File size: 2,735 Bytes
c96a100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""Chunked decoder experiment."""
import os
from os.path import join as p_join

from audiocraft.data.audio import audio_write
from datasets import load_dataset
import torch
from multibanddiffusion import MultiBandDiffusion

# configure experiment
cache_dir = "audio"
os.makedirs(cache_dir, exist_ok=True)
num_codes = 3
mbd_model = MultiBandDiffusion.from_pretrained(num_codebooks_decoder=num_codes, num_codebooks_encoder=num_codes)
configs = [
    [75, 55],  # 1 sec chunk, 0.65 sec stride
    [75, 65],  # 1 sec chunk, 0.8 sec stride
    [150, 120],  # 2 sec chunk, 0.65 sec stride
    [150, 140],  # 2 sec chunk, 0.8 sec stride
]
concat_strategy = ["first", "crossfade", "last"]


def test_hf(hf_dataset: str, sample_size: int = 128, batch_size: int = 32, skip_enhancer: bool = False):
    output_dir = p_join(cache_dir, os.path.basename(hf_dataset))
    os.makedirs(output_dir, exist_ok=True)
    dataset = load_dataset(hf_dataset, split="test")
    dataset = dataset.select(range(sample_size))
    dataset = dataset.map(
        lambda batch: {k: [v] for k, v in batch.items()},
        batched=True,
        batch_size=batch_size
    )
    for data in dataset:
        sr_list = [d["sampling_rate"] for d in data["audio"]]
        assert len(set(sr_list)) == 1, sr_list
        sr = sr_list[0]
        array = [d["array"] for d in data["audio"]]
        max_length = max([len(a) for a in array])
        array = [a + [0] * (max_length - len(a)) for a in array]
        wav = torch.as_tensor(array, dtype=torch.float32).unsqueeze_(1)
        tokens = mbd_model.wav_to_tokens(wav, sr)
        for chunk, stride in configs:
            for s in concat_strategy:
                re_wav, sr = mbd_model.tokens_to_wav(
                    tokens, chunk_length=chunk, stride=stride, concat_strategy=s, skip_enhancer=skip_enhancer
                )
                for idx, one_wav in enumerate(re_wav):
                    if skip_enhancer:
                        output = p_join(output_dir, f"reconstructed_{num_codes}codes.{chunk}chunks.{stride}strides.{s}", str(idx))
                    else:
                        output = p_join(output_dir, f"reconstructed_{num_codes}codes.{chunk}chunks.{stride}strides.{s}.enhancer", str(idx))
                    audio_write(output, one_wav, sr, strategy="loudness", loudness_compressor=True)


if __name__ == '__main__':
    test_hf("japanese-asr/ja_asr.reazonspeech_test", sample_size=64, batch_size=16)
    test_hf("japanese-asr/ja_asr.jsut_basic5000", sample_size=64, batch_size=16)
    test_hf("japanese-asr/ja_asr.reazonspeech_test", sample_size=64, batch_size=16, skip_enhancer=True)
    test_hf("japanese-asr/ja_asr.jsut_basic5000", sample_size=64, batch_size=16, skip_enhancer=True)