import datasets import json _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2021} } """ _DESCRIPTION = """\ This is YouTube video transcription dataset built from YTTTS Speech Collection for semantic search. """ _HOMEPAGE = "https://huggingface.co/datasets/ashraq/youtube-transcription" _LICENSE = "" TRAIN_URL = "yt-transcriptions.jsonl" class YoutubeTranscription(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.2.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "video_id": datasets.Value("string"), "title": datasets.Value("string"), "text": datasets.Value("string"), "start_timestamp": datasets.Value("string"), "end_timestamp": datasets.Value("string"), "start_second": datasets.Value("string"), "end_second": datasets.Value("string"), "url": datasets.Value("string"), "thumbnail": datasets.Value("string"), }, ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(TRAIN_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, "split": "train", }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf8") as f: documents = f.readlines() documents = [json.loads(x) for x in documents] id_ = 0 for doc in documents: data = { "video_id": doc["video_id"], "title": doc["title"], "text": doc["text"], "start_timestamp": doc["start_timestamp"], "end_timestamp": doc["end_timestamp"], "start_second": doc["start_second"], "end_second": doc["end_second"], "url": doc["url"], "thumbnail": doc["thumbnail"] } yield id_, data id_ += 1