for RoBERTa,
4,096 for Longformer), run the sequence through
the model, collect the output activations, and repeat
until all of the context is exhausted (for all models
except Longformer-large, where we just include
the first 4,096 length sequence due to memory re-
quirements). Then all activations for all chunks are
concatenated into one long sequence. In the case of
Longformer, we use global attention to the entire
question and answer candidate sequence.

For prediction, we attach a linear layer to each
[ent] that outputs a single logit, average over all
logits for each candidate across the chunks, apply
a softmax and use the cross entropy loss with the
correct answer candidate.

Training used the Adam optimizer with linear
warmup over 200 gradient updates to a maximum
LR, and linear decay over the remainder of training.
We used gradient accumulation to effective batch
size of 32 instances, checking the development ac-
curacy every 250 gradient updates and reported the
maximum development accuracy. Other hyperpa-
rameters (dropout, weight decay) were identical to
RoBERTa pretraining.

In general, we ran minimal hyperparameter trials,
but for fair comparison between Longformer and
RoBERTa ran an identical hyperparameter search
with Longformer-base and RoBERTa-base. This
consisted of a grid search of LR in [2e-5, 3e-5,
5e-5] and number epochs in [5, 10, 15]. The
best Longformer-base configuration used lr=3e-5,
15 epochs. We ran two hyperparameter trials for
Longformer-large, lr=3e-5 and number epochs in
[5, 15] (the 5 epoch model had higher dev accuracy
of 77.6, and was the single model submitted to the
public leaderboard for test set evaluation). All mod-
els were trained on a single RTX8000 GPU, with
Longformer-base taking about a day for 5 epochs.

TriviaQA TriviaQA has more than 100K ques-
tion, answer, document triplets for training. Doc-
uments are Wikipedia articles, and answers are
named entities mentioned in the article. The span
that answers the question is not annotated, but it is
found using simple text matching.

Similar to WikiHop, we tokenize the question
and the document using RoBERTa’s tokenizer,
then form the input as [s] question [/s]

14

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning


Param Value

Position Embeddings Relative and Sinusoidal as in Dai et al. (2019)
Small model config 12 layers, 8 heads, 512 hidden size as in Dai et al. (2019)
Large model config 30 layers, 8 heads, 512 hidden size as in Child et al. (2019)
Optimizer AdamW
Dropout 0.2 (small model), 0.4 (large model)
Gradient clipping 0.25
Weight Decay 0.01
Layernorm Location pre-layernorm (Xiong et al., 2020)
Activation GeLU
Number of phases 5
Phase 1 window sizes 32 (bottom layer) - 8,192 (top layer)
Phase 5 window sizes 512 (bottom layer) - (top layer)
Phase 1 sequence length 2,048
Phase 5 sequence length 23,040 (gpu memory limit)
Phase 1 LR 0.00025
Phase 5 LR 000015625
Batch size per phase 32, 32, 16, 16, 16
#Steps per phase (small) 430K, 50k, 50k, 35k, 5k
#Steps per phase (large) 350K, 25k, 10k, 5k, 5k
Warmup 10% of the phase steps with maximum 10K steps
LR scheduler constant throughout each phase
Dilation (small model) 0 (layers 0-5), 1 (layers 6-7), 2 (layers 8-9), 3 (layers 10-11)
Dilation (large model) 0 (layers 0-14), 1 (layers 15-19), 2 (layers 20-24), 3 (layers 25-29)
Dilation heads 2 heads only

Table 12: Hyperparameters for the best performing model for character-level language modeling

Source Tokens Avg doc len

Books (Zhu et al., 2015) 0.5B 95.9K
English Wikipedia 2.1B 506
Realnews (Zellers et al., 2019) 1.8B 1.7K
Stories (Trinh and Le, 2018) 2.1B 7.8K

Table 13: Pretraining data

document [/s]. We truncate the document at
4,096 wordpiece to avoid it being very slow. After-
wards, we get the activations from RoBERTa and
Longformer similar to WikiHop (discussed above).
We use global attention on all question tokens.

For prediction, we add one layer that predicts the
beginning and end of the answer span. Because of
the distant supervision nature of the training data
(no gold answer spans), we use the loss function
of Clark and Gardner (2017) which works like an
OR that the model only needs to get one answer
span right, not all of them.

Hyperparameters of the best configuration are
listed in Tab. 14. All other hyperparameters are
similar to RoBERTa’s. For hyperparameter search,
we only tuned LR for the RoBERTa baseline and
tried rates [3e-5, 5e-5, 1e-4], then used the best,
which is 3e-5, for all subsequent experiments with
no further tuning. We trained the Longformer-large
with the best configuration once and submitted its
output to the leaderboard. We ran our experiments

on 32GB V100 GPUs. Small model takes 1 day to
train on 4 GPUs, while large model takes 1 day on
8 GPUs.

HotpotQA HotpotQA dataset involves answer-
ing questions from a set of 10 paragraphs from
10 different Wikipedia articles where 2 paragraphs
are relevant to the question and the rest are dis-
tractors. It includes 2 tasks of answer span ex-
traction and evidence sentence identification. Our
model for HotpotQA combines both answer span
extraction and evidence extraction in one joint
model. We found a higher performance using a
two-stage Longformer model with similar setup
that first identifies relevant paragraphs and then
does find the final answer span and evidence.15

This is largely because removing the distracting
paragraphs first reduces the noise for the final ev-
idence and span detection as also found to be im-
portant by recent state-of-the-art methods in this
dataset (Fang et al., 2020). Similar to Wikihop and
TriviaQA, to prepare the data for input to Long-
former, we concatenate question and then all the
10 paragraphs in one long context. We particu-
larly use the following input format with special
tokens: “[CLS] [q] question [/q] 〈t〉
title1 〈/t〉 sent1,1 [s] sent1,2 [s] ...

15The final dev performance of the two stage model im-
proves over a single stage model by about 4.2 points on joint-
F1 metric

15



〈t〉 title2 〈/t〉 sent2,1 [s] sent2,2
[s] ...” where [q], [/q], 〈t〉, 〈/t〉, [s],
[p] are special tokens representing, question start
and end, paragraph title start and end, and sentence,
respectively. The special tokens were added to the
Longformer vocabulary and randomly initialized
before task finetuning. For Longformer, we use
global attention to question tokens, paragraph ti-
tle start tokens as well as sentence tokens. The
model includes additional feedforward layers on
top of paragraph title start tokens for prediction
of relevant paragraphs, as well as sentence tokens
for predicting evidence sentences. After training
the first stage model, we predict relevant paragraph
scores for both training and development set. We
then keep up to 5 paragraphs whose raw score is
higher than a pre-specified threshold (-3.0), and
remove the other paragraphs from the context. We
then train the second stage model on the resulting
shortened context. For answer span extraction we
use BERT’s QA model (Devlin et al., 2019) with
addition of a question type (yes/no/span) classifi-
cation head over the first special token ([CLS]).
For evidence extraction we apply 2 layer feedfor-
ward networks on top of the representations corre-
sponding to sentence and paragraph tokens to get
the corresponding evidence prediction scores and
use binary cross entropy loss to train the model.
At inference time for evidence extraction, we use
a constrained decoding strategy similar to Groen-
eveld et al. (2020) that ensures that the evidence
sentences come from exactly two paragraphs which
is the setup of this dataset. We combine span, ques-
tion classification, sentence, and paragraphs losses
and train the model in a multitask way using lin-
ear combination of losses. Our experiments are
done on RTX8000 GPUs and training each epoch
takes approximately half a day on 4 GPUs. We
trained the model using Adam optimizer with lin-
ear warmup (1000 steps) and linear decay. We used
minimal hyperparameter tuning using LRs of 3e-5
and 5e-5 and epochs of 3 to 7 and found the model
with LR of 3e-5 and 5 epochs to work best. We
conduct the same hyperparameter search for the
RoBERTa baseline as well. The rest of hyperpa-
rameters are reported in Tab 14.

Coreference model details The coreference
model is a straightforward adaptation of the coarse-
to-fine BERT based model from Joshi et al.
(2019). After preprocessing each document with
the RoBERTa wordpiece tokenizer, it splits each

Param WikiHop TriviaQA HotpotQA

Epochs 15 5 5
LR 3e-5 3e-5 5e-5
Warmup steps 200 1000 1000
Batch size 32 32 32
Optimizer Adam Adam Adam

Table 14: Hyperparameters of the QA models. All mod-
els use a similar scheduler with linear warmup and de-
cay.

document into non-overlapping segments up to the
maximum sequence length, then concatenates the
activations for the coarse-to-fine clustering stage
that forms coreference clusters. The maximum se-
quence length was 384 for RoBERTa-base, chosen
after three trials from [256, 384, 512] using the
default hyperparameters in the original implemen-
tation.16 For Longformer-base the sequence length
was 4,096. Similar to the original implementation,
different learning rates were used for the pretrained
RoBERTa parameters and the randomly initialized
task parameters. Using a larger learning rate in the
task parameters allows the optimizer to adjust them
farther from their randomly initialized values with-
out destroying the information in the pretrained
RoBERTa parameters.

Hyperparameter searches were minimal and con-
sisted of grid searches of RoBERTa LR in [1e-5,
2e-5, 3e-5] and task LR in [1e-4, 2e-4, 3e-4] for
both RoBERTa and Longformer for a fair compari-
son. The best configuration for Longformer-base
was RoBERTa lr=1e-5, task lr=1e-4. All other hy-
perparameters were the same as in the original im-
plementation. Training takes about 10 hours on a
single GPU.

Our implementation is a superhack that involves
PyTorch and Tensorflow sharing a single process
and GPU. To avoid re-implementing the com-
plicated coarse-to-fine logic from Tensorflow in
PyTorch (that involves a highly optimized cus-
tom GPU kernel originally released by Lee et al.
(2018)), we devised a system where the lower trans-
former portion of the model passes activations and
gradients back and forth between PyTorch and Ten-
sorflow. The input tensors are first run through
the transformer in PyTorch, the activations are col-
lected from the top layer, transferred from GPU
to CPU then from CPU to Tensorflow and back to
GPU to run the coarse-to-fine clustering and com-
pute the loss. Then gradients are back propogated

16https://github.com/mandarjoshi90/coref

16



in Tensorflow to the top of the transformer and
the process reversed to transfer them to PyTorch
for back propogation through the remainder of the
model. Separate optimizers are maintained with
identical LR schedules for parameter updates. The
overhead in this approach is minimal compared to
the overall cost of running the model.

Text classification For classification, following
BERT, we used a simple binary cross entropy loss
on top of a first [CLS] token with addition of
global attention to [CLS]. We used Adam opti-
mizer with batch sizes of 32 and linear warmup
and decay with warmup steps equal to 0.1 of the
total training steps. For both IMDB and Hyperpar-
tisan news we did grid search of LRs [3e-5, 5e-5]
and epochs [10, 15, 20] and found the model with
[3e-5] and epochs 15 to work best. Experiments
were done on a single RTX8000 GPU.

17




