File size: 7,642 Bytes
b94a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5826a30
b94a097
 
 
 
 
 
 
 
 
 
 
325e2c4
b94a097
 
fc6af0b
 
b94a097
 
 
 
0f84598
b94a097
 
0cc8a74
b94a097
 
 
 
 
 
 
 
 
 
 
 
 
8eac2ab
b94a097
 
8eac2ab
b94a097
 
412a02e
b94a097
 
 
 
553480b
e68dd09
b94a097
 
 
61c6c9e
b94a097
 
 
 
 
 
 
 
 
 
bdc2a7b
b94a097
 
 
 
 
bdc2a7b
b94a097
 
 
 
 
 
 
 
 
bdc2a7b
b94a097
 
cb52154
b94a097
 
bdc2a7b
b94a097
 
fc6af0b
bdc2a7b
fc6af0b
 
bdc2a7b
fc6af0b
 
 
cb52154
fc6af0b
 
bdc2a7b
fc6af0b
 
b94a097
 
bdc2a7b
b94a097
d4ce05f
b1daa1b
b94a097
412a02e
7635d84
42ed38f
 
 
880834e
 
42ed38f
2c3b9a3
553480b
42ed38f
 
 
f2d48b6
b1daa1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""IMDb movie revies dataset mixed with Trip Advisor Hotel Reviews to simulate drift accross time."""


import csv
import json
import os

import datasets
from datasets.tasks import TextClassification



# TODO: Add BibTeX citation to our BLOG
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = ""
# _CITATION = """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset was crafted to be used in our tutorial [Link to the tutorial when ready]. It consists on a large Movie Review Dataset mixed with some reviews from a Hotel Review Dataset. The training/validation set are purely obtained from the Movie Review Dataset while the production set is mixed. Some other features have been added (age, gender, context) as well as a made up timestamp prediction_ts of when the inference took place.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/arize-ai/reviews_with_drift/resolve/main/"
_URLS = {
    "training": _URL + "training.csv",
    "validation": _URL + "validation.csv",
    "production": _URL + "production.csv",
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ReviewsWithDrift(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="default", version=VERSION, description="Default"),
    ]

    DEFAULT_CONFIG_NAME = "default"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        class_names = ["negative", "positive"]
        # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        features = datasets.Features(
            # These are the features of your dataset like images, labels ...
            {
                "prediction_ts": datasets.Value("float"),
                "age":datasets.Value("int16"),
                "gender":datasets.Value("string"),
                "context":datasets.Value("string"),
                "text":datasets.Value("string"),
                "label":datasets.ClassLabel(names=class_names),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            supervised_keys=("text", "label"),
            # Homepage of the dataset for documentation
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
            task_templates=[TextClassification(text_column="text", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        extracted_paths = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split("training"),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": extracted_paths['training'],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("validation"),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": extracted_paths['validation'],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("production"),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": extracted_paths['production'],
                },
            ),
        ]


    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath):
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        label_mapping = {"positive": 1, "negative": 0}
        with open(filepath) as csv_file:
            csv_reader = csv.reader(csv_file)
            for id_, row in enumerate(csv_reader):
                prediction_ts,age,gender,context,text,label = row
                if id_==0:
                    continue
                yield id_, {
                    "prediction_ts":prediction_ts,
                    "age":age,
                    "gender":gender,
                    "context":context,
                    "text": text,
                    "label":label,
                }