|
import warnings
|
|
import json
|
|
from .image_base import ImageBaseDataset
|
|
from .utils import build_judge, DEBUG_MESSAGE
|
|
from ..smp import *
|
|
import pandas as pd
|
|
|
|
MMMB_URLS = {
|
|
'MMMB_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ar.tsv',
|
|
'MMMB_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_cn.tsv',
|
|
'MMMB_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_en.tsv',
|
|
'MMMB_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_pt.tsv',
|
|
'MMMB_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ru.tsv',
|
|
'MMMB_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_tr.tsv',
|
|
}
|
|
|
|
MTL_MMBench_URLS = {
|
|
'MMBench_dev_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ar.tsv',
|
|
'MMBench_dev_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_cn.tsv',
|
|
'MMBench_dev_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_en.tsv',
|
|
'MMBench_dev_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_pt.tsv',
|
|
'MMBench_dev_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_tr.tsv',
|
|
'MMBench_dev_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ru.tsv',
|
|
}
|
|
|
|
MMMB_MD5 = {
|
|
'MMMB_ar': 'f3a18b6385f1d9701840aa42de27aead', 'MMMB_cn': '13ed82fa89730037292fcaa27f08f430',
|
|
'MMMB_en': '1cd781a71ec5a2983c090b84105d6a01', 'MMMB_pt': '548ea2b3bb2da991790386f0015d30d1',
|
|
'MMMB_ru': 'ce1cc8a0533425ab0d86b326ebfc2984', 'MMMB_tr': '0733739d43090327975294292bc5cd67'
|
|
}
|
|
|
|
MTL_MMBench_MD5 = {
|
|
'MMBench_dev_ar': '4271b4a0d0200e1a86380a878e0d64a4', 'MMBench_dev_cn': '2ed5135326fed02c8e51ea50dda8222f',
|
|
'MMBench_dev_en': 'd9ab776fc018b3d45785e9a5c23431c2', 'MMBench_dev_pt': '4ddfbcd27ef12444b908c03831cd0295',
|
|
'MMBench_dev_tr': '4fab39d501389d3d6cc90264bb708f11', 'MMBench_dev_ru': '5ba1171ff2e68f80637bf78349e402a5'
|
|
}
|
|
|
|
|
|
class ImageMCQDataset(ImageBaseDataset):
|
|
|
|
TYPE = 'MCQ'
|
|
|
|
DATASET_URL = {
|
|
|
|
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN.tsv',
|
|
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN.tsv',
|
|
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN.tsv',
|
|
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN.tsv',
|
|
'MMBench': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench.tsv',
|
|
'MMBench_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN.tsv',
|
|
|
|
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN_V11.tsv',
|
|
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN_V11.tsv',
|
|
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN_V11.tsv',
|
|
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN_V11.tsv',
|
|
'MMBench_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_V11.tsv',
|
|
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN_V11.tsv',
|
|
|
|
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench_IMG.tsv',
|
|
'SEEDBench2': 'https://huggingface.co/datasets/VLMEval/SEEDBench2/resolve/main/SEEDBench2.tsv',
|
|
'SEEDBench2_Plus': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench2_Plus.tsv',
|
|
|
|
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_VAL.tsv',
|
|
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_TEST.tsv',
|
|
|
|
'MMT-Bench_ALL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL_MI.tsv',
|
|
'MMT-Bench_ALL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL.tsv',
|
|
'MMT-Bench_VAL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL_MI.tsv',
|
|
'MMT-Bench_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL.tsv',
|
|
|
|
'AesBench_VAL': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_VAL.tsv',
|
|
'AesBench_TEST': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_TEST.tsv',
|
|
|
|
'Q-Bench1_VAL': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_VAL.tsv',
|
|
'Q-Bench1_TEST': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_TEST.tsv',
|
|
|
|
'A-Bench_VAL': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_VAL.tsv',
|
|
'A-Bench_TEST': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_TEST.tsv',
|
|
|
|
'R-Bench-Dis': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-dis.tsv',
|
|
'R-Bench-Ref': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-ref.tsv',
|
|
|
|
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
|
|
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
|
|
'AI2D_TEST_NO_MASK': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST_NO_MASK.tsv',
|
|
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
|
|
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
|
|
'MLLMGuard_DS': 'https://opencompass.openxlab.space/utils/VLMEval/MLLMGuard_DS.tsv',
|
|
'BLINK': 'https://opencompass.openxlab.space/utils/VLMEval/BLINK.tsv',
|
|
'TaskMeAnything_v1_imageqa_random': (
|
|
'https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random/'
|
|
'resolve/main/TaskMeAnything-v1-imageqa-random.tsv'
|
|
),
|
|
'A-OKVQA': 'https://huggingface.co/datasets/Allen8/A-OKVQA/resolve/main/a-okvqa.tsv',
|
|
'WorldMedQA-V': 'https://opencompass.openxlab.space/utils/VLMEval/WorldMedQA-V.tsv',
|
|
'VisOnlyQA-VLMEvalKit': (
|
|
'https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real/'
|
|
'resolve/main/visonlyqa_vlmevalkit.tsv'
|
|
),
|
|
'3DSRBench': (
|
|
'https://huggingface.co/datasets/ccvl/3DSRBench/'
|
|
'resolve/main/3dsrbench_v1_vlmevalkit_circular.tsv'
|
|
),
|
|
}
|
|
|
|
DATASET_MD5 = {
|
|
|
|
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
|
|
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
|
|
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
|
|
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
|
|
'MMBench': '4115aea3383f3dd0083be6a633e0f820',
|
|
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee',
|
|
|
|
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
|
|
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
|
|
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
|
|
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
|
|
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c',
|
|
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25',
|
|
|
|
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
|
|
'SEEDBench2': '4ec15cf864c4f16274112284f531813e',
|
|
'SEEDBench2_Plus': 'e32d3216dc4f452b0fe497a52015d1fd',
|
|
|
|
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
|
|
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
|
|
|
|
'MMT-Bench_ALL_MI': '5272157097e19cdd7cb41e412ab3b7c7',
|
|
'MMT-Bench_ALL': 'b273a2f4c596fe4f2605de0494cd632f',
|
|
'MMT-Bench_VAL_MI': 'c7d7b998eb5cd9aa36c7d4f721472462',
|
|
'MMT-Bench_VAL': '8dd4b730f53dbf9c3aed90ca31c928e0',
|
|
|
|
'AesBench_VAL': '3edb0c319e9187aa0b97fe7a11700a8c',
|
|
'AesBench_TEST': '58b1f7ba2cc32e1d68896d6ee716bbf8',
|
|
|
|
'Q-Bench1_VAL': '837bdb6cd2da571713543462815187b7',
|
|
'Q-Bench1_TEST': '15e759bfd58c9d5f30b23a317d347153',
|
|
|
|
'A-Bench_VAL': '218563ec50d34bb336c814143a5bb9c1',
|
|
'A-Bench_TEST': '567013fb033a20cf23f51d8e865bd16c',
|
|
|
|
'R-Bench-Dis': 'd6e961dbfc43350688af2560226830b4',
|
|
'R-Bench-Ref': '270c1cb555acb523f3fdb178ed57021d',
|
|
|
|
'CCBench': 'f5dde47f24dc5a6fb6e595b409b466ac',
|
|
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
|
|
'AI2D_TEST_NO_MASK': 'fd8f463634d4fe9fbd23b876e8eea5be',
|
|
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
|
|
'RealWorldQA': '4de008f55dc4fd008ca9e15321dc44b7',
|
|
'MLLMGuard_DS': '975fc0dd7119386e198c37d71e274b3f',
|
|
'BLINK': '3b6649b6a662184ea046908e5506260e',
|
|
'TaskMeAnything_v1_imageqa_random': '023fef69e2ca21827afb77c5ec3bc889',
|
|
'WorldMedQA-V': '441e63875e30c87f5750528b57b41285',
|
|
"VisOnlyQA-VLMEvalKit": 'cf460a31d2acb8d3a7cecd0e69298bfa',
|
|
'3DSRBench': '13a99f33164dc1b9faf0e8b8b01fd6f2',
|
|
}
|
|
|
|
DATASET_URL.update(MMMB_URLS)
|
|
DATASET_URL.update(MTL_MMBench_URLS)
|
|
DATASET_MD5.update(MMMB_MD5)
|
|
DATASET_MD5.update(MTL_MMBench_MD5)
|
|
|
|
def build_prompt(self, line):
|
|
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
if self.meta_only:
|
|
tgt_path = toliststr(line['image_path'])
|
|
else:
|
|
tgt_path = self.dump_image(line)
|
|
|
|
question = line['question']
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
options_prompt = 'Options:\n'
|
|
for key, item in options.items():
|
|
options_prompt += f'{key}. {item}\n'
|
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
|
prompt = ''
|
|
if hint is not None:
|
|
prompt += f'Hint: {hint}\n'
|
|
prompt += f'Question: {question}\n'
|
|
if len(options):
|
|
prompt += options_prompt
|
|
prompt += 'Please select the correct answer from the options above. \n'
|
|
|
|
msgs = []
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=prompt))
|
|
|
|
return msgs
|
|
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
|
|
|
|
dataset_map = {
|
|
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
|
|
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
|
|
}
|
|
dataset = self.dataset_name
|
|
if dataset in dataset_map:
|
|
dataset = dataset_map[dataset]
|
|
nproc = judge_kwargs.pop('nproc', 4)
|
|
|
|
circular = False
|
|
if listinstr(['mmbench', 'ccbench'], dataset.lower()):
|
|
data = load(eval_file)
|
|
data['index'] = [int(x) for x in data['index']]
|
|
dump(data, eval_file)
|
|
circular = True
|
|
|
|
suffix = eval_file.split('.')[-1]
|
|
model = judge_kwargs.get('model', 'exact_matching')
|
|
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
|
|
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
|
|
name_str = name_str_map[model] if model in name_str_map else model
|
|
|
|
if model == 'exact_matching':
|
|
model = None
|
|
elif gpt_key_set():
|
|
model = build_judge(**judge_kwargs)
|
|
if not model.working():
|
|
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
|
|
warnings.warn(DEBUG_MESSAGE)
|
|
model = None
|
|
else:
|
|
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
|
|
model = None
|
|
|
|
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
|
|
|
|
data = load(eval_file)
|
|
data = data.sort_values(by='index')
|
|
data['prediction'] = [str(x) for x in data['prediction']]
|
|
|
|
for k in data.keys():
|
|
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
|
|
|
|
meta = self.data
|
|
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
|
|
data_map = {x: y for x, y in zip(data['index'], data['question'])}
|
|
for k in data_map:
|
|
assert k in meta_q_map, (
|
|
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
|
|
)
|
|
|
|
if circular:
|
|
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
|
|
else:
|
|
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
|
|
|
|
|
|
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
|
|
|
|
if 'MMT' in dataset:
|
|
acc = report_acc_MMT(data)
|
|
else:
|
|
acc = report_acc(data)
|
|
|
|
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
|
|
dump(acc, score_file)
|
|
|
|
if dataset == 'AesBench_VAL':
|
|
warnings.warn('Note that AesBench VAL is just a toy version of AesBench TEST. For full results, \
|
|
please evaluate on AesBench TEST. The AesBench TEST dataset is more than 20 times \
|
|
larger than the VAL dataset and the leaderboard results are based on AesBench TEST.')
|
|
if dataset == 'VisOnlyQA-VLMEvalKit':
|
|
warnings.warn('Note that the results on VisOnlyQA-VLMEvalKit are different from the results on \
|
|
the original VisOnlyQA. VisOnlyQA-VLMEvalKit does not include the \
|
|
chemistry__shape_multi split and uses a different evaluation prompt. Please \
|
|
explicitly specify the version of the dataset when you report results.')
|
|
|
|
return acc
|
|
|
|
|
|
class OpenMMMedical(ImageMCQDataset):
|
|
@classmethod
|
|
def supported_datasets(cls):
|
|
return ['OpenMMMedical']
|
|
|
|
def load_data(self, dataset='OpenMMMedical'):
|
|
image_folder = "/your/path/to/OpenMM_Medical"
|
|
def generate_tsv(pth):
|
|
import csv
|
|
from pathlib import Path
|
|
tsv_file_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')
|
|
|
|
if os.path.exists(tsv_file_path):
|
|
print(f'{tsv_file_path} already exists.')
|
|
return
|
|
|
|
path = Path(pth)
|
|
json_files = [str(f) for f in path.rglob('*.json')]
|
|
fieldnames = ["index", "dataset", "question_id", "question_type", "question", "A", "B", "C", "D", "E", "answer", "image_path"]
|
|
index = 0
|
|
with open(tsv_file_path, 'w', encoding='utf-8', newline='') as tsv_file:
|
|
writer = csv.DictWriter(tsv_file, fieldnames=fieldnames, delimiter='\t')
|
|
writer.writeheader()
|
|
for json_file in json_files:
|
|
data_name = json_file.split('/')[-1].split('.')[0]
|
|
with open(json_file, 'r', encoding='utf-8') as f:
|
|
data = json.load(f)
|
|
for row in data:
|
|
line = {}
|
|
line['index'] = index
|
|
line['dataset'] = row['dataset']
|
|
line['question_id'] = row['question_id']
|
|
line['question_type'] = row['question_type']
|
|
line['question'] = row['question']
|
|
choices_letter = ["A", "B", "C", "D", "E"]
|
|
for i in range(len(choices_letter)):
|
|
if f"option_{choices_letter[i]}" in row:
|
|
line[choices_letter[i]] = row[f"option_{choices_letter[i]}"]
|
|
if row[f"option_{choices_letter[i]}"] == row['gt_answer']:
|
|
line['answer'] = choices_letter[i]
|
|
else:
|
|
break
|
|
line['image_path'] = os.path.join(image_folder, row['image_path'])
|
|
index += 1
|
|
writer.writerow(line)
|
|
print(f'TSV file saved to {tsv_file_path}')
|
|
|
|
generate_tsv(image_folder)
|
|
update_flag = True
|
|
|
|
data_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')
|
|
if file_size(data_path, 'GB') > 1:
|
|
local_path = data_path.replace('.tsv', '_local.tsv')
|
|
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
|
|
from vlmeval.tools import LOCALIZE
|
|
LOCALIZE(data_path, local_path)
|
|
data_path = local_path
|
|
return load(data_path)
|
|
|
|
|
|
def build_prompt(self, line):
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
if self.meta_only:
|
|
tgt_path = toliststr(line['image_path'])
|
|
else:
|
|
tgt_path = self.dump_image(line)
|
|
|
|
question = line['question']
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
options_prompt = 'Options:\n'
|
|
for key, item in options.items():
|
|
options_prompt += f'{key}. {item}\n'
|
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
|
prompt = ''
|
|
if hint is not None:
|
|
prompt += f'Hint: {hint}\n'
|
|
prompt += f'Question: {question}\n'
|
|
prompt += options_prompt
|
|
prompt += "Answer with the option's letter from the given choices directly.\n"
|
|
|
|
|
|
msgs = []
|
|
if tgt_path:
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=prompt))
|
|
return msgs
|
|
|
|
def report_acc_by_groups(self, df, group_column):
|
|
res = defaultdict(list)
|
|
|
|
|
|
if 'split' in df:
|
|
splits = list(set(df['split']))
|
|
res['split'] = splits
|
|
else:
|
|
df['split'] = ['none'] * len(df)
|
|
res['split'] = ['none']
|
|
|
|
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
|
|
|
|
if group_column not in df:
|
|
raise ValueError(f"Column '{group_column}' not found in dataframe.")
|
|
|
|
abilities = list(set(df[group_column]))
|
|
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
|
|
abilities.sort()
|
|
|
|
for ab in abilities:
|
|
ab_name = ab
|
|
sub_df = df[df[group_column] == ab]
|
|
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
|
|
|
|
return pd.DataFrame(res)
|
|
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
|
|
nproc = judge_kwargs.pop('nproc', 4)
|
|
|
|
suffix = eval_file.split('.')[-1]
|
|
model = judge_kwargs.get('model', 'exact_matching')
|
|
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125', 'gpt-4o']
|
|
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4', 'gpt-4o': 'gpt4o'}
|
|
name_str = name_str_map[model] if model in name_str_map else model
|
|
|
|
if model == 'exact_matching':
|
|
model = None
|
|
elif gpt_key_set():
|
|
model = build_judge(**judge_kwargs)
|
|
if not model.working():
|
|
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
|
|
warnings.warn(DEBUG_MESSAGE)
|
|
model = None
|
|
else:
|
|
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
|
|
model = None
|
|
|
|
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
|
|
|
|
data = load(eval_file)
|
|
data = data.sort_values(by='index')
|
|
data['prediction'] = [str(x) for x in data['prediction']]
|
|
|
|
for k in data.keys():
|
|
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
|
|
|
|
meta = self.data
|
|
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
|
|
data_map = {x: y for x, y in zip(data['index'], data['question'])}
|
|
for k in data_map:
|
|
assert k in meta_q_map, (
|
|
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
|
|
)
|
|
|
|
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
|
|
|
|
|
|
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
|
|
acc = report_acc(data)
|
|
|
|
for group_col in ['dataset']:
|
|
acc_grouped = self.report_acc_by_groups(data, group_col)
|
|
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
|
|
dump(acc_grouped, score_file_grouped)
|
|
|
|
return acc
|
|
|
|
|
|
class MMMUDataset(ImageMCQDataset):
|
|
|
|
DATASET_URL = {
|
|
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
|
|
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
|
|
}
|
|
|
|
DATASET_MD5 = {
|
|
'MMMU_DEV_VAL': '585e8ad75e73f75dcad265dfd0417d64',
|
|
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
|
|
}
|
|
|
|
@staticmethod
|
|
def split_MMMU(msgs):
|
|
text, images = None, []
|
|
for s in msgs:
|
|
if s['type'] == 'image':
|
|
images.append(s['value'])
|
|
elif s['type'] == 'text':
|
|
assert text is None
|
|
text = s['value']
|
|
text_segs = text.split('<image ')
|
|
if len(text_segs) == 1:
|
|
return msgs
|
|
|
|
segs = [dict(type='text', value=text_segs[0])]
|
|
for i, seg in enumerate(text_segs):
|
|
if i == 0:
|
|
continue
|
|
assert istype(seg[0], int) and seg[1] == '>'
|
|
image_idx = int(seg[0]) - 1
|
|
segs.append(dict(type='image', value=images[image_idx]))
|
|
segs.append(dict(type='text', value=seg[2:]))
|
|
return segs
|
|
|
|
def build_prompt(self, line):
|
|
msgs = super().build_prompt(line)
|
|
msgs = self.split_MMMU(msgs)
|
|
return msgs
|
|
|
|
|
|
class MUIRDataset(ImageMCQDataset):
|
|
|
|
DATASET_URL = {
|
|
'MUIRBench': 'http://opencompass.openxxlab.com/utils/VLMEval/MUIRBench.tsv'
|
|
}
|
|
|
|
DATASET_MD5 = {
|
|
'MUIRBench': '2e5e6fd7699761b08a7cb3ab8c0c2ec8'
|
|
}
|
|
|
|
@staticmethod
|
|
def split_MUIR(msgs):
|
|
text, images = None, []
|
|
|
|
|
|
for s in msgs:
|
|
if s['type'] == 'image':
|
|
images.append(s['value'])
|
|
elif s['type'] == 'text':
|
|
assert text is None
|
|
text = s['value']
|
|
|
|
|
|
text_segs = text.split('<image>')
|
|
|
|
|
|
segs = []
|
|
|
|
|
|
for i, seg in enumerate(text_segs):
|
|
|
|
if i > 0 and i - 1 < len(images):
|
|
segs.append(dict(type='image', value=images[i - 1]))
|
|
|
|
if len(seg) > 0:
|
|
segs.append(dict(type='text', value=seg))
|
|
|
|
return segs
|
|
|
|
def build_prompt(self, line):
|
|
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
if self.meta_only:
|
|
tgt_path = toliststr(line['image_path'])
|
|
else:
|
|
tgt_path = self.dump_image(line)
|
|
|
|
question = line['question']
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
|
|
options_prompt = '\n'.join([f'{key}. {item}' for key, item in options.items()])
|
|
|
|
|
|
|
|
prompt = ''
|
|
|
|
prompt += f'{question}\n'
|
|
if len(options):
|
|
prompt += options_prompt
|
|
prompt += "\nAnswer with the option's letter from the given choices directly."
|
|
|
|
msgs = []
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=prompt))
|
|
|
|
msgs = self.split_MUIR(msgs)
|
|
return msgs
|
|
|
|
|
|
class GMAIMMBenchDataset(ImageMCQDataset):
|
|
|
|
DATASET_URL = {
|
|
'GMAI-MMBench_VAL': 'https://huggingface.co/datasets/VLMEval/GMAI-MMBench/resolve/main/GMAI-MMBench_VAL.tsv',
|
|
'GMAI_mm_bench_TEST_part_1': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_1.tsv',
|
|
'GMAI_mm_bench_TEST_part_2': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_2.tsv',
|
|
'GMAI_mm_bench_TEST_part_3': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_3.tsv',
|
|
'GMAI_mm_bench_TEST_part_4': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_4.tsv',
|
|
'GMAI_mm_bench_TEST_part_5': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_5.tsv',
|
|
'GMAI_mm_bench_TEST_part_6': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_6.tsv',
|
|
'GMAI_mm_bench_TEST_part_7': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_7.tsv',
|
|
'GMAI_mm_bench_TEST_part_8': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_8.tsv',
|
|
'GMAI_mm_bench_TEST_part_9': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_9.tsv',
|
|
'GMAI_mm_bench_TEST_part_10': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_10.tsv',
|
|
'GMAI_mm_bench_TEST_part_11': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_11.tsv',
|
|
}
|
|
|
|
DATASET_MD5 = {
|
|
'GMAI-MMBench_VAL': '254bd581627866f1c499d3d6b4422324',
|
|
'GMAI_mm_bench_TEST_part_1': '900d735231230a63f4ed45665c078ef4',
|
|
'GMAI_mm_bench_TEST_part_2': '1b27ab621386945d7e4a765ad2d22b0e',
|
|
'GMAI_mm_bench_TEST_part_3': '44bdc2b6267dd505d529b8cad06f0fb2',
|
|
'GMAI_mm_bench_TEST_part_4': '5a04a04fcac9f1466709f242fdb80acb',
|
|
'GMAI_mm_bench_TEST_part_5': 'c70baf8909eda9af0ddeab275c721336',
|
|
'GMAI_mm_bench_TEST_part_6': '825abc39596b644dead9350d0cfa3b96',
|
|
'GMAI_mm_bench_TEST_part_7': 'defb8aed2fb77365a76b6b9abd6a2701',
|
|
'GMAI_mm_bench_TEST_part_8': 'ff490d60b85f2bb0abb67a435b298c65',
|
|
'GMAI_mm_bench_TEST_part_9': 'ff67c86f40da93b09139ac1d1ba5dc6b',
|
|
'GMAI_mm_bench_TEST_part_10': '3dae94627b9ac0fe00180d4780fbf6dc',
|
|
'GMAI_mm_bench_TEST_part_11': 'd08dc813f0eb6bbab63cae2a9d113c4b',
|
|
}
|
|
|
|
@classmethod
|
|
def supported_datasets(cls):
|
|
return ['GMAI-MMBench_VAL', 'GMAI-MMBench_TEST']
|
|
|
|
def load_data(self, dataset):
|
|
if dataset == 'GMAI-MMBench_VAL':
|
|
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
|
|
if file_size(data_path, 'GB') > 1:
|
|
local_path = data_path.replace('.tsv', '_local.tsv')
|
|
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
|
|
from ..tools import LOCALIZE
|
|
LOCALIZE(data_path, local_path)
|
|
data_path = local_path
|
|
return load(data_path)
|
|
elif dataset == 'GMAI-MMBench_TEST':
|
|
dfs = []
|
|
for part_num in range(1, 12):
|
|
part_name = f'GMAI_mm_bench_TEST_part_{part_num}'
|
|
url = self.DATASET_URL[part_name]
|
|
file_md5 = self.DATASET_MD5.get(part_name)
|
|
tsv_path = osp.join(LMUDataRoot(), f'{part_name}.tsv')
|
|
if not osp.exists(tsv_path) or (file_md5 and md5(tsv_path) != file_md5):
|
|
download_file(url, filename=tsv_path)
|
|
local_path = tsv_path.replace('.tsv', '_local.tsv')
|
|
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
|
|
from ..tools import LOCALIZE
|
|
LOCALIZE(tsv_path, local_path)
|
|
tsv_path = local_path
|
|
|
|
df = load(tsv_path)
|
|
dfs.append(df)
|
|
|
|
data = pd.concat(dfs, ignore_index=True)
|
|
return data
|
|
else:
|
|
raise ValueError(f"未知的数据集:{dataset}")
|
|
|
|
def report_acc_by_groups(self, df, group_column):
|
|
res = defaultdict(list)
|
|
|
|
|
|
if 'split' in df:
|
|
splits = list(set(df['split']))
|
|
res['split'] = splits
|
|
else:
|
|
df['split'] = ['none'] * len(df)
|
|
res['split'] = ['none']
|
|
|
|
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
|
|
|
|
if group_column not in df:
|
|
raise ValueError(f"Column '{group_column}' not found in dataframe.")
|
|
|
|
abilities = list(set(df[group_column]))
|
|
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
|
|
abilities.sort()
|
|
|
|
for ab in abilities:
|
|
ab_name = ab
|
|
sub_df = df[df[group_column] == ab]
|
|
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
|
|
|
|
return pd.DataFrame(res)
|
|
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
|
|
nproc = judge_kwargs.pop('nproc', 4)
|
|
|
|
suffix = eval_file.split('.')[-1]
|
|
model = judge_kwargs.get('model', 'exact_matching')
|
|
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
|
|
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
|
|
name_str = name_str_map[model] if model in name_str_map else model
|
|
|
|
if model == 'exact_matching':
|
|
model = None
|
|
elif gpt_key_set():
|
|
model = build_judge(**judge_kwargs)
|
|
if not model.working():
|
|
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
|
|
warnings.warn(DEBUG_MESSAGE)
|
|
model = None
|
|
else:
|
|
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
|
|
model = None
|
|
|
|
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
|
|
|
|
data = load(eval_file)
|
|
data = data.sort_values(by='index')
|
|
data['prediction'] = [str(x) for x in data['prediction']]
|
|
|
|
for k in data.keys():
|
|
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
|
|
|
|
meta = self.data
|
|
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
|
|
data_map = {x: y for x, y in zip(data['index'], data['question'])}
|
|
for k in data_map:
|
|
assert k in meta_q_map, (
|
|
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
|
|
)
|
|
|
|
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
|
|
|
|
|
|
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
|
|
acc = report_acc(data)
|
|
|
|
for group_col in ['clinical vqa task', 'department', 'perceptual granularity']:
|
|
acc_grouped = self.report_acc_by_groups(data, group_col)
|
|
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
|
|
dump(acc_grouped, score_file_grouped)
|
|
|
|
return acc
|
|
|
|
|
|
class MMERealWorld(ImageMCQDataset):
|
|
|
|
TYPE = 'MMERealWorld'
|
|
|
|
DATASET_MD5 = {
|
|
'MME-RealWorld': '271c33ec814c39533c467ec6fb8a6f36',
|
|
'MME-RealWorld-Lite': '4c17057d7d3b6c4a0d4397c3dae0881c',
|
|
'MME-RealWorld-CN': 'daaa763d52a760a38606d5dedb3fe444',
|
|
}
|
|
SYS = {
|
|
'MME-RealWorld': (
|
|
'Select the best answer to the above multiple-choice question based on the image. '
|
|
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
|
|
'The best answer is:'
|
|
),
|
|
'MME-RealWorld-Lite': (
|
|
'Select the best answer to the above multiple-choice question based on the image. '
|
|
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
|
|
'The best answer is:'
|
|
),
|
|
'MME-RealWorld-CN': (
|
|
'根据图像选择上述多项选择题的最佳答案。只需回答正确选项的字母(A, B, C, D 或 E)。\n'
|
|
'最佳答案为:'
|
|
),
|
|
}
|
|
|
|
@classmethod
|
|
def supported_datasets(cls):
|
|
return ['MME-RealWorld', 'MME-RealWorld-CN', 'MME-RealWorld-Lite',]
|
|
|
|
def load_data(
|
|
self, dataset="MME-RealWorld", repo_id="yifanzhang114/MME-RealWorld-Base64"
|
|
):
|
|
|
|
def check_integrity(pth):
|
|
data_file = osp.join(pth, f"{dataset}.tsv")
|
|
|
|
if not os.path.exists(data_file):
|
|
return False
|
|
|
|
if md5(data_file) != self.DATASET_MD5[dataset]:
|
|
return False
|
|
return True
|
|
|
|
def generate_tsv(pth):
|
|
tsv_file = os.path.join(pth, f"{dataset}.tsv")
|
|
|
|
if os.path.exists(tsv_file):
|
|
print(f"{tsv_file} already exists.")
|
|
return
|
|
|
|
json_dir = os.path.join(pth, dataset)
|
|
json_files = [f for f in os.listdir(json_dir) if f.endswith(".json")]
|
|
|
|
data_list = []
|
|
for json_file in json_files:
|
|
with open(os.path.join(json_dir, json_file), "r") as f:
|
|
data = json.load(f)
|
|
for item in tqdm(data):
|
|
choice_prompt = (
|
|
"The choices are listed below:\n"
|
|
if dataset in ["MME-RealWorld", "MME-RealWorld-Lite"]
|
|
else "选项如下所示:\n"
|
|
)
|
|
data_list.append(
|
|
{
|
|
"index": item["index"],
|
|
"image": item["image"],
|
|
"question": item["question"],
|
|
"multi-choice options": choice_prompt
|
|
+ "\n".join(item["multi-choice options"]),
|
|
"A": item["multi-choice options"][0][4:],
|
|
"B": item["multi-choice options"][1][4:],
|
|
"C": item["multi-choice options"][2][4:],
|
|
"D": item["multi-choice options"][3][4:],
|
|
"E": item["multi-choice options"][4][4:],
|
|
"answer": item["answer"],
|
|
"category": item["category"],
|
|
"l2-category": item["l2-category"],
|
|
}
|
|
)
|
|
df = pd.DataFrame(data_list)
|
|
df.to_csv(tsv_file, sep="\t", index=False)
|
|
print(f"TSV file saved to {tsv_file}")
|
|
|
|
|
|
if dataset == "MME-RealWorld-Lite":
|
|
url = 'https://huggingface.co/datasets/yifanzhang114/MME-RealWorld-Base64/resolve/main/mme_realworld_lite.tsv'
|
|
file_md5 = (
|
|
self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
|
|
)
|
|
datas = self.prepare_tsv(url, file_md5)
|
|
choice_prompt = "The choices are listed below:\n"
|
|
for index, item in datas.iterrows():
|
|
options = eval(item["multi-choice options"])
|
|
datas.loc[index, "multi-choice options"] = choice_prompt + "\n".join(
|
|
options
|
|
)
|
|
datas.loc[index, "A"] = options[0][4:]
|
|
datas.loc[index, "B"] = options[1][4:]
|
|
datas.loc[index, "C"] = options[2][4:]
|
|
datas.loc[index, "D"] = options[3][4:]
|
|
datas.loc[index, "E"] = options[4][4:]
|
|
return datas
|
|
|
|
update_flag = False
|
|
cache_path = get_cache_path(repo_id)
|
|
if cache_path is not None and check_integrity(cache_path):
|
|
dataset_path = cache_path
|
|
print(f"Using cached dataset from {cache_path}")
|
|
else:
|
|
from huggingface_hub import snapshot_download
|
|
|
|
|
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
|
|
generate_tsv(dataset_path)
|
|
update_flag = True
|
|
|
|
data_path = os.path.join(dataset_path, f"{dataset}.tsv")
|
|
if file_size(data_path, "GB") > 1:
|
|
local_path = data_path.replace(".tsv", "_local.tsv")
|
|
if (
|
|
not osp.exists(local_path)
|
|
or os.environ.get("FORCE_LOCAL", None)
|
|
or update_flag
|
|
):
|
|
from vlmeval.tools import LOCALIZE
|
|
|
|
LOCALIZE(data_path, local_path)
|
|
data_path = local_path
|
|
return load(data_path)
|
|
|
|
def post_build(self, dataset):
|
|
self.TYPE = 'MMERealWorld'
|
|
|
|
|
|
def build_prompt(self, line):
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
if self.meta_only:
|
|
tgt_path = toliststr(line['image_path'])
|
|
else:
|
|
tgt_path = self.dump_image(line)
|
|
|
|
question = line['question']
|
|
|
|
choice_prompt = line['multi-choice options'] + '\n'
|
|
question += ' ' + choice_prompt + self.SYS[self.dataset_name]
|
|
|
|
msgs = []
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=question))
|
|
return msgs
|
|
|
|
|
|
@classmethod
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
from .utils.multiple_choice import extract_characters_regex, get_dimension_rating
|
|
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
|
|
FAIL_MSG = 'Failed to obtain answer via API.'
|
|
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
|
|
tgt_file = eval_file.replace('.xlsx', '_rating.json')
|
|
score_file = eval_file.replace('.xlsx', '_score.xlsx')
|
|
|
|
if not osp.exists(score_file):
|
|
|
|
res = {} if not osp.exists(tmp_file) else load(tmp_file)
|
|
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
|
|
|
|
data = load(eval_file)
|
|
cnt_rejected = 0
|
|
data_un = data[~pd.isna(data['prediction'])]
|
|
|
|
for idx in data['index']:
|
|
ans = data.loc[data['index'] == idx, 'answer'].values[0]
|
|
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
|
|
|
|
extract_pred = extract_characters_regex(pred)
|
|
if extract_pred == '':
|
|
cnt_rejected += 1
|
|
data.loc[data['index'] == idx, 'score'] = 0
|
|
else:
|
|
data.loc[data['index'] == idx, 'score'] = int(extract_pred == ans)
|
|
|
|
print(
|
|
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
|
|
f'failed to obtain the score for another {cnt_rejected} questions. '
|
|
f'Those questions will be counted as 0 score in ALL rating.'
|
|
)
|
|
|
|
dump(data, score_file)
|
|
|
|
rating = get_dimension_rating(score_file)
|
|
dump(rating, tgt_file)
|
|
return rating
|
|
|
|
|
|
class HRBenchDataset(ImageMCQDataset):
|
|
|
|
DATASET_URL = {
|
|
'HRBench4K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_4k.tsv',
|
|
'HRBench8K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_8k.tsv',
|
|
}
|
|
|
|
DATASET_MD5 = {
|
|
'HRBench4K': 'f6b041b03d49543494b8a56d2e35be65',
|
|
'HRBench8K': '274c9c7f89329b804a4723178a00219c',
|
|
}
|
|
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
assert os.path.exists(eval_file), '{} does not exist!'.format(eval_file)
|
|
from .utils.multiple_choice import mcq_vanilla_eval
|
|
from .utils.hrbench import report_acc_hrbench
|
|
nproc = judge_kwargs.pop('nproc', 4)
|
|
|
|
suffix = eval_file.split('.')[-1]
|
|
model = judge_kwargs.get('model', 'extract_matching')
|
|
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
|
|
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
|
|
name_str = name_str_map[model] if model in name_str_map else model
|
|
|
|
if model == 'exact_matching':
|
|
model = None
|
|
elif gpt_key_set():
|
|
model = build_judge(**judge_kwargs)
|
|
if not model.working():
|
|
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
|
|
warnings.warn(DEBUG_MESSAGE)
|
|
model = None
|
|
else:
|
|
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
|
|
model = None
|
|
|
|
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
|
|
|
|
data = load(eval_file)
|
|
data = data.sort_values(by='index')
|
|
data['prediction'] = [str(x) for x in data['prediction']]
|
|
|
|
for k in data.keys():
|
|
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
|
|
|
|
meta = self.data
|
|
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
|
|
data_map = {x: y for x, y in zip(data['index'], data['question'])}
|
|
for k in data_map:
|
|
assert k in meta_q_map, (
|
|
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
|
|
)
|
|
|
|
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
|
|
|
|
if osp.exists(score_file):
|
|
acc = load(score_file)
|
|
return acc
|
|
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
|
|
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
|
|
|
|
acc = report_acc_hrbench(data)
|
|
|
|
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
|
|
dump(acc, score_file)
|
|
|
|
return acc
|
|
|
|
|
|
class CustomMCQDataset(ImageMCQDataset):
|
|
|
|
def load_data(self, dataset):
|
|
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
|
|
|
|
if file_size(data_path, 'GB') > 1:
|
|
local_path = data_path.replace('.tsv', '_local.tsv')
|
|
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
|
|
from ..tools import LOCALIZE
|
|
LOCALIZE(data_path, local_path)
|
|
data_path = local_path
|
|
return load(data_path)
|
|
|
|
|
|
class NaturalBenchDataset(ImageMCQDataset):
|
|
|
|
DATASET_URL = {
|
|
'NaturalBenchDataset': (
|
|
'https://huggingface.co/datasets/BaiqiL/'
|
|
'NaturalBench/resolve/main/NaturalBenchDataset.tsv'
|
|
),
|
|
}
|
|
DATASET_MD5 = {
|
|
'NaturalBenchDataset':'dbe25b044bc35696426381e9ba4fe930',
|
|
}
|
|
|
|
def build_prompt(self, line):
|
|
SUFFIX_FOR_VQA = {
|
|
"yes_no": "Please answer Yes or No.",
|
|
"multiple_choice": "Please output the letter corresponding to the correct option."
|
|
}
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
if self.meta_only:
|
|
tgt_path = toliststr(line['image_path'])
|
|
else:
|
|
tgt_path = self.dump_image(line)
|
|
|
|
question = line['question']
|
|
prompt = f'{question} {SUFFIX_FOR_VQA[line["type"]]}'
|
|
msgs = []
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=prompt))
|
|
|
|
return msgs
|
|
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
from .utils.naturalbench import extract_answer, get_scores
|
|
|
|
data = load(eval_file)
|
|
data = data.sort_values(by='index')
|
|
predictions = [str(x) for x in data['prediction']]
|
|
answers = [str(x) for x in data['answer']]
|
|
indexs = [str(x) for x in data['index']]
|
|
meta = self.data
|
|
types = [str(x) for x in meta['type']]
|
|
results = {}
|
|
assert len(predictions) == len(answers) == len(indexs) == len(types) == (1900 * 4)
|
|
number_answered_samples = len(predictions) // 4
|
|
for i in range(number_answered_samples):
|
|
results[i] = {
|
|
"q0_i0": extract_answer(predictions[i * 4], types[i * 4]),
|
|
"q0_i1": extract_answer(predictions[i * 4 + 1], types[i * 4 + 1]),
|
|
"q1_i0": extract_answer(predictions[i * 4 + 2], types[i * 4 + 2]),
|
|
"q1_i1": extract_answer(predictions[i * 4 + 3], types[i * 4 + 3])
|
|
}
|
|
|
|
scores = get_scores(results)
|
|
print(scores)
|
|
score_file = 'NaturalBench_acc.csv'
|
|
df = pd.DataFrame(list(scores.items()), columns=['Metric', 'Score'])
|
|
dump(df, score_file)
|
|
|
|
return scores
|
|
|