Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
parquet-converter commited on
Commit
bbfadfa
·
1 Parent(s): 62a766b

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,54 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
- *.model filter=lfs diff=lfs merge=lfs -text
14
- *.msgpack filter=lfs diff=lfs merge=lfs -text
15
- *.npy filter=lfs diff=lfs merge=lfs -text
16
- *.npz filter=lfs diff=lfs merge=lfs -text
17
- *.onnx filter=lfs diff=lfs merge=lfs -text
18
- *.ot filter=lfs diff=lfs merge=lfs -text
19
- *.parquet filter=lfs diff=lfs merge=lfs -text
20
- *.pb filter=lfs diff=lfs merge=lfs -text
21
- *.pickle filter=lfs diff=lfs merge=lfs -text
22
- *.pkl filter=lfs diff=lfs merge=lfs -text
23
- *.pt filter=lfs diff=lfs merge=lfs -text
24
- *.pth filter=lfs diff=lfs merge=lfs -text
25
- *.rar filter=lfs diff=lfs merge=lfs -text
26
- *.safetensors filter=lfs diff=lfs merge=lfs -text
27
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
- *.tar.* filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - uncompressed
37
- *.pcm filter=lfs diff=lfs merge=lfs -text
38
- *.sam filter=lfs diff=lfs merge=lfs -text
39
- *.raw filter=lfs diff=lfs merge=lfs -text
40
- # Audio files - compressed
41
- *.aac filter=lfs diff=lfs merge=lfs -text
42
- *.flac filter=lfs diff=lfs merge=lfs -text
43
- *.mp3 filter=lfs diff=lfs merge=lfs -text
44
- *.ogg filter=lfs diff=lfs merge=lfs -text
45
- *.wav filter=lfs diff=lfs merge=lfs -text
46
- # Image files - uncompressed
47
- *.bmp filter=lfs diff=lfs merge=lfs -text
48
- *.gif filter=lfs diff=lfs merge=lfs -text
49
- *.png filter=lfs diff=lfs merge=lfs -text
50
- *.tiff filter=lfs diff=lfs merge=lfs -text
51
- # Image files - compressed
52
- *.jpg filter=lfs diff=lfs merge=lfs -text
53
- *.jpeg filter=lfs diff=lfs merge=lfs -text
54
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bigbiohub.py DELETED
@@ -1,556 +0,0 @@
1
- from collections import defaultdict
2
- from dataclasses import dataclass
3
- from enum import Enum
4
- import logging
5
- from pathlib import Path
6
- from types import SimpleNamespace
7
- from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
-
9
- import datasets
10
-
11
- if TYPE_CHECKING:
12
- import bioc
13
-
14
- logger = logging.getLogger(__name__)
15
-
16
-
17
- BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
-
19
-
20
- @dataclass
21
- class BigBioConfig(datasets.BuilderConfig):
22
- """BuilderConfig for BigBio."""
23
-
24
- name: str = None
25
- version: datasets.Version = None
26
- description: str = None
27
- schema: str = None
28
- subset_id: str = None
29
-
30
-
31
- class Tasks(Enum):
32
- NAMED_ENTITY_RECOGNITION = "NER"
33
- NAMED_ENTITY_DISAMBIGUATION = "NED"
34
- EVENT_EXTRACTION = "EE"
35
- RELATION_EXTRACTION = "RE"
36
- COREFERENCE_RESOLUTION = "COREF"
37
- QUESTION_ANSWERING = "QA"
38
- TEXTUAL_ENTAILMENT = "TE"
39
- SEMANTIC_SIMILARITY = "STS"
40
- TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
- PARAPHRASING = "PARA"
42
- TRANSLATION = "TRANSL"
43
- SUMMARIZATION = "SUM"
44
- TEXT_CLASSIFICATION = "TXTCLASS"
45
-
46
-
47
- entailment_features = datasets.Features(
48
- {
49
- "id": datasets.Value("string"),
50
- "premise": datasets.Value("string"),
51
- "hypothesis": datasets.Value("string"),
52
- "label": datasets.Value("string"),
53
- }
54
- )
55
-
56
- pairs_features = datasets.Features(
57
- {
58
- "id": datasets.Value("string"),
59
- "document_id": datasets.Value("string"),
60
- "text_1": datasets.Value("string"),
61
- "text_2": datasets.Value("string"),
62
- "label": datasets.Value("string"),
63
- }
64
- )
65
-
66
- qa_features = datasets.Features(
67
- {
68
- "id": datasets.Value("string"),
69
- "question_id": datasets.Value("string"),
70
- "document_id": datasets.Value("string"),
71
- "question": datasets.Value("string"),
72
- "type": datasets.Value("string"),
73
- "choices": [datasets.Value("string")],
74
- "context": datasets.Value("string"),
75
- "answer": datasets.Sequence(datasets.Value("string")),
76
- }
77
- )
78
-
79
- text_features = datasets.Features(
80
- {
81
- "id": datasets.Value("string"),
82
- "document_id": datasets.Value("string"),
83
- "text": datasets.Value("string"),
84
- "labels": [datasets.Value("string")],
85
- }
86
- )
87
-
88
- text2text_features = datasets.Features(
89
- {
90
- "id": datasets.Value("string"),
91
- "document_id": datasets.Value("string"),
92
- "text_1": datasets.Value("string"),
93
- "text_2": datasets.Value("string"),
94
- "text_1_name": datasets.Value("string"),
95
- "text_2_name": datasets.Value("string"),
96
- }
97
- )
98
-
99
- kb_features = datasets.Features(
100
- {
101
- "id": datasets.Value("string"),
102
- "document_id": datasets.Value("string"),
103
- "passages": [
104
- {
105
- "id": datasets.Value("string"),
106
- "type": datasets.Value("string"),
107
- "text": datasets.Sequence(datasets.Value("string")),
108
- "offsets": datasets.Sequence([datasets.Value("int32")]),
109
- }
110
- ],
111
- "entities": [
112
- {
113
- "id": datasets.Value("string"),
114
- "type": datasets.Value("string"),
115
- "text": datasets.Sequence(datasets.Value("string")),
116
- "offsets": datasets.Sequence([datasets.Value("int32")]),
117
- "normalized": [
118
- {
119
- "db_name": datasets.Value("string"),
120
- "db_id": datasets.Value("string"),
121
- }
122
- ],
123
- }
124
- ],
125
- "events": [
126
- {
127
- "id": datasets.Value("string"),
128
- "type": datasets.Value("string"),
129
- # refers to the text_bound_annotation of the trigger
130
- "trigger": {
131
- "text": datasets.Sequence(datasets.Value("string")),
132
- "offsets": datasets.Sequence([datasets.Value("int32")]),
133
- },
134
- "arguments": [
135
- {
136
- "role": datasets.Value("string"),
137
- "ref_id": datasets.Value("string"),
138
- }
139
- ],
140
- }
141
- ],
142
- "coreferences": [
143
- {
144
- "id": datasets.Value("string"),
145
- "entity_ids": datasets.Sequence(datasets.Value("string")),
146
- }
147
- ],
148
- "relations": [
149
- {
150
- "id": datasets.Value("string"),
151
- "type": datasets.Value("string"),
152
- "arg1_id": datasets.Value("string"),
153
- "arg2_id": datasets.Value("string"),
154
- "normalized": [
155
- {
156
- "db_name": datasets.Value("string"),
157
- "db_id": datasets.Value("string"),
158
- }
159
- ],
160
- }
161
- ],
162
- }
163
- )
164
-
165
-
166
- def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
167
-
168
- offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
169
-
170
- text = ann.text
171
-
172
- if len(offsets) > 1:
173
- i = 0
174
- texts = []
175
- for start, end in offsets:
176
- chunk_len = end - start
177
- texts.append(text[i : chunk_len + i])
178
- i += chunk_len
179
- while i < len(text) and text[i] == " ":
180
- i += 1
181
- else:
182
- texts = [text]
183
-
184
- return offsets, texts
185
-
186
-
187
- def remove_prefix(a: str, prefix: str) -> str:
188
- if a.startswith(prefix):
189
- a = a[len(prefix) :]
190
- return a
191
-
192
-
193
- def parse_brat_file(
194
- txt_file: Path,
195
- annotation_file_suffixes: List[str] = None,
196
- parse_notes: bool = False,
197
- ) -> Dict:
198
- """
199
- Parse a brat file into the schema defined below.
200
- `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
201
- Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
202
- e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
203
- Will include annotator notes, when `parse_notes == True`.
204
- brat_features = datasets.Features(
205
- {
206
- "id": datasets.Value("string"),
207
- "document_id": datasets.Value("string"),
208
- "text": datasets.Value("string"),
209
- "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
210
- {
211
- "offsets": datasets.Sequence([datasets.Value("int32")]),
212
- "text": datasets.Sequence(datasets.Value("string")),
213
- "type": datasets.Value("string"),
214
- "id": datasets.Value("string"),
215
- }
216
- ],
217
- "events": [ # E line in brat
218
- {
219
- "trigger": datasets.Value(
220
- "string"
221
- ), # refers to the text_bound_annotation of the trigger,
222
- "id": datasets.Value("string"),
223
- "type": datasets.Value("string"),
224
- "arguments": datasets.Sequence(
225
- {
226
- "role": datasets.Value("string"),
227
- "ref_id": datasets.Value("string"),
228
- }
229
- ),
230
- }
231
- ],
232
- "relations": [ # R line in brat
233
- {
234
- "id": datasets.Value("string"),
235
- "head": {
236
- "ref_id": datasets.Value("string"),
237
- "role": datasets.Value("string"),
238
- },
239
- "tail": {
240
- "ref_id": datasets.Value("string"),
241
- "role": datasets.Value("string"),
242
- },
243
- "type": datasets.Value("string"),
244
- }
245
- ],
246
- "equivalences": [ # Equiv line in brat
247
- {
248
- "id": datasets.Value("string"),
249
- "ref_ids": datasets.Sequence(datasets.Value("string")),
250
- }
251
- ],
252
- "attributes": [ # M or A lines in brat
253
- {
254
- "id": datasets.Value("string"),
255
- "type": datasets.Value("string"),
256
- "ref_id": datasets.Value("string"),
257
- "value": datasets.Value("string"),
258
- }
259
- ],
260
- "normalizations": [ # N lines in brat
261
- {
262
- "id": datasets.Value("string"),
263
- "type": datasets.Value("string"),
264
- "ref_id": datasets.Value("string"),
265
- "resource_name": datasets.Value(
266
- "string"
267
- ), # Name of the resource, e.g. "Wikipedia"
268
- "cuid": datasets.Value(
269
- "string"
270
- ), # ID in the resource, e.g. 534366
271
- "text": datasets.Value(
272
- "string"
273
- ), # Human readable description/name of the entity, e.g. "Barack Obama"
274
- }
275
- ],
276
- ### OPTIONAL: Only included when `parse_notes == True`
277
- "notes": [ # # lines in brat
278
- {
279
- "id": datasets.Value("string"),
280
- "type": datasets.Value("string"),
281
- "ref_id": datasets.Value("string"),
282
- "text": datasets.Value("string"),
283
- }
284
- ],
285
- },
286
- )
287
- """
288
-
289
- example = {}
290
- example["document_id"] = txt_file.with_suffix("").name
291
- with txt_file.open() as f:
292
- example["text"] = f.read()
293
-
294
- # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
295
- # for event extraction
296
- if annotation_file_suffixes is None:
297
- annotation_file_suffixes = [".a1", ".a2", ".ann"]
298
-
299
- if len(annotation_file_suffixes) == 0:
300
- raise AssertionError(
301
- "At least one suffix for the to-be-read annotation files should be given!"
302
- )
303
-
304
- ann_lines = []
305
- for suffix in annotation_file_suffixes:
306
- annotation_file = txt_file.with_suffix(suffix)
307
- if annotation_file.exists():
308
- with annotation_file.open() as f:
309
- ann_lines.extend(f.readlines())
310
-
311
- example["text_bound_annotations"] = []
312
- example["events"] = []
313
- example["relations"] = []
314
- example["equivalences"] = []
315
- example["attributes"] = []
316
- example["normalizations"] = []
317
-
318
- if parse_notes:
319
- example["notes"] = []
320
-
321
- for line in ann_lines:
322
- line = line.strip()
323
- if not line:
324
- continue
325
-
326
- if line.startswith("T"): # Text bound
327
- ann = {}
328
- fields = line.split("\t")
329
-
330
- ann["id"] = fields[0]
331
- ann["type"] = fields[1].split()[0]
332
- ann["offsets"] = []
333
- span_str = remove_prefix(fields[1], (ann["type"] + " "))
334
- text = fields[2]
335
- for span in span_str.split(";"):
336
- start, end = span.split()
337
- ann["offsets"].append([int(start), int(end)])
338
-
339
- # Heuristically split text of discontiguous entities into chunks
340
- ann["text"] = []
341
- if len(ann["offsets"]) > 1:
342
- i = 0
343
- for start, end in ann["offsets"]:
344
- chunk_len = end - start
345
- ann["text"].append(text[i : chunk_len + i])
346
- i += chunk_len
347
- while i < len(text) and text[i] == " ":
348
- i += 1
349
- else:
350
- ann["text"] = [text]
351
-
352
- example["text_bound_annotations"].append(ann)
353
-
354
- elif line.startswith("E"):
355
- ann = {}
356
- fields = line.split("\t")
357
-
358
- ann["id"] = fields[0]
359
-
360
- ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
361
-
362
- ann["arguments"] = []
363
- for role_ref_id in fields[1].split()[1:]:
364
- argument = {
365
- "role": (role_ref_id.split(":"))[0],
366
- "ref_id": (role_ref_id.split(":"))[1],
367
- }
368
- ann["arguments"].append(argument)
369
-
370
- example["events"].append(ann)
371
-
372
- elif line.startswith("R"):
373
- ann = {}
374
- fields = line.split("\t")
375
-
376
- ann["id"] = fields[0]
377
- ann["type"] = fields[1].split()[0]
378
-
379
- ann["head"] = {
380
- "role": fields[1].split()[1].split(":")[0],
381
- "ref_id": fields[1].split()[1].split(":")[1],
382
- }
383
- ann["tail"] = {
384
- "role": fields[1].split()[2].split(":")[0],
385
- "ref_id": fields[1].split()[2].split(":")[1],
386
- }
387
-
388
- example["relations"].append(ann)
389
-
390
- # '*' seems to be the legacy way to mark equivalences,
391
- # but I couldn't find any info on the current way
392
- # this might have to be adapted dependent on the brat version
393
- # of the annotation
394
- elif line.startswith("*"):
395
- ann = {}
396
- fields = line.split("\t")
397
-
398
- ann["id"] = fields[0]
399
- ann["ref_ids"] = fields[1].split()[1:]
400
-
401
- example["equivalences"].append(ann)
402
-
403
- elif line.startswith("A") or line.startswith("M"):
404
- ann = {}
405
- fields = line.split("\t")
406
-
407
- ann["id"] = fields[0]
408
-
409
- info = fields[1].split()
410
- ann["type"] = info[0]
411
- ann["ref_id"] = info[1]
412
-
413
- if len(info) > 2:
414
- ann["value"] = info[2]
415
- else:
416
- ann["value"] = ""
417
-
418
- example["attributes"].append(ann)
419
-
420
- elif line.startswith("N"):
421
- ann = {}
422
- fields = line.split("\t")
423
-
424
- ann["id"] = fields[0]
425
- ann["text"] = fields[2]
426
-
427
- info = fields[1].split()
428
-
429
- ann["type"] = info[0]
430
- ann["ref_id"] = info[1]
431
- ann["resource_name"] = info[2].split(":")[0]
432
- ann["cuid"] = info[2].split(":")[1]
433
- example["normalizations"].append(ann)
434
-
435
- elif parse_notes and line.startswith("#"):
436
- ann = {}
437
- fields = line.split("\t")
438
-
439
- ann["id"] = fields[0]
440
- ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
441
-
442
- info = fields[1].split()
443
-
444
- ann["type"] = info[0]
445
- ann["ref_id"] = info[1]
446
- example["notes"].append(ann)
447
-
448
- return example
449
-
450
-
451
- def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
452
- """
453
- Transform a brat parse (conforming to the standard brat schema) obtained with
454
- `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
455
- :param brat_parse:
456
- """
457
-
458
- unified_example = {}
459
-
460
- # Prefix all ids with document id to ensure global uniqueness,
461
- # because brat ids are only unique within their document
462
- id_prefix = brat_parse["document_id"] + "_"
463
-
464
- # identical
465
- unified_example["document_id"] = brat_parse["document_id"]
466
- unified_example["passages"] = [
467
- {
468
- "id": id_prefix + "_text",
469
- "type": "abstract",
470
- "text": [brat_parse["text"]],
471
- "offsets": [[0, len(brat_parse["text"])]],
472
- }
473
- ]
474
-
475
- # get normalizations
476
- ref_id_to_normalizations = defaultdict(list)
477
- for normalization in brat_parse["normalizations"]:
478
- ref_id_to_normalizations[normalization["ref_id"]].append(
479
- {
480
- "db_name": normalization["resource_name"],
481
- "db_id": normalization["cuid"],
482
- }
483
- )
484
-
485
- # separate entities and event triggers
486
- unified_example["events"] = []
487
- non_event_ann = brat_parse["text_bound_annotations"].copy()
488
- for event in brat_parse["events"]:
489
- event = event.copy()
490
- event["id"] = id_prefix + event["id"]
491
- trigger = next(
492
- tr
493
- for tr in brat_parse["text_bound_annotations"]
494
- if tr["id"] == event["trigger"]
495
- )
496
- if trigger in non_event_ann:
497
- non_event_ann.remove(trigger)
498
- event["trigger"] = {
499
- "text": trigger["text"].copy(),
500
- "offsets": trigger["offsets"].copy(),
501
- }
502
- for argument in event["arguments"]:
503
- argument["ref_id"] = id_prefix + argument["ref_id"]
504
-
505
- unified_example["events"].append(event)
506
-
507
- unified_example["entities"] = []
508
- anno_ids = [ref_id["id"] for ref_id in non_event_ann]
509
- for ann in non_event_ann:
510
- entity_ann = ann.copy()
511
- entity_ann["id"] = id_prefix + entity_ann["id"]
512
- entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
513
- unified_example["entities"].append(entity_ann)
514
-
515
- # massage relations
516
- unified_example["relations"] = []
517
- skipped_relations = set()
518
- for ann in brat_parse["relations"]:
519
- if (
520
- ann["head"]["ref_id"] not in anno_ids
521
- or ann["tail"]["ref_id"] not in anno_ids
522
- ):
523
- skipped_relations.add(ann["id"])
524
- continue
525
- unified_example["relations"].append(
526
- {
527
- "arg1_id": id_prefix + ann["head"]["ref_id"],
528
- "arg2_id": id_prefix + ann["tail"]["ref_id"],
529
- "id": id_prefix + ann["id"],
530
- "type": ann["type"],
531
- "normalized": [],
532
- }
533
- )
534
- if len(skipped_relations) > 0:
535
- example_id = brat_parse["document_id"]
536
- logger.info(
537
- f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
538
- f" Skip (for now): "
539
- f"{list(skipped_relations)}"
540
- )
541
-
542
- # get coreferences
543
- unified_example["coreferences"] = []
544
- for i, ann in enumerate(brat_parse["equivalences"], start=1):
545
- is_entity_cluster = True
546
- for ref_id in ann["ref_ids"]:
547
- if not ref_id.startswith("T"): # not textbound -> no entity
548
- is_entity_cluster = False
549
- elif ref_id not in anno_ids: # event trigger -> no entity
550
- is_entity_cluster = False
551
- if is_entity_cluster:
552
- entity_ids = [id_prefix + i for i in ann["ref_ids"]]
553
- unified_example["coreferences"].append(
554
- {"id": id_prefix + str(i), "entity_ids": entity_ids}
555
- )
556
- return unified_example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chemprot.py DELETED
@@ -1,446 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """
16
- The BioCreative VI Chemical-Protein interaction dataset identifies entities of
17
- chemicals and proteins and their likely relation to one other. Compounds are
18
- generally agonists (activators) or antagonists (inhibitors) of proteins. The
19
- script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb)
20
- AND/OR source (default) schema
21
- """
22
- import os
23
- from typing import Dict, Tuple
24
-
25
- import datasets
26
-
27
- from .bigbiohub import kb_features
28
- from .bigbiohub import BigBioConfig
29
- from .bigbiohub import Tasks
30
-
31
- _LANGUAGES = ['English']
32
- _PUBMED = True
33
- _LOCAL = False
34
- _CITATION = """\
35
- @article{DBLP:journals/biodb/LiSJSWLDMWL16,
36
- author = {Krallinger, M., Rabal, O., Lourenço, A.},
37
- title = {Overview of the BioCreative VI chemical-protein interaction Track},
38
- journal = {Proceedings of the BioCreative VI Workshop,},
39
- volume = {141-146},
40
- year = {2017},
41
- url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/},
42
- doi = {},
43
- biburl = {},
44
- bibsource = {}
45
- }
46
- """
47
- _DESCRIPTION = """\
48
- The BioCreative VI Chemical-Protein interaction dataset identifies entities of
49
- chemicals and proteins and their likely relation to one other. Compounds are
50
- generally agonists (activators) or antagonists (inhibitors) of proteins.
51
- """
52
-
53
- _DATASETNAME = "chemprot"
54
- _DISPLAYNAME = "ChemProt"
55
-
56
- _HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/"
57
-
58
- _LICENSE = 'Public Domain Mark 1.0'
59
-
60
- _URLs = {
61
- "source": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip",
62
- "bigbio_kb": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip",
63
- }
64
-
65
- _SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION]
66
- _SOURCE_VERSION = "1.0.0"
67
- _BIGBIO_VERSION = "1.0.0"
68
-
69
-
70
- # Chemprot specific variables
71
- # NOTE: There are 3 examples (2 in dev, 1 in training) with CPR:0
72
- _GROUP_LABELS = {
73
- "CPR:0": "Undefined",
74
- "CPR:1": "Part_of",
75
- "CPR:2": "Regulator",
76
- "CPR:3": "Upregulator",
77
- "CPR:4": "Downregulator",
78
- "CPR:5": "Agonist",
79
- "CPR:6": "Antagonist",
80
- "CPR:7": "Modulator",
81
- "CPR:8": "Cofactor",
82
- "CPR:9": "Substrate",
83
- "CPR:10": "Not",
84
- }
85
-
86
-
87
- class ChemprotDataset(datasets.GeneratorBasedBuilder):
88
- """BioCreative VI Chemical-Protein Interaction Task."""
89
-
90
- SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
91
- BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
92
-
93
- BUILDER_CONFIGS = [
94
- BigBioConfig(
95
- name="chemprot_full_source",
96
- version=SOURCE_VERSION,
97
- description="chemprot source schema",
98
- schema="source",
99
- subset_id="chemprot_full",
100
- ),
101
- BigBioConfig(
102
- name="chemprot_shared_task_eval_source",
103
- version=SOURCE_VERSION,
104
- description="chemprot source schema with only the relation types that were used in the shared task evaluation",
105
- schema="source",
106
- subset_id="chemprot_shared_task_eval",
107
- ),
108
- BigBioConfig(
109
- name="chemprot_bigbio_kb",
110
- version=BIGBIO_VERSION,
111
- description="chemprot BigBio schema",
112
- schema="bigbio_kb",
113
- subset_id="chemprot",
114
- ),
115
- ]
116
-
117
- DEFAULT_CONFIG_NAME = "chemprot_full_source"
118
-
119
- def _info(self):
120
-
121
- if self.config.schema == "source":
122
- features = datasets.Features(
123
- {
124
- "pmid": datasets.Value("string"),
125
- "text": datasets.Value("string"),
126
- "entities": datasets.Sequence(
127
- {
128
- "id": datasets.Value("string"),
129
- "type": datasets.Value("string"),
130
- "text": datasets.Value("string"),
131
- "offsets": datasets.Sequence(datasets.Value("int64")),
132
- }
133
- ),
134
- "relations": datasets.Sequence(
135
- {
136
- "type": datasets.Value("string"),
137
- "arg1": datasets.Value("string"),
138
- "arg2": datasets.Value("string"),
139
- }
140
- ),
141
- }
142
- )
143
-
144
- elif self.config.schema == "bigbio_kb":
145
- features = kb_features
146
-
147
- return datasets.DatasetInfo(
148
- description=_DESCRIPTION,
149
- features=features,
150
- homepage=_HOMEPAGE,
151
- license=str(_LICENSE),
152
- citation=_CITATION,
153
- )
154
-
155
- def _split_generators(self, dl_manager):
156
- """Returns SplitGenerators."""
157
- my_urls = _URLs[self.config.schema]
158
- data_dir = dl_manager.download_and_extract(my_urls)
159
-
160
- # Extract each of the individual folders
161
- # NOTE: omitting "extract" call cause it uses a new folder
162
- train_path = dl_manager.extract(
163
- os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip")
164
- )
165
- test_path = dl_manager.extract(
166
- os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip")
167
- )
168
- dev_path = dl_manager.extract(
169
- os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip")
170
- )
171
- sample_path = dl_manager.extract(
172
- os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip")
173
- )
174
-
175
- return [
176
- datasets.SplitGenerator(
177
- name="sample", # should be a named split : /
178
- gen_kwargs={
179
- "filepath": os.path.join(sample_path, "chemprot_sample"),
180
- "abstract_file": "chemprot_sample_abstracts.tsv",
181
- "entity_file": "chemprot_sample_entities.tsv",
182
- "relation_file": "chemprot_sample_relations.tsv",
183
- "gold_standard_file": "chemprot_sample_gold_standard.tsv",
184
- "split": "sample",
185
- },
186
- ),
187
- datasets.SplitGenerator(
188
- name=datasets.Split.TRAIN,
189
- gen_kwargs={
190
- "filepath": os.path.join(train_path, "chemprot_training"),
191
- "abstract_file": "chemprot_training_abstracts.tsv",
192
- "entity_file": "chemprot_training_entities.tsv",
193
- "relation_file": "chemprot_training_relations.tsv",
194
- "gold_standard_file": "chemprot_training_gold_standard.tsv",
195
- "split": "train",
196
- },
197
- ),
198
- datasets.SplitGenerator(
199
- name=datasets.Split.TEST,
200
- gen_kwargs={
201
- "filepath": os.path.join(test_path, "chemprot_test_gs"),
202
- "abstract_file": "chemprot_test_abstracts_gs.tsv",
203
- "entity_file": "chemprot_test_entities_gs.tsv",
204
- "relation_file": "chemprot_test_relations_gs.tsv",
205
- "gold_standard_file": "chemprot_test_gold_standard.tsv",
206
- "split": "test",
207
- },
208
- ),
209
- datasets.SplitGenerator(
210
- name=datasets.Split.VALIDATION,
211
- gen_kwargs={
212
- "filepath": os.path.join(dev_path, "chemprot_development"),
213
- "abstract_file": "chemprot_development_abstracts.tsv",
214
- "entity_file": "chemprot_development_entities.tsv",
215
- "relation_file": "chemprot_development_relations.tsv",
216
- "gold_standard_file": "chemprot_development_gold_standard.tsv",
217
- "split": "dev",
218
- },
219
- ),
220
- ]
221
-
222
- def _generate_examples(
223
- self,
224
- filepath,
225
- abstract_file,
226
- entity_file,
227
- relation_file,
228
- gold_standard_file,
229
- split,
230
- ):
231
- """Yields examples as (key, example) tuples."""
232
- if self.config.schema == "source":
233
- abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
234
-
235
- entities, entity_id = self._get_entities(
236
- os.path.join(filepath, entity_file)
237
- )
238
-
239
- if self.config.subset_id == "chemprot_full":
240
- relations = self._get_relations(os.path.join(filepath, relation_file))
241
- elif self.config.subset_id == "chemprot_shared_task_eval":
242
- relations = self._get_relations_gs(
243
- os.path.join(filepath, gold_standard_file)
244
- )
245
- else:
246
- raise ValueError(self.config)
247
-
248
- for id_, pmid in enumerate(abstracts.keys()):
249
- yield id_, {
250
- "pmid": pmid,
251
- "text": abstracts[pmid],
252
- "entities": entities[pmid],
253
- "relations": relations.get(pmid, []),
254
- }
255
-
256
- elif self.config.schema == "bigbio_kb":
257
-
258
- abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
259
- entities, entity_id = self._get_entities(
260
- os.path.join(filepath, entity_file)
261
- )
262
- relations = self._get_relations(
263
- os.path.join(filepath, relation_file), is_mapped=True
264
- )
265
-
266
- uid = 0
267
- for id_, pmid in enumerate(abstracts.keys()):
268
- data = {
269
- "id": str(uid),
270
- "document_id": str(pmid),
271
- "passages": [],
272
- "entities": [],
273
- "relations": [],
274
- "events": [],
275
- "coreferences": [],
276
- }
277
- uid += 1
278
-
279
- data["passages"] = [
280
- {
281
- "id": str(uid),
282
- "type": "title and abstract",
283
- "text": [abstracts[pmid]],
284
- "offsets": [[0, len(abstracts[pmid])]],
285
- }
286
- ]
287
- uid += 1
288
-
289
- entity_to_id = {}
290
- for entity in entities[pmid]:
291
- _text = entity["text"]
292
- entity.update({"text": [_text]})
293
- entity_to_id[entity["id"]] = str(uid)
294
- entity.update({"id": str(uid)})
295
- _offsets = entity["offsets"]
296
- entity.update({"offsets": [_offsets]})
297
- entity["normalized"] = []
298
- data["entities"].append(entity)
299
- uid += 1
300
-
301
- for relation in relations.get(pmid, []):
302
- relation["arg1_id"] = entity_to_id[relation.pop("arg1")]
303
- relation["arg2_id"] = entity_to_id[relation.pop("arg2")]
304
- relation.update({"id": str(uid)})
305
- relation["normalized"] = []
306
- data["relations"].append(relation)
307
- uid += 1
308
-
309
- yield id_, data
310
-
311
- @staticmethod
312
- def _get_abstract(abs_filename: str) -> Dict[str, str]:
313
- """
314
- For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated.
315
-
316
- :param filename: `*_abstracts.tsv from ChemProt
317
-
318
- :returns Dictionary with PMID keys and abstract text as values.
319
- """
320
- with open(abs_filename, "r") as f:
321
- contents = [i.strip() for i in f.readlines()]
322
-
323
- # PMID is the first column, Abstract is last
324
- return {
325
- doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents
326
- } # Includes title as line 1
327
-
328
- @staticmethod
329
- def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]:
330
- """
331
- For each document in the corpus, return entity annotations per PMID.
332
- Each column in the entity file is as follows:
333
- (1) PMID
334
- (2) Entity Number
335
- (3) Entity Type (Chemical, Gene-Y, Gene-N)
336
- (4) Start index
337
- (5) End index
338
- (6) Actual text of entity
339
-
340
- :param ents_filename: `_*entities.tsv` file from ChemProt
341
-
342
- :returns: Dictionary with PMID keys and entity annotations.
343
- """
344
- with open(ents_filename, "r") as f:
345
- contents = [i.strip() for i in f.readlines()]
346
-
347
- entities = {}
348
- entity_id = {}
349
-
350
- for line in contents:
351
-
352
- pmid, idx, label, start_offset, end_offset, name = line.split("\t")
353
-
354
- # Populate entity dictionary
355
- if pmid not in entities:
356
- entities[pmid] = []
357
-
358
- ann = {
359
- "offsets": [int(start_offset), int(end_offset)],
360
- "text": name,
361
- "type": label,
362
- "id": idx,
363
- }
364
-
365
- entities[pmid].append(ann)
366
-
367
- # Populate entity mapping
368
- entity_id.update({idx: name})
369
-
370
- return entities, entity_id
371
-
372
- @staticmethod
373
- def _get_relations(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
374
- """For each document in the ChemProt corpus, create an annotation for all relationships.
375
-
376
- :param is_mapped: Whether to convert into NL the relation tags. Default is OFF
377
- """
378
- with open(rel_filename, "r") as f:
379
- contents = [i.strip() for i in f.readlines()]
380
-
381
- relations = {}
382
-
383
- for line in contents:
384
- pmid, label, _, _, arg1, arg2 = line.split("\t")
385
- arg1 = arg1.split("Arg1:")[-1]
386
- arg2 = arg2.split("Arg2:")[-1]
387
-
388
- if pmid not in relations:
389
- relations[pmid] = []
390
-
391
- if is_mapped:
392
- label = _GROUP_LABELS[label]
393
-
394
- ann = {
395
- "type": label,
396
- "arg1": arg1,
397
- "arg2": arg2,
398
- }
399
-
400
- relations[pmid].append(ann)
401
-
402
- return relations
403
-
404
- @staticmethod
405
- def _get_relations_gs(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
406
- """
407
- For each document in the ChemProt corpus, create an annotation for the gold-standard relationships.
408
-
409
- The columns include:
410
- (1) PMID
411
- (2) Relationship Label (CPR)
412
- (3) Used in shared task
413
- (3) Interactor Argument 1 Entity Identifier
414
- (4) Interactor Argument 2 Entity Identifier
415
-
416
- Gold standard includes CPRs 3-9. Relationships are always Gene + Protein.
417
- Unlike entities, there is no counter, hence once must be made
418
-
419
- :param rel_filename: Gold standard file name
420
- :param ent_dict: Entity Identifier to text
421
- """
422
- with open(rel_filename, "r") as f:
423
- contents = [i.strip() for i in f.readlines()]
424
-
425
- relations = {}
426
-
427
- for line in contents:
428
- pmid, label, arg1, arg2 = line.split("\t")
429
- arg1 = arg1.split("Arg1:")[-1]
430
- arg2 = arg2.split("Arg2:")[-1]
431
-
432
- if pmid not in relations:
433
- relations[pmid] = []
434
-
435
- if is_mapped:
436
- label = _GROUP_LABELS[label]
437
-
438
- ann = {
439
- "type": label,
440
- "arg1": arg1,
441
- "arg2": arg2,
442
- }
443
-
444
- relations[pmid].append(ann)
445
-
446
- return relations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chemprot_bigbio_kb/chemprot-sample.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7437afca3ef5a3f0bedf0f6e3f470ed189080410d42170e076825757d03bb77e
3
+ size 101776
chemprot_bigbio_kb/chemprot-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a1315c337e18503fd21c86eb03a596de1b728283f0adba7ff56492b7a260071
3
+ size 1186757
chemprot_bigbio_kb/chemprot-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e9e676bb7f238df4a1843deff377448855758b80ab5432ba4304bd8de3fb0f
3
+ size 1486927
chemprot_bigbio_kb/chemprot-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c607bcbd32f4b10c169eed6dbcd4dbbfe8ec0c0185026755b173dacf9cc707aa
3
+ size 895098
chemprot_full_source/chemprot-sample.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c5a053860f7e7b30101c4c7011889c6d9f93c1dec5af181c9fe6bf1afcf6492
3
+ size 80685
chemprot_full_source/chemprot-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bde547d30439de1b9d8281eecdb961066a8636973b2509c64361237a223af84e
3
+ size 950279
chemprot_full_source/chemprot-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbca12bae7cb77ccf6d96acca7166619c83406b1df5df15edce585a24af2f465
3
+ size 1199865
chemprot_full_source/chemprot-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22099daa9d297acd834c3cf055c4bc8b25b6b3d18fc2e36e5d4e401778eb330
3
+ size 726958
chemprot_shared_task_eval_source/chemprot-sample.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c4553aab8af19d783969a91f5617e32ac550d90ec7a5628f6ca33ac2545ca93
3
+ size 80339
chemprot_shared_task_eval_source/chemprot-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e676a28df6234f72e665a3504ae8564312b2a9f3bcd73cf95ff422e1930f81
3
+ size 944795
chemprot_shared_task_eval_source/chemprot-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2cbe14be231be107319321c89686a0e3f45c6cf733b122b6819e913b26b1b31
3
+ size 1194585
chemprot_shared_task_eval_source/chemprot-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f963bbc1f979951b1e72095ed19c813806a450be50c0c5bb05c8dc8bf53d2995
3
+ size 723837