Upload 2 files
Browse files
README.md
CHANGED
@@ -8,58 +8,64 @@ dataset_info:
|
|
8 |
- name: tokens_offsets
|
9 |
sequence:
|
10 |
sequence: int32
|
11 |
-
- name:
|
12 |
sequence:
|
13 |
class_label:
|
14 |
names:
|
15 |
'0': O
|
16 |
'1': B-CLINENTITY
|
17 |
-
'2':
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
'
|
23 |
-
'
|
24 |
-
'
|
25 |
-
'
|
26 |
-
'
|
27 |
-
'
|
|
|
|
|
|
|
|
|
|
|
28 |
config_name: e3c
|
29 |
splits:
|
30 |
- name: en.layer1
|
31 |
-
num_bytes:
|
32 |
num_examples: 1520
|
33 |
- name: en.layer2
|
34 |
-
num_bytes:
|
35 |
num_examples: 2873
|
36 |
- name: es.layer1
|
37 |
-
num_bytes:
|
38 |
num_examples: 1134
|
39 |
- name: es.layer2
|
40 |
-
num_bytes:
|
41 |
num_examples: 2347
|
42 |
- name: eu.layer1
|
43 |
-
num_bytes:
|
44 |
num_examples: 3126
|
45 |
- name: eu.layer2
|
46 |
-
num_bytes:
|
47 |
num_examples: 1594
|
48 |
- name: fr.layer1
|
49 |
-
num_bytes:
|
50 |
num_examples: 1109
|
51 |
- name: fr.layer2
|
52 |
-
num_bytes:
|
53 |
num_examples: 2389
|
54 |
- name: it.layer1
|
55 |
-
num_bytes:
|
56 |
num_examples: 1146
|
57 |
- name: it.layer2
|
58 |
-
num_bytes:
|
59 |
num_examples: 2436
|
60 |
download_size: 230213492
|
61 |
-
dataset_size:
|
62 |
---
|
|
|
63 |
# Dataset Card for E3C
|
64 |
|
65 |
## Dataset Description
|
|
|
8 |
- name: tokens_offsets
|
9 |
sequence:
|
10 |
sequence: int32
|
11 |
+
- name: clinical_entity_tags
|
12 |
sequence:
|
13 |
class_label:
|
14 |
names:
|
15 |
'0': O
|
16 |
'1': B-CLINENTITY
|
17 |
+
'2': I-CLINENTITY
|
18 |
+
- name: temporal_information_tags
|
19 |
+
sequence:
|
20 |
+
class_label:
|
21 |
+
names:
|
22 |
+
'0': O
|
23 |
+
'1': B-EVENT
|
24 |
+
'2': B-ACTOR
|
25 |
+
'3': B-BODYPART
|
26 |
+
'4': B-TIMEX3
|
27 |
+
'5': B-RML
|
28 |
+
'6': I-EVENT
|
29 |
+
'7': I-ACTOR
|
30 |
+
'8': I-BODYPART
|
31 |
+
'9': I-TIMEX3
|
32 |
+
'10': I-RML
|
33 |
config_name: e3c
|
34 |
splits:
|
35 |
- name: en.layer1
|
36 |
+
num_bytes: 1280534
|
37 |
num_examples: 1520
|
38 |
- name: en.layer2
|
39 |
+
num_bytes: 2566638
|
40 |
num_examples: 2873
|
41 |
- name: es.layer1
|
42 |
+
num_bytes: 1262006
|
43 |
num_examples: 1134
|
44 |
- name: es.layer2
|
45 |
+
num_bytes: 2524461
|
46 |
num_examples: 2347
|
47 |
- name: eu.layer1
|
48 |
+
num_bytes: 1537670
|
49 |
num_examples: 3126
|
50 |
- name: eu.layer2
|
51 |
+
num_bytes: 853766
|
52 |
num_examples: 1594
|
53 |
- name: fr.layer1
|
54 |
+
num_bytes: 1275362
|
55 |
num_examples: 1109
|
56 |
- name: fr.layer2
|
57 |
+
num_bytes: 2581993
|
58 |
num_examples: 2389
|
59 |
- name: it.layer1
|
60 |
+
num_bytes: 1299388
|
61 |
num_examples: 1146
|
62 |
- name: it.layer2
|
63 |
+
num_bytes: 2697483
|
64 |
num_examples: 2436
|
65 |
download_size: 230213492
|
66 |
+
dataset_size: 17879301
|
67 |
---
|
68 |
+
|
69 |
# Dataset Card for E3C
|
70 |
|
71 |
## Dataset Description
|
e3c.py
CHANGED
@@ -57,17 +57,24 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
57 |
"text": datasets.Value("string"),
|
58 |
"tokens": datasets.Sequence(datasets.Value("string")),
|
59 |
"tokens_offsets": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
60 |
-
"
|
61 |
datasets.features.ClassLabel(
|
62 |
names=[
|
63 |
"O",
|
64 |
"B-CLINENTITY",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
"B-EVENT",
|
66 |
"B-ACTOR",
|
67 |
"B-BODYPART",
|
68 |
"B-TIMEX3",
|
69 |
"B-RML",
|
70 |
-
"I-CLINENTITY",
|
71 |
"I-EVENT",
|
72 |
"I-ACTOR",
|
73 |
"I-BODYPART",
|
@@ -286,7 +293,8 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
286 |
tokens_offsets = [
|
287 |
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
|
288 |
]
|
289 |
-
|
|
|
290 |
for entity_type in [
|
291 |
"CLINENTITY",
|
292 |
"EVENT",
|
@@ -308,14 +316,21 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
308 |
if token[0] >= entities[0] and token[1] <= entities[1]
|
309 |
]
|
310 |
for idx_token in annotated_tokens:
|
311 |
-
if
|
312 |
-
|
|
|
|
|
|
|
313 |
else:
|
314 |
-
|
|
|
|
|
|
|
315 |
yield guid, {
|
316 |
"text": sentence[-1],
|
317 |
"tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
|
318 |
-
"
|
|
|
319 |
"tokens_offsets": tokens_offsets,
|
320 |
}
|
321 |
-
guid += 1
|
|
|
57 |
"text": datasets.Value("string"),
|
58 |
"tokens": datasets.Sequence(datasets.Value("string")),
|
59 |
"tokens_offsets": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
60 |
+
"clinical_entity_tags": datasets.Sequence(
|
61 |
datasets.features.ClassLabel(
|
62 |
names=[
|
63 |
"O",
|
64 |
"B-CLINENTITY",
|
65 |
+
"I-CLINENTITY",
|
66 |
+
],
|
67 |
+
),
|
68 |
+
),
|
69 |
+
"temporal_information_tags": datasets.Sequence(
|
70 |
+
datasets.features.ClassLabel(
|
71 |
+
names=[
|
72 |
+
"O",
|
73 |
"B-EVENT",
|
74 |
"B-ACTOR",
|
75 |
"B-BODYPART",
|
76 |
"B-TIMEX3",
|
77 |
"B-RML",
|
|
|
78 |
"I-EVENT",
|
79 |
"I-ACTOR",
|
80 |
"I-BODYPART",
|
|
|
293 |
tokens_offsets = [
|
294 |
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
|
295 |
]
|
296 |
+
clinical_labels = ["O"] * len(filtered_tokens)
|
297 |
+
temporal_information_labels = ["O"] * len(filtered_tokens)
|
298 |
for entity_type in [
|
299 |
"CLINENTITY",
|
300 |
"EVENT",
|
|
|
316 |
if token[0] >= entities[0] and token[1] <= entities[1]
|
317 |
]
|
318 |
for idx_token in annotated_tokens:
|
319 |
+
if entity_type == "CLINENTITY":
|
320 |
+
if idx_token == annotated_tokens[0]:
|
321 |
+
clinical_labels[idx_token] = f"B-{entity_type}"
|
322 |
+
else:
|
323 |
+
clinical_labels[idx_token] = f"I-{entity_type}"
|
324 |
else:
|
325 |
+
if idx_token == annotated_tokens[0]:
|
326 |
+
temporal_information_labels[idx_token] = f"B-{entity_type}"
|
327 |
+
else:
|
328 |
+
temporal_information_labels[idx_token] = f"I-{entity_type}"
|
329 |
yield guid, {
|
330 |
"text": sentence[-1],
|
331 |
"tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
|
332 |
+
"clinical_entity_tags": clinical_labels,
|
333 |
+
"temporal_information_tags": temporal_information_labels,
|
334 |
"tokens_offsets": tokens_offsets,
|
335 |
}
|
336 |
+
guid += 1
|