File size: 14,298 Bytes
c96a100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/models/multibanddiffusion.py"""
import logging
from typing import List, Optional, Tuple
from math import ceil
import torch
import julius

from tqdm import tqdm
from audiocraft.modules.diffusion_schedule import NoiseSchedule
from audiocraft.models.unet import DiffusionUnet
from audiocraft.models.encodec import CompressionModel
from audiocraft.models.loaders import load_diffusion_models
from audiocraft.solvers.compression import CompressionSolver
from df.enhance import enhance, init_df, load_audio, save_audio  # deepfilternet


class DFEnhancer:
    """Speech enhancer."""
    def __init__(self):
        self.model, self.df_state, _ = init_df()
        self.sample_rate = self.df_state.sr()

    def enhance_audio(self, audio: torch.Tensor, sample_rate: int) -> torch.Tensor:
        if sample_rate != self.sample_rate:
            audio = julius.resample_frac(audio, sample_rate, self.sample_rate)
        enhanced_audio = []
        for single_audio in audio:
            enhanced_audio.append(enhance(self.model, self.df_state, single_audio))
        return torch.stack(enhanced_audio)


class DiffusionProcess:
    """Sampling for a diffusion Model.
    Args:
        model (DiffusionUnet): Diffusion U-Net model.
        noise_schedule (NoiseSchedule): Noise schedule for diffusion process.
    """
    def __init__(self, model: DiffusionUnet, noise_schedule: NoiseSchedule) -> None:
        self.model = model
        self.schedule = noise_schedule

    def generate(self, condition: torch.Tensor, initial_noise: torch.Tensor, step_size: int = 5) -> torch.Tensor:
        """Perform one diffusion process to generate one of the bands.
        Args:
            condition (torch.Tensor): The embeddings from the compression model.
            initial_noise (torch.Tensor): The initial noise to start the process.
            step_size (int): The number of the linearly spaced Markov chain steps.
        """
        step_list = list(range(1000))[::-int(1000/step_size)] + [0]
        return self.schedule.generate_subsampled(
            model=self.model, initial=initial_noise, step_list=step_list, condition=condition
        )


class BaseMultiBandDiffusion:

    def __init__(self,
                 diffusion_processes: List[DiffusionProcess],
                 codec_model: CompressionModel,
                 sample_per_token: int = 320,
                 num_codebooks_decoder: int = 3,
                 num_codebooks_encoder: Optional[int] = None) -> None:
        """Base class for multi-band diffusion.
        Args:
            diffusion_processes (list of DiffusionProcess): Diffusion processes.
            codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens.
            sample_per_token (int): Number of sample per token (320 for 24kHz encodec).
            num_codebooks_decoder (int): Number of codebook to use for decoder.
            num_codebooks_encoder (int): Number of codebook to use for encoder (default full code).
        """
        self.diffusion_processes = diffusion_processes
        self.codec_model = codec_model
        self.device = next(self.codec_model.parameters()).device
        self.sample_per_token = sample_per_token
        self.num_codebooks_decoder = num_codebooks_decoder
        self.num_codebooks_encoder = num_codebooks_encoder
        self.enhancer = DFEnhancer()

    @property
    def sample_rate(self) -> int:
        return self.codec_model.sample_rate

    def generate(self, emb: torch.Tensor, size: torch.Size, step_size: int = 5) -> torch.Tensor:
        """Generate waveform audio from the latent embeddings of the compression model.
        Args:
            emb (torch.Tensor): Conditioning embeddings
            size (None, torch.Size): Size of the output.
            step_size (int): The number of the linearly spaced Markov chain steps.
        """
        assert size[0] == emb.size(0)
        out = torch.zeros(size).to(self.device)
        for diffusion_process in self.diffusion_processes:
            out += diffusion_process.generate(condition=emb, step_size=step_size, initial_noise=torch.randn_like(out))
        return out

    def re_eq(self, wav: torch.Tensor, ref: torch.Tensor, n_bands: int = 32, strictness: float = 1) -> torch.Tensor:
        """Match the eq to the encodec output by matching the standard deviation of some frequency bands.
        Args:
            wav (torch.Tensor): Audio to equalize.
            ref (torch.Tensor): Reference audio from which we match the spectrogram.
            n_bands (int): Number of bands of the eq.
            strictness (float): How strict the matching. 0 is no matching, 1 is exact matching.
        """
        split = julius.SplitBands(n_bands=n_bands, sample_rate=self.codec_model.sample_rate).to(wav.device)
        bands = split(wav)
        bands_ref = split(ref)
        out = torch.zeros_like(ref)
        for i in range(n_bands):
            out += bands[i] * (bands_ref[i].std() / bands[i].std()) ** strictness
        return out

    @torch.no_grad()
    def wav_to_tokens(self,
                      wav: torch.Tensor,
                      sample_rate: int,
                      cpu_offload: bool = True,
                      chunk_length: Optional[int] = None,
                      stride: Optional[int] = None,
                      concat_strategy: str = "first") -> torch.Tensor:
        """Get audio tokens from waveform in batch. Note that Encodec generates 75 tokens per second of audio at 24 kHz
        meaning 320 samples (13.333 msec) per tokens.
        Args:
            wav (torch.Tensor): The audio that we want to extract the conditioning from (batch, channel, wav).
            sample_rate (int): Sample rate of the audio.
            cpu_offload (bool): Move the output tokens to cpu on the fly to save cuda memory.
            chunk_length (int): Chunk length to split a long audio (sample size, must be divisible by sample_per_token).
            stride (int): Stride over chunked audio (sample size, must be divisible by sample_per_token).
            concat_strategy (str): "first" or "last" to indicate which chunk to use when consolidating the overlap.
        """
        # sanity check
        if wav.ndim != 3:
            raise ValueError(f"wav should be (batch, channel, time): {wav.ndim} dims")
        original_device = wav.device
        # sampling audio
        if sample_rate != self.sample_rate:
            wav = julius.resample_frac(wav, sample_rate, self.sample_rate)
        batch_size, channels, input_length = wav.shape
        if channels > 1:
            logging.warning("Audio has more than one channel but encoder takes the first channel only.")
        # validate chunk length and stride (if None, do one-shot process)
        if chunk_length:
            if chunk_length % self.sample_per_token != 0:
                raise ValueError(f"chunk_length must be divisible by {self.sample_per_token}: {chunk_length}")
        else:
            chunk_length = input_length
        chunk_length_latent = ceil(chunk_length / self.sample_per_token)
        if stride:
            if stride % self.sample_per_token != 0:
                raise ValueError(f"stride must be divisible by {self.sample_per_token}: {stride}")
        else:
            stride = chunk_length
        stride_latent = ceil(stride / self.sample_per_token)
        # initialize the token tensor
        num_tokens = ceil(input_length / self.sample_per_token)
        num_filters = self.codec_model.model.config.num_filters
        if self.num_codebooks_encoder is not None:
            if self.num_codebooks_encoder > num_filters:
                raise ValueError(f"num_codebooks_encoder must be smaller than {num_filters}")
            num_filters = self.num_codebooks_encoder
        tokens = torch.zeros(
            (batch_size, num_filters, num_tokens),
            device="cpu" if cpu_offload else original_device,
            dtype=torch.int64
        )
        # tokenize by chunk in a sequential manner
        for offset in tqdm(list(range(0, input_length - chunk_length + stride, stride))):
            frame = wav[:, :1, offset: offset + chunk_length]
            tmp_tokens, _ = self.codec_model.encode(frame.to(self.device))
            offset_latent = int(offset / self.sample_per_token)
            tmp_tokens = tmp_tokens.to("cpu") if cpu_offload else tmp_tokens.to(original_device)
            if concat_strategy == "last" or offset == 0:
                tokens[:, :, offset_latent: offset_latent + chunk_length_latent] = tmp_tokens[:, :num_filters, :]
            else:
                overlap_token = chunk_length_latent - stride_latent
                tokens[:, :, offset_latent + overlap_token: offset_latent + chunk_length_latent] \
                    = tmp_tokens[:, :num_filters, overlap_token:]
        return tokens

    @torch.no_grad()
    def tokens_to_wav(self,
                      tokens: torch.Tensor,
                      n_bands: int = 32,
                      step_size: int = 5,
                      cpu_offload: bool = True,
                      chunk_length: Optional[int] = None,
                      stride: Optional[int] = None,
                      concat_strategy: str = "crossfade",
                      skip_enhancer: bool = False) -> Tuple[torch.Tensor, float]:
        """Generate waveform audio with diffusion from the discrete codes in batch.
        Args:
            tokens (torch.Tensor): Discrete codes (batch, num_code, length).
            n_bands (int): Bands for the eq matching.
            step_size (int): Number of the linearly spaced Markov chain steps.
            chunk_length (int): Chunk length to split a long audio.
            stride (int): Stride over chunked audio.
            cpu_offload (bool): Move the output tokens to cpu on the fly to save cuda memory.
            concat_strategy (str): "first" or "last" to indicate which chunk to use when consolidating the overlap.
            skip_enhancer (bool): Skip applying the enhancer.
        """
        batch_size, num_filters, input_length = tokens.shape
        if num_filters < self.num_codebooks_decoder:
            raise ValueError(f"num_codebooks_decoder must be smaller than num_filters: {num_filters}")
        original_device = tokens.device
        # validate chunk length and stride (if None, do one-shot process)
        chunk_length = chunk_length if chunk_length else input_length
        chunk_length_wav = self.sample_per_token * chunk_length
        stride = stride if stride else chunk_length
        stride_wav = stride * self.sample_per_token
        # initialize wav tensor
        wav = torch.zeros(
            (batch_size, 1, input_length * self.sample_per_token),
            device="cpu" if cpu_offload else original_device,
            dtype=torch.float32
        )
        # detokenize by chunk in a sequential manner
        for offset in tqdm(list(range(0, input_length - chunk_length + stride, stride))):
            tmp_tokens = tokens[:, :num_filters, offset: offset + chunk_length].to(self.device)
            wav_encodec = self.codec_model.decode(tmp_tokens)
            condition = self.codec_model.decode_latent(tmp_tokens)
            wav_diffusion = self.generate(emb=condition, size=wav_encodec.size(), step_size=step_size)
            tmp_wav = self.re_eq(wav=wav_diffusion, ref=wav_encodec, n_bands=n_bands)
            tmp_wav = tmp_wav.to("cpu") if cpu_offload else wav.to(original_device)
            offset_wav = offset * self.sample_per_token
            overlap_wav = chunk_length_wav - stride_wav
            if concat_strategy == "last" or offset == 0:
                wav[:, :, offset_wav: offset_wav + chunk_length_wav] = tmp_wav
            elif concat_strategy == "crossfade":
                fade_out = torch.linspace(1, 0, overlap_wav).unsqueeze(0).to(wav.device)
                fade_in = torch.linspace(0, 1, overlap_wav).unsqueeze(0).to(wav.device)
                tmp_wav[:, :, :overlap_wav] = (tmp_wav[:, :, :overlap_wav] * fade_in +
                                               wav[:, :, offset_wav: offset_wav + overlap_wav] * fade_out)
                wav[:, :, offset_wav: offset_wav + chunk_length_wav] = tmp_wav
            else:
                wav[:, :, offset_wav + overlap_wav: offset_wav + chunk_length_wav] = tmp_wav[:, :, overlap_wav:]
        if skip_enhancer:
            return wav, self.sample_rate
        return self.enhancer.enhance_audio(wav, self.sample_rate), self.enhancer.sample_rate


class MultiBandDiffusion:

    @staticmethod
    def from_pretrained(num_codebooks_decoder: int = 3,
                        num_codebooks_encoder: Optional[int] = None,
                        mbd_model_alias: str = "mbd_comp_8.pt",
                        mbd_model_repo: str = "facebook/multiband-diffusion") -> BaseMultiBandDiffusion:
        """Get the pretrained Models for MultiBandDiffusion.
        Args:
            num_codebooks_decoder (int): Number of codebook to use for decoder.
            num_codebooks_encoder (int): Number of codebook to use for encoder (default full code).
            mbd_model_alias (str): Name of the MBD model weight.
                see here https://huggingface.co/facebook/multiband-diffusion/tree/main
            mbd_model_repo (str): Name of the MBD model repository.
        """
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        codec_model = CompressionSolver.model_from_checkpoint(
            '//pretrained/facebook/encodec_24khz', device=device
        )
        codec_model = codec_model.to(device)
        models, processors, cfgs = load_diffusion_models(mbd_model_repo, filename=mbd_model_alias, device=device)
        diffusion_processes = []
        for i in range(len(models)):
            schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
            diffusion_processes.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
        return BaseMultiBandDiffusion(
            diffusion_processes=diffusion_processes,
            codec_model=codec_model,
            num_codebooks_decoder=num_codebooks_decoder,
            num_codebooks_encoder=num_codebooks_encoder
        )