Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1M - 10M
ArXiv:
License:
File size: 88,463 Bytes
01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 01e58fa 86f7426 f12246f 86f7426 f12246f 86f7426 f12246f 86f7426 f12246f 86f7426 01e58fa f9a88b7 01e58fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
paperswithcode_id: imagenet-1k-1
pretty_name: ImageNet
license_details: imagenet-agreement
extra_gated_prompt: 'By clicking on “Access repository” below, you also agree to ImageNet
Terms of Access:
[RESEARCHER_FULLNAME] (the "Researcher") has requested permission to use the ImageNet
database (the "Database") at Princeton University and Stanford University. In exchange
for such permission, Researcher hereby agrees to the following terms and conditions:
1. Researcher shall use the Database only for non-commercial research and educational
purposes.
2. Princeton University, Stanford University and Hugging Face make no representations
or warranties regarding the Database, including but not limited to warranties of
non-infringement or fitness for a particular purpose.
3. Researcher accepts full responsibility for his or her use of the Database and
shall defend and indemnify the ImageNet team, Princeton University, Stanford University
and Hugging Face, including their employees, Trustees, officers and agents, against
any and all claims arising from Researcher''s use of the Database, including but
not limited to Researcher''s use of any copies of copyrighted images that he or
she may create from the Database.
4. Researcher may provide research associates and colleagues with access to the
Database provided that they first agree to be bound by these terms and conditions.
5. Princeton University, Stanford University and Hugging Face reserve the right
to terminate Researcher''s access to the Database at any time.
6. If Researcher is employed by a for-profit, commercial entity, Researcher''s employer
shall also be bound by these terms and conditions, and Researcher hereby represents
that he or she is fully authorized to enter into this agreement on behalf of such
employer.
7. The law of the State of New Jersey shall apply to all disputes under this agreement.'
tags:
- imagenet
- imagenet-1k
- ilsvrc-2012
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': tench, Tinca tinca
'1': goldfish, Carassius auratus
'2': great white shark, white shark, man-eater, man-eating shark, Carcharodon
carcharias
'3': tiger shark, Galeocerdo cuvieri
'4': hammerhead, hammerhead shark
'5': electric ray, crampfish, numbfish, torpedo
'6': stingray
'7': cock
'8': hen
'9': ostrich, Struthio camelus
'10': brambling, Fringilla montifringilla
'11': goldfinch, Carduelis carduelis
'12': house finch, linnet, Carpodacus mexicanus
'13': junco, snowbird
'14': indigo bunting, indigo finch, indigo bird, Passerina cyanea
'15': robin, American robin, Turdus migratorius
'16': bulbul
'17': jay
'18': magpie
'19': chickadee
'20': water ouzel, dipper
'21': kite
'22': bald eagle, American eagle, Haliaeetus leucocephalus
'23': vulture
'24': great grey owl, great gray owl, Strix nebulosa
'25': European fire salamander, Salamandra salamandra
'26': common newt, Triturus vulgaris
'27': eft
'28': spotted salamander, Ambystoma maculatum
'29': axolotl, mud puppy, Ambystoma mexicanum
'30': bullfrog, Rana catesbeiana
'31': tree frog, tree-frog
'32': tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui
'33': loggerhead, loggerhead turtle, Caretta caretta
'34': leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea
'35': mud turtle
'36': terrapin
'37': box turtle, box tortoise
'38': banded gecko
'39': common iguana, iguana, Iguana iguana
'40': American chameleon, anole, Anolis carolinensis
'41': whiptail, whiptail lizard
'42': agama
'43': frilled lizard, Chlamydosaurus kingi
'44': alligator lizard
'45': Gila monster, Heloderma suspectum
'46': green lizard, Lacerta viridis
'47': African chameleon, Chamaeleo chamaeleon
'48': Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus
komodoensis
'49': African crocodile, Nile crocodile, Crocodylus niloticus
'50': American alligator, Alligator mississipiensis
'51': triceratops
'52': thunder snake, worm snake, Carphophis amoenus
'53': ringneck snake, ring-necked snake, ring snake
'54': hognose snake, puff adder, sand viper
'55': green snake, grass snake
'56': king snake, kingsnake
'57': garter snake, grass snake
'58': water snake
'59': vine snake
'60': night snake, Hypsiglena torquata
'61': boa constrictor, Constrictor constrictor
'62': rock python, rock snake, Python sebae
'63': Indian cobra, Naja naja
'64': green mamba
'65': sea snake
'66': horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
'67': diamondback, diamondback rattlesnake, Crotalus adamanteus
'68': sidewinder, horned rattlesnake, Crotalus cerastes
'69': trilobite
'70': harvestman, daddy longlegs, Phalangium opilio
'71': scorpion
'72': black and gold garden spider, Argiope aurantia
'73': barn spider, Araneus cavaticus
'74': garden spider, Aranea diademata
'75': black widow, Latrodectus mactans
'76': tarantula
'77': wolf spider, hunting spider
'78': tick
'79': centipede
'80': black grouse
'81': ptarmigan
'82': ruffed grouse, partridge, Bonasa umbellus
'83': prairie chicken, prairie grouse, prairie fowl
'84': peacock
'85': quail
'86': partridge
'87': African grey, African gray, Psittacus erithacus
'88': macaw
'89': sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita
'90': lorikeet
'91': coucal
'92': bee eater
'93': hornbill
'94': hummingbird
'95': jacamar
'96': toucan
'97': drake
'98': red-breasted merganser, Mergus serrator
'99': goose
'100': black swan, Cygnus atratus
'101': tusker
'102': echidna, spiny anteater, anteater
'103': platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus
anatinus
'104': wallaby, brush kangaroo
'105': koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus
'106': wombat
'107': jellyfish
'108': sea anemone, anemone
'109': brain coral
'110': flatworm, platyhelminth
'111': nematode, nematode worm, roundworm
'112': conch
'113': snail
'114': slug
'115': sea slug, nudibranch
'116': chiton, coat-of-mail shell, sea cradle, polyplacophore
'117': chambered nautilus, pearly nautilus, nautilus
'118': Dungeness crab, Cancer magister
'119': rock crab, Cancer irroratus
'120': fiddler crab
'121': king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes
camtschatica
'122': American lobster, Northern lobster, Maine lobster, Homarus americanus
'123': spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish
'124': crayfish, crawfish, crawdad, crawdaddy
'125': hermit crab
'126': isopod
'127': white stork, Ciconia ciconia
'128': black stork, Ciconia nigra
'129': spoonbill
'130': flamingo
'131': little blue heron, Egretta caerulea
'132': American egret, great white heron, Egretta albus
'133': bittern
'134': crane
'135': limpkin, Aramus pictus
'136': European gallinule, Porphyrio porphyrio
'137': American coot, marsh hen, mud hen, water hen, Fulica americana
'138': bustard
'139': ruddy turnstone, Arenaria interpres
'140': red-backed sandpiper, dunlin, Erolia alpina
'141': redshank, Tringa totanus
'142': dowitcher
'143': oystercatcher, oyster catcher
'144': pelican
'145': king penguin, Aptenodytes patagonica
'146': albatross, mollymawk
'147': grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius
robustus
'148': killer whale, killer, orca, grampus, sea wolf, Orcinus orca
'149': dugong, Dugong dugon
'150': sea lion
'151': Chihuahua
'152': Japanese spaniel
'153': Maltese dog, Maltese terrier, Maltese
'154': Pekinese, Pekingese, Peke
'155': Shih-Tzu
'156': Blenheim spaniel
'157': papillon
'158': toy terrier
'159': Rhodesian ridgeback
'160': Afghan hound, Afghan
'161': basset, basset hound
'162': beagle
'163': bloodhound, sleuthhound
'164': bluetick
'165': black-and-tan coonhound
'166': Walker hound, Walker foxhound
'167': English foxhound
'168': redbone
'169': borzoi, Russian wolfhound
'170': Irish wolfhound
'171': Italian greyhound
'172': whippet
'173': Ibizan hound, Ibizan Podenco
'174': Norwegian elkhound, elkhound
'175': otterhound, otter hound
'176': Saluki, gazelle hound
'177': Scottish deerhound, deerhound
'178': Weimaraner
'179': Staffordshire bullterrier, Staffordshire bull terrier
'180': American Staffordshire terrier, Staffordshire terrier, American pit
bull terrier, pit bull terrier
'181': Bedlington terrier
'182': Border terrier
'183': Kerry blue terrier
'184': Irish terrier
'185': Norfolk terrier
'186': Norwich terrier
'187': Yorkshire terrier
'188': wire-haired fox terrier
'189': Lakeland terrier
'190': Sealyham terrier, Sealyham
'191': Airedale, Airedale terrier
'192': cairn, cairn terrier
'193': Australian terrier
'194': Dandie Dinmont, Dandie Dinmont terrier
'195': Boston bull, Boston terrier
'196': miniature schnauzer
'197': giant schnauzer
'198': standard schnauzer
'199': Scotch terrier, Scottish terrier, Scottie
'200': Tibetan terrier, chrysanthemum dog
'201': silky terrier, Sydney silky
'202': soft-coated wheaten terrier
'203': West Highland white terrier
'204': Lhasa, Lhasa apso
'205': flat-coated retriever
'206': curly-coated retriever
'207': golden retriever
'208': Labrador retriever
'209': Chesapeake Bay retriever
'210': German short-haired pointer
'211': vizsla, Hungarian pointer
'212': English setter
'213': Irish setter, red setter
'214': Gordon setter
'215': Brittany spaniel
'216': clumber, clumber spaniel
'217': English springer, English springer spaniel
'218': Welsh springer spaniel
'219': cocker spaniel, English cocker spaniel, cocker
'220': Sussex spaniel
'221': Irish water spaniel
'222': kuvasz
'223': schipperke
'224': groenendael
'225': malinois
'226': briard
'227': kelpie
'228': komondor
'229': Old English sheepdog, bobtail
'230': Shetland sheepdog, Shetland sheep dog, Shetland
'231': collie
'232': Border collie
'233': Bouvier des Flandres, Bouviers des Flandres
'234': Rottweiler
'235': German shepherd, German shepherd dog, German police dog, alsatian
'236': Doberman, Doberman pinscher
'237': miniature pinscher
'238': Greater Swiss Mountain dog
'239': Bernese mountain dog
'240': Appenzeller
'241': EntleBucher
'242': boxer
'243': bull mastiff
'244': Tibetan mastiff
'245': French bulldog
'246': Great Dane
'247': Saint Bernard, St Bernard
'248': Eskimo dog, husky
'249': malamute, malemute, Alaskan malamute
'250': Siberian husky
'251': dalmatian, coach dog, carriage dog
'252': affenpinscher, monkey pinscher, monkey dog
'253': basenji
'254': pug, pug-dog
'255': Leonberg
'256': Newfoundland, Newfoundland dog
'257': Great Pyrenees
'258': Samoyed, Samoyede
'259': Pomeranian
'260': chow, chow chow
'261': keeshond
'262': Brabancon griffon
'263': Pembroke, Pembroke Welsh corgi
'264': Cardigan, Cardigan Welsh corgi
'265': toy poodle
'266': miniature poodle
'267': standard poodle
'268': Mexican hairless
'269': timber wolf, grey wolf, gray wolf, Canis lupus
'270': white wolf, Arctic wolf, Canis lupus tundrarum
'271': red wolf, maned wolf, Canis rufus, Canis niger
'272': coyote, prairie wolf, brush wolf, Canis latrans
'273': dingo, warrigal, warragal, Canis dingo
'274': dhole, Cuon alpinus
'275': African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
'276': hyena, hyaena
'277': red fox, Vulpes vulpes
'278': kit fox, Vulpes macrotis
'279': Arctic fox, white fox, Alopex lagopus
'280': grey fox, gray fox, Urocyon cinereoargenteus
'281': tabby, tabby cat
'282': tiger cat
'283': Persian cat
'284': Siamese cat, Siamese
'285': Egyptian cat
'286': cougar, puma, catamount, mountain lion, painter, panther, Felis concolor
'287': lynx, catamount
'288': leopard, Panthera pardus
'289': snow leopard, ounce, Panthera uncia
'290': jaguar, panther, Panthera onca, Felis onca
'291': lion, king of beasts, Panthera leo
'292': tiger, Panthera tigris
'293': cheetah, chetah, Acinonyx jubatus
'294': brown bear, bruin, Ursus arctos
'295': American black bear, black bear, Ursus americanus, Euarctos americanus
'296': ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
'297': sloth bear, Melursus ursinus, Ursus ursinus
'298': mongoose
'299': meerkat, mierkat
'300': tiger beetle
'301': ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
'302': ground beetle, carabid beetle
'303': long-horned beetle, longicorn, longicorn beetle
'304': leaf beetle, chrysomelid
'305': dung beetle
'306': rhinoceros beetle
'307': weevil
'308': fly
'309': bee
'310': ant, emmet, pismire
'311': grasshopper, hopper
'312': cricket
'313': walking stick, walkingstick, stick insect
'314': cockroach, roach
'315': mantis, mantid
'316': cicada, cicala
'317': leafhopper
'318': lacewing, lacewing fly
'319': dragonfly, darning needle, devil's darning needle, sewing needle,
snake feeder, snake doctor, mosquito hawk, skeeter hawk
'320': damselfly
'321': admiral
'322': ringlet, ringlet butterfly
'323': monarch, monarch butterfly, milkweed butterfly, Danaus plexippus
'324': cabbage butterfly
'325': sulphur butterfly, sulfur butterfly
'326': lycaenid, lycaenid butterfly
'327': starfish, sea star
'328': sea urchin
'329': sea cucumber, holothurian
'330': wood rabbit, cottontail, cottontail rabbit
'331': hare
'332': Angora, Angora rabbit
'333': hamster
'334': porcupine, hedgehog
'335': fox squirrel, eastern fox squirrel, Sciurus niger
'336': marmot
'337': beaver
'338': guinea pig, Cavia cobaya
'339': sorrel
'340': zebra
'341': hog, pig, grunter, squealer, Sus scrofa
'342': wild boar, boar, Sus scrofa
'343': warthog
'344': hippopotamus, hippo, river horse, Hippopotamus amphibius
'345': ox
'346': water buffalo, water ox, Asiatic buffalo, Bubalus bubalis
'347': bison
'348': ram, tup
'349': bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain
sheep, Ovis canadensis
'350': ibex, Capra ibex
'351': hartebeest
'352': impala, Aepyceros melampus
'353': gazelle
'354': Arabian camel, dromedary, Camelus dromedarius
'355': llama
'356': weasel
'357': mink
'358': polecat, fitch, foulmart, foumart, Mustela putorius
'359': black-footed ferret, ferret, Mustela nigripes
'360': otter
'361': skunk, polecat, wood pussy
'362': badger
'363': armadillo
'364': three-toed sloth, ai, Bradypus tridactylus
'365': orangutan, orang, orangutang, Pongo pygmaeus
'366': gorilla, Gorilla gorilla
'367': chimpanzee, chimp, Pan troglodytes
'368': gibbon, Hylobates lar
'369': siamang, Hylobates syndactylus, Symphalangus syndactylus
'370': guenon, guenon monkey
'371': patas, hussar monkey, Erythrocebus patas
'372': baboon
'373': macaque
'374': langur
'375': colobus, colobus monkey
'376': proboscis monkey, Nasalis larvatus
'377': marmoset
'378': capuchin, ringtail, Cebus capucinus
'379': howler monkey, howler
'380': titi, titi monkey
'381': spider monkey, Ateles geoffroyi
'382': squirrel monkey, Saimiri sciureus
'383': Madagascar cat, ring-tailed lemur, Lemur catta
'384': indri, indris, Indri indri, Indri brevicaudatus
'385': Indian elephant, Elephas maximus
'386': African elephant, Loxodonta africana
'387': lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens
'388': giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca
'389': barracouta, snoek
'390': eel
'391': coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus
kisutch
'392': rock beauty, Holocanthus tricolor
'393': anemone fish
'394': sturgeon
'395': gar, garfish, garpike, billfish, Lepisosteus osseus
'396': lionfish
'397': puffer, pufferfish, blowfish, globefish
'398': abacus
'399': abaya
'400': academic gown, academic robe, judge's robe
'401': accordion, piano accordion, squeeze box
'402': acoustic guitar
'403': aircraft carrier, carrier, flattop, attack aircraft carrier
'404': airliner
'405': airship, dirigible
'406': altar
'407': ambulance
'408': amphibian, amphibious vehicle
'409': analog clock
'410': apiary, bee house
'411': apron
'412': ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin,
dustbin, trash barrel, trash bin
'413': assault rifle, assault gun
'414': backpack, back pack, knapsack, packsack, rucksack, haversack
'415': bakery, bakeshop, bakehouse
'416': balance beam, beam
'417': balloon
'418': ballpoint, ballpoint pen, ballpen, Biro
'419': Band Aid
'420': banjo
'421': bannister, banister, balustrade, balusters, handrail
'422': barbell
'423': barber chair
'424': barbershop
'425': barn
'426': barometer
'427': barrel, cask
'428': barrow, garden cart, lawn cart, wheelbarrow
'429': baseball
'430': basketball
'431': bassinet
'432': bassoon
'433': bathing cap, swimming cap
'434': bath towel
'435': bathtub, bathing tub, bath, tub
'436': beach wagon, station wagon, wagon, estate car, beach waggon, station
waggon, waggon
'437': beacon, lighthouse, beacon light, pharos
'438': beaker
'439': bearskin, busby, shako
'440': beer bottle
'441': beer glass
'442': bell cote, bell cot
'443': bib
'444': bicycle-built-for-two, tandem bicycle, tandem
'445': bikini, two-piece
'446': binder, ring-binder
'447': binoculars, field glasses, opera glasses
'448': birdhouse
'449': boathouse
'450': bobsled, bobsleigh, bob
'451': bolo tie, bolo, bola tie, bola
'452': bonnet, poke bonnet
'453': bookcase
'454': bookshop, bookstore, bookstall
'455': bottlecap
'456': bow
'457': bow tie, bow-tie, bowtie
'458': brass, memorial tablet, plaque
'459': brassiere, bra, bandeau
'460': breakwater, groin, groyne, mole, bulwark, seawall, jetty
'461': breastplate, aegis, egis
'462': broom
'463': bucket, pail
'464': buckle
'465': bulletproof vest
'466': bullet train, bullet
'467': butcher shop, meat market
'468': cab, hack, taxi, taxicab
'469': caldron, cauldron
'470': candle, taper, wax light
'471': cannon
'472': canoe
'473': can opener, tin opener
'474': cardigan
'475': car mirror
'476': carousel, carrousel, merry-go-round, roundabout, whirligig
'477': carpenter's kit, tool kit
'478': carton
'479': car wheel
'480': cash machine, cash dispenser, automated teller machine, automatic
teller machine, automated teller, automatic teller, ATM
'481': cassette
'482': cassette player
'483': castle
'484': catamaran
'485': CD player
'486': cello, violoncello
'487': cellular telephone, cellular phone, cellphone, cell, mobile phone
'488': chain
'489': chainlink fence
'490': chain mail, ring mail, mail, chain armor, chain armour, ring armor,
ring armour
'491': chain saw, chainsaw
'492': chest
'493': chiffonier, commode
'494': chime, bell, gong
'495': china cabinet, china closet
'496': Christmas stocking
'497': church, church building
'498': cinema, movie theater, movie theatre, movie house, picture palace
'499': cleaver, meat cleaver, chopper
'500': cliff dwelling
'501': cloak
'502': clog, geta, patten, sabot
'503': cocktail shaker
'504': coffee mug
'505': coffeepot
'506': coil, spiral, volute, whorl, helix
'507': combination lock
'508': computer keyboard, keypad
'509': confectionery, confectionary, candy store
'510': container ship, containership, container vessel
'511': convertible
'512': corkscrew, bottle screw
'513': cornet, horn, trumpet, trump
'514': cowboy boot
'515': cowboy hat, ten-gallon hat
'516': cradle
'517': crane2
'518': crash helmet
'519': crate
'520': crib, cot
'521': Crock Pot
'522': croquet ball
'523': crutch
'524': cuirass
'525': dam, dike, dyke
'526': desk
'527': desktop computer
'528': dial telephone, dial phone
'529': diaper, nappy, napkin
'530': digital clock
'531': digital watch
'532': dining table, board
'533': dishrag, dishcloth
'534': dishwasher, dish washer, dishwashing machine
'535': disk brake, disc brake
'536': dock, dockage, docking facility
'537': dogsled, dog sled, dog sleigh
'538': dome
'539': doormat, welcome mat
'540': drilling platform, offshore rig
'541': drum, membranophone, tympan
'542': drumstick
'543': dumbbell
'544': Dutch oven
'545': electric fan, blower
'546': electric guitar
'547': electric locomotive
'548': entertainment center
'549': envelope
'550': espresso maker
'551': face powder
'552': feather boa, boa
'553': file, file cabinet, filing cabinet
'554': fireboat
'555': fire engine, fire truck
'556': fire screen, fireguard
'557': flagpole, flagstaff
'558': flute, transverse flute
'559': folding chair
'560': football helmet
'561': forklift
'562': fountain
'563': fountain pen
'564': four-poster
'565': freight car
'566': French horn, horn
'567': frying pan, frypan, skillet
'568': fur coat
'569': garbage truck, dustcart
'570': gasmask, respirator, gas helmet
'571': gas pump, gasoline pump, petrol pump, island dispenser
'572': goblet
'573': go-kart
'574': golf ball
'575': golfcart, golf cart
'576': gondola
'577': gong, tam-tam
'578': gown
'579': grand piano, grand
'580': greenhouse, nursery, glasshouse
'581': grille, radiator grille
'582': grocery store, grocery, food market, market
'583': guillotine
'584': hair slide
'585': hair spray
'586': half track
'587': hammer
'588': hamper
'589': hand blower, blow dryer, blow drier, hair dryer, hair drier
'590': hand-held computer, hand-held microcomputer
'591': handkerchief, hankie, hanky, hankey
'592': hard disc, hard disk, fixed disk
'593': harmonica, mouth organ, harp, mouth harp
'594': harp
'595': harvester, reaper
'596': hatchet
'597': holster
'598': home theater, home theatre
'599': honeycomb
'600': hook, claw
'601': hoopskirt, crinoline
'602': horizontal bar, high bar
'603': horse cart, horse-cart
'604': hourglass
'605': iPod
'606': iron, smoothing iron
'607': jack-o'-lantern
'608': jean, blue jean, denim
'609': jeep, landrover
'610': jersey, T-shirt, tee shirt
'611': jigsaw puzzle
'612': jinrikisha, ricksha, rickshaw
'613': joystick
'614': kimono
'615': knee pad
'616': knot
'617': lab coat, laboratory coat
'618': ladle
'619': lampshade, lamp shade
'620': laptop, laptop computer
'621': lawn mower, mower
'622': lens cap, lens cover
'623': letter opener, paper knife, paperknife
'624': library
'625': lifeboat
'626': lighter, light, igniter, ignitor
'627': limousine, limo
'628': liner, ocean liner
'629': lipstick, lip rouge
'630': Loafer
'631': lotion
'632': loudspeaker, speaker, speaker unit, loudspeaker system, speaker system
'633': loupe, jeweler's loupe
'634': lumbermill, sawmill
'635': magnetic compass
'636': mailbag, postbag
'637': mailbox, letter box
'638': maillot
'639': maillot, tank suit
'640': manhole cover
'641': maraca
'642': marimba, xylophone
'643': mask
'644': matchstick
'645': maypole
'646': maze, labyrinth
'647': measuring cup
'648': medicine chest, medicine cabinet
'649': megalith, megalithic structure
'650': microphone, mike
'651': microwave, microwave oven
'652': military uniform
'653': milk can
'654': minibus
'655': miniskirt, mini
'656': minivan
'657': missile
'658': mitten
'659': mixing bowl
'660': mobile home, manufactured home
'661': Model T
'662': modem
'663': monastery
'664': monitor
'665': moped
'666': mortar
'667': mortarboard
'668': mosque
'669': mosquito net
'670': motor scooter, scooter
'671': mountain bike, all-terrain bike, off-roader
'672': mountain tent
'673': mouse, computer mouse
'674': mousetrap
'675': moving van
'676': muzzle
'677': nail
'678': neck brace
'679': necklace
'680': nipple
'681': notebook, notebook computer
'682': obelisk
'683': oboe, hautboy, hautbois
'684': ocarina, sweet potato
'685': odometer, hodometer, mileometer, milometer
'686': oil filter
'687': organ, pipe organ
'688': oscilloscope, scope, cathode-ray oscilloscope, CRO
'689': overskirt
'690': oxcart
'691': oxygen mask
'692': packet
'693': paddle, boat paddle
'694': paddlewheel, paddle wheel
'695': padlock
'696': paintbrush
'697': pajama, pyjama, pj's, jammies
'698': palace
'699': panpipe, pandean pipe, syrinx
'700': paper towel
'701': parachute, chute
'702': parallel bars, bars
'703': park bench
'704': parking meter
'705': passenger car, coach, carriage
'706': patio, terrace
'707': pay-phone, pay-station
'708': pedestal, plinth, footstall
'709': pencil box, pencil case
'710': pencil sharpener
'711': perfume, essence
'712': Petri dish
'713': photocopier
'714': pick, plectrum, plectron
'715': pickelhaube
'716': picket fence, paling
'717': pickup, pickup truck
'718': pier
'719': piggy bank, penny bank
'720': pill bottle
'721': pillow
'722': ping-pong ball
'723': pinwheel
'724': pirate, pirate ship
'725': pitcher, ewer
'726': plane, carpenter's plane, woodworking plane
'727': planetarium
'728': plastic bag
'729': plate rack
'730': plow, plough
'731': plunger, plumber's helper
'732': Polaroid camera, Polaroid Land camera
'733': pole
'734': police van, police wagon, paddy wagon, patrol wagon, wagon, black
Maria
'735': poncho
'736': pool table, billiard table, snooker table
'737': pop bottle, soda bottle
'738': pot, flowerpot
'739': potter's wheel
'740': power drill
'741': prayer rug, prayer mat
'742': printer
'743': prison, prison house
'744': projectile, missile
'745': projector
'746': puck, hockey puck
'747': punching bag, punch bag, punching ball, punchball
'748': purse
'749': quill, quill pen
'750': quilt, comforter, comfort, puff
'751': racer, race car, racing car
'752': racket, racquet
'753': radiator
'754': radio, wireless
'755': radio telescope, radio reflector
'756': rain barrel
'757': recreational vehicle, RV, R.V.
'758': reel
'759': reflex camera
'760': refrigerator, icebox
'761': remote control, remote
'762': restaurant, eating house, eating place, eatery
'763': revolver, six-gun, six-shooter
'764': rifle
'765': rocking chair, rocker
'766': rotisserie
'767': rubber eraser, rubber, pencil eraser
'768': rugby ball
'769': rule, ruler
'770': running shoe
'771': safe
'772': safety pin
'773': saltshaker, salt shaker
'774': sandal
'775': sarong
'776': sax, saxophone
'777': scabbard
'778': scale, weighing machine
'779': school bus
'780': schooner
'781': scoreboard
'782': screen, CRT screen
'783': screw
'784': screwdriver
'785': seat belt, seatbelt
'786': sewing machine
'787': shield, buckler
'788': shoe shop, shoe-shop, shoe store
'789': shoji
'790': shopping basket
'791': shopping cart
'792': shovel
'793': shower cap
'794': shower curtain
'795': ski
'796': ski mask
'797': sleeping bag
'798': slide rule, slipstick
'799': sliding door
'800': slot, one-armed bandit
'801': snorkel
'802': snowmobile
'803': snowplow, snowplough
'804': soap dispenser
'805': soccer ball
'806': sock
'807': solar dish, solar collector, solar furnace
'808': sombrero
'809': soup bowl
'810': space bar
'811': space heater
'812': space shuttle
'813': spatula
'814': speedboat
'815': spider web, spider's web
'816': spindle
'817': sports car, sport car
'818': spotlight, spot
'819': stage
'820': steam locomotive
'821': steel arch bridge
'822': steel drum
'823': stethoscope
'824': stole
'825': stone wall
'826': stopwatch, stop watch
'827': stove
'828': strainer
'829': streetcar, tram, tramcar, trolley, trolley car
'830': stretcher
'831': studio couch, day bed
'832': stupa, tope
'833': submarine, pigboat, sub, U-boat
'834': suit, suit of clothes
'835': sundial
'836': sunglass
'837': sunglasses, dark glasses, shades
'838': sunscreen, sunblock, sun blocker
'839': suspension bridge
'840': swab, swob, mop
'841': sweatshirt
'842': swimming trunks, bathing trunks
'843': swing
'844': switch, electric switch, electrical switch
'845': syringe
'846': table lamp
'847': tank, army tank, armored combat vehicle, armoured combat vehicle
'848': tape player
'849': teapot
'850': teddy, teddy bear
'851': television, television system
'852': tennis ball
'853': thatch, thatched roof
'854': theater curtain, theatre curtain
'855': thimble
'856': thresher, thrasher, threshing machine
'857': throne
'858': tile roof
'859': toaster
'860': tobacco shop, tobacconist shop, tobacconist
'861': toilet seat
'862': torch
'863': totem pole
'864': tow truck, tow car, wrecker
'865': toyshop
'866': tractor
'867': trailer truck, tractor trailer, trucking rig, rig, articulated lorry,
semi
'868': tray
'869': trench coat
'870': tricycle, trike, velocipede
'871': trimaran
'872': tripod
'873': triumphal arch
'874': trolleybus, trolley coach, trackless trolley
'875': trombone
'876': tub, vat
'877': turnstile
'878': typewriter keyboard
'879': umbrella
'880': unicycle, monocycle
'881': upright, upright piano
'882': vacuum, vacuum cleaner
'883': vase
'884': vault
'885': velvet
'886': vending machine
'887': vestment
'888': viaduct
'889': violin, fiddle
'890': volleyball
'891': waffle iron
'892': wall clock
'893': wallet, billfold, notecase, pocketbook
'894': wardrobe, closet, press
'895': warplane, military plane
'896': washbasin, handbasin, washbowl, lavabo, wash-hand basin
'897': washer, automatic washer, washing machine
'898': water bottle
'899': water jug
'900': water tower
'901': whiskey jug
'902': whistle
'903': wig
'904': window screen
'905': window shade
'906': Windsor tie
'907': wine bottle
'908': wing
'909': wok
'910': wooden spoon
'911': wool, woolen, woollen
'912': worm fence, snake fence, snake-rail fence, Virginia fence
'913': wreck
'914': yawl
'915': yurt
'916': web site, website, internet site, site
'917': comic book
'918': crossword puzzle, crossword
'919': street sign
'920': traffic light, traffic signal, stoplight
'921': book jacket, dust cover, dust jacket, dust wrapper
'922': menu
'923': plate
'924': guacamole
'925': consomme
'926': hot pot, hotpot
'927': trifle
'928': ice cream, icecream
'929': ice lolly, lolly, lollipop, popsicle
'930': French loaf
'931': bagel, beigel
'932': pretzel
'933': cheeseburger
'934': hotdog, hot dog, red hot
'935': mashed potato
'936': head cabbage
'937': broccoli
'938': cauliflower
'939': zucchini, courgette
'940': spaghetti squash
'941': acorn squash
'942': butternut squash
'943': cucumber, cuke
'944': artichoke, globe artichoke
'945': bell pepper
'946': cardoon
'947': mushroom
'948': Granny Smith
'949': strawberry
'950': orange
'951': lemon
'952': fig
'953': pineapple, ananas
'954': banana
'955': jackfruit, jak, jack
'956': custard apple
'957': pomegranate
'958': hay
'959': carbonara
'960': chocolate sauce, chocolate syrup
'961': dough
'962': meat loaf, meatloaf
'963': pizza, pizza pie
'964': potpie
'965': burrito
'966': red wine
'967': espresso
'968': cup
'969': eggnog
'970': alp
'971': bubble
'972': cliff, drop, drop-off
'973': coral reef
'974': geyser
'975': lakeside, lakeshore
'976': promontory, headland, head, foreland
'977': sandbar, sand bar
'978': seashore, coast, seacoast, sea-coast
'979': valley, vale
'980': volcano
'981': ballplayer, baseball player
'982': groom, bridegroom
'983': scuba diver
'984': rapeseed
'985': daisy
'986': yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus,
Cypripedium parviflorum
'987': corn
'988': acorn
'989': hip, rose hip, rosehip
'990': buckeye, horse chestnut, conker
'991': coral fungus
'992': agaric
'993': gyromitra
'994': stinkhorn, carrion fungus
'995': earthstar
'996': hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola
frondosa
'997': bolete
'998': ear, spike, capitulum
'999': toilet tissue, toilet paper, bathroom tissue
'1000': none
splits:
- name: train
num_bytes: 2332531970.728
num_examples: 1281167
- name: validation
num_bytes: 88717850.0
num_examples: 50000
- name: test
num_bytes: 177655700.0
num_examples: 100000
download_size: 1939600412
dataset_size: 2598905520.728
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Repack Information
This repository contains a complete repack of [ILSVRC/imagenet-1k](https://huggingface.co/datasets/ILSVRC/imagenet-1k/) in Parquet format with the following data transformations:
1. Images were center-cropped to square to the minimum height/width dimension.
2. Images were then rescaled to 256x256 using Lanczos resampling. This dataset is available at [benjamin-paine/imagenet-1k-256x256](https://huggingface.co/datasets/benjamin-paine/imagenet-1k-256x256)
3. Images were then rescaled to 128x128 using Lanczos resampling. This dataset is available at [benjamin-paine/imagenet-1k-128x128](https://huggingface.co/datasets/benjamin-paine/imagenet-1k-128x128).
4. Images were then rescaled to 64x64 using Lanczos resampling.
# Dataset Card for ImageNet
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://image-net.org/index.php
- **Repository:**
- **Paper:** https://arxiv.org/abs/1409.0575
- **Leaderboard:** https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=171
- **Point of Contact:** mailto: [email protected]
### Dataset Summary
ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). ImageNet aims to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated.
💡 This dataset provides access to ImageNet (ILSVRC) 2012 which is the most commonly used **subset** of ImageNet. This dataset spans 1000 object classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test images. The version also has the [patch](https://drive.google.com/file/d/16RYnHpVOW0XKCsn3G3S9GTHUyoV2-4WX/view) which fixes some of the corrupted test set images already applied. For full ImageNet dataset presented in [[2]](https://ieeexplore.ieee.org/abstract/document/5206848), please check the download section of the [main website](https://image-net.org/download-images.php).
### Supported Tasks and Leaderboards
- `image-classification`: The goal of this task is to classify a given image into one of 1000 ImageNet classes. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=171).
To evaluate the `imagenet-classification` accuracy on the test split, one must first create an account at https://image-net.org. This account must be approved by the site administrator. After the account is created, one can submit the results to the test server at https://image-net.org/challenges/LSVRC/eval_server.php The submission consists of several ASCII text files corresponding to multiple tasks. The task of interest is "Classification submission (top-5 cls error)". A sample of an exported text file looks like the following:
```
670 778 794 387 650
217 691 564 909 364
737 369 430 531 124
755 930 755 512 152
```
The export format is described in full in "readme.txt" within the 2013 development kit available here: https://image-net.org/data/ILSVRC/2013/ILSVRC2013_devkit.tgz. Please see the section entitled "3.3 CLS-LOC submission format". Briefly, the format of the text file is 100,000 lines corresponding to each image in the test split. Each line of integers correspond to the rank-ordered, top 5 predictions for each test image. The integers are 1-indexed corresponding to the line number in the corresponding labels file. See `imagenet2012_labels.txt`.
### Languages
The class labels in the dataset are in English.
## Dataset Structure
### Data Instances
An example looks like below:
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x276021C5EB8>,
'label': 23
}
```
### Data Fields
The data instances have the following fields:
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `label`: an `int` classification label. -1 for `test` set as the labels are missing.
The labels are indexed based on a sorted list of synset ids such as `n07565083` which we automatically map to original class names. The original dataset is divided into folders based on these synset ids. To get a mapping from original synset names, use the file [LOC_synset_mapping.txt](https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data?select=LOC_synset_mapping.txt) available on Kaggle challenge page. You can also use `dataset_instance.features["labels"].int2str` function to get the class for a particular label index. Also note that, labels for test set are returned as -1 as they are missing.
<details>
<summary>
Click here to see the full list of ImageNet class labels mapping:
</summary>
|id|Class|
|--|-----|
|0 | tench, Tinca tinca|
|1 | goldfish, Carassius auratus|
|2 | great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias|
|3 | tiger shark, Galeocerdo cuvieri|
|4 | hammerhead, hammerhead shark|
|5 | electric ray, crampfish, numbfish, torpedo|
|6 | stingray|
|7 | cock|
|8 | hen|
|9 | ostrich, Struthio camelus|
|10 | brambling, Fringilla montifringilla|
|11 | goldfinch, Carduelis carduelis|
|12 | house finch, linnet, Carpodacus mexicanus|
|13 | junco, snowbird|
|14 | indigo bunting, indigo finch, indigo bird, Passerina cyanea|
|15 | robin, American robin, Turdus migratorius|
|16 | bulbul|
|17 | jay|
|18 | magpie|
|19 | chickadee|
|20 | water ouzel, dipper|
|21 | kite|
|22 | bald eagle, American eagle, Haliaeetus leucocephalus|
|23 | vulture|
|24 | great grey owl, great gray owl, Strix nebulosa|
|25 | European fire salamander, Salamandra salamandra|
|26 | common newt, Triturus vulgaris|
|27 | eft|
|28 | spotted salamander, Ambystoma maculatum|
|29 | axolotl, mud puppy, Ambystoma mexicanum|
|30 | bullfrog, Rana catesbeiana|
|31 | tree frog, tree-frog|
|32 | tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui|
|33 | loggerhead, loggerhead turtle, Caretta caretta|
|34 | leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea|
|35 | mud turtle|
|36 | terrapin|
|37 | box turtle, box tortoise|
|38 | banded gecko|
|39 | common iguana, iguana, Iguana iguana|
|40 | American chameleon, anole, Anolis carolinensis|
|41 | whiptail, whiptail lizard|
|42 | agama|
|43 | frilled lizard, Chlamydosaurus kingi|
|44 | alligator lizard|
|45 | Gila monster, Heloderma suspectum|
|46 | green lizard, Lacerta viridis|
|47 | African chameleon, Chamaeleo chamaeleon|
|48 | Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis|
|49 | African crocodile, Nile crocodile, Crocodylus niloticus|
|50 | American alligator, Alligator mississipiensis|
|51 | triceratops|
|52 | thunder snake, worm snake, Carphophis amoenus|
|53 | ringneck snake, ring-necked snake, ring snake|
|54 | hognose snake, puff adder, sand viper|
|55 | green snake, grass snake|
|56 | king snake, kingsnake|
|57 | garter snake, grass snake|
|58 | water snake|
|59 | vine snake|
|60 | night snake, Hypsiglena torquata|
|61 | boa constrictor, Constrictor constrictor|
|62 | rock python, rock snake, Python sebae|
|63 | Indian cobra, Naja naja|
|64 | green mamba|
|65 | sea snake|
|66 | horned viper, cerastes, sand viper, horned asp, Cerastes cornutus|
|67 | diamondback, diamondback rattlesnake, Crotalus adamanteus|
|68 | sidewinder, horned rattlesnake, Crotalus cerastes|
|69 | trilobite|
|70 | harvestman, daddy longlegs, Phalangium opilio|
|71 | scorpion|
|72 | black and gold garden spider, Argiope aurantia|
|73 | barn spider, Araneus cavaticus|
|74 | garden spider, Aranea diademata|
|75 | black widow, Latrodectus mactans|
|76 | tarantula|
|77 | wolf spider, hunting spider|
|78 | tick|
|79 | centipede|
|80 | black grouse|
|81 | ptarmigan|
|82 | ruffed grouse, partridge, Bonasa umbellus|
|83 | prairie chicken, prairie grouse, prairie fowl|
|84 | peacock|
|85 | quail|
|86 | partridge|
|87 | African grey, African gray, Psittacus erithacus|
|88 | macaw|
|89 | sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita|
|90 | lorikeet|
|91 | coucal|
|92 | bee eater|
|93 | hornbill|
|94 | hummingbird|
|95 | jacamar|
|96 | toucan|
|97 | drake|
|98 | red-breasted merganser, Mergus serrator|
|99 | goose|
|100 | black swan, Cygnus atratus|
|101 | tusker|
|102 | echidna, spiny anteater, anteater|
|103 | platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus|
|104 | wallaby, brush kangaroo|
|105 | koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus|
|106 | wombat|
|107 | jellyfish|
|108 | sea anemone, anemone|
|109 | brain coral|
|110 | flatworm, platyhelminth|
|111 | nematode, nematode worm, roundworm|
|112 | conch|
|113 | snail|
|114 | slug|
|115 | sea slug, nudibranch|
|116 | chiton, coat-of-mail shell, sea cradle, polyplacophore|
|117 | chambered nautilus, pearly nautilus, nautilus|
|118 | Dungeness crab, Cancer magister|
|119 | rock crab, Cancer irroratus|
|120 | fiddler crab|
|121 | king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica|
|122 | American lobster, Northern lobster, Maine lobster, Homarus americanus|
|123 | spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish|
|124 | crayfish, crawfish, crawdad, crawdaddy|
|125 | hermit crab|
|126 | isopod|
|127 | white stork, Ciconia ciconia|
|128 | black stork, Ciconia nigra|
|129 | spoonbill|
|130 | flamingo|
|131 | little blue heron, Egretta caerulea|
|132 | American egret, great white heron, Egretta albus|
|133 | bittern|
|134 | crane|
|135 | limpkin, Aramus pictus|
|136 | European gallinule, Porphyrio porphyrio|
|137 | American coot, marsh hen, mud hen, water hen, Fulica americana|
|138 | bustard|
|139 | ruddy turnstone, Arenaria interpres|
|140 | red-backed sandpiper, dunlin, Erolia alpina|
|141 | redshank, Tringa totanus|
|142 | dowitcher|
|143 | oystercatcher, oyster catcher|
|144 | pelican|
|145 | king penguin, Aptenodytes patagonica|
|146 | albatross, mollymawk|
|147 | grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus|
|148 | killer whale, killer, orca, grampus, sea wolf, Orcinus orca|
|149 | dugong, Dugong dugon|
|150 | sea lion|
|151 | Chihuahua|
|152 | Japanese spaniel|
|153 | Maltese dog, Maltese terrier, Maltese|
|154 | Pekinese, Pekingese, Peke|
|155 | Shih-Tzu|
|156 | Blenheim spaniel|
|157 | papillon|
|158 | toy terrier|
|159 | Rhodesian ridgeback|
|160 | Afghan hound, Afghan|
|161 | basset, basset hound|
|162 | beagle|
|163 | bloodhound, sleuthhound|
|164 | bluetick|
|165 | black-and-tan coonhound|
|166 | Walker hound, Walker foxhound|
|167 | English foxhound|
|168 | redbone|
|169 | borzoi, Russian wolfhound|
|170 | Irish wolfhound|
|171 | Italian greyhound|
|172 | whippet|
|173 | Ibizan hound, Ibizan Podenco|
|174 | Norwegian elkhound, elkhound|
|175 | otterhound, otter hound|
|176 | Saluki, gazelle hound|
|177 | Scottish deerhound, deerhound|
|178 | Weimaraner|
|179 | Staffordshire bullterrier, Staffordshire bull terrier|
|180 | American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier|
|181 | Bedlington terrier|
|182 | Border terrier|
|183 | Kerry blue terrier|
|184 | Irish terrier|
|185 | Norfolk terrier|
|186 | Norwich terrier|
|187 | Yorkshire terrier|
|188 | wire-haired fox terrier|
|189 | Lakeland terrier|
|190 | Sealyham terrier, Sealyham|
|191 | Airedale, Airedale terrier|
|192 | cairn, cairn terrier|
|193 | Australian terrier|
|194 | Dandie Dinmont, Dandie Dinmont terrier|
|195 | Boston bull, Boston terrier|
|196 | miniature schnauzer|
|197 | giant schnauzer|
|198 | standard schnauzer|
|199 | Scotch terrier, Scottish terrier, Scottie|
|200 | Tibetan terrier, chrysanthemum dog|
|201 | silky terrier, Sydney silky|
|202 | soft-coated wheaten terrier|
|203 | West Highland white terrier|
|204 | Lhasa, Lhasa apso|
|205 | flat-coated retriever|
|206 | curly-coated retriever|
|207 | golden retriever|
|208 | Labrador retriever|
|209 | Chesapeake Bay retriever|
|210 | German short-haired pointer|
|211 | vizsla, Hungarian pointer|
|212 | English setter|
|213 | Irish setter, red setter|
|214 | Gordon setter|
|215 | Brittany spaniel|
|216 | clumber, clumber spaniel|
|217 | English springer, English springer spaniel|
|218 | Welsh springer spaniel|
|219 | cocker spaniel, English cocker spaniel, cocker|
|220 | Sussex spaniel|
|221 | Irish water spaniel|
|222 | kuvasz|
|223 | schipperke|
|224 | groenendael|
|225 | malinois|
|226 | briard|
|227 | kelpie|
|228 | komondor|
|229 | Old English sheepdog, bobtail|
|230 | Shetland sheepdog, Shetland sheep dog, Shetland|
|231 | collie|
|232 | Border collie|
|233 | Bouvier des Flandres, Bouviers des Flandres|
|234 | Rottweiler|
|235 | German shepherd, German shepherd dog, German police dog, alsatian|
|236 | Doberman, Doberman pinscher|
|237 | miniature pinscher|
|238 | Greater Swiss Mountain dog|
|239 | Bernese mountain dog|
|240 | Appenzeller|
|241 | EntleBucher|
|242 | boxer|
|243 | bull mastiff|
|244 | Tibetan mastiff|
|245 | French bulldog|
|246 | Great Dane|
|247 | Saint Bernard, St Bernard|
|248 | Eskimo dog, husky|
|249 | malamute, malemute, Alaskan malamute|
|250 | Siberian husky|
|251 | dalmatian, coach dog, carriage dog|
|252 | affenpinscher, monkey pinscher, monkey dog|
|253 | basenji|
|254 | pug, pug-dog|
|255 | Leonberg|
|256 | Newfoundland, Newfoundland dog|
|257 | Great Pyrenees|
|258 | Samoyed, Samoyede|
|259 | Pomeranian|
|260 | chow, chow chow|
|261 | keeshond|
|262 | Brabancon griffon|
|263 | Pembroke, Pembroke Welsh corgi|
|264 | Cardigan, Cardigan Welsh corgi|
|265 | toy poodle|
|266 | miniature poodle|
|267 | standard poodle|
|268 | Mexican hairless|
|269 | timber wolf, grey wolf, gray wolf, Canis lupus|
|270 | white wolf, Arctic wolf, Canis lupus tundrarum|
|271 | red wolf, maned wolf, Canis rufus, Canis niger|
|272 | coyote, prairie wolf, brush wolf, Canis latrans|
|273 | dingo, warrigal, warragal, Canis dingo|
|274 | dhole, Cuon alpinus|
|275 | African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus|
|276 | hyena, hyaena|
|277 | red fox, Vulpes vulpes|
|278 | kit fox, Vulpes macrotis|
|279 | Arctic fox, white fox, Alopex lagopus|
|280 | grey fox, gray fox, Urocyon cinereoargenteus|
|281 | tabby, tabby cat|
|282 | tiger cat|
|283 | Persian cat|
|284 | Siamese cat, Siamese|
|285 | Egyptian cat|
|286 | cougar, puma, catamount, mountain lion, painter, panther, Felis concolor|
|287 | lynx, catamount|
|288 | leopard, Panthera pardus|
|289 | snow leopard, ounce, Panthera uncia|
|290 | jaguar, panther, Panthera onca, Felis onca|
|291 | lion, king of beasts, Panthera leo|
|292 | tiger, Panthera tigris|
|293 | cheetah, chetah, Acinonyx jubatus|
|294 | brown bear, bruin, Ursus arctos|
|295 | American black bear, black bear, Ursus americanus, Euarctos americanus|
|296 | ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus|
|297 | sloth bear, Melursus ursinus, Ursus ursinus|
|298 | mongoose|
|299 | meerkat, mierkat|
|300 | tiger beetle|
|301 | ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle|
|302 | ground beetle, carabid beetle|
|303 | long-horned beetle, longicorn, longicorn beetle|
|304 | leaf beetle, chrysomelid|
|305 | dung beetle|
|306 | rhinoceros beetle|
|307 | weevil|
|308 | fly|
|309 | bee|
|310 | ant, emmet, pismire|
|311 | grasshopper, hopper|
|312 | cricket|
|313 | walking stick, walkingstick, stick insect|
|314 | cockroach, roach|
|315 | mantis, mantid|
|316 | cicada, cicala|
|317 | leafhopper|
|318 | lacewing, lacewing fly|
|319 | dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk|
|320 | damselfly|
|321 | admiral|
|322 | ringlet, ringlet butterfly|
|323 | monarch, monarch butterfly, milkweed butterfly, Danaus plexippus|
|324 | cabbage butterfly|
|325 | sulphur butterfly, sulfur butterfly|
|326 | lycaenid, lycaenid butterfly|
|327 | starfish, sea star|
|328 | sea urchin|
|329 | sea cucumber, holothurian|
|330 | wood rabbit, cottontail, cottontail rabbit|
|331 | hare|
|332 | Angora, Angora rabbit|
|333 | hamster|
|334 | porcupine, hedgehog|
|335 | fox squirrel, eastern fox squirrel, Sciurus niger|
|336 | marmot|
|337 | beaver|
|338 | guinea pig, Cavia cobaya|
|339 | sorrel|
|340 | zebra|
|341 | hog, pig, grunter, squealer, Sus scrofa|
|342 | wild boar, boar, Sus scrofa|
|343 | warthog|
|344 | hippopotamus, hippo, river horse, Hippopotamus amphibius|
|345 | ox|
|346 | water buffalo, water ox, Asiatic buffalo, Bubalus bubalis|
|347 | bison|
|348 | ram, tup|
|349 | bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis|
|350 | ibex, Capra ibex|
|351 | hartebeest|
|352 | impala, Aepyceros melampus|
|353 | gazelle|
|354 | Arabian camel, dromedary, Camelus dromedarius|
|355 | llama|
|356 | weasel|
|357 | mink|
|358 | polecat, fitch, foulmart, foumart, Mustela putorius|
|359 | black-footed ferret, ferret, Mustela nigripes|
|360 | otter|
|361 | skunk, polecat, wood pussy|
|362 | badger|
|363 | armadillo|
|364 | three-toed sloth, ai, Bradypus tridactylus|
|365 | orangutan, orang, orangutang, Pongo pygmaeus|
|366 | gorilla, Gorilla gorilla|
|367 | chimpanzee, chimp, Pan troglodytes|
|368 | gibbon, Hylobates lar|
|369 | siamang, Hylobates syndactylus, Symphalangus syndactylus|
|370 | guenon, guenon monkey|
|371 | patas, hussar monkey, Erythrocebus patas|
|372 | baboon|
|373 | macaque|
|374 | langur|
|375 | colobus, colobus monkey|
|376 | proboscis monkey, Nasalis larvatus|
|377 | marmoset|
|378 | capuchin, ringtail, Cebus capucinus|
|379 | howler monkey, howler|
|380 | titi, titi monkey|
|381 | spider monkey, Ateles geoffroyi|
|382 | squirrel monkey, Saimiri sciureus|
|383 | Madagascar cat, ring-tailed lemur, Lemur catta|
|384 | indri, indris, Indri indri, Indri brevicaudatus|
|385 | Indian elephant, Elephas maximus|
|386 | African elephant, Loxodonta africana|
|387 | lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens|
|388 | giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca|
|389 | barracouta, snoek|
|390 | eel|
|391 | coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch|
|392 | rock beauty, Holocanthus tricolor|
|393 | anemone fish|
|394 | sturgeon|
|395 | gar, garfish, garpike, billfish, Lepisosteus osseus|
|396 | lionfish|
|397 | puffer, pufferfish, blowfish, globefish|
|398 | abacus|
|399 | abaya|
|400 | academic gown, academic robe, judge's robe|
|401 | accordion, piano accordion, squeeze box|
|402 | acoustic guitar|
|403 | aircraft carrier, carrier, flattop, attack aircraft carrier|
|404 | airliner|
|405 | airship, dirigible|
|406 | altar|
|407 | ambulance|
|408 | amphibian, amphibious vehicle|
|409 | analog clock|
|410 | apiary, bee house|
|411 | apron|
|412 | ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin|
|413 | assault rifle, assault gun|
|414 | backpack, back pack, knapsack, packsack, rucksack, haversack|
|415 | bakery, bakeshop, bakehouse|
|416 | balance beam, beam|
|417 | balloon|
|418 | ballpoint, ballpoint pen, ballpen, Biro|
|419 | Band Aid|
|420 | banjo|
|421 | bannister, banister, balustrade, balusters, handrail|
|422 | barbell|
|423 | barber chair|
|424 | barbershop|
|425 | barn|
|426 | barometer|
|427 | barrel, cask|
|428 | barrow, garden cart, lawn cart, wheelbarrow|
|429 | baseball|
|430 | basketball|
|431 | bassinet|
|432 | bassoon|
|433 | bathing cap, swimming cap|
|434 | bath towel|
|435 | bathtub, bathing tub, bath, tub|
|436 | beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon|
|437 | beacon, lighthouse, beacon light, pharos|
|438 | beaker|
|439 | bearskin, busby, shako|
|440 | beer bottle|
|441 | beer glass|
|442 | bell cote, bell cot|
|443 | bib|
|444 | bicycle-built-for-two, tandem bicycle, tandem|
|445 | bikini, two-piece|
|446 | binder, ring-binder|
|447 | binoculars, field glasses, opera glasses|
|448 | birdhouse|
|449 | boathouse|
|450 | bobsled, bobsleigh, bob|
|451 | bolo tie, bolo, bola tie, bola|
|452 | bonnet, poke bonnet|
|453 | bookcase|
|454 | bookshop, bookstore, bookstall|
|455 | bottlecap|
|456 | bow|
|457 | bow tie, bow-tie, bowtie|
|458 | brass, memorial tablet, plaque|
|459 | brassiere, bra, bandeau|
|460 | breakwater, groin, groyne, mole, bulwark, seawall, jetty|
|461 | breastplate, aegis, egis|
|462 | broom|
|463 | bucket, pail|
|464 | buckle|
|465 | bulletproof vest|
|466 | bullet train, bullet|
|467 | butcher shop, meat market|
|468 | cab, hack, taxi, taxicab|
|469 | caldron, cauldron|
|470 | candle, taper, wax light|
|471 | cannon|
|472 | canoe|
|473 | can opener, tin opener|
|474 | cardigan|
|475 | car mirror|
|476 | carousel, carrousel, merry-go-round, roundabout, whirligig|
|477 | carpenter's kit, tool kit|
|478 | carton|
|479 | car wheel|
|480 | cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM|
|481 | cassette|
|482 | cassette player|
|483 | castle|
|484 | catamaran|
|485 | CD player|
|486 | cello, violoncello|
|487 | cellular telephone, cellular phone, cellphone, cell, mobile phone|
|488 | chain|
|489 | chainlink fence|
|490 | chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour|
|491 | chain saw, chainsaw|
|492 | chest|
|493 | chiffonier, commode|
|494 | chime, bell, gong|
|495 | china cabinet, china closet|
|496 | Christmas stocking|
|497 | church, church building|
|498 | cinema, movie theater, movie theatre, movie house, picture palace|
|499 | cleaver, meat cleaver, chopper|
|500 | cliff dwelling|
|501 | cloak|
|502 | clog, geta, patten, sabot|
|503 | cocktail shaker|
|504 | coffee mug|
|505 | coffeepot|
|506 | coil, spiral, volute, whorl, helix|
|507 | combination lock|
|508 | computer keyboard, keypad|
|509 | confectionery, confectionary, candy store|
|510 | container ship, containership, container vessel|
|511 | convertible|
|512 | corkscrew, bottle screw|
|513 | cornet, horn, trumpet, trump|
|514 | cowboy boot|
|515 | cowboy hat, ten-gallon hat|
|516 | cradle|
|517 | crane_1|
|518 | crash helmet|
|519 | crate|
|520 | crib, cot|
|521 | Crock Pot|
|522 | croquet ball|
|523 | crutch|
|524 | cuirass|
|525 | dam, dike, dyke|
|526 | desk|
|527 | desktop computer|
|528 | dial telephone, dial phone|
|529 | diaper, nappy, napkin|
|530 | digital clock|
|531 | digital watch|
|532 | dining table, board|
|533 | dishrag, dishcloth|
|534 | dishwasher, dish washer, dishwashing machine|
|535 | disk brake, disc brake|
|536 | dock, dockage, docking facility|
|537 | dogsled, dog sled, dog sleigh|
|538 | dome|
|539 | doormat, welcome mat|
|540 | drilling platform, offshore rig|
|541 | drum, membranophone, tympan|
|542 | drumstick|
|543 | dumbbell|
|544 | Dutch oven|
|545 | electric fan, blower|
|546 | electric guitar|
|547 | electric locomotive|
|548 | entertainment center|
|549 | envelope|
|550 | espresso maker|
|551 | face powder|
|552 | feather boa, boa|
|553 | file, file cabinet, filing cabinet|
|554 | fireboat|
|555 | fire engine, fire truck|
|556 | fire screen, fireguard|
|557 | flagpole, flagstaff|
|558 | flute, transverse flute|
|559 | folding chair|
|560 | football helmet|
|561 | forklift|
|562 | fountain|
|563 | fountain pen|
|564 | four-poster|
|565 | freight car|
|566 | French horn, horn|
|567 | frying pan, frypan, skillet|
|568 | fur coat|
|569 | garbage truck, dustcart|
|570 | gasmask, respirator, gas helmet|
|571 | gas pump, gasoline pump, petrol pump, island dispenser|
|572 | goblet|
|573 | go-kart|
|574 | golf ball|
|575 | golfcart, golf cart|
|576 | gondola|
|577 | gong, tam-tam|
|578 | gown|
|579 | grand piano, grand|
|580 | greenhouse, nursery, glasshouse|
|581 | grille, radiator grille|
|582 | grocery store, grocery, food market, market|
|583 | guillotine|
|584 | hair slide|
|585 | hair spray|
|586 | half track|
|587 | hammer|
|588 | hamper|
|589 | hand blower, blow dryer, blow drier, hair dryer, hair drier|
|590 | hand-held computer, hand-held microcomputer|
|591 | handkerchief, hankie, hanky, hankey|
|592 | hard disc, hard disk, fixed disk|
|593 | harmonica, mouth organ, harp, mouth harp|
|594 | harp|
|595 | harvester, reaper|
|596 | hatchet|
|597 | holster|
|598 | home theater, home theatre|
|599 | honeycomb|
|600 | hook, claw|
|601 | hoopskirt, crinoline|
|602 | horizontal bar, high bar|
|603 | horse cart, horse-cart|
|604 | hourglass|
|605 | iPod|
|606 | iron, smoothing iron|
|607 | jack-o'-lantern|
|608 | jean, blue jean, denim|
|609 | jeep, landrover|
|610 | jersey, T-shirt, tee shirt|
|611 | jigsaw puzzle|
|612 | jinrikisha, ricksha, rickshaw|
|613 | joystick|
|614 | kimono|
|615 | knee pad|
|616 | knot|
|617 | lab coat, laboratory coat|
|618 | ladle|
|619 | lampshade, lamp shade|
|620 | laptop, laptop computer|
|621 | lawn mower, mower|
|622 | lens cap, lens cover|
|623 | letter opener, paper knife, paperknife|
|624 | library|
|625 | lifeboat|
|626 | lighter, light, igniter, ignitor|
|627 | limousine, limo|
|628 | liner, ocean liner|
|629 | lipstick, lip rouge|
|630 | Loafer|
|631 | lotion|
|632 | loudspeaker, speaker, speaker unit, loudspeaker system, speaker system|
|633 | loupe, jeweler's loupe|
|634 | lumbermill, sawmill|
|635 | magnetic compass|
|636 | mailbag, postbag|
|637 | mailbox, letter box|
|638 | maillot|
|639 | maillot, tank suit|
|640 | manhole cover|
|641 | maraca|
|642 | marimba, xylophone|
|643 | mask|
|644 | matchstick|
|645 | maypole|
|646 | maze, labyrinth|
|647 | measuring cup|
|648 | medicine chest, medicine cabinet|
|649 | megalith, megalithic structure|
|650 | microphone, mike|
|651 | microwave, microwave oven|
|652 | military uniform|
|653 | milk can|
|654 | minibus|
|655 | miniskirt, mini|
|656 | minivan|
|657 | missile|
|658 | mitten|
|659 | mixing bowl|
|660 | mobile home, manufactured home|
|661 | Model T|
|662 | modem|
|663 | monastery|
|664 | monitor|
|665 | moped|
|666 | mortar|
|667 | mortarboard|
|668 | mosque|
|669 | mosquito net|
|670 | motor scooter, scooter|
|671 | mountain bike, all-terrain bike, off-roader|
|672 | mountain tent|
|673 | mouse, computer mouse|
|674 | mousetrap|
|675 | moving van|
|676 | muzzle|
|677 | nail|
|678 | neck brace|
|679 | necklace|
|680 | nipple|
|681 | notebook, notebook computer|
|682 | obelisk|
|683 | oboe, hautboy, hautbois|
|684 | ocarina, sweet potato|
|685 | odometer, hodometer, mileometer, milometer|
|686 | oil filter|
|687 | organ, pipe organ|
|688 | oscilloscope, scope, cathode-ray oscilloscope, CRO|
|689 | overskirt|
|690 | oxcart|
|691 | oxygen mask|
|692 | packet|
|693 | paddle, boat paddle|
|694 | paddlewheel, paddle wheel|
|695 | padlock|
|696 | paintbrush|
|697 | pajama, pyjama, pj's, jammies|
|698 | palace|
|699 | panpipe, pandean pipe, syrinx|
|700 | paper towel|
|701 | parachute, chute|
|702 | parallel bars, bars|
|703 | park bench|
|704 | parking meter|
|705 | passenger car, coach, carriage|
|706 | patio, terrace|
|707 | pay-phone, pay-station|
|708 | pedestal, plinth, footstall|
|709 | pencil box, pencil case|
|710 | pencil sharpener|
|711 | perfume, essence|
|712 | Petri dish|
|713 | photocopier|
|714 | pick, plectrum, plectron|
|715 | pickelhaube|
|716 | picket fence, paling|
|717 | pickup, pickup truck|
|718 | pier|
|719 | piggy bank, penny bank|
|720 | pill bottle|
|721 | pillow|
|722 | ping-pong ball|
|723 | pinwheel|
|724 | pirate, pirate ship|
|725 | pitcher, ewer|
|726 | plane, carpenter's plane, woodworking plane|
|727 | planetarium|
|728 | plastic bag|
|729 | plate rack|
|730 | plow, plough|
|731 | plunger, plumber's helper|
|732 | Polaroid camera, Polaroid Land camera|
|733 | pole|
|734 | police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria|
|735 | poncho|
|736 | pool table, billiard table, snooker table|
|737 | pop bottle, soda bottle|
|738 | pot, flowerpot|
|739 | potter's wheel|
|740 | power drill|
|741 | prayer rug, prayer mat|
|742 | printer|
|743 | prison, prison house|
|744 | projectile, missile|
|745 | projector|
|746 | puck, hockey puck|
|747 | punching bag, punch bag, punching ball, punchball|
|748 | purse|
|749 | quill, quill pen|
|750 | quilt, comforter, comfort, puff|
|751 | racer, race car, racing car|
|752 | racket, racquet|
|753 | radiator|
|754 | radio, wireless|
|755 | radio telescope, radio reflector|
|756 | rain barrel|
|757 | recreational vehicle, RV, R.V.|
|758 | reel|
|759 | reflex camera|
|760 | refrigerator, icebox|
|761 | remote control, remote|
|762 | restaurant, eating house, eating place, eatery|
|763 | revolver, six-gun, six-shooter|
|764 | rifle|
|765 | rocking chair, rocker|
|766 | rotisserie|
|767 | rubber eraser, rubber, pencil eraser|
|768 | rugby ball|
|769 | rule, ruler|
|770 | running shoe|
|771 | safe|
|772 | safety pin|
|773 | saltshaker, salt shaker|
|774 | sandal|
|775 | sarong|
|776 | sax, saxophone|
|777 | scabbard|
|778 | scale, weighing machine|
|779 | school bus|
|780 | schooner|
|781 | scoreboard|
|782 | screen, CRT screen|
|783 | screw|
|784 | screwdriver|
|785 | seat belt, seatbelt|
|786 | sewing machine|
|787 | shield, buckler|
|788 | shoe shop, shoe-shop, shoe store|
|789 | shoji|
|790 | shopping basket|
|791 | shopping cart|
|792 | shovel|
|793 | shower cap|
|794 | shower curtain|
|795 | ski|
|796 | ski mask|
|797 | sleeping bag|
|798 | slide rule, slipstick|
|799 | sliding door|
|800 | slot, one-armed bandit|
|801 | snorkel|
|802 | snowmobile|
|803 | snowplow, snowplough|
|804 | soap dispenser|
|805 | soccer ball|
|806 | sock|
|807 | solar dish, solar collector, solar furnace|
|808 | sombrero|
|809 | soup bowl|
|810 | space bar|
|811 | space heater|
|812 | space shuttle|
|813 | spatula|
|814 | speedboat|
|815 | spider web, spider's web|
|816 | spindle|
|817 | sports car, sport car|
|818 | spotlight, spot|
|819 | stage|
|820 | steam locomotive|
|821 | steel arch bridge|
|822 | steel drum|
|823 | stethoscope|
|824 | stole|
|825 | stone wall|
|826 | stopwatch, stop watch|
|827 | stove|
|828 | strainer|
|829 | streetcar, tram, tramcar, trolley, trolley car|
|830 | stretcher|
|831 | studio couch, day bed|
|832 | stupa, tope|
|833 | submarine, pigboat, sub, U-boat|
|834 | suit, suit of clothes|
|835 | sundial|
|836 | sunglass|
|837 | sunglasses, dark glasses, shades|
|838 | sunscreen, sunblock, sun blocker|
|839 | suspension bridge|
|840 | swab, swob, mop|
|841 | sweatshirt|
|842 | swimming trunks, bathing trunks|
|843 | swing|
|844 | switch, electric switch, electrical switch|
|845 | syringe|
|846 | table lamp|
|847 | tank, army tank, armored combat vehicle, armoured combat vehicle|
|848 | tape player|
|849 | teapot|
|850 | teddy, teddy bear|
|851 | television, television system|
|852 | tennis ball|
|853 | thatch, thatched roof|
|854 | theater curtain, theatre curtain|
|855 | thimble|
|856 | thresher, thrasher, threshing machine|
|857 | throne|
|858 | tile roof|
|859 | toaster|
|860 | tobacco shop, tobacconist shop, tobacconist|
|861 | toilet seat|
|862 | torch|
|863 | totem pole|
|864 | tow truck, tow car, wrecker|
|865 | toyshop|
|866 | tractor|
|867 | trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi|
|868 | tray|
|869 | trench coat|
|870 | tricycle, trike, velocipede|
|871 | trimaran|
|872 | tripod|
|873 | triumphal arch|
|874 | trolleybus, trolley coach, trackless trolley|
|875 | trombone|
|876 | tub, vat|
|877 | turnstile|
|878 | typewriter keyboard|
|879 | umbrella|
|880 | unicycle, monocycle|
|881 | upright, upright piano|
|882 | vacuum, vacuum cleaner|
|883 | vase|
|884 | vault|
|885 | velvet|
|886 | vending machine|
|887 | vestment|
|888 | viaduct|
|889 | violin, fiddle|
|890 | volleyball|
|891 | waffle iron|
|892 | wall clock|
|893 | wallet, billfold, notecase, pocketbook|
|894 | wardrobe, closet, press|
|895 | warplane, military plane|
|896 | washbasin, handbasin, washbowl, lavabo, wash-hand basin|
|897 | washer, automatic washer, washing machine|
|898 | water bottle|
|899 | water jug|
|900 | water tower|
|901 | whiskey jug|
|902 | whistle|
|903 | wig|
|904 | window screen|
|905 | window shade|
|906 | Windsor tie|
|907 | wine bottle|
|908 | wing|
|909 | wok|
|910 | wooden spoon|
|911 | wool, woolen, woollen|
|912 | worm fence, snake fence, snake-rail fence, Virginia fence|
|913 | wreck|
|914 | yawl|
|915 | yurt|
|916 | web site, website, internet site, site|
|917 | comic book|
|918 | crossword puzzle, crossword|
|919 | street sign|
|920 | traffic light, traffic signal, stoplight|
|921 | book jacket, dust cover, dust jacket, dust wrapper|
|922 | menu|
|923 | plate|
|924 | guacamole|
|925 | consomme|
|926 | hot pot, hotpot|
|927 | trifle|
|928 | ice cream, icecream|
|929 | ice lolly, lolly, lollipop, popsicle|
|930 | French loaf|
|931 | bagel, beigel|
|932 | pretzel|
|933 | cheeseburger|
|934 | hotdog, hot dog, red hot|
|935 | mashed potato|
|936 | head cabbage|
|937 | broccoli|
|938 | cauliflower|
|939 | zucchini, courgette|
|940 | spaghetti squash|
|941 | acorn squash|
|942 | butternut squash|
|943 | cucumber, cuke|
|944 | artichoke, globe artichoke|
|945 | bell pepper|
|946 | cardoon|
|947 | mushroom|
|948 | Granny Smith|
|949 | strawberry|
|950 | orange|
|951 | lemon|
|952 | fig|
|953 | pineapple, ananas|
|954 | banana|
|955 | jackfruit, jak, jack|
|956 | custard apple|
|957 | pomegranate|
|958 | hay|
|959 | carbonara|
|960 | chocolate sauce, chocolate syrup|
|961 | dough|
|962 | meat loaf, meatloaf|
|963 | pizza, pizza pie|
|964 | potpie|
|965 | burrito|
|966 | red wine|
|967 | espresso|
|968 | cup|
|969 | eggnog|
|970 | alp|
|971 | bubble|
|972 | cliff, drop, drop-off|
|973 | coral reef|
|974 | geyser|
|975 | lakeside, lakeshore|
|976 | promontory, headland, head, foreland|
|977 | sandbar, sand bar|
|978 | seashore, coast, seacoast, sea-coast|
|979 | valley, vale|
|980 | volcano|
|981 | ballplayer, baseball player|
|982 | groom, bridegroom|
|983 | scuba diver|
|984 | rapeseed|
|985 | daisy|
|986 | yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum|
|987 | corn|
|988 | acorn|
|989 | hip, rose hip, rosehip|
|990 | buckeye, horse chestnut, conker|
|991 | coral fungus|
|992 | agaric|
|993 | gyromitra|
|994 | stinkhorn, carrion fungus|
|995 | earthstar|
|996 | hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa|
|997 | bolete|
|998 | ear, spike, capitulum|
|999 | toilet tissue, toilet paper, bathroom tissue|
</details>
### Data Splits
| |train |validation| test |
|-------------|------:|---------:|------:|
|# of examples|1281167|50000 |100000 |
## Dataset Creation
### Curation Rationale
The ImageNet project was inspired by two important needs in computer vision research. The first was the need to establish a clear North Star problem in computer vision. While the field enjoyed an abundance of important tasks to work on, from stereo vision to image retrieval, from 3D reconstruction to image segmentation, object categorization was recognized to be one of the most fundamental capabilities of both human and machine vision. Hence there was a growing demand for a high quality object categorization benchmark with clearly established evaluation metrics. Second, there was a critical need for more data to enable more generalizable machine learning methods. Ever since the birth of the digital era and the availability of web-scale data exchanges, researchers in these fields have been working hard to design more and more sophisticated algorithms to index, retrieve, organize and annotate multimedia data. But good research requires good resources. To tackle this problem at scale (think of your growing personal collection of digital images, or videos, or a commercial web search engine’s database), it was critical to provide researchers with a large-scale image database for both training and testing. The convergence of these two intellectual reasons motivated us to build ImageNet.
### Source Data
#### Initial Data Collection and Normalization
Initial data for ImageNet image classification task consists of photographs collected from [Flickr](https://www.flickr.com) and other search engines, manually labeled with the presence of one of 1000 object categories. Constructing ImageNet was an effort to scale up an image classification dataset to cover most nouns in English using tens of millions of manually verified photographs [1](https://ieeexplore.ieee.org/abstract/document/5206848). The image classification task of ILSVRC came as a direct extension of this effort. A subset of categories and images was chosen and fixed to provide a standardized benchmark while the rest of ImageNet continued to grow.
#### Who are the source language producers?
WordNet synsets further quality controlled by human annotators. The images are from Flickr.
### Annotations
#### Annotation process
The annotation process of collecting ImageNet for image classification task is a three step process.
1. Defining the 1000 object categories for the image classification task. These categories have evolved over the years.
1. Collecting the candidate image for these object categories using a search engine.
1. Quality control on the candidate images by using human annotators on Amazon Mechanical Turk (AMT) to make sure the image has the synset it was collected for.
See the section 3.1 in [1](https://arxiv.org/abs/1409.0575) for more details on data collection procedure and [2](https://ieeexplore.ieee.org/abstract/document/5206848) for general information on ImageNet.
#### Who are the annotators?
Images are automatically fetched from an image search engine based on the synsets and filtered using human annotators on Amazon Mechanical Turk. See [1](https://arxiv.org/abs/1409.0575) for more details.
### Personal and Sensitive Information
The 1,000 categories selected for this subset contain only 3 people categories (scuba diver, bridegroom, and baseball player) while the full ImageNet contains 2,832 people categories under the person subtree (accounting for roughly 8.3% of the total images). This subset does contain the images of people without their consent. Though, the study in [[1]](https://image-net.org/face-obfuscation/) on obfuscating faces of the people in the ImageNet 2012 subset shows that blurring people's faces causes a very minor decrease in accuracy (~0.6%) suggesting that privacy-aware models can be trained on ImageNet. On larger ImageNet, there has been [an attempt](https://arxiv.org/abs/1912.07726) at filtering and balancing the people subtree in the larger ImageNet.
## Considerations for Using the Data
### Social Impact of Dataset
The ImageNet dataset has been very crucial in advancement of deep learning technology as being the standard benchmark for the computer vision models. The dataset aims to probe models on their understanding of the objects and has become the de-facto dataset for this purpose. ImageNet is still one of the major datasets on which models are evaluated for their generalization in computer vision capabilities as the field moves towards self-supervised algorithms. Please see the future section in [1](https://arxiv.org/abs/1409.0575) for a discussion on social impact of the dataset.
### Discussion of Biases
1. A [study](https://image-net.org/update-sep-17-2019.php) of the history of the multiple layers (taxonomy, object classes and labeling) of ImageNet and WordNet in 2019 described how bias is deeply embedded in most classification approaches for of all sorts of images.
1. A [study](https://arxiv.org/abs/1811.12231) has also shown that ImageNet trained models are biased towards texture rather than shapes which in contrast with how humans do object classification. Increasing the shape bias improves the accuracy and robustness.
1. Another [study](https://arxiv.org/abs/2109.13228) more potential issues and biases with the ImageNet dataset and provides an alternative benchmark for image classification task. The data collected contains humans without their consent.
1. ImageNet data with face obfuscation is also provided at [this link](https://image-net.org/face-obfuscation/)
1. A study on genealogy of ImageNet is can be found at [this link](https://journals.sagepub.com/doi/full/10.1177/20539517211035955) about the "norms, values, and assumptions" in ImageNet.
1. See [this study](https://arxiv.org/abs/1912.07726) on filtering and balancing the distribution of people subtree in the larger complete ImageNet.
### Other Known Limitations
1. Since most of the images were collected from internet, keep in mind that some images in ImageNet might be subject to copyrights. See the following papers for more details: [[1]](https://arxiv.org/abs/2109.13228) [[2]](https://arxiv.org/abs/1409.0575) [[3]](https://ieeexplore.ieee.org/abstract/document/5206848).
## Additional Information
### Dataset Curators
Authors of [[1]](https://arxiv.org/abs/1409.0575) and [[2]](https://ieeexplore.ieee.org/abstract/document/5206848):
- Olga Russakovsky
- Jia Deng
- Hao Su
- Jonathan Krause
- Sanjeev Satheesh
- Wei Dong
- Richard Socher
- Li-Jia Li
- Kai Li
- Sean Ma
- Zhiheng Huang
- Andrej Karpathy
- Aditya Khosla
- Michael Bernstein
- Alexander C Berg
- Li Fei-Fei
### Licensing Information
In exchange for permission to use the ImageNet database (the "Database") at Princeton University and Stanford University, Researcher hereby agrees to the following terms and conditions:
1. Researcher shall use the Database only for non-commercial research and educational purposes.
1. Princeton University and Stanford University make no representations or warranties regarding the Database, including but not limited to warranties of non-infringement or fitness for a particular purpose.
1. Researcher accepts full responsibility for his or her use of the Database and shall defend and indemnify the ImageNet team, Princeton University, and Stanford University, including their employees, Trustees, officers and agents, against any and all claims arising from Researcher's use of the Database, including but not limited to Researcher's use of any copies of copyrighted images that he or she may create from the Database.
1. Researcher may provide research associates and colleagues with access to the Database provided that they first agree to be bound by these terms and conditions.
1. Princeton University and Stanford University reserve the right to terminate Researcher's access to the Database at any time.
1. If Researcher is employed by a for-profit, commercial entity, Researcher's employer shall also be bound by these terms and conditions, and Researcher hereby represents that he or she is fully authorized to enter into this agreement on behalf of such employer.
1. The law of the State of New Jersey shall apply to all disputes under this agreement.
### Citation Information
```bibtex
@article{imagenet15russakovsky,
Author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
Title = { {ImageNet Large Scale Visual Recognition Challenge} },
Year = {2015},
journal = {International Journal of Computer Vision (IJCV)},
doi = {10.1007/s11263-015-0816-y},
volume={115},
number={3},
pages={211-252}
}
```
### Contributions
Thanks to [@apsdehal](https://github.com/apsdehal) for adding this dataset. |