File size: 14,298 Bytes
c96a100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
"""https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/models/multibanddiffusion.py"""
import logging
from typing import List, Optional, Tuple
from math import ceil
import torch
import julius
from tqdm import tqdm
from audiocraft.modules.diffusion_schedule import NoiseSchedule
from audiocraft.models.unet import DiffusionUnet
from audiocraft.models.encodec import CompressionModel
from audiocraft.models.loaders import load_diffusion_models
from audiocraft.solvers.compression import CompressionSolver
from df.enhance import enhance, init_df, load_audio, save_audio # deepfilternet
class DFEnhancer:
"""Speech enhancer."""
def __init__(self):
self.model, self.df_state, _ = init_df()
self.sample_rate = self.df_state.sr()
def enhance_audio(self, audio: torch.Tensor, sample_rate: int) -> torch.Tensor:
if sample_rate != self.sample_rate:
audio = julius.resample_frac(audio, sample_rate, self.sample_rate)
enhanced_audio = []
for single_audio in audio:
enhanced_audio.append(enhance(self.model, self.df_state, single_audio))
return torch.stack(enhanced_audio)
class DiffusionProcess:
"""Sampling for a diffusion Model.
Args:
model (DiffusionUnet): Diffusion U-Net model.
noise_schedule (NoiseSchedule): Noise schedule for diffusion process.
"""
def __init__(self, model: DiffusionUnet, noise_schedule: NoiseSchedule) -> None:
self.model = model
self.schedule = noise_schedule
def generate(self, condition: torch.Tensor, initial_noise: torch.Tensor, step_size: int = 5) -> torch.Tensor:
"""Perform one diffusion process to generate one of the bands.
Args:
condition (torch.Tensor): The embeddings from the compression model.
initial_noise (torch.Tensor): The initial noise to start the process.
step_size (int): The number of the linearly spaced Markov chain steps.
"""
step_list = list(range(1000))[::-int(1000/step_size)] + [0]
return self.schedule.generate_subsampled(
model=self.model, initial=initial_noise, step_list=step_list, condition=condition
)
class BaseMultiBandDiffusion:
def __init__(self,
diffusion_processes: List[DiffusionProcess],
codec_model: CompressionModel,
sample_per_token: int = 320,
num_codebooks_decoder: int = 3,
num_codebooks_encoder: Optional[int] = None) -> None:
"""Base class for multi-band diffusion.
Args:
diffusion_processes (list of DiffusionProcess): Diffusion processes.
codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens.
sample_per_token (int): Number of sample per token (320 for 24kHz encodec).
num_codebooks_decoder (int): Number of codebook to use for decoder.
num_codebooks_encoder (int): Number of codebook to use for encoder (default full code).
"""
self.diffusion_processes = diffusion_processes
self.codec_model = codec_model
self.device = next(self.codec_model.parameters()).device
self.sample_per_token = sample_per_token
self.num_codebooks_decoder = num_codebooks_decoder
self.num_codebooks_encoder = num_codebooks_encoder
self.enhancer = DFEnhancer()
@property
def sample_rate(self) -> int:
return self.codec_model.sample_rate
def generate(self, emb: torch.Tensor, size: torch.Size, step_size: int = 5) -> torch.Tensor:
"""Generate waveform audio from the latent embeddings of the compression model.
Args:
emb (torch.Tensor): Conditioning embeddings
size (None, torch.Size): Size of the output.
step_size (int): The number of the linearly spaced Markov chain steps.
"""
assert size[0] == emb.size(0)
out = torch.zeros(size).to(self.device)
for diffusion_process in self.diffusion_processes:
out += diffusion_process.generate(condition=emb, step_size=step_size, initial_noise=torch.randn_like(out))
return out
def re_eq(self, wav: torch.Tensor, ref: torch.Tensor, n_bands: int = 32, strictness: float = 1) -> torch.Tensor:
"""Match the eq to the encodec output by matching the standard deviation of some frequency bands.
Args:
wav (torch.Tensor): Audio to equalize.
ref (torch.Tensor): Reference audio from which we match the spectrogram.
n_bands (int): Number of bands of the eq.
strictness (float): How strict the matching. 0 is no matching, 1 is exact matching.
"""
split = julius.SplitBands(n_bands=n_bands, sample_rate=self.codec_model.sample_rate).to(wav.device)
bands = split(wav)
bands_ref = split(ref)
out = torch.zeros_like(ref)
for i in range(n_bands):
out += bands[i] * (bands_ref[i].std() / bands[i].std()) ** strictness
return out
@torch.no_grad()
def wav_to_tokens(self,
wav: torch.Tensor,
sample_rate: int,
cpu_offload: bool = True,
chunk_length: Optional[int] = None,
stride: Optional[int] = None,
concat_strategy: str = "first") -> torch.Tensor:
"""Get audio tokens from waveform in batch. Note that Encodec generates 75 tokens per second of audio at 24 kHz
meaning 320 samples (13.333 msec) per tokens.
Args:
wav (torch.Tensor): The audio that we want to extract the conditioning from (batch, channel, wav).
sample_rate (int): Sample rate of the audio.
cpu_offload (bool): Move the output tokens to cpu on the fly to save cuda memory.
chunk_length (int): Chunk length to split a long audio (sample size, must be divisible by sample_per_token).
stride (int): Stride over chunked audio (sample size, must be divisible by sample_per_token).
concat_strategy (str): "first" or "last" to indicate which chunk to use when consolidating the overlap.
"""
# sanity check
if wav.ndim != 3:
raise ValueError(f"wav should be (batch, channel, time): {wav.ndim} dims")
original_device = wav.device
# sampling audio
if sample_rate != self.sample_rate:
wav = julius.resample_frac(wav, sample_rate, self.sample_rate)
batch_size, channels, input_length = wav.shape
if channels > 1:
logging.warning("Audio has more than one channel but encoder takes the first channel only.")
# validate chunk length and stride (if None, do one-shot process)
if chunk_length:
if chunk_length % self.sample_per_token != 0:
raise ValueError(f"chunk_length must be divisible by {self.sample_per_token}: {chunk_length}")
else:
chunk_length = input_length
chunk_length_latent = ceil(chunk_length / self.sample_per_token)
if stride:
if stride % self.sample_per_token != 0:
raise ValueError(f"stride must be divisible by {self.sample_per_token}: {stride}")
else:
stride = chunk_length
stride_latent = ceil(stride / self.sample_per_token)
# initialize the token tensor
num_tokens = ceil(input_length / self.sample_per_token)
num_filters = self.codec_model.model.config.num_filters
if self.num_codebooks_encoder is not None:
if self.num_codebooks_encoder > num_filters:
raise ValueError(f"num_codebooks_encoder must be smaller than {num_filters}")
num_filters = self.num_codebooks_encoder
tokens = torch.zeros(
(batch_size, num_filters, num_tokens),
device="cpu" if cpu_offload else original_device,
dtype=torch.int64
)
# tokenize by chunk in a sequential manner
for offset in tqdm(list(range(0, input_length - chunk_length + stride, stride))):
frame = wav[:, :1, offset: offset + chunk_length]
tmp_tokens, _ = self.codec_model.encode(frame.to(self.device))
offset_latent = int(offset / self.sample_per_token)
tmp_tokens = tmp_tokens.to("cpu") if cpu_offload else tmp_tokens.to(original_device)
if concat_strategy == "last" or offset == 0:
tokens[:, :, offset_latent: offset_latent + chunk_length_latent] = tmp_tokens[:, :num_filters, :]
else:
overlap_token = chunk_length_latent - stride_latent
tokens[:, :, offset_latent + overlap_token: offset_latent + chunk_length_latent] \
= tmp_tokens[:, :num_filters, overlap_token:]
return tokens
@torch.no_grad()
def tokens_to_wav(self,
tokens: torch.Tensor,
n_bands: int = 32,
step_size: int = 5,
cpu_offload: bool = True,
chunk_length: Optional[int] = None,
stride: Optional[int] = None,
concat_strategy: str = "crossfade",
skip_enhancer: bool = False) -> Tuple[torch.Tensor, float]:
"""Generate waveform audio with diffusion from the discrete codes in batch.
Args:
tokens (torch.Tensor): Discrete codes (batch, num_code, length).
n_bands (int): Bands for the eq matching.
step_size (int): Number of the linearly spaced Markov chain steps.
chunk_length (int): Chunk length to split a long audio.
stride (int): Stride over chunked audio.
cpu_offload (bool): Move the output tokens to cpu on the fly to save cuda memory.
concat_strategy (str): "first" or "last" to indicate which chunk to use when consolidating the overlap.
skip_enhancer (bool): Skip applying the enhancer.
"""
batch_size, num_filters, input_length = tokens.shape
if num_filters < self.num_codebooks_decoder:
raise ValueError(f"num_codebooks_decoder must be smaller than num_filters: {num_filters}")
original_device = tokens.device
# validate chunk length and stride (if None, do one-shot process)
chunk_length = chunk_length if chunk_length else input_length
chunk_length_wav = self.sample_per_token * chunk_length
stride = stride if stride else chunk_length
stride_wav = stride * self.sample_per_token
# initialize wav tensor
wav = torch.zeros(
(batch_size, 1, input_length * self.sample_per_token),
device="cpu" if cpu_offload else original_device,
dtype=torch.float32
)
# detokenize by chunk in a sequential manner
for offset in tqdm(list(range(0, input_length - chunk_length + stride, stride))):
tmp_tokens = tokens[:, :num_filters, offset: offset + chunk_length].to(self.device)
wav_encodec = self.codec_model.decode(tmp_tokens)
condition = self.codec_model.decode_latent(tmp_tokens)
wav_diffusion = self.generate(emb=condition, size=wav_encodec.size(), step_size=step_size)
tmp_wav = self.re_eq(wav=wav_diffusion, ref=wav_encodec, n_bands=n_bands)
tmp_wav = tmp_wav.to("cpu") if cpu_offload else wav.to(original_device)
offset_wav = offset * self.sample_per_token
overlap_wav = chunk_length_wav - stride_wav
if concat_strategy == "last" or offset == 0:
wav[:, :, offset_wav: offset_wav + chunk_length_wav] = tmp_wav
elif concat_strategy == "crossfade":
fade_out = torch.linspace(1, 0, overlap_wav).unsqueeze(0).to(wav.device)
fade_in = torch.linspace(0, 1, overlap_wav).unsqueeze(0).to(wav.device)
tmp_wav[:, :, :overlap_wav] = (tmp_wav[:, :, :overlap_wav] * fade_in +
wav[:, :, offset_wav: offset_wav + overlap_wav] * fade_out)
wav[:, :, offset_wav: offset_wav + chunk_length_wav] = tmp_wav
else:
wav[:, :, offset_wav + overlap_wav: offset_wav + chunk_length_wav] = tmp_wav[:, :, overlap_wav:]
if skip_enhancer:
return wav, self.sample_rate
return self.enhancer.enhance_audio(wav, self.sample_rate), self.enhancer.sample_rate
class MultiBandDiffusion:
@staticmethod
def from_pretrained(num_codebooks_decoder: int = 3,
num_codebooks_encoder: Optional[int] = None,
mbd_model_alias: str = "mbd_comp_8.pt",
mbd_model_repo: str = "facebook/multiband-diffusion") -> BaseMultiBandDiffusion:
"""Get the pretrained Models for MultiBandDiffusion.
Args:
num_codebooks_decoder (int): Number of codebook to use for decoder.
num_codebooks_encoder (int): Number of codebook to use for encoder (default full code).
mbd_model_alias (str): Name of the MBD model weight.
see here https://huggingface.co/facebook/multiband-diffusion/tree/main
mbd_model_repo (str): Name of the MBD model repository.
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
codec_model = CompressionSolver.model_from_checkpoint(
'//pretrained/facebook/encodec_24khz', device=device
)
codec_model = codec_model.to(device)
models, processors, cfgs = load_diffusion_models(mbd_model_repo, filename=mbd_model_alias, device=device)
diffusion_processes = []
for i in range(len(models)):
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
diffusion_processes.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
return BaseMultiBandDiffusion(
diffusion_processes=diffusion_processes,
codec_model=codec_model,
num_codebooks_decoder=num_codebooks_decoder,
num_codebooks_encoder=num_codebooks_encoder
)
|