"""PMC-OA Dataset""" import os import jsonlines import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{lin2023pmc, title={PMC-CLIP: Contrastive Language-Image Pre-training using Biomedical Documents}, author={Lin, Weixiong and Zhao, Ziheng and Zhang, Xiaoman and Wu, Chaoyi and Zhang, Ya and Wang, Yanfeng and Xie, Weidi}, journal={arXiv preprint arXiv:2303.07240}, year={2023} } """ _DESCRIPTION = """\ Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity. To address this issue, we build and release PMC-OA, a biomedical dataset with 1.6M image-caption pairs collected from PubMedCentral's OpenAccess subset, which is 8 times larger than before. PMC-OA covers diverse modalities or diseases, with majority of the image-caption samples aligned at finer-grained level, i.e., subfigure and subcaption. While pretraining a CLIP-style model on PMC-OA, our model named PMC-CLIP achieves state-of-the-art results on various downstream tasks, including image-text retrieval on ROCO, MedMNIST image classification, Medical VQA, i.e. +8.1% R@10 on image-text retrieval, +3.9% accuracy on image classification. """ _HOMEPAGE = "https://weixionglin.github.io/PMC-CLIP/" _URLs = { "images": "https://huggingface.co/datasets/axiong/pmc_oa/resolve/main/images.zip", "pmc_oa_beta": "https://huggingface.co/datasets/axiong/pmc_oa/resolve/main/pmc_oa_beta.jsonl", "pmc_oa": "https://huggingface.co/datasets/axiong/pmc_oa/resolve/main/pmc_oa.jsonl", } class PMC_OA_Config(datasets.BuilderConfig): """BuilderConfig for PMC_OA""" def __init__(self, **kwargs): """ Args: **kwargs: keyword arguments forwarded to super. """ super(PMC_OA_Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class PMC_OA(datasets.GeneratorBasedBuilder): """PMC_OA Dataset""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ PMC_OA_Config( name="pmc_oa_beta", description=" pairs. Subfigures detected by a DETR model.", ), PMC_OA_Config( name="pmc_oa", description=" pairs. Subfigures detected by a DETR model. Subcaptions detected by ChatGPT and aligned with subfigures.", ), ] def _info(self): if self.config.name == "pmc_oa_beta": return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Value("string"), "caption": datasets.Value("string"), } ), supervised_keys=None, citation=_CITATION, homepage=_HOMEPAGE, ) elif self.config.name == "pmc_oa": return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Value("string"), "caption": datasets.Value("string"), "alignment_type": datasets.Value("string"), "alignment_score": datasets.Value("float"), } ), supervised_keys=None, citation=_CITATION, homepage=_HOMEPAGE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_files = dl_manager.download_and_extract(_URLs) if self.config.name == "pmc_oa_beta": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["pmc_oa_beta"], "image_dir": downloaded_files['images']} ) ] elif self.config.name == "pmc_oa": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["pmc_oa"], "image_dir": downloaded_files['images']} ) ] def _generate_examples(self, filepath, image_dir): """Yields examples.""" logger.info("generating examples from = %s", filepath) with jsonlines.open(filepath) as reader: for _id, obj in enumerate(reader): if self.config.name == "pmc_oa_beta": relative_image_path = obj['image'] image_path = os.path.join(image_dir, "caption_T060_filtered_top4_sep_v0_subfigures", relative_image_path) caption = obj['caption'] yield _id, { "image": { "path": image_path, "bytes": open(image_path, "rb").read(), }, "caption": caption, } elif self.config.name == "pmc_oa": relative_image_path = obj['image'] image_path = os.path.join(image_dir, "caption_T060_filtered_top4_sep_v0_subfigures", relative_image_path) caption = obj['caption'] alignment_type = obj['alignment_type'] alignment_score = obj['alignment_score'] yield _id, { "image": { "path": image_path, "bytes": open(image_path, "rb").read(), }, "caption": caption, "alignment_type": alignment_type, "alignment_score": alignment_score, }