smeoni commited on
Commit
cad01c5
·
1 Parent(s): 6659130

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +29 -23
  2. e3c.py +23 -8
README.md CHANGED
@@ -8,58 +8,64 @@ dataset_info:
8
  - name: tokens_offsets
9
  sequence:
10
  sequence: int32
11
- - name: ner_tags
12
  sequence:
13
  class_label:
14
  names:
15
  '0': O
16
  '1': B-CLINENTITY
17
- '2': B-EVENT
18
- '3': B-ACTOR
19
- '4': B-BODYPART
20
- '5': B-TIMEX3
21
- '6': B-RML
22
- '7': I-CLINENTITY
23
- '8': I-EVENT
24
- '9': I-ACTOR
25
- '10': I-BODYPART
26
- '11': I-TIMEX3
27
- '12': I-RML
 
 
 
 
 
28
  config_name: e3c
29
  splits:
30
  - name: en.layer1
31
- num_bytes: 1039582
32
  num_examples: 1520
33
  - name: en.layer2
34
- num_bytes: 2083098
35
  num_examples: 2873
36
  - name: es.layer1
37
- num_bytes: 1026950
38
  num_examples: 1134
39
  - name: es.layer2
40
- num_bytes: 2052073
41
  num_examples: 2347
42
  - name: eu.layer1
43
- num_bytes: 1252750
44
  num_examples: 3126
45
  - name: eu.layer2
46
- num_bytes: 697118
47
  num_examples: 1594
48
  - name: fr.layer1
49
- num_bytes: 1036878
50
  num_examples: 1109
51
  - name: fr.layer2
52
- num_bytes: 2104253
53
  num_examples: 2389
54
  - name: it.layer1
55
- num_bytes: 1055588
56
  num_examples: 1146
57
  - name: it.layer2
58
- num_bytes: 2191803
59
  num_examples: 2436
60
  download_size: 230213492
61
- dataset_size: 14540093
62
  ---
 
63
  # Dataset Card for E3C
64
 
65
  ## Dataset Description
 
8
  - name: tokens_offsets
9
  sequence:
10
  sequence: int32
11
+ - name: clinical_entity_tags
12
  sequence:
13
  class_label:
14
  names:
15
  '0': O
16
  '1': B-CLINENTITY
17
+ '2': I-CLINENTITY
18
+ - name: temporal_information_tags
19
+ sequence:
20
+ class_label:
21
+ names:
22
+ '0': O
23
+ '1': B-EVENT
24
+ '2': B-ACTOR
25
+ '3': B-BODYPART
26
+ '4': B-TIMEX3
27
+ '5': B-RML
28
+ '6': I-EVENT
29
+ '7': I-ACTOR
30
+ '8': I-BODYPART
31
+ '9': I-TIMEX3
32
+ '10': I-RML
33
  config_name: e3c
34
  splits:
35
  - name: en.layer1
36
+ num_bytes: 1280534
37
  num_examples: 1520
38
  - name: en.layer2
39
+ num_bytes: 2566638
40
  num_examples: 2873
41
  - name: es.layer1
42
+ num_bytes: 1262006
43
  num_examples: 1134
44
  - name: es.layer2
45
+ num_bytes: 2524461
46
  num_examples: 2347
47
  - name: eu.layer1
48
+ num_bytes: 1537670
49
  num_examples: 3126
50
  - name: eu.layer2
51
+ num_bytes: 853766
52
  num_examples: 1594
53
  - name: fr.layer1
54
+ num_bytes: 1275362
55
  num_examples: 1109
56
  - name: fr.layer2
57
+ num_bytes: 2581993
58
  num_examples: 2389
59
  - name: it.layer1
60
+ num_bytes: 1299388
61
  num_examples: 1146
62
  - name: it.layer2
63
+ num_bytes: 2697483
64
  num_examples: 2436
65
  download_size: 230213492
66
+ dataset_size: 17879301
67
  ---
68
+
69
  # Dataset Card for E3C
70
 
71
  ## Dataset Description
e3c.py CHANGED
@@ -57,17 +57,24 @@ class E3C(datasets.GeneratorBasedBuilder):
57
  "text": datasets.Value("string"),
58
  "tokens": datasets.Sequence(datasets.Value("string")),
59
  "tokens_offsets": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
60
- "ner_tags": datasets.Sequence(
61
  datasets.features.ClassLabel(
62
  names=[
63
  "O",
64
  "B-CLINENTITY",
 
 
 
 
 
 
 
 
65
  "B-EVENT",
66
  "B-ACTOR",
67
  "B-BODYPART",
68
  "B-TIMEX3",
69
  "B-RML",
70
- "I-CLINENTITY",
71
  "I-EVENT",
72
  "I-ACTOR",
73
  "I-BODYPART",
@@ -286,7 +293,8 @@ class E3C(datasets.GeneratorBasedBuilder):
286
  tokens_offsets = [
287
  [token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
288
  ]
289
- labels = ["O"] * len(filtered_tokens)
 
290
  for entity_type in [
291
  "CLINENTITY",
292
  "EVENT",
@@ -308,14 +316,21 @@ class E3C(datasets.GeneratorBasedBuilder):
308
  if token[0] >= entities[0] and token[1] <= entities[1]
309
  ]
310
  for idx_token in annotated_tokens:
311
- if idx_token == annotated_tokens[0]:
312
- labels[idx_token] = f"B-{entity_type}"
 
 
 
313
  else:
314
- labels[idx_token] = f"I-{entity_type}"
 
 
 
315
  yield guid, {
316
  "text": sentence[-1],
317
  "tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
318
- "ner_tags": labels,
 
319
  "tokens_offsets": tokens_offsets,
320
  }
321
- guid += 1
 
57
  "text": datasets.Value("string"),
58
  "tokens": datasets.Sequence(datasets.Value("string")),
59
  "tokens_offsets": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
60
+ "clinical_entity_tags": datasets.Sequence(
61
  datasets.features.ClassLabel(
62
  names=[
63
  "O",
64
  "B-CLINENTITY",
65
+ "I-CLINENTITY",
66
+ ],
67
+ ),
68
+ ),
69
+ "temporal_information_tags": datasets.Sequence(
70
+ datasets.features.ClassLabel(
71
+ names=[
72
+ "O",
73
  "B-EVENT",
74
  "B-ACTOR",
75
  "B-BODYPART",
76
  "B-TIMEX3",
77
  "B-RML",
 
78
  "I-EVENT",
79
  "I-ACTOR",
80
  "I-BODYPART",
 
293
  tokens_offsets = [
294
  [token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
295
  ]
296
+ clinical_labels = ["O"] * len(filtered_tokens)
297
+ temporal_information_labels = ["O"] * len(filtered_tokens)
298
  for entity_type in [
299
  "CLINENTITY",
300
  "EVENT",
 
316
  if token[0] >= entities[0] and token[1] <= entities[1]
317
  ]
318
  for idx_token in annotated_tokens:
319
+ if entity_type == "CLINENTITY":
320
+ if idx_token == annotated_tokens[0]:
321
+ clinical_labels[idx_token] = f"B-{entity_type}"
322
+ else:
323
+ clinical_labels[idx_token] = f"I-{entity_type}"
324
  else:
325
+ if idx_token == annotated_tokens[0]:
326
+ temporal_information_labels[idx_token] = f"B-{entity_type}"
327
+ else:
328
+ temporal_information_labels[idx_token] = f"I-{entity_type}"
329
  yield guid, {
330
  "text": sentence[-1],
331
  "tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
332
+ "clinical_entity_tags": clinical_labels,
333
+ "temporal_information_tags": temporal_information_labels,
334
  "tokens_offsets": tokens_offsets,
335
  }
336
+ guid += 1