# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os from typing import Dict, Iterator, List from xml.etree import ElementTree as ET import datasets from .bigbiohub import BigBioConfig, Tasks, kb_features _LOCAL = False _LANGUAGES = ["English"] _PUBMED = True _CITATION = """\ @article{bada2012concept, title={Concept annotation in the CRAFT corpus}, author={Bada, Michael and Eckert, Miriam and Evans, Donald and Garcia, Kristin and Shipley, Krista and Sitnikov, \ Dmitry and Baumgartner, William A and Cohen, K Bretonnel and Verspoor, Karin and Blake, Judith A and others}, journal={BMC bioinformatics}, volume={13}, number={1}, pages={1--20}, year={2012}, publisher={BioMed Central} } """ _DATASETNAME = "craft" _DISPLAYNAME = "CRAFT" _DESCRIPTION = """ This dataset contains the CRAFT corpus, a collection of 97 articles from the PubMed Central Open Access subset, each of which has been annotated along a number of different axes spanning structural, coreference, and concept annotation. Due to current limitations of the current schema, corefs are not included in this dataloader. They will be implemented in a future version. """ _HOMEPAGE = "https://github.com/UCDenver-ccp/CRAFT" _LICENSE = "CC_BY_3p0_US" _URL = { "source": "https://github.com/UCDenver-ccp/CRAFT/archive/refs/tags/v5.0.2.zip", "bigbio_kb": "https://github.com/UCDenver-ccp/CRAFT/archive/refs/tags/v5.0.2.zip", } _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] _SOURCE_VERSION = "5.0.2" _BIGBIO_VERSION = "1.0.0" _CONCEPT_ANNOTATIONS = { "CHEBI": "Chemical Entities of Biological Interest ", "CL": "Cell Ontology", "GO_BP": "Gene Ontology Biological Process", "GO_CC": "Gene Ontology Cellular Component", "GO_MF": "Gene Ontology Molecular Function", "MONDO": "MONDO Disease Ontology", "MOP": "Molecular Process Ontology", "NCBITaxon": "NCBI Taxonomy", "PR": "Protein Ontology", "SO": "Sequence Ontology", "UBERON": "Uberon", } logger = datasets.utils.logging.get_logger(__name__) class CraftDataset(datasets.GeneratorBasedBuilder): """ This dataset presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: - the Cell Type Ontology, - the Chemical Entities of Biological Interest ontology, - the NCBI Taxonomy, the Protein Ontology, - the Sequence Ontology, - the entries of the Entrez Gene database, and t - he three subontologies of the Gene Ontology. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) bigbio_schema_name = "kb" BUILDER_CONFIGS = [ BigBioConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), BigBioConfig( name=f"{_DATASETNAME}_bigbio_{bigbio_schema_name}", version=BIGBIO_VERSION, description=f"{_DATASETNAME} BigBio schema", schema=f"bigbio_{bigbio_schema_name}", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "pmid": datasets.Value("string"), "text": datasets.Value("string"), "annotations": [ { "offsets": datasets.Sequence([datasets.Value("int64")]), "text": datasets.Sequence(datasets.Value("string")), "db_name": datasets.Value("string"), "db_id": datasets.Value("string"), } ], } ) elif self.config.schema == "bigbio_kb": features = kb_features else: raise NotImplementedError(f"Schema {self.config.schema} not supported") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URL[self.config.schema] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": data_dir, "split": "validation"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "split": "test"}, ), ] def get_splits(self, data_dir: str) -> Dict: """Load `dict[split, list[pmid]]`""" splits_dir = os.path.join(data_dir, f"CRAFT-{_SOURCE_VERSION}", "articles", "ids") splits = {} for split in ["train", "dev", "test"]: with open(os.path.join(splits_dir, f"craft-ids-{split}.txt")) as fp: split_name = "validation" if split == "dev" else split splits[split_name] = [line.strip() for line in fp.readlines()] return splits def get_texts(self, data_dir: str) -> Dict: """Load dict[pmid,text]""" texts_dir = os.path.join(data_dir, f"CRAFT-{_SOURCE_VERSION}", "articles", "txt") documents = {} for file in os.listdir(texts_dir): if not file.endswith(".txt"): continue pmid = file.replace(".txt", "") with open(os.path.join(texts_dir, file)) as fp: documents[pmid] = fp.read() return documents def _extract_mondo_annotations(self, path: str) -> Iterator[Dict]: """Extract MONDO annotations""" root = ET.parse(path) for a in root.findall("document/annotation"): span = a.find("span") assert span is not None start = span.attrib["start"] end = span.attrib["end"] ea = { "offsets": [[start, end]], "text": [span.text], } normalization = a.find("class") if normalization is not None: mondo_id = normalization.attrib["id"].replace("http://purl.obolibrary.org/obo/", "") mondo_id = mondo_id.replace("_", ":") ea["db_id"] = mondo_id yield ea def _extract_other_annotations(self, path: str) -> Iterator[Dict]: """Extract all other annotations (CHEBI, UBERON, ...)""" # NOTE: handle knowtator normalization format # # # # # striatum # root = ET.parse(path) instance_to_db_id = { e.attrib["id"]: e.find("mentionClass").attrib["id"] for e in root.findall("classMention") if e.find("mentionClass") is not None } for a in root.findall("annotation"): span = a.find("span") assert span is not None offsets = [[span.attrib["start"], span.attrib["end"]] for span in a.findall("span")] text = a.find("spannedText").text.split(" ... ") ea = {"offsets": offsets, "text": text} mention = a.find("mention") db_id = None if mention is not None: instance = mention.attrib["id"] db_id = instance_to_db_id.get(instance) ea["db_id"] = db_id yield ea def get_annotations(self, data_dir: str) -> Dict: """Load dict[pmid,annotations]""" annotations_dir = os.path.join(data_dir, f"CRAFT-{_SOURCE_VERSION}", "concept-annotation") annotations: Dict = {} for concept in _CONCEPT_ANNOTATIONS: if concept == "MONDO": folder = os.path.join( annotations_dir, "MONDO", "MONDO_without_genotype_annotations", "knowtator-2", ) else: folder = os.path.join( annotations_dir, concept, concept, "knowtator", ) for file in sorted(os.listdir(folder)): pmid = file.replace(".xml", "").replace(".txt", "").replace(".knowtator", "") path = os.path.join(folder, file) if pmid not in annotations: annotations[pmid] = [] annotations_generator = ( self._extract_mondo_annotations(path) if concept == "MONDO" else self._extract_other_annotations(path) ) for a in annotations_generator: a["db_name"] = concept annotations[pmid].append(a) return annotations def _generate_examples(self, data_dir: str, split: str): """Yields examples as (key, example) tuples.""" splits = self.get_splits(data_dir=data_dir) texts = self.get_texts(data_dir=data_dir) annotations = self.get_annotations(data_dir=data_dir) if self.config.schema == "source": for pmid in splits[split]: example = { "pmid": pmid, "text": texts[pmid], "annotations": annotations[pmid], } yield pmid, example elif self.config.schema == "bigbio_kb": uid = map(str, itertools.count(start=0, step=1)) for pmid in splits[split]: example = { "id": next(uid), "document_id": pmid, "passages": [ { "id": next(uid), "type": "text", "text": [texts[pmid]], "offsets": [[0, len(texts[pmid])]], } ], "entities": [ { "id": next(uid), "offsets": a["offsets"], "text": a["text"], "type": a["db_name"], "normalized": [{"db_name": a["db_name"], "db_id": a["db_id"]}], } for a in annotations[pmid] ], "events": [], "coreferences": [], "relations": [], } yield next(uid), example