Update README.md
Browse files
README.md
CHANGED
@@ -1,158 +1,157 @@
|
|
1 |
-
# OpenMM-Medical
|
2 |
-
|
3 |
-
## Introduction
|
4 |
-
|
5 |
-
OpenMM-Medical is a comprehensive
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
Chest
|
17 |
-
|
18 |
-
|
19 |
-
Covid
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
Pulmonary Chest
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
import
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
-
|
155 |
-
-
|
156 |
-
|
157 |
-
|
158 |
With this setup, you should be able to evaluate OpenMM-Medical using Baichuan-Omni successfully.
|
|
|
1 |
+
# OpenMM-Medical
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
OpenMM-Medical is a comprehensive medical evaluation dataset, which is an integration of existing datasets. OpenMM-Medical spans multiple domains, including Magnetic Resonance Imaging (MRI), CT scans, X-rays, microscopy images, endoscopy, fundus imaging, and dermoscopy.
|
6 |
+
|
7 |
+
Components | Content | Type | Number | Metrics
|
8 |
+
| :----: | :----: |:----: | :----: |:----: |
|
9 |
+
ACRIMA | Fundus Photography | Multiple Choice Question Answering | 159 | Acc
|
10 |
+
Adam Challenge | Endoscopy | Multiple Choice Question Answering | 87 | Acc
|
11 |
+
ALL Challenge | Microscopy Images | Multiple Choice Question Answering | 342 | Acc
|
12 |
+
BioMediTech | Microscopy Images | Multiple Choice Question Answering | 511 | Acc
|
13 |
+
Blood Cell | Microscopy Images | Multiple Choice Question Answering | 1175 | Acc
|
14 |
+
BreakHis | Magnetic Resonance Imaging | Multiple Choice Question Answering | 735 | Acc
|
15 |
+
Chest CT Scan | CT Imaging | Multiple Choice Question Answering | 871 | Acc
|
16 |
+
Chest X-Ray PA | X-Ray | Multiple Choice Question Answering | 850 | Acc
|
17 |
+
CoronaHack | X-Ray | Multiple Choice Question Answering | 684 | Acc
|
18 |
+
Covid CT | CT Imaging | Multiple Choice Question Answering | 199 | Acc
|
19 |
+
Covid-19 tianchi | X-Ray | Multiple Choice Question Answering | 96 | Acc
|
20 |
+
Covid19 heywhale | X-Ray | Multiple Choice Question Answering | 690 | Acc
|
21 |
+
COVIDx CXR-4 | X-Ray | Multiple Choice Question Answering | 485 | Acc
|
22 |
+
CRC100k | Magnetic Resonance Imaging | Multiple Choice Question Answering | 1322 | Acc
|
23 |
+
DeepDRiD | Fundus Photography | Multiple Choice Question Answering | 131 | Acc
|
24 |
+
Diabetic Retinopathy | Fundus Photography | Multiple Choice Question Answering | 2051 | Acc
|
25 |
+
DRIMDB | Fundus Photography | Multiple Choice Question Answering | 132 | Acc
|
26 |
+
Fitzpatrick 17k | Dermoscopy | Multiple Choice Question Answering | 1552 | Acc
|
27 |
+
HuSHeM | Microscopy Images | Multiple Choice Question Answering | 89 | Acc
|
28 |
+
ISBI2016 | Dermoscopy | Multiple Choice Question Answering | 681 | Acc
|
29 |
+
ISIC2018 | Dermoscopy | Multiple Choice Question Answering | 272 | Acc
|
30 |
+
ISIC2019 | Dermoscopy | Multiple Choice Question Answering | 1952 | Acc
|
31 |
+
ISIC2020 | Dermoscopy | Multiple Choice Question Answering | 1580 | Acc
|
32 |
+
JSIEC | Fundus Photography | Multiple Choice Question Answering | 220 | Acc
|
33 |
+
Knee Osteoarthritis | X-Ray | Multiple Choice Question Answering | 518 | Acc
|
34 |
+
MAlig Lymph | Magnetic Resonance Imaging | Multiple Choice Question Answering | 149 | Acc
|
35 |
+
MHSMA | Microscopy Images | Multiple Choice Question Answering | 1282 | Acc
|
36 |
+
MIAS | X-Ray | Multiple Choice Question Answering | 142 | Acc
|
37 |
+
Monkeypox Skin Image 2022 | Dermoscopy | Multiple Choice Question Answering | 163 | Acc
|
38 |
+
Mura | X-Ray | Multiple Choice Question Answering | 1464 | Acc
|
39 |
+
NLM- Malaria Data | Magnetic Resonance Imaging | Multiple Choice Question Answering | 75 | Acc
|
40 |
+
OCT & X-Ray 2017 | X-Ray, Optical Coherence Tomography | Multiple Choice Question Answering | 1301 | Acc
|
41 |
+
OLIVES | Fundus Photography | Multiple Choice Question Answering | 593 | Acc
|
42 |
+
PAD-UFES-20 | Dermoscopy | Multiple Choice Question Answering | 479 | Acc
|
43 |
+
PALM2019 | Fundus Photography | Multiple Choice Question Answering | 510 | Acc
|
44 |
+
Pulmonary Chest MC | X-Ray | Multiple Choice Question Answering | 38 | Acc
|
45 |
+
Pulmonary Chest Shenzhen | X-Ray | Multiple Choice Question Answering | 296 | Acc
|
46 |
+
RadImageNet | CT; Magnetic Resonance Imaging; Ultrasound | Multiple Choice Question Answering | 56697 | Acc
|
47 |
+
Retinal OCT-C8 | Optical Coherence Tomography | Multiple Choice Question Answering | 4016 | Acc
|
48 |
+
RUS CHN | X-Ray | Multiple Choice Question Answering | 1982 | Acc
|
49 |
+
SARS-CoV-2 CT-scan | CT | Multiple Choice Question Answering | 910 | Acc
|
50 |
+
Yangxi | Fundus Photography | Multiple Choice Question Answering | 1515 | Acc
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
The following steps detail how to use [**Baichuan-Omni-1.5**](https://github.com/baichuan-inc/Baichuan-Omni-1.5) with OpenMM-Medical for evaluation using [**VLMEvalKit**](https://github.com/open-compass/VLMEvalKit):
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
### **1. Add `baichuan.py` in `VLMEvalKit/vlmeval/vlm`**
|
59 |
+
|
60 |
+
Download `baichuan.py` (which defines the `Baichuan` model class) and add it in `VLMEvalKit/vlmeval/vlm`.
|
61 |
+
|
62 |
+
---
|
63 |
+
|
64 |
+
### **2. Modify `VLMEvalKit/vlmeval/vlm/__init__.py`**
|
65 |
+
Add the following line:
|
66 |
+
```python
|
67 |
+
from .baichuan import Baichuan
|
68 |
+
```
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
### **3. Modify `VLMEvalKit/vlmeval/config.py`**
|
73 |
+
Import the `Baichuan` model:
|
74 |
+
```python
|
75 |
+
from vlmeval.vlm import Baichuan
|
76 |
+
```
|
77 |
+
|
78 |
+
Add the `Baichuan-omni` model configuration:
|
79 |
+
```python
|
80 |
+
'Baichuan-omni': partial(
|
81 |
+
Baichuan,
|
82 |
+
sft=True,
|
83 |
+
model_path='/your/path/to/the/model/checkpoint'
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
### **4. Modify `VLMEvalKit/vlmeval/dataset/image_mcq.py`**
|
90 |
+
Download `image_mcq.py` and add the following code to define the `OpenMMMedical` class. Ensure the `image_folder` points to your OpenMM-Medical dataset location:
|
91 |
+
|
92 |
+
```python
|
93 |
+
class OpenMMMedical(ImageMCQDataset):
|
94 |
+
|
95 |
+
@classmethod
|
96 |
+
def supported_datasets(cls):
|
97 |
+
return ['OpenMMMedical']
|
98 |
+
|
99 |
+
def load_data(self, dataset='OpenMMMedical'):
|
100 |
+
image_folder = "/your/path/to/OpenMM_Medical"
|
101 |
+
def generate_tsv(pth):
|
102 |
+
import csv
|
103 |
+
from pathlib import Path
|
104 |
+
tsv_file_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')
|
105 |
+
...
|
106 |
+
```
|
107 |
+
|
108 |
+
---
|
109 |
+
|
110 |
+
### **5. Update `VLMEvalKit/vlmeval/dataset/__init__.py`**
|
111 |
+
Import `OpenMMMedical`:
|
112 |
+
```python
|
113 |
+
from .image_mcq import (
|
114 |
+
ImageMCQDataset, MMMUDataset, CustomMCQDataset,
|
115 |
+
MUIRDataset, GMAIMMBenchDataset, MMERealWorld, OpenMMMedical
|
116 |
+
)
|
117 |
+
|
118 |
+
IMAGE_DATASET = [
|
119 |
+
ImageCaptionDataset, ImageYORNDataset, ImageMCQDataset, ImageVQADataset,
|
120 |
+
MathVision, MMMUDataset, OCRBench, MathVista, LLaVABench, MMVet,
|
121 |
+
MTVQADataset, TableVQABench, MMLongBench, VCRDataset, MMDUDataset,
|
122 |
+
DUDE, SlideVQA, MUIRDataset, GMAIMMBenchDataset, MMERealWorld, OpenMMMedical
|
123 |
+
]
|
124 |
+
```
|
125 |
+
|
126 |
+
---
|
127 |
+
|
128 |
+
### **6. Update `VLMEvalKit/vlmeval/dataset/image_base.py`**
|
129 |
+
Modify the `img_root_map` function:
|
130 |
+
```python
|
131 |
+
def img_root_map(dataset):
|
132 |
+
if 'OpenMMMedical' in dataset:
|
133 |
+
return 'OpenMMMedical'
|
134 |
+
if 'OCRVQA' in dataset:
|
135 |
+
return 'OCRVQA'
|
136 |
+
if 'COCO_VAL' == dataset:
|
137 |
+
return 'COCO'
|
138 |
+
if 'MMMU' in dataset:
|
139 |
+
return 'MMMU'
|
140 |
+
```
|
141 |
+
|
142 |
+
---
|
143 |
+
|
144 |
+
### **7. Run the Evaluation**
|
145 |
+
Execute the following command to start the evaluation:
|
146 |
+
```bash
|
147 |
+
python run.py --data OpenMMMedical --model Baichuan-omni --verbose
|
148 |
+
```
|
149 |
+
|
150 |
+
---
|
151 |
+
|
152 |
+
### **Notes:**
|
153 |
+
- Ensure that all paths (e.g., `/your/path/to/OpenMM_Medical`) are correctly specified.
|
154 |
+
- Confirm that the Baichuan model checkpoint is accessible at the defined `model_path`.
|
155 |
+
- Validate the dependencies and configurations of VLMEvalKit to avoid runtime issues.
|
156 |
+
|
|
|
157 |
With this setup, you should be able to evaluate OpenMM-Medical using Baichuan-Omni successfully.
|